ASX RELEASE | 5 March 2024

Main Zone extended to 2.11km by systematic drilling at Adina

HIGHLIGHTS

- New results from resource delineation and exploration drilling undertaken at Adina have effectively increased the strike length of the Adina Main Zone from 1.34km to 2.11km
- Drilling has defined continuity of mineralisation between Adina Main (Jamar) and Adina East, with results including:
 - 12.6m at 1.92% Li₂O from 50.4m (MZ) and
 10.2m at 1.67% Li₂O from 242m (FWZ, AD-23-110)
 - o 25.6m at 1.84% Li₂O from 28.0m (MZ, AD-23-152
 - o 13.9m at 1.95% Li₂O from 61.8m (MZ, AD-23-154)
- To the west of the Adina Lithium Deposit, recent drilling of a gravity target has intersected a 62.4m thick intersection of spodumene-bearing pegmatite which may represent a new pegmatite zone¹
- The continuity of mineralisation on the western side has also been confirmed by new assay results, with near surface, high grade results such as:
 - o 9.4m at 1.30% Li₂O from 16.8m (MZ, AD-23-132)
 - 17.9m at 1.25% Li₂O from 12.0m (MZ, AD-23-136)
- Continued high grade mineralisation has been received in infill drilling including:
 - 11.0m at 1.75% Li₂O from 189.0m (FWZ, AD-23-140)
 - 51.5m at 1.78% Li₂O from 36.0m (MZ) and 27m at 1.19% Li₂O from 271m (FWZ, AD-23-143)
 - o 50.0m at 1.31% Li₂O from 3.0m incl. 29.0m at 1.84% Li₂O (MZ, AD-24-165)
- Continued receipt of assay results ensures update to the Adina Inferred Mineral Resource Estimate of 59Mt at 1.12% Li₂O is on track for completion in H1 2024
- New high priority gravity pegmatite targets have been delineated to the west of the Adina Main zone.
- New 3D imagery for Adina Lithium Project available at:
 https://vrify.com/meetings/recordings/a6d7a00b-04f3-49a6-9998-14dc7aaa0f6a

¹ Note that visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

Lithium explorer / developer Winsome Resources (ASX:WR1; "Winsome" or "the Company") is pleased to announce a significant increase in the strike length of the Main Zone from 1.34Km to 2.11km within its 100%-owned Adina Lithium Project in the Eeyou Istchee James Bay region of Quebec, Canada. Results from exploration drilling have confirmed the continuity of mineralisation to both the east and west of previous drilling, with resource delineation drilling continuing to provide excellent results in the core of the Adina deposit. In addition, as detailed below, a recent drillhole to the south-west of Adina Main has intersected a 62.4m thick spodumene-bearing pegmatite² which may represent a new pegmatite zone at Adina.

WINSOME'S MANAGING DIRECTOR CHRIS EVANS SAID:

"A potential new discovery is always exciting and the pegmatite intersection in AD-24-170 continues to reminds us the Adina Lithium Project is relatively unexplored outside of the Adina Main and Adina Ridge areas. Our conceptual model for lithium mineralisation at Adina points to the potential for further pegmatite bodies to be formed in a similar geological and structural setting and we aim to systematically explore the wider Adina Project during 2024 using the datasets we have built up through our exploration to date.

The confirmation of the continuity of mineralisation between Adina Main and Adina East in both the Main and Footwall Zones effectively increases the strike length of the Adina Main Zone to 2.1km, a significant positive step change in planning our future resource development activities. When this increase in scale is viewed along with the continuing excellent results from infill drilling it is clear the advantage Adina has over many other lithium deposits in the region and globally and why Winsome continues to develop the project in collaboration with, and for the benefit of, our local stakeholders in the Eeyou Istchee James Bay region."

Recently received drilling results are summarised in Tables 1 to 3 below and are from 7 infill resource delineation holes representing 2,690 metres of drilling, along with 11 exploration holes representing 3,780 metres of drilling testing extensions to mineralisation to the east and west of Adina. Assay results are now being received from recent drilling completed in 2024 and continue to be received in line with expected turn-around times (with continued use of multiple laboratory contractors ensuring a regular flow of results).

With the majority of the 2023 results now received, work is commencing on an update to the Mineral Resource Estimate (MRE) for Adina which currently sits at 59Mt at 1.12% Li₂O, classified in the Inferred category (refer to ASX Announcement 11 December 2023). This update is expected to include material in the higher confidence Indicated category due to the closer spacing of drill data now available.

Hole Intercepts Setting Zone AD-23-140 1.35% Li₂O over 8.3m from 8.7m to 17.0m & Infill Main 1.51% Li₂O over 6.6m from 35.0m to 41.6m 1.75% Li₂O over 11.0m from 189.0m to 200.0m & Footwall 1.18% Li₂O over 7.1m from 231.6m to 238.7m AD-23-143 1.78% Li₂O over 51.5m from 36.0m to 87.5m Infill Main

Table 1. New mineralised intercepts from infill drilling, Adina Main

2

² Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

Hole	Intercepts	Setting	Zone
	1.51% Li ₂ O over 6.8m from 214.3m to 221.1m, 1.71% Li ₂ O over 6.7m from 245.8m to 252.5m & 1.19% Li ₂ O over 27.0m from 271.0m to 298.0m		Footwall
AD-24-160	1.89% Li ₂ O over 5.4m from 183.6m to 189.0m & 2.50% Li ₂ O over 9.0m from 304.0m to 313.0m	Infill	Main
AD-24-165	1.31% Li ₂ O over 50.0m from 3.0m to 53.0m incl. 1.84% Li ₂ O over 29.0m from 3.0m to 32.0m	Infill	Main

Table 2. New mineralised intercepts from Adina Main, Eastern Area

Hole	Intercepts	Setting	Zone
AD-23-079	1.19% Li ₂ O over 12.4m from 89.6m to 102.0m	East	Main
AD-23-081	1.42% Li ₂ O over 10.0m from 71.7m to 81.7m, 2.72% Li ₂ O over 8.3m from 146.9m to 155.3m & 1.75% Li ₂ O over 6.9m from 162.1m to 169.0m	East	Main
AD-23-110	1.92% Li ₂ O over 12.6m from 50.4m to 62.9m	East	Main
	1.95% Li ₂ O over 5.0m from 195.9m to 208.6m & 1.67% Li ₂ O over 10.2m from 242.3m to 252.4m		Footwall
AD-23-149	1.26% Li ₂ O over 12.1m from 72.7m to 84.8m	East	Main
	1.51% Li ₂ O over 5.4m from 296.0m to 301.4m		Footwall
AD-23-152	1.84% Li ₂ O over 25.6m from 28.0m to 53.6m	East	Main
	1.62% Li ₂ O over 5.0m from 221.7m to 226.7m		Footwall
AD-23-154	1.95% Li ₂ O over 13.9m from 61.8m to 75.7m	East	Main
	1.07% Li ₂ O over 7.3m from 308.3m to 315.6m		Footwall
AD-23-158	1.61% Li ₂ O over 9.1m from 277.9m to 287.0m	East	Main
AD-23-163	1.09% Li ₂ O over 12.4m from 65.6m to 78.0m	East	Main
	1.49% Li ₂ O over 12.7m from 260.8m to 273.5m & 1.11% Li ₂ O over 7.7m from 282.2m to 289.8m		Footwall

Table 3. Results and observations from drilling, Section 668220mE (ordered north to south)

Hole	Intercepts	Setting	Zone
AD-23-132	1.30% Li ₂ O over 9.4m from 16.8m to 26.1m & 1.34% Li ₂ O over 4.0m from 183.6m to 187.6m	West	Main
	1.29% Li ₂ O over 3.0m from 224.0m to 227.0m & 1.43% Li ₂ O over 4.1m from 243.3m to 247.4m		Footwall
AD-23-136	1.25% Li ₂ O over 17.9m from 12.0m to 29.9m	West	Main
	1.59% Li ₂ O over 6.4m from 98.5m to 104.9m & 1.28% Li ₂ O over 9.7m from 194.6m to 204.3m		Footwall
AD-24-166	228.4m – 231.6m pegmatite (3.2m interval) - 5 - 10% spodumene ³	West	TBC

³ 'Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

_

Hole	Intercepts	Setting	Zone
	284.5m – 292.4m pegmatite (7.9m interval) - 10% spodumene ³ 392.9m – 401.3m pegmatite (9.4m interval) - 10% spodumene ³		
AD-23-146	322.0m – 324.5m pegmatite (2.5m interval) - 2% spodumene ³ 423.9m – 430.0m pegmatite (6.1m interval) - 2 – 3% spodumene ³	West	TBC
AD-24-170	306.0m – 368.4m pegmatite (62.4m interval) - 306.0 – 320.5m: 35 – 40% spodumene ³ - 320.5 – 340.5m: 10 – 20% spodumene ³ - 340.5 – 357.3m: 5% spodumene ³ - 357.3 – 368.4m: 15 – 25% spodumene ³ 385.5m – 393.3m pegmatite (7.8m interval) - 25 – 35% spodumene ³	West	TBC

Commentary on Exploration Drilling Results

Exploration results presented in this announcement are derived from drilling designed to test extensions to the east and west of the Adina Main Zone, outside the current MRE (Figure 2).

Review of drilling to the west of the Adina Main Zone (drillholes AD-23-102, AD-23-103, AD-23-107)⁴ identified a requirement for further drilling to improve the modelling of mineralisation in this area. Drillholes AD-23-132 and AD-23-136 were collared on section 668220mE to the south of AD-23-107 and along strike from AD-23-102. High grade near surface mineralisation was intersected in these holes which is currently interpreted as Main Zone mineralisation, indicating that this zone curves into to a SW trend in this area vs the E – W trend present in the core of the Adina deposit.

