

12 March 2024

Diamond drilling delivers further extensional success

Highlights

- NW Zone plunging mineralised shoots significantly extended at depth (and remaining open) with consistent, thick mineralised intercepts, including:
 - o 20.5m at 1.48 g/t Au from 264.0m in KRD146
 - o 28.8m at 1.51 g/t Au from 275.9m in KRD145
 - o 25.5m at 1.33 g/t Au from 223.1m in KRD132
 - o 21.8m at 1.61 g/t Au from 361.2m in KDD020
- Central Zone diamond drilling continues to return strong mineralisation beneath the current MRE pit shell, returning an intersected zone of 68.5m at 1.13 g/t Au from 221.9m (unconstrained) including the following significant intercepts:
 - o 18.3m at 1.51 g/t Au from 221.9m in KDD022
 - 8.0m at 2.64 g/t Au from 282.4m in KDD022
- Southern Zone plunging mineralised shoot confirmed by drill hole KDD021 with significant intercepts including:
 - o 26.0m at 2.18 g/t Au from 213.0m

Wia Gold Limited (ASX: WIA) (**Wia** or the **Company**) is pleased to report assay results from five (5) diamond drill holes – **KDD018 to KDD022** – and three (3) diamond tails (drilled after RC pre-collar) – **KRD132**, **KRD145** and **KRD146** – completed at its Kokoseb Gold Deposit (**Kokoseb**) in Namibia.

The NW Zone continues to deliver strong, coherent intercepts of gold mineralisation at the base of and up to 100m down-dip of the current Mineral Resource Estimate (MRE) boundaries for Kokoseb, including 20.5m at 1.48 g/t Au in KRD146, 28.8m at 1.51 g/t Au in KRD145, 25.5m at 1.33 g/t Au in KRD132 and 21.8m at 1.61 g/t Au in KDD020. These shoots remain open at depth.

At the Central Zone, drill hole **KDD022** successfully linked the previously reported high-grade intercept in drill hole KRC086 (37m at 9.46 g/t Au from 291m⁵) with shallower mineralisation showing an intersected zone of 68.5m at 1.13 g/t Au from 221.9m (unconstrained intercept), which includes **18.3m at 1.51 g/t Au** and **8.0m at 2.64 g/t Au**.

Diamond drill hole **KDD021** has confirmed the previously interpreted Southern Zone plunging shoot, intersecting mineralisation including **26.0m at 2.18 g/t Au**.

Four drill rigs (two RC and two diamond) continue drilling at Kokoseb, with the focus on completing the current round of drilling to support an update of the existing MRE in the coming months. One of the RC drill rigs has now commenced shallow extensional drilling test programs along the regional thrust located on the southern side of Kokoseb.

Wia's Chairman, Andrew Pardey, commented:

"Of the eight diamond drill hole results reported here, six of them include an intercept between 18 and 29 meters thick at +1.3 g/t gold. They all confirm current geological interpretations with strongly mineralised and continuous shoots at Kokoseb. These results represent yet another growth drilling success from the current program. They are expected to significantly further extend the current MRE model at Kokoseb, again building optimism for a substantial increase in the current MRE to be delivered in coming months."

"Ongoing drilling at Kokoseb includes along-strike mineralised targets along the regional southern thrust. This is an area with potential to also deliver substantial additional ounces with drill success."

Figure 1 – Drill section including KRD132 and KRD146 at the NW Zone (intercepts in black were previously reported)¹

NW Zone continues to deliver strong and coherent mineralised intercepts, including significant extensional success at depth

Diamond drilling is used at the NW Zone with two different objectives: firstly to accurately target specific areas of the mineralised zones and so gain detailed structural information of the geological architecture – this is achieved by coring from surface (KDD drill holes) – and secondly to systematically drill the interpreted depth extensions of the main mineralised shoots where water in structures is preventing the RC drilling to be completed – this is achieved by drilling RC pre-collars, followed by diamond tails (KRD drill holes).

Drilling results from **KRD132**, **KRD145** and **KRD146** have returned strong and very coherent mineralised intercepts, located at the base of and well below the current MRE, where the model was previously constrained by a lack of drilling (Figures 1 and 2). Significant mineralised intercepts include:

25.5m at 1.33 g/t Au from 223.1m (KRD132) 3.0m at 1.24 g/t Au from 267.9m (KRD145) 28.8m at 1.51 g/t Au from 275.9m (KRD145) 20.5m at 1.48 g/t Au from 264.0m (KRD146) 4.0m at 1.69 g/t Au from 303.6m (KRD146)

¹ See ASX announcements dated 17 October 2022, 15 March 2023, 10 July 2023 and 17 October 2023.

Figure 2 – Drill section including KRD145 at the NW Zone (intercepts in black were previously reported)²

Figure 3 – Drill section KRC164 – KDD020 which goes through both the Northern and the Central mineralised Zones, at the NW Zone (intercepts in black were previously reported)³

² See ASX announcements dated 7 June 2022, 6 September 2023, 17 October 2023 and 13 December 2023.