Recent drilling has been carried out further south along 668220mE to test the Footwall Zone (FWZ) in this area as well as an adjacent gravity anomaly. The southernmost hole AD-24-170 intersected a significant 62.4m thick spodumene-bearing pegmatite zone underlying the gravity at a different depth to the expected intersection with the interpreted location of the Footwall Zone (Table 3 and Photograph 1).

The Company reminds investors the presence of spodumene crystals within pegmatite does not necessarily equate to lithium mineralisation or indicate the percentage of lithium mineralisation, which can only be accurately confirmed by chemical assays. When such laboratory results become available, they will be reported in full in a future report.

Winsome carries out logging of all drill samples at its nearby exploration project base. Visual estimates of the pegmatite mineralogy - as a percentage range of spodumene content, textures, mineralogy and structures - are recorded by project geologists prior to sending samples to the laboratory. Strict handling procedures and QAQC protocols are followed. Assay results from the intervals reported above are anticipated in 4 – 6 weeks.

⁴ "Substantial high-grade intersections continue to grow Adina" ASX Announcement 1 August 2023 "300m extension discovered at Adina increases strike to over 1,300m" ASX Announcement 27 November 2023

Photograph 1. Core recovered from AD-24-170 between 299.5m and 367.5m (boxes 69 – 84)

WINSOMERESQUECES

To the east of the Adina Main Zone, mineralisation was discovered in 2023⁵, however, the link between Adina Main and Adina East has not been systematically explored until recently. Previously released results from AD-23-014, AD-23-016 and AD-23-017 identified mineralisation remained open at the eastern edge of Adina Main⁶ and new results from AD-23-079, AD-23-149 and AD-23-154 have confirmed the continuity between Adina Main and Adina East as well as the presence of both Main and Footwall Zone mineralisation (Table 2).

These results demonstrate the Main Zone mineralisation at Adina extends continuously for some 2.11km from the western side of Adina Main to the further drilled section at Adina East (Figure 2).

Commentary on Resource Delineation Drilling Results

Drilling results from resource delineation drilling are summarised in Table 1 and shown on Figure 2. Drilling continues to confirm the characteristics of lithium mineralisation at Adina – with thick, high grade intersections close to surface in the Main Zone accompanied by high grade intersections in the Footwall Zone below. Resource delineation drilling is designed to intersect pegmatite zones as close as possible to perpendicular meaning the thicknesses reported here are believed to approximate true thickness.

As detailed previously, a key characteristic of the Main Zone is the relative shallow dip and proximity to surface in the northern part of the Adina Deposit which is anticipated to result in a potential low strip open pit operation (based on initial mine design work).

As previously highlighted the cumulative thickness of pegmatite mineralisation is significant when the Main and Footwall Zone are considered together and the recent results provide further examples of these, such as 96.5 at approximately 1.5% Li₂O in AD-23-143.

Another key metric being provided by the closer spaced drilling data are the subtle grade variations in both Main and Footwall Zones across the deposit which may be able to be targeted in a selective mining scenario to provide higher margins at key phases in the project's development.

Winsome is progressing on the development pathway for Adina, with initial project studies planned to be published in H2 2024. Environmental baseline and infrastructure studies **have recommenced** for 2024, in consultation with representatives from the local Eeyou Istchee James Bay Cree people and other local stakeholders in Quebec.

Commentary on Current Drilling

Current drilling at Adina continues to focus on extensions to mineralisation, outside the Mineral Resource, as shown on Figure 2. Ongoing drilling efforts are strategically aimed at testing extensions to mineralisation in all directions:

- Northwards up dip from intersections in 2023 drilling announced previously,
- Westwards between 2023 drilling and previous 2018 drilling at the Ridge, testing gravity targets to the south of the Ridge, and now testing for extensions to the AD-24-170 intersection, and
- **Eastwards** testing extensions to mineralisation intersected in drilling at Adina East and providing additional drill data so that this area can be incorporated into the MRE update.

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

⁵ "Over 3km of lithium mineralisation confirmed at Adina" ASX Announcement 3 April 2023

⁶ "300m extension discovered at Adina increases strike to over 1,300m" ASX Announcement 27 November 2023

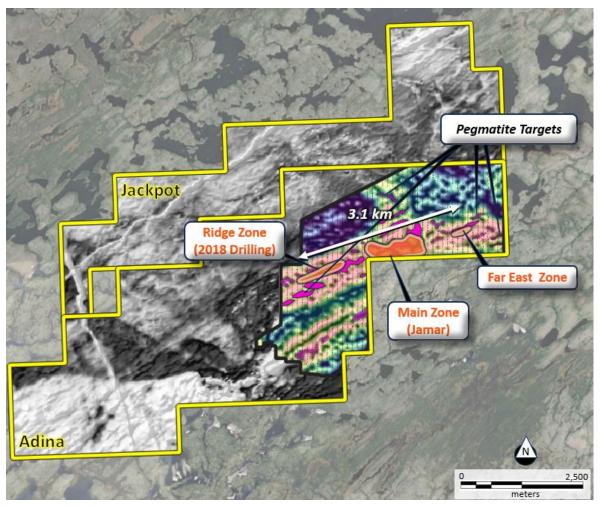


Figure 1. Gravity and magnetic data over the Adina Lithium Project highlighting Adina Main (hosts both Main Zone and Footwall Zone)

Drilling continues to systematically test for mineralisation along the 3.1 kilometres of strike where lithium mineralisation has been intersected to date (Figure 2). Drilling is also testing targets identified by the interpretation of gravity surveys and recent magnetic surveys, such as the gravity anomaly in the vicinity of AD-24-170.

Ground gravity is especially effective at Adina due to the density contrast between pegmatites and the amphibolites which have been intruded by the pegmatite swarms. Magnetic data is being used to refine targets for drilling by enabling the trend of the amphibolite package to be mapped in more detail as well as likely offsets and other structural features to be interpreted.

The target tested by AD-24-170 is one of a number of targets defined to the southwest of Adina Main and south of the Ridge Zone which appear to run parallel to the trend of mineralisation. With the results above indicating the Main Zone trends more SW to the west of Adina Main these targets are now a high priority for future drill testing.

Further gravity data was acquired to complete the coverage in this area, west of Adina, during February with the updated imagery shown in Figure 1. Interpretation of gravity data and target generation has been undertaken by Perth-based consultancy NewGen Geo Pty Ltd, which specialises in the application of geophysics to pegmatite exploration.

The newly identified gravity targets have similar characteristics in term of geometry and amplitude to the gravity anomalies delineated over mineralised pegmatite zones at Adina Main. These are considered as high priority drill targets and are anticipated to contribute to the ongoing increase of the global Adina Mineral Resource.

This announcement is authorised for release by the Board of Winsome Resources Limited.

For further information please contact:

INVESTORS

Chris Evans - Managing Director Winsome Resources

administration@winsomeresources.com.au

MEDIA

Josh Nyman - General Manager Spoke

josh@hellospoke.com.au

+61 413 243 440

ABOUT WINSOME RESOURCES

Winsome Resources (ASX: WR1) is a Perth-based, lithium focused exploration and development company with four project areas in Quebec, Canada. All of Winsome's projects – Adina, Cancet, Sirmac-Clappier and Tilly are 100% owned by the Company. Recently the Company acquired a further 47km² of claims at the Tilly Project, located near Adina, and 29 claims of the Jackpot Property, immediately north of Adina.

The most advanced of Winsome's projects - Adina and Cancet, provide shallow, high grade lithium deposits and are strategically located close to established infrastructure and supply chains.

In addition to its impressive portfolio of lithium projects in Quebec, Winsome Resources owns 100% of the offtake rights for lithium, caesium and tantalum from Power Metals Corp (TSXV:PWM) Case Lake Project in Eastern Ontario, as well as a 19.6% equity stake in PWM. The Company recently divested Decelles and Mazerac, two early stage projects located near the Quebec mining town of Val-d'Or, to PWM in exchange for an increased shareholding.

Winsome is led by a highly qualified team with strong experience in lithium exploration and development as well as leading ASX listed companies. **More details:** www.winsomeresources.com.au

CAUTION REGARDING FORWARD-LOOKING INFORMATION

This document contains forward-looking statements concerning Winsome. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory, including environmental regulation and liability and potential title disputes.

Forward-looking statements in this document are based on the Company's beliefs, opinions and estimates of Winsome as of the dates the forward-looking statements are made, and no obligation is assumed to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

COMPETENT PERSON'S STATEMENT

The information in this announcement relating to Exploration Results is based on, and fairly represents, information and supporting documentation prepared by Mr Antoine Fournier, VP Exploration of Winsome Resources Ltd. Mr Fournier is a member of the Quebec Order of Geologists (OGQ #0516), a Registered Overseas Professional Organisation as defined in the ASX Listing Rules, and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Fournier consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

The information in this announcement relating to the Geophysical component of the Exploration Results is based on information and supporting documentation compiled by Mr Regis Neroni, who is a Member of the Australian Institute of Geoscientists (AIG) and a Registered Professional Geoscientist (RPGeo) in the fields of Geophysics and Mineral Exploration. Mr Neroni is a Consulting Geophysicist with NewGen Geo Pty Ltd and has sufficient experience relevant to the style of mineralisation under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Neroni consents to the inclusion in this release of the matters based on the information in the form and context in which they appear.

PREVIOUSLY ANNOUNCED EXPLORATION RESULTS

Winsome confirms it is not aware of any new information or data which materially affects the information included in the original market announcements referred to in this announcement. Winsome confirms the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

-ends-

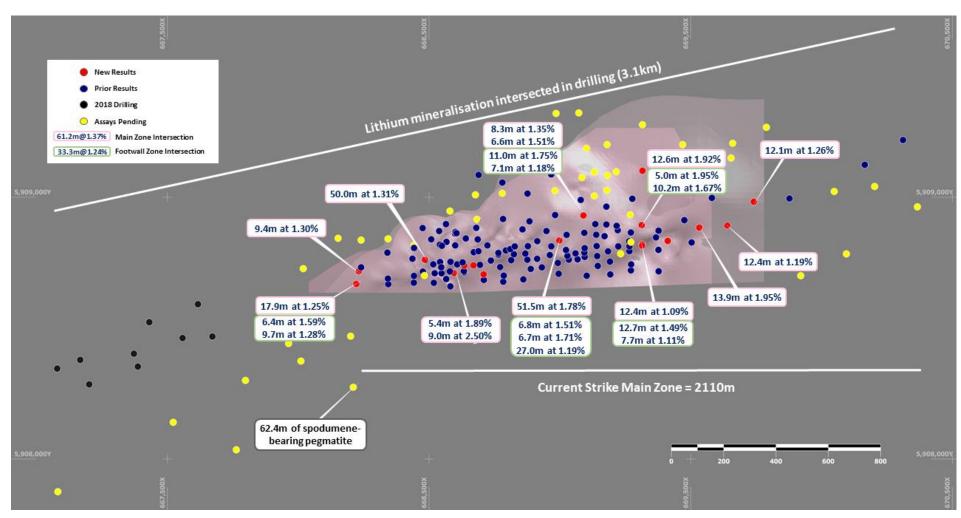


Figure 2: Overview of Adina Main showing Mineral Resource wireframes and drilling (including drilling where assays awaited).

Appendix 1: Significant Drillhole Lithium Intercepts – New Results Adina Main ⁷.

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Length (m)	Li₂O %	Zone
AD-23-079	669670	5908840	525	-50	330	89.6	102.0	12.4	1.19	Main
AD-23-081	669462	5908746	522	-50	330	71.7	81.7	10.0	1.42	Main
						146.9	155.3	8.3	2.72	Main
						162.1	169.0	6.9	1.75	Main
AD-23-088	669325	5909077	521	-50	340	36.7	42.0	5.3	0.65	Main
						198.0	204.0	6.0	0.70	FW
						162.1	169.0	6.9	1.75	Main
AD-23-110	669313	5908885	519	-50	360	50.4	62.9	12.6	1.92	Main
						195.9	200.9	5.0	1.95	FW
						233.3	237.3	4.0	1.34	FW
						242.3	252.4	10.2	1.67	FW
AD-23-116	668708	5908639	512	-63	360	169.0	188.3	19.3	0.65	Main
						363.9	381.1	17.2	0.77	FW
AD-23-132	668236	5908636	506	-75	360	16.8	26.1	9.4	1.30	Main
						183.6	187.6	4.0	1.34	FW
						224.0	227.0	3.0	1.29	FW
						243.3	247.4	4.1	1.43	FW
						322.4	329.4	7.0	0.35	FW
AD-23-136	668236	5908636	506	-55	360	12.0	29.9	17.9	1.25	Main
						98.5	104.9	6.4	1.59	FW
						194.6	204.3	9.7	1.28	FW

⁷ Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution.

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Length	Li₂O	Zone
	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-140	669086	5908921	520	-50	360	8.7	41.6	32.9	0.93	Main
AD-23-140	009000	3900921	320	-30	incl.	8.7	17.0	8.3	1.35	Main
					incl.	35.0	41.6	6.6	1.51	Main
					IIICI.	189.0	200.0	11.0	1.75	FW
						214.2	222.0	7.8	0.93	FW
						231.6	248.2	7.0	1.18	FW
						255.1	259.1	4.0	1.38	FW FW
AD-23-143	669000	5908805	520	-45	360	36.0	87.5	51.5	1.78	Main
AD-23-143	009000	3906603	520	-45	300	214.3	221.1	6.8	1.51	FW
						245.8	252.5	6.7	1.71	FW
						271.0	298.0	27.0	1.19	FW
						319.5	323.9	4.4	1.19	FW
AD-23-149	669761	5908950	526	-60	330	72.8	84.8	12.1	1.26	Main
AD-23-143	009701	3900930	320	-00	330	281.7	284.3	2.6	0.73	FW
						296.0	301.4	5.4	1.51	FW
						346.7	350.1	3.4	1.22	FW
AD-23-151	668632	5908704	518	-70	360	41.5	45.5	4.0	0.66	Main
7.12 20 101	000002	3333731	0.0	1	000	122.8	135.7	12.9	0.43	Main
					incl.	132.0	135.7	3.7	1.11	Main
					111011	234.0	237.7	3.7	1.13	FW
						255.6	258.9	3.3	1.07	FW
						268.0	272.0	4.0	1.25	FW
						283.2	303.5	20.3	0.84	FW
					incl.	283.2	290.0	6.8	1.32	FW
					incl.	299.0	303.5	4.5	1.15	FW
						200.0	000.0			

WINSOMERESOURCES

Hole ID	Easting (NAD83)	Northing (NAD83)	RL (m)	Dip (degrees)	Azimuth (degrees)	From (m)	To (m)	Length (m)	Li ₂ O %	Zone
AD-23-152	669269	5908918	515	-45	360	28.0	53.6	25.6	1.84	Main
						199.9	207.6	7.7	0.73	FW
						221.7	226.7	5.0	1.62	FW
AD-23-154	669555	5908845	522	-55	330	61.8	75.7	13.9	1.95	Main
						308.3	315.6	7.3	1.07	FW
AD-23-155	668670	5908706	517	-55	360	100.9	141.0	40.1	0.89	Main
						268.8	273.0	4.2	1.43	FW
						335.0	344.3	9.3	0.53	FW
AD-24-158	669314	5908780	519	-60	360	84.6	88.9	4.3	0.95	Main
						277.9	287.0	9.1	1.61	FW
AD-24-160	668595	5908662	517	-65	360	133.7	157.3	23.6	0.64	Main
						183.6	189.0	5.4	1.89	FW
						304.0	313.0	9.0	2.50	FW
AD-24-163	669314	5908815	517	-50	360	50.2	59.9	9.7	0.86	Main
						65.6	78.0	12.4	1.09	Main
						260.8	273.5	12.7	1.49	FW
						282.2	289.8	7.7	1.11	FW
AD-24-165	668484	5908761	514	-50	360	3.0	53.0	50.0	1.31	Main
					incl	3.0	32.0	29.0	1.84	Main
						187.4	191.3	4.0	2.19	FW
						245.2	250.1	5.0	0.80	FW

Appendix 2. Mineral Resources at the Adina Lithium Project

Zone		Inferred		Total				
	Tonnes (Mt)	Li ₂ O (%)	Contained LCE (Mt)	Tonnes (Mt)	Li ₂ O (%)	Contained LCE (Mt)		
Main	28.6	1.12	0.79	28.6	1.12	0.79		
Footwall	29.9	1.12	0.83	29.9	1.12	0.83		
Total	58.5	1.12	1.62	58.5	1.12	1.62		

Refer to the Appendices in the ASX Announcement of 11 December 2022 for drilling data and other information prescribed by the JORC Code.

Winsome confirms it is not aware of any new information or data which materially affects the Mineral Resource or the supporting information included in the original market announcements referred to in this announcement. The Company also confirms all material assumptions and parameters underpinning the Mineral Resource estimates continue to apply and have not materially changed. The Company notes, as disclosed in this announcement and in previous announcements, drilling is currently underway at Adina and results presented in this announcement will be incorporated into an update to the Mineral Resource currently planned for the first half of 2024. Winsome confirms the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Appendix 3: Significant Drillhole Lithium Intercepts – Previous Results 8. All Results included in Mineral Resource.

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
noie iD	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-22-001 ²	668477	5908772	511	-45	135	3.0	66.1	63.1	1.35	Main
	including					3.0	11.0	8.0	1.61	Main
	including					23.0	39.0	16.0	2.16	Main
	including					60.4	66.1	5.7	2.37	Main
	including					73.1	85.8	12.7	1.89	Main
		further including				73.1	77.2	4.1	4.19	Main
AD-22-002 ²	668503	5908851	511	-45	135	6.0	11.0	5.0	0.60	Main
AD-22-003 ³	668555	5908901	513	-45	135	85.0	89.0	4.0	2.08	Main
AD-22-004 ³	668513	5908739	512	-45	135	87.1	90.2	3.1	1.50	Main
						93.0	96.0	3.0	1.18	Main
AD-22-005 ¹	668542	5908812	513	-45	135	2.3	109.9	107.6	1.34	Main
	including					2.3	23.0	20.7	1.52	Main
	including					41.0	71.0	30.0	2.21	Main
AD-22-005A ²	668542	5908812	513	-45	315	4.6	28.5	23.9	1.52	Main
	including					4.6	18.5	13.9	2.04	Main
						78.6	84.4	5.8	1.59	Main
AD-22-006 ³	668596	5908861	515	-45	135	2.2	57	54.8	1.14	Main
	including					2.2	8	5.8	1.88	Main
	including					10	20	10.0	1.69	Main
	including					27	32	5.0	1.37	Main
	including					45	51	6.0	1.54	Main
						66.2	78	11.8	0.55	Main
AD-22-006B ³	668596	5908861	515	-45	315	1	11	10.0	0.89	Main

⁸ Refer footnotes to table for announcement details. Intercepts calculated using a 0.3 % Li₂O cut-off grade, minimum 5m thickness and widths including up to 7m internal dilution.