³ See ASX announcements dated 6 April 2022, 7 June 2022, 17 August 2022, 17 October 2022, 15 March 2023, 17 October 2023 and 5 February 2024.

Diamond drill hole **KDD020** was completed under drill hole KRC164, which has previously returned an exceptional intercept of 45m at 2.09 g/t Au from 222m (Figure 3)⁴. **KDD020** has gone through the two zones of mineralisation, the Northern Zone and the Central Zone, which are merging in the area called the NW Zone, returning the following significant intercepts:

17.8m at 1.45 g/t Au from 15m (Northern Zone)

21.8m at 1.61 g/t Au from 361.2m (Central Zone)

The intercept reported from the Central Zone mineralisation is included in a wider unconstrained mineralised intercept of 101.1m at 0.59 g/t Au from 318.4m.

Central Zone depth drilling returns thick, high-grade extensional intercepts

The Central Zone extends along approximately 900m strike between the Western Zone and the Northern Zone. Most of the drilling completed post the maiden Kokoseb MRE has been focused at the base or below the Inferred resource model, including a specific target in the area of drill hole KRC086 (which previously returned 37m at 9.46 g/t Au from 291m).⁵

The area has returned mostly high-grade and/or strong gold mineralised intercepts (Figure 4) showing its potential to significantly extend the depth of the MRE in the planned upcoming update. Drilling at the Central Zone remains a focus to understand the geological controls of its mineralised shoots.

Diamond drill hole **KDD022**, which is drilled up-dip of drill hole KRC086, has returned an unconstrained mineralised intercept of 68.5m at 1.13 g/t Au from 221.9m – located at approximatively 200m vertical depth. This intercept includes several barren granitic dykes along with the following significant high-grade intercepts:

18.3m at 1.51 g/t Au from 221.9m

4.6m at 1.54 g/t Au from 253.8m

5.0m at 2.43 g/t Au from 269.4m 8.0m at 2.64 g/t Au from 282.4m

Figure 4 – Vertical long section of the Central Zone; focus below the MRE (intercepts in black were previously reported)⁶

⁴ See ASX announcement dated 5 February 2024.

⁵ See ASX announcement dated 29 May 2023.

⁶ See ASX announcements dated 15 May 2023, 29 May 2023, 17 October 2023, 13 December 2023 and 5 February 2024.

Diamond drill hole **KDD018** is a scissor hole with KRC086, completed slightly down-dip. It has intersected gold mineralisation which is cut by fault zones and a granitic body – which is not present in KRC086. The high-grade mineralisation is, at a very localised scale, chopped by the granitic intrusion. Significant intercepts returned by **KDD018** include:

- 3.0m at 1.06 g/t Au from 304.2m
- 4.8m at 1.77 g/t Au from 331.6m
- 3.5m at 2.46 g/t Au from 339.5m

Diamond drill hole **KDD019** was drilled in a weaker mineralised area of the Central Zone, returning a single significant intercept of **3.6m at 1.36 g/t Au from 265.2m**.

Southern Zone mineralised shoot confirmed by diamond drilling

The interpretation of the Southern Zone strongly mineralised plunging shoot is now confirmed after completion of diamond drill hole **KDD021**. This drill hole has targeted the core of the shoot where samples have returned an unconstrained mineralised intercept of 89m at 1.02 g/t Au from 150.0m (Figure 5). This mineralised intersection includes the following significant intercepts:

21.0m at 0.98 g/t Au from 188.0m

26.0m at 2.18 g/t Au from 213.0m

The mineralised shoot has a true thickness comprised of between 50 and 60m, a height of 150m and a plunge angle of 40° towards the south.

Figure 5 – Vertical long section at the Southern Zone; most significant intercepts in the strongly mineralised shoot (intercepts in black were previously reported)⁷

⁷ See ASX announcements dated 17 August 2022, 14 December 2022, 15 May 2023 and 29 May 2023.

Figure 6 – Drill holes location on Kokoseb geology and interpreted surface mineralisation footprint⁸, location of all cross sections of this announcement and significant intercepts on drill holes reported in this announcement⁹

⁸ See ASX announcement dated 15 May 2023 for further information on previously reported Kokoseb MRE.

⁹ Intercept calculated using 0.5 g/t cut-off grade and 2m max consecutive internal low grade.

This announcement has been authorised for release by the board of directors of Wia Gold Limited.

Contact details

Andrew Pardey Chairman +61 8 9381 5686 Michael Vaughan Fivemark Partners +61 422 602 720

Competent Person's Statement

The information in this announcement that relates to exploration results at the Kokoseb Gold Deposit located on the Company's Damaran Gold Project is based on information compiled by Company geologists and reviewed by Mr Pierrick Couderc, in his capacity as Exploration Manager of Wia Gold Limited. Mr. Couderc is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australiasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Couderc consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Reference to previous ASX Announcements

In relation to previously reported exploration results included in this announcement, the dates of which are referenced, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

In relation to the information in this announcement that relates to the Mineral Resource Estimate for the Kokoseb Project that was first reported on 15 May 2023, other than subsequently released drilling results, WIA confirms that it is not aware of any new information or data that materially affects the information included in that release. All material assumptions and technical parameters underpinning the estimates in that ASX release continue to apply and have not materially changed.

About The Kokoseb Gold Deposit

The Kokoseb Gold Deposit is located in the north-west of Namibia, a country that is a well-recognised mining jurisdiction, with an established history as a significant producer of uranium, diamonds, gold and base metals. The Kokoseb gold deposit is situated 320km by road from the capital Windhoek.

Kokoseb lies in the Okombahe exploration licence, which is held under joint venture (Wia 80%) with the state-owed mining company Epangelo. The Okombahe licence is part of Wia's larger Damaran Project, which consist of 12 tenements with a total area of over 2,700km².

A maiden Inferred Mineral Resource Estimate of 1.3Moz at 1.0 g/t Au, at a cut-off grade of 0.5 g/t Au, including a higher-grade gold portion of 0.72 Moz at 1.5 g/t Au using a cut-off grade of 1.0 g/t Au, was first announced on 15 May 2023, 11 months after the discovery holes and at a discovery cost of US\$2/oz.

The location of Kokoseb and the Company's Namibian Projects is shown in Figure 7.

Figure 7 – Location of Wia's Namibia Projects

Appendix 1. Kokoseb – Location of diamond drillholes

Hole ID	Easting	Northing	RL	Length (m)	Dip (°)	Azi (°)
KDD018	526020	7660101	1067	419.9	-60	300
KDD019	525967	7660536	1075	374.9	-60	120
KDD020	526543	7660832	1078	446.8	-60	270
KDD021	525726	7658193	1053	275.9	-60	80
KDD022	525771	7660304	1073	350.8	-60	119
KRD132	526666	7661074	1079	299.4	-60	200
KRD145	526784	7661098	1082	335.6	-60	200
KRD146	526685	7661125	1080	350.5	-60	200

Appendix 2. Diamond drill holes gold a	assays, using a cut-off	f grade of 0.2 g/t gold	and max 2m
consecutive internal waste material			

Hole ID	From (m)	To (m)	Gold g/t
KDD018	300.55	301.55	1.33
KDD018	301.55	302.55	0.0025
KDD018	302.55	304.2	0.005
KDD018	304.2	305.2	1.04
KDD018	305.2	306.2	1.315
KDD018	306.2	307.2	0.817
KDD018	307.2	308.2	0.408
KDD018	308.2	309.05	0.019
KDD018	309.05	310.05	0.044
KDD018	310.05	311.05	1.155
KDD018	311.05	311.55	0.032
KDD018	311.55	312.25	0.021
KDD018	312.25	313.25	0.758
KDD018	313.25	314.25	0.066
KDD018	314.25	315.25	1.145
KDD018	315.25	315.8	0.32
KDD018	315.8	316.7	0.154
KDD018	316.7	317.7	1.425

Hole ID	From (m)	To (m)	Gold g/t
KDD018	317.7	318.25	0.947
KDD018	331.55	332.55	2.21
KDD018	332.55	333.55	0.18
KDD018	333.55	334.55	0.151
KDD018	334.55	335.55	0.519
KDD018	335.55	336.35	6.82
KDD018	339.5	340.5	4.55
KDD018	340.5	341.5	1.34
KDD018	341.5	342	3.66
KDD018	342	343	0.884
KDD018	343	343.7	0.451
KDD018	343.7	344.7	0.22
KDD018	349.2	350.2	0.473
KDD018	350.2	351.2	0.019
KDD018	351.2	352.2	0.249
KDD018	352.2	353.22	0.239
KDD018	353.22	354.2	0.051
KDD018	354.2	354.7	0.442

Hole ID	From (m)	To (m)	Gold g/t
KDD018	357.9	358.9	0.2
KDD018	358.9	359.7	0.1
KDD018	359.7	360.7	0.338
KDD018	383	384	0.593
KDD018	384	384.95	0.528
KDD018	384.95	385.55	0.78
KDD018	385.55	386.05	0.245
KDD018	390.4	391.4	0.4
KDD018	391.4	392.05	0.248
KDD018	392.05	393.05	0.352
KDD018	393.05	393.9	0.301
KDD018	393.9	394.9	0.12
KDD018	394.9	395.8	0.272
KDD019	211.9	212.9	0.611
KDD019	212.9	213.9	0.01
KDD019	213.9	214.9	0.297
KDD019	214.9	215.9	0.069
KDD019	215.9	216.9	0.113
KDD019	216.9	217.9	0.404
KDD019	217.9	218.9	0.049
KDD019	218.9	219.9	0.43
KDD019	219.9	220.45	0.102
KDD019	220.45	221	0.295
KDD019	221	222	0.302
KDD019	222	223	0.012
KDD019	223	224	0.357
KDD019	224	225	0.414
KDD019	225	226	0.033
KDD019	226	227	0.0025
KDD019	227	228	0.345
KDD019	228	229	0.248
KDD019	229	230	0.093
KDD019	230	231	0.407
KDD019	231	231.7	0.081
KDD019	231.7	232.9	0.014
KDD019	232.9	233.8	0.557
KDD019	233.8	234.3	0.82
KDD019	259.5	260.5	0.204
KDD019	260.5	261.15	0.118
KDD019	261.15	262.1	0.583
KDD019	262.1	264.1	0.191
KDD019	264.1	265.2	0.0025
KDD019	265.2	266.2	3.73
KDD019	266.2	267	0.304
KDD019	267	268	0.206
KDD019	268	268.75	0.872
KDD020	1	2	1.01
KDD020	2	3	1.065
KDD020	3	4	0.234
KDD020	4	5	0.08
KDD020	5	6	0.224
KDD020	9	10	0.223
KDD020	10	11	0.786
KDD020	11	12	0.235
KDD020	12	13	0.221
KDD020	13	14	0.163
KDD020	14	15	0.395
KDD020	15	16	2
KDD020	16	17	0.666
KDD020	17	17.8	0.306