WINSOMERESOURCES

	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						34.1	37.45	3.35	1.46	Main
AD-22-007 ²	668430	5908809	510	-45	135	88.6	105.6	17.0	1.56	Main
	including					98.6	105.6	7.0	2.72	Main
						141.9	151.4	9.5	0.69	Main
						232.8	287.0	54.2	1.04	Main
	including					232.8	238.8	6.0	2.14	Main
	including					249.0	260.0	11.0	1.14	Main
	including					275.3	287.0	11.7	1.77	Main
						324.6	343.6	19.0	0.88	Main
	including					324.6	329.6	4.6	2.01	Main
AD-22-008 ²	668460	5908892	510	-45	135	41.9	65.7	23.8	0.88	Main
	including					41.9	48.9	7.0	1.31	Main
	including					51.9	54.9	3.0	1.34	Main
	including					60.5	63.5	3.0	1.89	Main
AD-22-009 ³	668512	5908942	511	-45	135	33.9	37.9	4.0	0.26	Main
AD-23-010 ⁷	668441	5908641	511	-55	360	106.3	133.0	26.7	1.01	Main
	including					111.4	116.0	4.6	2.11	Main
						210.5	214.5	4.0	1.01	FW
						231.9	251.2	19.3	0.91	FW
	including					237.0	240.8	3.8	2.20	FW
	including					245.5	249.5	4.0	1.39	FW
						271.3	278.7	7.4	0.85	FW
AD-22-011 ³	668687	5908776	517	-45	320	13.6	37.0	23.4	0.88	Main
	including					28.0	37.0	9.0	1.70	Main
						51.0	72.0	21.0	0.82	Main
	including					51.0	66.0	15.0	1.00	Main
						94.8	102.2	7.4	0.53	Main

WINSOMERESOURCES

11-1-15	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-012 ⁹	669381	5908956	520	-45	350	189.7	194.7	5.0	1.18	FW
						217.7	236.0	18.3	1.04	FW
AD-23-013 ⁹	669482	5908995	520	-45	338	201.3	205.3	4.0	0.84	FW
						224.2	231.9	7.7	0.56	FW
AD-23-014 ⁹	669478	5908900	522	-60	350	26.2	39.8	13.6	1.24	Main
AD-23-015 ⁹	669560	5908732	521	-50	330	80.3	81	0.7	2.01	Main
						93.7	95	1.3	2.43	Main
						390.0	395.4	5.4	0.97	FW
						448.6	449.3	0.7	1.36	FW
AD-23-016 ⁹	669583	5908994	522	-55	328	6.2	14.5	8.3	1.23	Main
						189	193.4	4.4	1.01	FW
						216.8	222	5.2	0.80	FW
AD-23-017 ⁹	669877	5908995	529	-45	330	65.3	77.6	12.3	0.95	Main
AD-23-021 ⁷	669186	5908747	513	-55	360	77.0	99.4	22.4	1.09	Main
						251.2	286.6	35.4	1.98	FW
AD-23-022 ⁶	669174	5908833	514	-55	360	35.4	77	41.6	1.08	Main
	including					35.4	42.2	6.8	1.97	Main
	including					52.1	60.8	8.7	1.80	Main
						191.4	197.0	5.6	1.27	FW
						215.3	232.6	17.3	1.72	FW
						252.6	260.8	8.2	1.43	FW
AD-23-023 ⁷	669195	5908663	517	-75	360	129.3	134.5	5.2	4.03	Main
						209.5	214.0	4.5	1.00	Main
						345.3	365.6	20.4	1.62	FW
AD-23-024 ⁷	669271	5908856	515	-45	360	8.9	70.1	61.2	1.37	Main
	including					29.0	36.0	7.0	2.10	Main
	including					62.0	70.1	8.1	2.60	Main

WINSOMERESOURCES

III-II-IB	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						217.1	224.4	7.3	1.35	FW
						239.0	242.6	3.6	1.25	FW
						254.0	259.2	5.2	2.30	FW
AD-23-024A ⁷	669271	5908856	515	-50	360	9.0	21.4	12.4	1.01	Main
						32.4	60.0	27.6	1.59	Main
	including					32.4	49.0	16.6	1.97	Main
						198.1	208.3	10.2	1.18	FW
						227.3	260.6	33.3	1.24	FW
	including					249.1	260.6	11.5	1.89	FW
AD-23-025 ⁶	668898	5908704	514	-55	340	110.5	140	29.5	1.16	Main
	including					114.5	121.5	6.0	2.21	Main
						157.2	160.3	3.1	1.33	Main
						255.5	275.7	20.2	0.91	FW
						290.0	317.4	27.4	1.11	FW
	including					290.0	312.0	22.0	1.26	FW
AD-23-026 ⁶	668898	5908704	514	-78	340	135.5	171.0	35.5	0.89	Main
	including					149.0	163.0	14.0	1.46	Main
AD-23-027 ⁶	668827	5908751	525	-50	350	57	83.4	26.4	2.04	Main
						116.7	142.2	25.5	1.93	Main
						245.7	255.7	10.0	1.65	Main
						271.3	313.0	41.7	1.03	FW
	including					271.3	290.8	19.5	1.32	FW
	including					298.0	306.0	8.0.	1.45	FW
						375.6	379.7	4.1	1.23	FW
AD-23-028 ⁵	668735	5908748	518	-50	350	35.2	45.2	10	2.09	Main
						95.7	104.0	8.3	0.99	Main
						253.0	276.2	23.2	1.02	FW

WINSOMERESOURCES

11-1-15	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li₂O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						284.2	294	9.8	0.46	FW
AD-23-029 ⁷	669002	5908666	514	-55	350	139.0	170.0	31.0	1.45	Main
	including					140.0	150.0	10.0	2.32	Main
						272.0	277.0	5.0	1.24	FW
						302.8	312.0	9.2	0.94	FW
						329.0	356.9	27.9	1.85	FW
AD-23-030 ⁵	668789	5908668	512	-60	350	161.2	178.5	17.3	0.46	Main
	including					174.4	178.5	4.1	1.24	Main
						204.6	210.5	5.9	0.67	Main
AD-23-031 ⁵	669002	5908666	514	-75	350	158	216.9	58.9	0.37	Main
	including					191.3	198.4	7.1	0.84	Main
	including					214.0	216.9	2.9	0.81	Main
AD-23-032	669381	5908756	520	-50	350	75.7	76.7	1.0	2.41	Main
						278.6	290	11.4	1.23	FW
						312.45	323.7	11.3	1.14	FW
AD-23-033 ⁶	668521	5908640	512	-75	360	172.7	178.0	5.3	1.41	Main
						378.2	381.2	3.0	1.11	FW
AD-22-034 ³	668852	5908687	517	-45	340	112.9	129.9	17.0	1.32	Main
	including					112.9	117.9	5.0	1.93	Main
	including					121.9	128.9	7.0	1.67	Main
						156.9	164.4	7.5	1.28	Main
AD-22-035 ³	668634	5908726	519	-45	315	41.6	101	59.4	1.26	Main
	including					41.6	63	21.4	1.71	Main
	including					78	101	23.0	1.49	Main
AD-22-036 ³	668687	5908776	517	-45	360	28	83.5	55.5	1.35	Main
	including					49	58	9.0	2.40	Main
	including					62	71	9.0	1.51	Main

WINSOMERESOURCES

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
	including					74	83.5	9.5	1.17	Main
						101.8	107.7	5.9	0.36	Main
						227.7	234.5	6.8	0.76	Main
AD-22-037 ³	668702	5908651	515	-55	315	162.3	190.7	28.4	1.12	Main
	including					162.3	179.7	17.4	1.48	Main
						207.7	213.1	5.4	1.75	Main
AD-22-039 ³	668702	5908651	515	-45	360	135	142	7.0	0.59	Main
						154	160	6.0	2.37	Main
						166	170.6	4.6	0.97	Main
AD-23-038A ⁵	668789	5908668	511	-60	350	152	162	10.0	1.17	Main
						303.4	337.5	34.1	0.69	FW
	including					306.4	314.4	8.0	1.00	FW
	including					318.8	323.6	4.8	1.47	FW
AD-23-040 ^{5,6}	668769	5908781	519	-45	360	49.9	92.7	42.8	1.71	Main
						244.2	255.5	11.3	1.38	FW
						270.6	294.1	23. 5	1.15	FW
	including					270.6	278.7	8.1	1.55	FW
	including					283.7	294.1	10.4	1.32	FW
AD-22-041 ³	668872	5908797	520	-45	360	26.3	71	44.7	1.56	Main
	including					26.3	41.4	15.1	2.00	Main
	including					48	66	18.0	1.92	Main
AD-22-042 ³	668968	5908803	520	-45	340	32.7	80.1	47.4	1.64	Main
	including					32.7	47.3	14.6	2.15	Main
	including					55.1	78.1	23.0	1.78	Main
						100.4	104.65	4.25	1.39	Main
AD-22-043 ⁴	670003	5909088	531	-45	340	62.3	74.5	12.2	1.50	Main