Hole ID	From (m)	To (m)	Gold g/t
KDD020	17.8	18.8	0.199
KDD020	18.8	19.8	0.624
KDD020	19.8	20.8	1.005
KDD020	20.8	21.8	1.215
KDD020	21.8	22.8	0.669
KDD020	22.8	23.8	1.355
KDD020	23.8	24.8	2.16
KDD020	24.8	25.8	2.4
KDD020	25.8	26.8	3.17
KDD020	26.8	27.8	2.58
KDD020	27.8	28.8	1.875
KDD020	28.8	29.8	0.966
KDD020	29.8	30.8	1.49
KDD020	30.8	31.8	2.26
KDD020	31.8	32.8	0.988
KDD020	32.8	33.8	0.283
KDD020	33.8	34.8	0.381
KDD020	34.8	36	0.019
KDD020	36	36.8	0.558
KDD020	36.8	37.8	0.633
KDD020	37.8	38.8	0.45
KDD020	38.8	39.71	0.37
KDD020	39.71	41.2	0.027
KDD020	41.2	42.2	0.593
KDD020	42.2	43.2	1.675
KDD020	43.2	44.2	0.626
KDD020	44.2	45.2	0.271
KDD020	45.2	46.2	0.725
KDD020	46.2	46.8	0.442
KDD020	46.8	47.4	0.56
KDD020	47.4	47.9	0.015
KDD020	47.9	49.5	0.0025
KDD020	49.5	50.4	0.358
KDD020	53.7	54.7	0.231
KDD020	54.7	55.7	0.140
KDD020	56.7	50.7	0.272
KDD020	57.5	58.1	0.205
KDD020	58.1	58.1	0.259
KDD020	218.8	219.8	0.265
KDD020	219.8	220.8	0.39
KDD020	220.8	221.8	0.56
KDD020	221.8	222.7	0.379
KDD020	318.4	319.4	0.595
KDD020	319.4	320.4	0.499
KDD020	320.4	321.4	0.232
KDD020	321.4	322.4	0.235
KDD020	322.4	323.4	0.255
KDD020	323.4	324.4	0.291
KDD020	324.4	324.9	0.027
KDD020	324.9	325.9	0.341
KDD020	325.9	326.9	0.369
KDD020	326.9	327.9	0.732
KDD020	327.9	328.9	0.41
KDD020	328.9	329.9	0.536
KDD020	335.65	336.65	0.253
KDD020	336.65	337.3	0.78
KDD020	337.3	338	0.257
KDD020	338	339	0.182
KDD020	339	340	0.304

Hole ID	From (m)	To (m)	Gold g/t
KDD020	340	340.6	0.526
KDD020	343.03	344.03	0.793
KDD020	344.03	345.6	0.008
KDD020	345.6	346.1	0.009
KDD020	346.1	347.1	0.204
KDD020	347.1	348.1	0.308
KDD020	348.1	349.1	0.077
KDD020	349.1	350.1	0.385
KDD020	350.1	351.1	0.727
KDD020	351.1	352.1	0.415
KDD020	352.1	353.1	0.353
KDD020	353.1	354.1	0.396
KDD020	354.1	354.7	0.208
KDD020	354.7	355.9	0.0025
KDD020	355.9	356.6	0.412
KDD020	356.6	357.2	0.241
KDD020	361.2	362.2	2.91
KDD020	362.2	363.2	0.131
KDD020	363.2	364.2	0.228
KDD020	364.2	365.2	0.628
KDD020	365.2	366.2	0.758
KDD020	366.2	367.2	2.08
KDD020	367.2	368.2	9.71
KDD020	368.2	369.15	0.013
KDD020	369.15	369.7	0.157
KDD020	369.7	370.7	2.18
KDD020	370.7	371.7	0.931
KDD020	371.7	372.7	0.154
KDD020	372.7	373.7	2.17
KDD020	373.7	374.7	1.02
KDD020	374.7	375.7	0.112
KDD020	375.7	376.7	4.96
KDD020	376.7	377.7	1.405
KDD020	377.7	378.7	2.42
KDD020	378.7	379.7	0.687
KDD020	379.7	380.6	1.42
KDD020	380.6	381.1	1.29
KDD020	381.1	382.1	0.029
KDD020	382.1	383	0.68
	202 0	383.8	0.458
	284 8	204.0	0.242
	285.6	385.0	0.393
	385.0	297 1	0.328
KDD020	380.0	388	1.06
KDD020	387.1	388.8	0 104
KDD020	388 8	280 8	0.104
KDD020	389.8	390.8	0.286
KDD020	390.8	391.3	0.596
KDD020	391.3	391.98	0.0025
KDD020	391.98	393.9	0.008
KDD020	393.9	394.9	0.312
KDD020	394.9	395.8	0.252
KDD020	395.8	396.8	0.145
KDD020	396.8	397.5	0.22
KDD020	397.5	398.5	0.515
KDD020	398.5	399	0.053
KDD020	399	400	0.572
KDD020	400	401	0.265
KDD020	401	402	0.322

Hole ID	From (m)	To (m)	Gold g/t
KDD020	402	403	0.591
KDD020	403	403.7	0.092
KDD020	403.7	404.3	0.225
KDD020	404.3	405.3	0.238
KDD020	405.3	406.3	0.113
KDD020	406.3	407.3	0.432
KDD020	407.3	408.3	0.096
KDD020	408.3	409.3	0.028
KDD020	409.3	410.3	0.274
KDD020	410.3	411.3	0.169
KDD020	411.3	412.2	0.354
KDD020	412.2	413.2	0.413
KDD020	413.2	414.2	0.28
KDD020	414.2	415	0.125
KDD020	415	416	0.129
KDD020	416	416.65	3.01
KDD020	416.65	417.15	0.55
KDD020	417.15	417.65	0.025
KDD020	417.65	418.6	1.475
KDD020	418.6	419.5	0.323
KDD021	159.6	160.6	0.307
KDD021	160.6	161.6	0.179
KDD021	161.6	162.1	0.987
KDD021	162.1	162.6	0.487
KDD021	162.6	163.6	0.262
KDD021	163.6	164.6	0.613
KDD021	164.6	165.6	0.445
KDD021	165.6	166.6	0.202
KDD021	166.6	167.1	0.655
KDD021	167.1	168	0.428
KDD021	100	109	2.25
KDD021	109	170	0.053
KDD021	170	171	0.338
KDD021	171	172	0.321
KDD021	182.3	183.3	0.372
KDD021	183.3	184	0.279
KDD021	184	185	0.127
KDD021	185	186	0.245
KDD021	186	187	0.13
KDD021	187	188	0.457
KDD021	188	189	0.505
KDD021	189	189.8	0.268
KDD021	189.8	190.8	2.93
KDD021	190.8	191.8	1.12
KDD021	191.8	192.8	0.396
KDD021	192.8	193.8	0.249
KDD021	193.8	194.75	0.551
KDD021	194.75	195.35	0.559
KDD021	195.35	196	0.975
KDD021	196	197	0.939
KDD021	197	198	1.86
KDD021	198	199	2.25
KDD021	199	200	1.86
KDD021	200	201	0.918
KDD021	201	202	0.305
KDD021	202	203	0.964
KDD021	203	204	0.244
KDD021	204	205	0.183
KDD021	205	206	1.16

Hole ID	From (m)	To (m)	Gold g/t
KDD021	206	207	1.38
KDD021	207	208	1.19
KDD021	208	209	0.513
KDD021	209	210	0.394
KDD021	213	214	1.93
KDD021	214	215	0.08
KDD021	215	216	1.71
KDD021	216	216.65	2.28
KDD021	216.65	217.3	2.16
KDD021	217.3	218.3	0.259
KDD021	218.3	219.3	2.33
KDD021	219.3	220	2.06
KDD021	220	221	0.567
KDD021	221	222	5.64
KDD021	222	223	0.784
KDD021	223	224	0.312
KDD021	224	224.85	0.171
KDD021	224.85	225.85	1.055
KDD021	225.85	226.8	0.14
KDD021	226.8	227.75	0.639
KDD021	227.75	228.25	0.286
KDD021	228.25	229.25	0.458
KDD021	229.25	230.3	1.57
KDD021	230.3	231.3	2.06
KDD021	231.3	232.2	29.1
KDD021	232.2	233.2	0.771
KDD021	233.2	234.2	1.905
KDD021	234.2	235	0.461
KDD021	235	236	2.19
KDD021	236	237	0.298
KDD021	237	238	0.249
KDD021	238	239	0.566
KDD022	144.25	145.25	0.423
KDD022	145.25	146.25	0.252
KDD022	146.25	146.75	0.012
KDD022	146.75	147.75	0.047
KDD022	147.75	148.75	0.647
KDD022	154.6	155.6	0.448
KDD022	155.6	156.6	0.522
KDD022	156.6	157.6	0.948
KDD022	162.05	163.05	0.4
KDD022	163.05	163.6	0.295
KDD022	163.6	164.1	0.005
KDD022	164.1	165.1	0.09
KDD022	165.1	165.8	0.811
	165.8	167.0	0.005
KDD022	165.8	167.8	0.0025
	107.0	100.0	0.361
KDD022	178.8	170.0	0.273
KDD022	170.0	180.8	0.030
KDD022	175.0	181 2	0.05
KDD022	181 2	187 2	0.0
KDD022	101.3	182.3	0.014
KDD022	182.3	18/1 2	0.015
KDD022	194.8	195.8	0.215
KDD022	195.8	196.8	0.094
KDD022	196.8	197.8	0 307
KDD022	200.7	201 7	1 01
KDD022	200.7	202.7	0.126
			J. + - J