WINSOMERESOURCES

	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
	including		, ,			62.3	69.5	7.2	2.08	Main
AD-23-044 ⁴	670165	5909126	533	-45	340	83.4	89.4	6.0	1.77	Main
	including					83.4	85.4	2.0	3.63	Main
AD-23-045 ⁴	670312	5909224	533	-45	330	47.4	62.4	15.0	1.26	Main
	including					50.4	54.4	4.0	2.51	Main
AD-22-046 ³	668968	5908803	520	-65	340	45	66	21.0	1.09	Main
	including					45	49	4.0	1.20	Main
	including					52	65	13.0	1.33	Main
						84	90	6.0	2.82	Main
AD-23-047 ⁶	669031	5908845	520	-45	340	17.8	64.25	46.45	1.73	Main
						84.1	87.0	2.9	1.52	Main
						215.5	241.5	26.0	1.32	FW
	including					219.5	229.2	9.7	2.32	FW
						257.7	263.9	6.2	1.76	FW
						281.7	293.1	11.4	1.71	FW
						314.6	320.0	5.4	0.80	FW
						410.2	417.7	7.5	1.28	FW
AD-23-048 ⁵	668702	5908651	515	-75	0	198.7	201.7	3.0	3.32	Main
						208	211	30.0	1.35	Main
AD-23-049 ⁹	669381	5908756	520	-70	350	130.5	133.5	3.0	1.16	Main
						142.6	145.6	3.0	1.43	Main
AD-23-050 ⁵	668789	5908668	512	-75	350	181.5	184.5	30.0	1.14	Main
						307.4	317.9	10.5	0.90	FW
AD-23-051 ⁵	668769	5908781	519	-75	0	15.9	31.1	15.2	1.29	Main
						70.5	75.5	5.0	1.50	Main
						219.9	230	10.1	2.44	FW
						260.6	281.6	21.0	1.10	FW

WINSOMERESOURCES

Hala ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-052 10	668566	5908827	518	-60	360	4.3	13.5	9.2	1.31	Main
						47.2	53.2	6.0	1.04	Main
						68.6	75.2	6.6	1.00	Main
						166.3	168.35	2.0	2.52	FW
						177.3	180.6	3.3	1.78	FW
						207.5	212	4.5	1.15	FW
						231.6	234.3	2.7	0.94	FW
AD-23-053 ⁵	669034	5908748	512	-45	360	73.5	115.2	41.7	0.83	Main
						80.6	99.2	18.6	1.16	Main
AD-23-054 ⁵	669090	5908854	512	-45	360	20.2	64.2	44.0	0.48	Main
						200.7	214.7	14.0.	1.29	FW
AD-22-055 ³	668944	5908718	512	-55	330	95.5	105.5	10	1.55	Main
AD-23-057 ⁵	669034	5908748	512	-65	360	66.5	99.1	32.6	1.34	Main
	including					66.5	78.2	11.7	2.27	Main
	including					86.9	94.9	8.0	1.61	Main
AD-23-058 ¹⁰	669381	5908670	517	-70	350	348.0	357.0	9.0	0.69	FW
AD-22-059 ³	668944	5908718	512	-82	330	123	167	44.0	1.08	Main
	including					123	133	10.0	1.37	Main
AD-23-060 ⁵	669034	5908748	512	-85	240	57.5	62.0	4.5	3.59	Main
						126.0	160.0	34.0	1.68	Main
						139.2	158.0	18.8	2.42	Main
AD-23-061 ¹⁰	668600	5908813	519	-70	360	8.8	45	36.2	1.27	Main
	including					8.8	13.2	4.4	2.00	Main
						216.55	224.9	8.35	1.34	FW
AD-23-062 10	668641	5908834	517	-50	360	38.7	40.7	2.0	1.09	Main
						54.9	57.0	2.1	0.80	Main
						205.1	209.8	4.7	0.87	FW

WINSOMERESOURCES

Hala ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
		, ,				238.5	249.6	11.1	0.82	FW
						246.85	249.6	2.75	2.13	FW
AD-23-065 10	668687	5908825	516	-45	360	13.3	51.4	38.1	1.59	Main
	including					22.0	27.0	5.0	3.20	Main
						72.4	77.5	5.1	0.69	Main
						224.2	227.2	3.0	1.15	FW
						278.8	279.8	1.0	1.07	FW
AD-23-068 ⁶	669102	5908677	517	-82	0	111	114	3	1.79	Main
						236	250	14	0.96	Main
	including					236	246	10	1.10	Main
						364.55	369.25	4.7	2.04	FW
AD-23-069 10	668723	5908806	516	-50	360	19.4	65.0	45.6	1.70	Main
						105.5	108.3	2.8	1.02	Main
						198.5	202.1	3.6	1.27	FW
						214.3	216.9	2.6	0.82	FW
						226.7	233.0	6.3	2.25	FW
						257.0	270.7	12.7	1.70	FW
AD-23-070 ⁹	668780	5909054	516	-50	360	21.95	25.85	3.9	0.97	Main
						155.15	158	2.85	1.05	FW
AD-23-071 ⁵	669094	5908773	512	-85	360	59	75	16.0	1.41	Main
AD-23-072 ⁵	669094	5908773	512	-65	360	43.4	62	18.6	2.25	Main
						83.5	103.5	20.0	0.74	Main
						236.1	240.1	4.0	1.46	FW
AD-23-073 ⁵	669094	5908773	512	-45	360	49.9	94	44.1	1.38	Main
	including					49.9	61.3	11.4	2.36	Main
						221.5	236.9	15.5	1.57	FW

WINSOMERESOURCES

Hala ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-074 11	669195	5908663	517	-58	360	121.9	126.7	4.8	1.37	Main
						168.4	183.8	15.4	0.71	Main
						357.0	375.0	18.0	1.42	FW
AD-23-075 ⁷	669269	5908768	516	-50	360	67.5	98.3	30.8	1.35	Main
	including					88.0	98.3	10.3	2.66	Main
						244.9	254.0	9.1	1.29	FW
						268.5	292.6	24.1	2.18	FW
AD-23-076 ⁹	669269	5908768	516	-75	360	93.4	105.5	12.1	1.52	Main
						286.0	290.3	4.3	1.15	FW
AD-23-077 ⁷	669270	5908672	517	-75	360	127.0	132.1	5.1	2.00	Main
						184.4	194.0	9.7	1.57	Main
						352.0	363.0	11.0	1.65	FW
AD-23-077A ⁷	669270	5908672	517	-70	360	136.8	140.0	3.2	3.17	Main
						186.5	194.8	8.3	0.66	Main
						340.9	343.9	3.0	2.03	FW
AD-23-078A ⁹	668970	5909079	522	45	340	15.5	24.5	9.0	1.63	Main
						198.8	201.4	2.6	2.14	FW
						222.7	224.7	2.0	0.97	FW
AD-23-080 11	668811	5908790	521	-50	360	17.5	85.6	68.1	1.11	Main
						233.2	242.6	9.4	1.62	FW
						250.6	267	16.4	1.55	FW
AD-23-083 ⁸	669281	5908956	519	-45	360	51.4	54.4	3.0	1.35	Main
						226.3	235.3	9.0	1.11	FW
AD-23-085 ⁸	669084	5908977	522	-45	360	13.6	23.9	10.3	1.44	Main
						183.0	199.9	16.9	1.06	FW
						245.7	250.7	5.0	0.86	FW
AD-23-086 8	668981	5908938	531	-45	360	2.8	31.3	28.5	1.28	Main

WINSOMERESOURCES

Hala ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						237.0	260.4	23.4	1.80	FW
						245.7	250.7	5.0	0.86	FW
AD-23-087 11	668827	5908806	520	-45	360	9.1	61	51.9	1.71	Main
						73.4	79.3	5.9	0.91	Main
						231.0	240.0	9.0	1.49	FW
						262.4	282.8	20.4	1.64	FW
AD-23-089 ⁹	668683	5908906	518	-45	360	14.6	25.6	11.0	1.11	Main
AD-23-090 11	668794	5908776	522	-45	360	47.0	100.5	53.5	1.55	Main
						260.4	270.6	10.2	1.21	FW
						293.2	308.0	14.8	1.20	FW
AD-23-091 ⁹	668782	5908901	518	-45	360	15.0	39.25	24.3	1.23	Main
						55.4	60.0	4.7	1.25	Main
						209.6	213.9	4.3	1.29	FW
						246.2	256.4	10.2	1.79	FW
AD-23-092 ⁹	668881	5908898	528	-45	360	16.0	54.0	38.0	1.26	Main
						229.4	235.0	5.6	1.72	FW
						290.7	293.3	2.6	0.87	FW
AD-23-093 12	668869	5908740	519	-50	360	69.5	110.0	40.5	1.93	Main
						249.0	260.5	11.5	0.88	FW
						275.0	300.9	25.9	1.59	FW
AD-23-095 ⁸	669181	5908952	516	-55	360	14.8	37.0	22.2	1.18	Main
						159.3	185.7	26.4	1.55	FW
						206.9	214.7	7.8	1.29	FW
AD-23-098 12	668876	5909008	519	-45	360	9.0	26.0	17	1.02	Main
						35.8	41.0	5.2	1.93	Main
						178.3	181.6	3.3	1.00	FW
						208.9	211.6	2.7	1.96	FW

WINSOMERESOURCES

	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
		,		,		233.9	237.0	3.1	0.72	FW
						245.0	252.2	7.2	1.18	FW
AD-23-099 ⁷	668440	5908717	512	-55	360	92.0	97.0	5.0	0.50	Main
						171.0	181.0	10.0	0.70	FW
						194.0	208.0	14.0	1.62	FW
AD-23-100 ⁷	668441	5908641	511	-75	360	162.6	165.7	3.1	1.06	Main
						315.3	322.7	9.4	1.16	FW
AD-23-102 ⁷	668343	5908635	506	-75	360	40.6	45.0	4.4	1.96	Main
						140.0	149.0	9.0	1.45	Main
						248.8	252.4	3.6	1.47	FW
						264.6	273.3	8.6	1.14	FW
AD-23-103 ⁷	668343	5908635	506	-55	360	31.1	35.0	3.9	1.91	Main
						100.0	130.0	30.0	0.99	Main
	including					109.5	114.0	4.5	2.18	Main
						221.7	230.5	8.8	0.80	FW
						245.1	254.1	9.0	1.78	FW
AD-23-104 ⁹	668343	5908730	510	-50	360	129.4	136.2	6.8	1.07	FW
						149.5	160.1	10.6	1.19	FW
AD-23-105 12	668516	5908738	515	-75	360	20.1	55.0	34.9	1.72	Main
						77.7	84.0	6.3	1.66	FW
AD-23-106 12	668966	5908702	512	-50	360	107.2	134.8	27.6	1.66	Main
						267.1	276.0	8.9	1.29	FW
						286.6	316.0	29.4	1.21	FW
AD-23-107 ⁹	668240	5908732	508	-50	360	60.5	61.5	1.0	2.89	Main
						109.3	113.5	4.2	1.07	FW
			_			147.0	148.1	1.1	1.12	FW
AD-23-108 12	668547	5908711	515	-50	360	32.1	55.9	23.8	1.48	Main

WINSOMERESOURCES

11-1-15	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						91.8	103.2	11.4	2.19	Main
						225.6	230.8	5.2	1.19	FW
						253.3	271.7	18.4	0.82	FW
AD-23-111 12	669217	5908887	515	-50	360	17.9	27.7	9.8	1.44	Main
						197.6	208.6	11.0	1.54	FW
						229.3	244.65	15.3	1.60	FW
						249.9	253.0	3.1	0.64	FW
						258.1	261.7	3.6	0.97	FW
AD-23-112 11	668786	5908646	511	-70	360	162.6	195.7	33.1	0.47	Main
AD-23-113 11	669063	5908701	513	-60	360	99.0	110.6	11.6	1.23	Main
						139.25	146.5	7.25	0.94	Main
						166.0	170.0	4.0	2.25	Main
						271.6	279.7	8.1	1.94	FW
						324.0	332.0	8.0	0.97	FW
						381.8	386.8	5.0	1.97	FW
AD-23-114 11	669177	5908889	514	-50	360	10.2	48.25	38.1	0.97	Main
	including					20.6	33.5	12.9	2.01	Main
						179.7	193.8	14.1	1.54	FW
						224.6	237.9	13.3	1.57	FW
AD-23-115 12	668635	5908730	516	-50	360	34.2	52.0	17.8	1.50	Main
						92.5	102.3	9.7	0.78	Main
						234.9	249.1	14.2	1.53	FW
						264.7	279.0	14.3	1.26	FW
AD-23-117 ¹¹	669135	5908893	514	-50	360	6.6	44.0	37.4	0.86	Main
						181.5	193.1	11.6	1.69	FW
						243.7	253.2	9.5	1.53	FW
AD-23-118 10	669141	5908700	515	-75	360	145.1	171.0	25.9	1.00	Main

WINSOMERESOURCES

	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	Lone
	including	(/	\	(1.5)	(115)	150.0	162.4	12.4	1.04	Main
						331.0	337.2	6.2	1.50	FW
AD-23-119 10	668634	5908650	515	-65	360	144.4	192.6	48.2	1.50	Main
						313.2	345.0	31.8	0.80	FW
	including					313.2	319.0	5.8	1.500	FW
AD-23-120 ¹⁰	668580	5908684	515	-55	360	52.3	61.7	9.4	1.96	Main
						99.9	106.4	6.5	1.60	Main
						128.2	140.2	12.0	0.89	Main
						249.5	258.4	8.9	1.03	FW
AD-23-121A 11	669139	5908841	513	-60	360	39.4	65.2	25.8	1.06	Main
						175.2	183.9	8.7	0.76	FW
						207.55	219.55	12.0	1.20	FW
						230.0	245.5	15.5	1.95	FW
AD-23-122 12	668582	5908633	513	-80	360	199.3	206.3	7.0	1.80	Main
AD-23-123 12	668582	5908749	517	-45	360	24.3	27.7	3.4	0.99	Main
						52.2	79.3	27.1	1.72	Main
						113.5	118.6	5.1	0.87	FW
						212.5	220.8	8.3	0.94	FW
AD-23-124 11	669059	5908752	513	-55	360	59.2	72.4	13.2	2.67	Main
	including					59.2	63.6	4.4	4.25	Main
						90.2	108.7	18.5	1.20	Main
						250.6	299.7	49.1	1.51	FW
						409.6	414.8	5.2	1.13	FW
AD-23-125 12	669218	5908835	515	-50	360	6.2	12.9	6.7	2.78	Main
						30.5	63.4	32.9	1.44	Main
						208.7	215.3	6.6	1.89	FW
						225.3	253.2	27.9	1.31	FW

WINSOMERESOURCES

	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
Hole ID	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
AD-23-126A 11	668521	5908640	511	-55	360	132.5	144	11.5	1.59	Main
						152.0	163.4	11.4	1.08	Main
AD-23-127 11	668540	5908817	516	-45	360	3.9	27.0	23.1	1.72	Main
AD-23-128 ¹¹	668480	5908640	511	-55	360	115.4	138.7	23.3	0.75	Main
						247.2	261	13.8	0.78	FW
						276.9	290	13.1	1.43	FW
						321.0	324.0	3.0	1.81	FW
AD-23-129 12	668914	5908820	519	-50	360	19.0	71.8	52.8	1.46	Main
						205.1	209.7	4.6	1.38	FW
						217.1	230.6	13.5	1.13	FW
						239.6	250	10.4	0.99	FW
						281.6	291.9	10.3	0.78	FW
AD-23-130A 12	669224	5908795	515	-60	360	35.6	81.5	45.9	1.26	Main
	including					35.6	48.0	12.4	2.00	Main
	including					55.3	65.0	9.7	2.19	Main
						235.4	270.3	34.9	1.09	FW
	including					235.4	253.0	17.6	1.46	FW
						385.9	393.2	7.2	1.52	FW
AD-23-134A ¹¹	669140	5908785	511	-60	360	44.1	54.4	10.3	1.76	Main
						70.7	94.1	23.4	1.50	Main
						207.0	212.3	5.3	0.70	FW
						240.0	275.5	35.5	1.49	FW
AD-23-135 12	668858	5908865	526	-50	360	3.5	65.4	61.9	1.40	Main
	including					3.5	22.6	19.1	1.95	Main
	including					28.6	46.4	17.8	1.81	Main
						213.1	217.1	4.0	1.31	FW
						230.45	239.15	8.7	1.46	FW

Hole ID	Easting	Northing	RL	Dip	Azimuth	From	То	Thickness	Li ₂ O	Zone
noie ib	(NAD83)	(NAD83)	(m)	(degrees)	(degrees)	(m)	(m)	(m)	%	
						257.5	269.1	11.6	1.44	FW
AD-23-139 11	669141	5908738	510	-65	360	85.0	104.0	19.0	0.93	Main
						125.5	129.2	2.7	1.68	FW
						286.1	292.0	5.9	3.17	FW
						329.3	333.8	4.5	1.35	FW
AD-23-142 12	668550	5908667	516	-50	360	61.2	70.4	9.2	1.04	Main
						98.7	105.2	6.5	1.21	Main
						114.15	118.8	4.7	1.70	Main
						124.1	129.3	5.2	1.54	Main
						137.6	144.1	6.5	0.99	Main
						255.6	257.5	1.9	1.74	FW
						275.75	281.75	6.0	0.84	FW

¹ Assays previously reported. "Strong lithium mineralisation recorded from first Adina drill hole assays" ASX Announcement 6 January 2023

ASX:WR1 | FSE:4XJ | QTCQB:WRSLF

² Assays previously reported. "New assay results confirm strong lithium mineralisation at Adina" ASX Announcement 14 February 2023

³ Assays previously reported. "Assays confirm Adina as a robust, high-grade lithium project" ASX Announcement 23 March 2023

⁴ Assays previously reported. "Over 3km of lithium mineralisation confirmed at Adina" ASX Announcement 3 April 2023

⁵ Assays previously reported. "New Lithium Bearing Pegmatite Dyke Swarm at Adina" ASX Announcement 10 May 2023

⁶ Assays previously reported. "New results confirm multiple zones and continuation of lithium mineralisation at Adina" ASX Announcement 13 June 2023

⁷ Assays previously reported. "Substantial high-grade intersections continue to grow Adina" ASX Announcement 1 August 2023

⁸ Assays previously reported. "Key intersections confirm extent of Footwall Zone at Adina" ASX Announcement 4 September 2023

⁹ Assays previously reported. "300m extension discovered at Adina increases strike to over 1,300m" ASX Announcement 27 November 2023

¹⁰ Assays previously reported. "Globally significant MRE of 59MT at Adina Lithium Project" ASX Announcement 11 December 2023

¹¹ Assays previously reported. "High grade infill drilling results at Adina Lithium Project" ASX Announcement 17 January 2024

¹² Assays previously reported. "High Grade Drilling Results at Adina Project" ASX Announcement 6 February 2024

WINSOMERESQUECES

Appendix 4: Diamond Drilling Summary for Winsome's drilling program at Adina.