Hole ID	From (m)	To (m)	Gold g/t
KDD022	202.7	203.7	0.392
KDD022	203.7	204.7	0.044
KDD022	204.7	205.05	0.023
KDD022	205.05	206.05	0.226
KDD022	215.4	215.9	0.267
KDD022	215.9	216.8	0.026
KDD022	216.8	217.8	0.179
KDD022	217.8	218.6	0.595
KDD022	221.9	222.9	2.19
KDD022	222.9	223.9	1.365
KDD022	223.9	224.9	0.392
KDD022	224.9	225.9	0.993
KDD022	225.9	226.9	2.26
KDD022	226.9	227.9	2.44
KDD022	227.9	228.9	2.97
KDD022	228.9	229.9	4.24
KDD022	229.9	230.4	0.935
KDD022	230.4	231.4	0.509
KDD022	231.4	232.4	2.18
KDD022	232.4	233.4	1.09
KDD022	233.4	234.4	0.796
KDD022	234.4	235.4	0.687
KDD022	235.4	236.4	0.729
KDD022	236.4	237.4	2.71
KDD022	237.4	238.4	0.502
KDD022	238.4	239.4	0.513
KDD022	239.4	240.15	0.664
KDD022	251.1	252.1	0.27
KDD022	252.1	253.1	0.225
KDD022	253.1	253.8	0.464
KDD022	253.8	254.5	0.537
KDD022	254.5	255.5	2.44
KDD022	255.5	256.5	1.04
KDD022	256.5	257.5	1.275
KDD022	257.5	258.4	2.16
KDD022	264.9	265.9	0.462
KDD022	265.9	266.5	0.443
KDD022	200.5	267.1	1.43
	207.1	208.8	0.02
	200.0	209.4	2 51
KDD022	205.4	270.4	6.25
KDD022	270. 4 271 <i>4</i>	271.4	0.25
KDD022	271.4	271.5	0.043
KDD022	272.4	274.4	0.947
KDD022	278.4	279.4	4.55
KDD022	279.4	280.4	0.422
KDD022	280.4	281.4	0.395
KDD022	281.4	282.4	0.115
KDD022	282.4	283.4	7.26
KDD022	283.4	284.4	9.97
KDD022	284.4	285.4	0.885
KDD022	285.4	286.4	0.145
KDD022	286.4	287.4	0.367
KDD022	287.4	288.4	1.305
KDD022	288.4	289.4	0.443
KDD022	289.4	290.4	0.753
KDD022	290.4	291.4	0.119
KDD022	291.4	292.4	0.278
KRD132	214.1	215.1	0.346

Hole ID	From (m)	To (m)	Gold g/t
KRD132	215.1	215.6	0.116
KRD132	215.6	216.6	0.481
KRD132	216.6	217.6	2.89
KRD132	217.6	218.1	2.8
KRD132	218.1	219.1	0.729
KRD132	219.1	220.1	0.405
KRD132	223.1	224.1	0.563
KRD132	224.1	225.1	0.531
KRD132	225.1	226.1	0.341
KRD132	226.1	226.6	0.419
KRD132	226.6	227.3	0.884
KRD132	227.3	228.3	3.09
KRD132	228.3	229.3	1.475
KRD132	229.3	230.3	2.23
KRD132	230.3	231.3	0.509
KRD132	231.3	231.9	0.263
KRD132	231.9	232.9	0.609
KRD132	232.9	233.9	2.69
KRD132	233.9	234.9	2.89
KRD132	234.9	235.9	2.13
KRD132	235.9	236.6	2.07
	230.0	237.1	0.06
KRD132	237.1	238.1	0.708
	238.1	230.0	0.414
KRD132	238.0	239.0	1 335
KRD132	240.6	241.6	2.52
KRD132	241.6	242.6	1 19
KRD132	242.6	243.1	0.44
KRD132	243.1	244.1	1.815
KRD132	244.1	245.1	2.35
KRD132	245.1	246.1	1.915
KRD132	246.1	246.6	0.194
KRD132	246.6	247.6	0.858
KRD132	247.6	248.6	0.575
KRD132	248.6	249.4	0.295
KRD132	249.4	250.4	0.161
KRD132	250.4	251.4	0.332
KRD132	251.4	251.9	0.87
KRD132	251.9	252.9	0.291
KRD132	252.9	253.9	0.494
KRD132	253.9	254.9	0.385
	254.9	255.9	0.202
KRD132	255.9	250.9	1 335
KRD132	250.5	257.5	0.458
KRD132	258.9	259.9	0.039
KRD132	259.9	260.9	0.81
KRD132	266.1	267.1	0.343
KRD132	267.1	268.1	0.049
KRD132	268.1	269.1	0.149
KRD132	269.1	270.1	1.66
KRD145	256.85	257.85	0.386
KRD145	257.85	258.85	0.095
KRD145	258.85	259.85	0.209
KRD145	259.85	260.85	0.136
KRD145	260.85	261.85	1.015
KRD145	264.85	265.85	0.312
KRD145	265.85	266.85	0.083
KRD145	266.85	267.85	0.383