Hole ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-22-001	668477	5908772	511	-45	135	171.0
AD-22-002	668503	5908851	511	-45	135	213.0
AD-22-003	668555	5908901	513	-45	135	138.0
AD-22-004	668513	5908739	511	-45	135	147.0
AD-22-005	668542	5908812	513	-45	135	261.0
AD-22-005A	668542	5908812	513	-45	315	162.0
AD-22-006	668596	5908861	515	-45	135	118.0
AD-22-006B	668596	5908861	515	-45	315	56.5
AD-22-007	668430	5908809	510	-45	135	390.0
AD-22-008	668460	5908892	510	-45	135	210.2
AD-22-009	668512	5908942	511	-45	135	246.0
AD-22-011	668687	5908776	517	-45	320	150.0
AD-22-034	668688	5909055	519	-45	340	196.4
AD-22-035	668634	5908726	519	-45	315	186.0
AD-22-036	668687	5908776	517	-45	360	243.0
AD-22-037	668702	5908651	515	-45	315	228.0
AD-22-039	668702	5908651	515	-45	360	201.0
AD-22-041	668872	5908797	520	-45	360	213.0
AD-22-042	668968	5908803	520	-45	340	150.0
AD-22-043	670003	5909088	531	-45	340	141.1
AD-22-046	668968	5908803	520	-75	340	186.0
AD-22-055	668944	5908718	512	-55	330	300.0
AD-22-059	668944	5908718	512	-82	330	204.0
AD-23-010	668441	5908641	511	-55	360	300.0
AD-23-012	669380	5908952	519	-45	350	351.0
AD-23-013	669482	5908995	520	-45	338	246.0
AD-23-014	669478	5908900	522	-60	350	207.0
AD-23-015	669560	5908732	521	-50	330	459.0
AD-23-016	669583	5908994	522	-55	328	243.0
AD-23-017	669877	5908995	529	45	330	294.0
AD-23-018	668829	5909258	510	-60	335	304.0
AD-23-019	668829	5909261	510	-45	335	330.0
AD-23-020	670048	5909022	530	-45	330	229.0
AD-23-021	669185	5908751	514	-55	360	363.0
AD-23-022	669174	5908833	514	-55	360	450.0
AD-23-023	669195	5908663	517	-75	360	384.0
AD-23-024	669271	5908859	515	-45	330	384.0
AD-23-024A	669271	5908859	515	-50	360	259.2
AD-23-025	668898	5908704	514	-55	340	396.0

	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-026	668898	5908704	514	-78	340	408.0
AD-23-027	668827	5908751	525	-50	350	444.4
AD-23-028	668735	5908748	518	-50	350	315.7
AD-23-029	669002	5908666	514	-55	350	402.0
AD-23-030	668874	5908645	508	-75	340	402.0
AD-23-031	669002	5908666	514	-75	350	387.0
AD-23-032	669384	5908756	520	-50	350	351.0
AD-23-033	668521	5908640	512	-75	360	408.0
AD-23-038A	668789	5908668	512	-60	350	420.0
AD-23-040	668769	5908781	519	-45	360	384.0
AD-23-044	670165	5909126	533	-45	340	168.0
AD-23-045	670312	5909224	533	-45	330	114.0
AD-23-047	669031	5908845	520	-45	340	444.0
AD-23-048	668702	5908651	515	-75	360	297.0
AD-23-049	669384	5908756	520	-70	350	375.0
AD-23-050	668789	5908668	512	-75	350	378.0
AD-23-051	668769	5908781	519	-75	360	392.5
AD-23-052	668566	5908827	518	-60	360	294.0
AD-23-053	669034	5908748	512	-45	360	187.0
AD-23-054	669090	5908854	512	-45	360	231.0
AD-23-056	670203	5909041	533	-45	340	276.0
AD-23-057	669037	5908748	512	-65	360	213.0
AD-23-058	669382	5908671	517	-70	350	411.0
AD-23-060	669036	5908750	512	-85	360	240.0
AD-23-061	668600	5908813	519	-70	360	288.0
AD-23-062	668641	5908834	517	-50	360	351.0
AD-23-063	670366	5908963	530	-45	330	254.0
AD-23-064	668689	5909085	512	-60	335	348.0
AD-23-065	668687	5908825	516	-45	360	330.0
AD-23-066	670095	5908783	520	-45	330	294.0
AD-23-067	669920	5908688	515	-50	330	249.0
AD-23-068	669102	5908677	517	-82	360	462.0
AD-23-069	668723	5908806	516	-50	360	352.5
AD-23-070	668780	5909054	516	-50	360	303.0
AD-23-071	669094	5908773	512	-85	360	324.0
AD-23-072	669094	5908773	512	-65	360	252.0
AD-23-073	669094	5908773	512	-45	360	292.1
AD-23-074	669195	5908663	517	-58	360	393.0
AD-23-075	669269	5908768	516	-50	360	372.0
AD-23-076	669269	5908768	516	-75	360	350.0

Hele ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-077	669270	5908672	517	-75	360	367.3
AD-23-077A	669270	5908672	517	-70	0	408.0
AD-23-078	668970	5909079	522	-50	340	153.4
AD-23-078A	668970	5909079	522	-45	340	255.0
AD-23-079	669670	5908840	525	-50	330	282.0
AD-23-080	668811	5908790	521	-50	360	321.0
AD-23-081	669462	5908746	522	-50	330	258.0
AD-23-082	669117	5909149	522	-50	340	273.0
AD-23-083	669281	5908956	519	-45	360	258.0
AD-23-084	669685	5909105	524	-50	330	228.0
AD-23-085	669084	5908977	522	-45	360	378.0
AD-23-086	668981	5908938	531	-45	360	378.0
AD-23-087	668827	5908806	520	-45	360	300.0
AD-23-088	669325	5909077	521	-50	340	366.0
AD-23-089	668683	5908906	518	-45	360	31.3
AD-23-090	668794	5908776	522	-45	360	321.0
AD-23-091	668782	5908901	518	-45	360	351.0
AD-23-092	668881	5908898	528	-45	360	399.0
AD-23-093	668869	5908740	519	-50	360	406.5
AD-23-094	669184	5909040	523	-45	0	252.0
AD-23-095	669181	5908952	516	-55	360	264.0
AD-23-096	669084	5909070	520	-45	360	150.0
AD-23-097	669381	5908856	519	-45	350	320.0
AD-23-098	668876	5909008	519	-45	0	336.0
AD-23-099	668440	5908717	512	-55	360	261.0
AD-23-100	668441	5908641	511	-75	360	390.0
AD-23-101	668780	5908999	521	-50	0	241.9
AD-23-102	668343	5908635	506	-75	360	375.0
AD-23-103	668343	5908635	506	-55	360	384.0
AD-23-104	668343	5908730	510	-50	360	417.0
AD-23-105	668516	5908738	515	-75	360	375.0
AD-23-106	668966	5908702	512	-50	360	414.0
AD-23-107	668240	5908732	508	-50	360	306.0
AD-23-108	668547	5908711	515	-50	360	342.0
AD-23-109	668579	5908947	516	-50	360	324.0
AD-23-110	669313	5908885	519	-50	360	297.0
AD-23-111	669217	5908887	515	-50	360	291.0
AD-23-112	668786	5908646	511	-70	360	365.0
AD-23-113	669063	5908701	513	-60	360	406.1
AD-23-114	669177	5908889	514	-50	360	254.6

	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-115	668635	5908730	516	-50	360	324.0
AD-23-116	668708	5908639	512	-63	360	411.0
AD-23-117	669135	5908893	514	-50	360	309.0
AD-23-118	669141	5908700	515	-75	360	387.4
AD-23-119	668634	5908650	515	-65	360	420.0
AD-23-120	668580	5908684	515	-55	360	344.2
AD-23-121A	669139	5908841	513	-60	360	354.0
AD-23-122	668582	5908633	513	-80	360	435.0
AD-23-123	668582	5908749	517	-45	360	356.5
AD-23-124	669059	5908752	513	-55	360	444.0
AD-23-125	669218	5908835	515	-50	360	357.0
AD-23-126A	668521	5908640	511	-55	360	375.0
AD-23-127	668540	5908817	516	-45	360	312.0
AD-23-128	668480	5908640	511	-55	360	375.0
AD-23-129	668914	5908820	519	-50	360	303.0
AD-23-130A	669224	5908795	515	-60	360	350.0
AD-23-131	668683	5908906	518	-50	360	306.0
AD-23-132	668236	5908636	506	-75	360	393.0
AD-23-133	668985	5909320	509	-55	335	342.0
AD-23-134A	669140	5908785	511	-60	360	402.0
AD-23-135	668858	5908865	526	-50	360	325.5
AD-23-136	668236	5908636	506	-55	360	363.0
AD-23-137	669072	5909322	511	-40	335	327.0
AD-23-138	668440	5908809	510	-50	360	306.0
AD-23-139	669141	5908738	510	-65	360	423.0
AD-23-140	669086	5908921	520	-50	360	250.0
AD-23-141	669325	5909255	525	-55	335	250.0
AD-23-142	668550	5908667	516	-50	360	453.0
AD-23-143	669000	5908805	520	-45	360	381.0
AD-23-144	669231	5908737	513	-60	360	408.0
AD-23-145	669181	5909160	523	-50	360	300.4
AD-23-146	668210	5908374	500	-55	360	438.4
AD-23-147	668010	5908374	500	-55	360	486.2
AD-23-148	668677	5909009	518	-45	360	252.0
AD-23-149	669761	5908950	526	-60	330	395.5
AD-23-150	669180	5909003	521	-50	0	273.0
AD-23-151	668632	5908704	518	-70	360	438.0
AD-23-152	669269	5908918	515	-45	360	288.0
AD-23-153	668010	5908274	505	-55	360	531.0
AD-23-154	669555	5908845	522	-55	330	393.3