Hole ID	From (m)	To (m)	Gold g/t
KRD145	267.85	268.85	1.585
KRD145	268.85	269.85	1.5
KRD145	269.85	270.85	0.621
KRD145	270.85	271.85	0.318
KRD145	275.85	276.85	0.58
KRD145	276.85	277.85	0.809
KRD145	277.85	278.85	0.641
KRD145	278.85	279.85	0.321
KRD145	279.85	280.85	1.495
KRD145	280.85	281.85	2.7
KRD145	281.85	282.85	5.88
KRD145	282.85	283.85	0.725
KRD145	283.85	284.85	2.1
KRD145	284.85	285.85	1.32
KRD145	285.85	286.85	1.31
KRD145	286.85	287.85	1.48
KRD145	287.85	288.85	0.911
KRD145	288.85	289.85	0.584
KRD145	289.85	290.85	0.256
KRD145	290.85	291.85	0.764
KRD145	291.85	292.85	0.099
KRD145	292.85	293.85	0.906
KRD145	293.85	294.65	8.91
KRD145	294.65	295.65	6.62
KRD145	295.65	296.65	0.612
KRD145	296.65	297.65	0.887
KRD145	297.65	298.65	0.443
KRD145	298.65	299.65	0.506
KRD145	299.65	300.65	0.868
KRD145	300.65	301.65	0.466
KRD145	301.65	302.65	0.545
KRD145	302.65	303.65	1.82
KRD145	303.65	304.65	0.617
KRD145	304.65	305.5	0.028
KRD145	305.5	306	0.027
KRD145	306	307	0.408
KRD145	307	308	0.007
KRD145	308	309	0.542
KRD145	309	310	0.04
KRD145	310	311	0.7
KRD145	319.7	320.7	0.235
KRD145	320.7	321.7	0.066
KRD145	321.7	322.7	1.045
KRD145	322.7	323.7	0.989
KRD145	327.2	328.2	0.218
KRD145	328.2	329.2	0.199
KRD145	329.2	330.2	0.592
KRD146	257	258	0.332
	258	259	0.172
	259	200	0.144
KRD146	260	261	1.275
	201	202	0.389
	202	203	0.187
	263	264	0.197
	264	265	0.767
	205	200	0.054
	200	207	0.302
	207	208	L.//
	208	209	0.247
KKD146	269	270	0.23

Hole ID	From (m)	To (m)	Gold g/t
KRD146	270	271	1.705
KRD146	271	272	1.715
KRD146	272	273	1.73
KRD146	273	274	1.01
KRD146	274	275	0.439
KRD146	275	276	0.866
KRD146	276	277	0.202
KRD146	277	278	1.16
KRD146	278	279	1.71
KRD146	279	280	1.695
KRD146	280	281	1.685
KRD146	281	282	8.79
KRD146	282	283	2.57
KRD146	283	284	0.668
KRD146	284	284.5	0.698
KRD146	284.5	286.5	0.023
KRD146	286.5	288	0.009
KRD146	288	289	0.51
KRD146	289	289.6	0.018
KRD146	289.6	290.6	0.438

Hole ID	From (m)	To (m)	Gold g/t
KRD146	290.6	291.6	0.64
KRD146	291.6	292.6	2.01
KRD146	292.6	293.6	0.846
KRD146	293.6	294.6	0.747
KRD146	294.6	295.6	0.961
KRD146	295.6	296.6	0.876
KRD146	296.6	297.6	0.139
KRD146	297.6	298.6	0.143
KRD146	298.6	299.6	0.252
KRD146	299.6	300.6	0.205
KRD146	300.6	301.6	0.313
KRD146	301.6	302.6	0.222
KRD146	302.6	303.6	0.222
KRD146	303.6	304.6	4.93
KRD146	304.6	305.6	0.14
KRD146	305.6	306.6	0.892
KRD146	306.6	307.6	0.816
KRD146	307.6	308.6	0.159
KRD146	308.6	309.6	0.201