Hele ID	Easting	Northing	RL	Dip	Azimuth	Total Depth
Hole ID	(NAD83)	(NAD83)	(m)	(Degrees)	(Degrees)	(m)
AD-23-155	668670	5908706	517	-55	360	400.0
AD-24-156	669131	5909005	520	-50	360	300.0
AD-24-157	668010	5908469	501	-55	360	429.0
AD-24-158	669314	5908780	519	-60	360	369.0
AD-24-159	667963	5908441	499	-50	335	384.0
AD-24-160	668595	5908662	517	-65	360	447.0
AD-24-161	668096	5908479	504	-45	340	324.0
AD-24-162	669131	5909096	518	-45	360	345.0
AD-24-163	669314	5908815	517	-50	360	375.0
AD-24-164	667798	5908300	494	-50	335	369.0
AD-24-165	668484	5908761	514	-50	360	363.0
AD-24-166	668200	5908469	502	-55	360	417.0
AD-24-167A	669215	5909097	523	-50	360	333.0
AD-24-168	667763	5908035	496	-50	330	427.0
AD-24-169	668343	5908841	507	-50	360	372.0
AD-24-170	668210	5908274	503	-55	360	398.7
AD-24-171	669271	5908828	515	-50	360	150.0
AD-24-172A	668240	5908836	507	-50	360	249.0
AD-24-173	669469	5909201	519	-50	340	342.0
AD-24-174	668482	5908701	512	-50	360	171.3
AD-24-175	667081	5907875	489	-50	335	347.2
AD-24-176	668152	5908843	508	-50	360	327.0
AD-24-177	669660	5909206	518	-50	330	446.0
AD-24-178	668019	5908727	505	-50	340	282.0
AD-24-180	668981	5909025	522	-50	360	246.0
AD-24-181	667522	5908140	490	-50	335	177.0
AD-24-182	669789	5909267	517	-50	330	143.2
AD-23-M001	668689	5908771	517	-65	360	351.0
AD-23-M002	668881	5908792	518	-65	360	351.0
AD-23-M003	669041	5908746	512	-80	360	189.0
AD-23-M004	668600	5908813	519	-70	360	90.0
AD-23-M005	668884	5908897	527	-75	360	237.0
AD-23-M007	668566	5908825	518	-60	360	87.0
AD-23-M009	669135	5908890	514	-55	360	78.0
AD-23-M010	669050	5909065	521	-65	360	195.0

Legend for Appendix 4:

AD-22-005 Assays previously reported

AD-22-001 Assays reported in this announcement

AD-22-006 Assays awaited, collar/lithological data reported previously

AD-22-060 Assays awaited, collar/lithological data reported in this announcement

JORC Code, 2012 edition Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Explanation
Sampling techniques	All core is NQ (76mm outer diameter, 47.6mm core diameter) in this program except metallurgical drilling which is drilled using HTW sized core. Core sample intervals were geologically logged, measured for average length, photographed, and placed into numbered core trays.
	 RC drilling utilised face sampling hammers with samples split down to a 2kg sample size.
	 Samples from Adina were sent to SGS Minerals Geochemistry under standard preparation procedures.
	Gravity data obtained by ground measurements at regular intervals.
Drilling techniques	NQ diamond drilling was completed at Adina.
	 Oriented core drilling was not completed. Downhole surveying was conducted using a gyro-based system.
Drill sample recovery	The recovery of the diamond drilling samples was reported by the operators and supervised by our consulting geologist.
	No sample bias has been established.
Logging	 NQ core was logged and cut according to geological boundaries, with ~1 m intervals targeted for individual samples.
	 For RC and DD drilling features such as rock type, modal mineralogy, rock textures, alteration were recorded. Geological logging information was recorded directly onto the GeoticLog system and compiled onto Database platform, with weekly backups.
	The core is stored in the Geological consultants (Technominex) yard in Rouyn-Noranda which is a secure location.
	 Various qualitative and quantitative logs were completed. All core has been photographed.
	The logging database contains lithological data for all intervals in all holes in the database.
Sub-sampling techniques and sample preparation	 Adina drill core was split (sawn) at the Winsome core logging and cutting facility located at the project base in Eeyou Istchee James Bay, with half core samples intervals submitted to SGS or MSA preparation facilities in Val-d'Or, Quebec.
	 Half core NQ samples are believed to be representative of the mineralisation targeted. Sampling intervals are based on geological boundaries to aid representivity.
	 Samples are crushed, milled and split at the laboratory (SGS & MSA) to achieve a 250g sub-sample for assay. Laboratory QC procedures for

Criteria	Explanation
	sample preparation include quality control on checks crushing and milling to ensure representivity.
Quality control & Quality of assay data and laboratory tests	 Assay and laboratory procedures have been selected following a review of techniques provided by laboratories in Canada. SGS, AGAT and MSA are all internationally certified independent service providers. Industry standard assay quality control techniques were used for lithium related elements.
	 Samples are submitted for multi-element ICP analysis by SGS. AGAT and MSA Laboratories which is an appropriate technique for high-grade lithium analysis.
	 Sodium Peroxide Fusion is used followed by combined ICP-AES and ICP-MS analyses (56 elements). Li is reported by the lab and converted to Li₂O for reporting using a factor of 2.153.
	No handheld instruments were used for analysis.
	 Comparison of results with standards indicate sufficient quality in data. No external laboratory checks have been used but are planned to be completed shortly.
	 Different grades of certified reference material (CRM) for lithium mineralisation were inserted, as well as field duplicates, and blanks. The CRM's submitted represented a weakly mineralised pegmatite (OREAS 750), and a moderate lithium mineralised pegmatite (AMIS 0341) to high grade lithium mineralised pegmatite (OREAS 752 & 753). Quality Assurance and Quality Control utilised standard industry practice, using prepared standards, field blanks (approximately 0.4 kg), duplicates sampled in the field and pulp duplicates at the lab.
	 Blank samples were submitted at a rate of approximately 5%, same for duplicates and repeat assay determinations, whereas standards were submitted at a rate of approximately 20%.
Verification of sampling and	Significant intersections have been estimated by consultants to the company and cross checked.
assaying	 Hard copy field logs are entered into and validated on an electronic database, which is maintained by Winsome on site in Eeyou Istchee James Bay and backed up regularly by the Company's IT consultants in Val D'Or.
	 Data verification is carried out by the Project Geologist on site, and a final verification was performed by the Senior Geologist and the geologist responsible for database management. An independent verification is carried out by consultants to the company.
	 No assays have been adjusted. A factor of 2.153 has been applied to the reported Li assays by the laboratory so to report as Li₂O.
Location of data points	The drill holes and gravity stations have been located by hand-held GPS (Trimble) with ~1m accuracy. Drillholes are later picked up by dGPS (<1m accuracy). Historical drill holes have been verified by GPS.
	The grid datum is NAD83. Zone 18N.

Criteria	Explanation
	 Topographic elevation and landmarks are readily visible from a Digital Elevation Model with a 50cm grid resolution and orthophoto obtained from Lidar surveys performed in 2017 and 2022 over the property. Government topographic maps have been used for topographic validation. The GPS is otherwise considered sufficiently accurate for elevation data.
	 Down hole dip surveys were taken at approximately 30m intervals and at the bottom of the diamond drill holes.
Data spacing and distribution	 In this early delineation stage, drilling is largely set along sections at 100m spacing and aiming to intercept targeted horizon at 80-100m centres. Infill drilling has been completed to 50m spacing in places.
	 No assessment has been made regarding the current drill hole location and intersections with respect to resources or reserve estimation.
	 No sample compositing has been completed. However, internal dilution of non-mineralised material into calculated grade over widths reported herein may occur but is not considerable.
Orientation of data in relation to geological structure	Drilling is designed to confirm the historical drilling results and test potential mineralisation. Initial 2022 drilling was oriented subperpendicular to the potential mineralised trend and stratigraphic contacts as determined by field data and cross section interpretation. Intersection widths will therefore be longer than true widths. Current drilling is oriented perpendicular to the mineralisation and stratigraphic contacts as determined by drill data and cross section interpretation. Intersection widths should therefore approximate true widths
	 No significant sample bias has been identified from drilling due to the drill orientation described above. Where present, sample bias will be reported.
Sample security	The company takes full responsibility on the custody of the samples including the sampling process itself and transportation.
	 Samples are shipped during the weekly supply run and delivered directly to the respective laboratories.
Audits or reviews	No external audit of the database has been completed, apart from by consulting geologists acting on behalf of the company.

Section 2 Reporting of Exploration Results

(Criteria in the preceding section also apply to this section.)

Criteria	Explanation
Mineral tenement and land tenure	The Winsome Adina Lithium Project is 100% owned by Winsome Adina Lithium Inc.
status	 All tenements are in good standing and have been legally validated by a Quebec lawyer specialising in the field.
Exploration done by	Initial Exploration and Review was undertaken by MetalsTech Limited.
other parties	Government mapping records multiple lithium bearing pegmatites within the project areas with only regional data available.
Geology	 The mineralisation encountered at the Adina project is typical of a Lithium-Caesium-Tantalum (LCT) type of pegmatite. The pegmatite body is oriented sub-parallel to the general strike of the host rocks. The host rocks are composed of Archean Lac Guyer greenstone rocks, which include mafic and ultramafic rocks interlayered with horizons of metasedimentary and felsic volcanic rocks
Drill hole Information	 For the current drill program, the following information has been included for all holes reported:
	 easting and northing of the drill hole collar
	 elevation or RL (reduced level – elevation above sea level in metres) of the drill hole collar
	dip and azimuth of the hole
	 down hole length and interception level
	hole length
	 A summary of historical drill hole information was included in the Independent Geologists Report prepared by Mining Insights within the Company's prospectus
Data aggregation methods	 No sample weighting or metal equivalent values have been used in reporting.
	 Aggregation issues are not considered material at this stage of project definition. No metal equivalent values were used
Relationship between mineralisation widths and intercept lengths	The pierce angle of the drilling varies from hole to hole, in order to attempt, wherever possible, to represent true widths
Diagrams	See figures and maps provided in the text of the announcement.
Balanced reporting	Winsome Resources Ltd will endeavour to produce balanced reports accurately detailing all results from any exploration activities.
	All drillholes and intersections have been presented in this announcement and in previous announcements.

Criteria	Explanation
Other substantive exploration data	All substantive exploration data has been included in ASX Announcements. No other substantive exploration data is available at this time.
Further work	 Winsome Resources Ltd continues to complete further site investigations. Further work planned includes comprehensive data interpretation, field
	mapping and exploration drilling.