Appendix 3. JORC Table 1 Reporting

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was completed using a dedicated diamond rig. Drillholes were angled at -60° from surface. Diamond core was cut in half using a core saw for HQ diameters; NQ diameters were sampled full core. Sampling intervals are decided by a Company Geologist, based on the lithological contacts and on any change in alteration or mineralisation style. Core sample length vary between 0.5m and 1.4m. The sampling is done by a Company Geologist.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Coring was completed using HQ size from surface – KDD drill holes – or NQ size for tails after RC pre-collars – KRD drill holes. All core is oriented using Reflex digital system
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill core recoveries were recorded at the drill rig. Core recoveries were excellent for all the drill program. Sample bias is not expected with the core samples – half core, or full core depending on the diameter.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	 All drill holes were logged in the field by Company Geologists. On the diamond holes, lithologies, alteration, minerals geotechnical measurements and structural data were recorded and uploaded into the Company database. Photography was taken on dry and wet core and on plain and cut

Criteria	JORC Code explanation	Commentary
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	core for further references.Drill holes were logged in full. Logging was qualitative and quantitative in nature.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The diamond core was cut longitudinally using a core saw on HQ diameters, to sample half core; NQ diameters were sampled full core. Core samples were collected by a Company Geologist and sent off to the laboratory for assay. Core samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. Drilling samples were assayed using methods Au-AA24 for gold and ME-MS61 for the multi element suite. The sample preparation procedures carried out are considered acceptable. Blanks and standards (CRM) are used to monitor Quality Control and representativeness of samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Core samples were assayed by 50g Lead collection fire assay in new pots and analysed by Atomic Absorption Spectroscopy (AAS) for gold. Multielement were assayed using a 4-acid digest followed by ICPMS-AES Industry best practice procedures were followed and included submitting blanks, field duplicates and Certified Reference Material. Acceptable levels of accuracy and precision have been confirmed.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At this stage, the intersections have been verified by the Company Geologists. All field data is manually collected, entered into excel spreadsheets, validated and loaded into a database. Electronic data is stored on a cloud server and routinely backed up. Data is exported from the database for processing in a number of software packages.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes collar locations were recorded at the completion of each hole by hand-held GPS. Coordinates collected are in the WGS84 Zone 33S grid system

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Diamond drill holes reported here were planned on a set grid with spacing of 100m in plan view and 50m between holes on sections. The data spacing and distribution of sampling is sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation procedures.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• Drill holes were positioned using geological information collected from the trenches and from the detailed mapping completed over the prospect. They are positioned perpendicular to the main schistosity and so to the inferred mineralisation main controls.
Sample security	The measures taken to ensure sample security.	 Sampling is supervised by a Company Geologist and all samples are delivered to the laboratory in Okahandja by company staff.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No reviews or audits have been conducted on the drilling reported in this announcement.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Damaran Project comprises 12 exclusive prospecting licenses (EPLs 6226, 4833, 8039, 7246, 4818, 4953, 6534, 6535, 6536, 8249,7327,7980) and located in central Namibia. EPL6226 is 100% held by Wia Gold in the name of Aloe Investments One Hundred and Ninety Two (Pty) Ltd. EPL4833, 4818, 7246, 8039 and 8249 are held under an 80% earn-in and join venture agreement with Epangelo Mining Limited, a private mining investment company with the Government of the Republic of Namibia as the sole shareholder. EPL6534, 6535, 6536, and 4953 are held under a company called Gazina Investments which is owned 90% by Wia and 10% by the vendor. EPL7980 is 100% held by WiaGold in the name of Damaran Exploration Namibia (PTY) Ltd. EPL7327 is under an agreement with an exclusive option to acquire the permit under a NewCo at Wia election. All granted tenements are in good standing and there are no material issues affecting

Criteria	JORC Code explanation	Commentary	
		the tenements.	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Work completed prior to WiaGold includes stream sediment sampling, mapping, soil and rock chip sampling by Teck Cominco Namibia but data is unavailable. This work did not cover the Okombahe permit, host of the Kokoseb gold discovery. 	
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Kokoseb Gold Project lies withing the Northern Central Zone of the Pan-African Damaran Orogenic Belt. The project area is underlain by neo-Proterozoic metasediments, including the Kuiseb schist formation, host of most of the known gold deposits, including Kokoseb, are orogenic type deposits by nature. Kokoseb gold mineralisation is hosted by the Kuiseb schist formation, biotite-schists (metasediments) which have been intruded by several granitic phases. The gold mineralised zone appears as a contact like aureole of the central granitic pluton, with a diameter of approximately 3km in each direction. Gold mineralisation is present as native gold grains and lesser silver bearing gold grains been spacially associated with sulphides dominated by pyrrhotite, löllingite and arsenopyrite. Gold grains have developed at the contact between löllingite and arsenopyrite following a retrograde reaction. 	
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	see tables in the appendix.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) 	 Reported intercepts are calculated using weighted average at a cut-off grade of 0.5 g/t Au and allowing internal dilution of maximum 2m consecutive low-grade 	

Criteria	JORC Code explanation	Commentary
	 and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	material.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes are inclined at around 60 degrees, with azimuths generally perpendicular to local mineralisation trends, implying a true thickness around half the down-hole intercept lengths. Intercepts are reported as they appear from the sampling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Plan view maps of all drillhole are included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All samples with assays have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other exploration data is being reported at this time.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Refer to the text in the announcement for information on follow-up and/or next work programs.