

Drilling update from Yinnetharra

Highlights:

- The **Yinnetharra Lithium Project** is an early-stage exploration project that covers a **large 1,769km²** area (including Farm-In's) within the Gascoyne Lithium Province of **Western Australia**
 - o Maiden Resource Estimate (MRE) of 25.7Mt @ 1% Li₂O reported in December 2023¹
 - o This MRE is located within a 1.6km section of the 80km strike length of Delta's prospective stratigraphy at the broader Yinnetharra Lithium Project.
 - o Drilling at the next target area (Jameson) is scheduled to commence during the current Quarter
- New drilling results in this round of results include⁴:

Yinnetharra

- o **30m @ 1.9% Li₂O** from 199m in YRRD0362 at M36
- o **30m @ 1.43% Li₂O** from 183m in YRRD0361 at M36
- o 24.2m @ 1.4% Li₂O from 177m in YDRD038 at M1
- o 43m @ 0.75% Li₂O from 286m in YRRD0348 at M1
- 25m @ 1% Li₂O from 35m in YRRD0336 at M1

Delta Lithium Limited (ASX: DLI) ("Delta" or the "Company"), is pleased to announce an update for the ongoing drilling activities at its Lithium Project at Yinnetharra in the Gascoyne region of Western Australia.

Drilling at the Malinda Prospect continues to demonstrate quality lithium intercepts from surface with the dominant lithium bearing mineral being spodumene. Recent highlights can be seen below in Table 1 and Figure 2, with a full list of recent results in Appendix 1 and 2.

Commenting on the results Managing Director, James Croser said;

"Malinda continues to provide excellent results that highlight the enormous potential our geologists have been talking about since the initial acquisition in late 2022. This confidence has only grown as each round of drilling results have been incorporated into our geological model.

An initial heritage survey has been completed at Jamesons around the immediate locale of our first pass drilling program. This is planned to commence in late March, drilling the high-value geochem anomalism and LCT pegmatite outrcrop, and upon receipt of the POW which is imminent."

Yinnetharra Exploration

The Yinnetharra project is an early-stage exploration project in the Gascoyne region of Western Australia targeting Lithium mineralisation. Delta Lithium has 1,769km² of tenure owned outright and as Farm-in Joint Ventures. A maiden MRE was released in December 2024 of 25.7Mt @ 1% Li₂O¹. The recently executed Farm-In Joint Venture Agreement have expanded the prospective stratigraphy to over 80km in length.

- 1. Refer ASX Announcement 27 December 2023 titled 'Yinnetharra Lithium Project Maiden Mineral Resource Estimate'
- 2. Refer ASX Announcement 3 October 2023 titled 'Mt Ida Mineral Resource Estimate Update'
- 3. Refer to Appendix 1 for full drill hole information

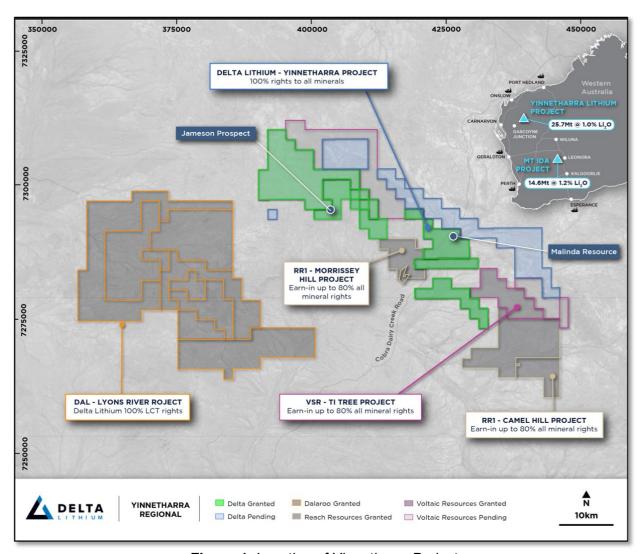


Figure 1: Location of Yinnetharra Project

The Company is actively exploring at the Yinnetharra Project with four drill rigs currently operating at Malinda and multiple field teams undertaking geological mapping and surface sampling in order to further define target prospects.

Drilling completed to date at Malinda has demonstrated quality lithium intercepts from surface with the dominant lithium bearing mineral being spodumene. Recent highlights can be seen below in Table 1 and Figure 2, with a full list of recent results in Appendix 1 and 2.

HoleID	From	То	Length	Li ₂ O pct	Ta₂O₅ ppm	Fe ₂ O ₃ pct
YRRD362	199	229	30	1.9	160	1.07
YRRD361	183	213	30	1.43	178	0.78
YDRD038	177	201	24	1.41	110	4.38
YRRD348	286	329	43	0.75	42	1.39
YRRD336	35	60	25	1.01	85	0.85
YDRD039	199	216	17	1.25	80	2.22
YRRD340	72	95	23	0.92	61	1.11
YRRD330	84	103	19	0.95	59	1.28
YRRD326	72	88	16	1.06	54	0.96
YRRD310	264	281	17	0.95	42	4.03

HoleID	From	То	Length	Li ₂ O pct	Ta₂O₅ ppm	Fe ₂ O ₃ pct
YRRD332	54	74	20	0.7	60	1.28
YRRD353	225	240	15	0.86	90	2.42
YRRD392	38	53	15	0.82	54	0.55
YRRD334	38	50	12	0.95	66	1.70

Table 1: Highlight of recent drilling results from Yinnetharra

Lithium resources are largely present in 3 main pegmatites at Malinda from surface to a depth of >300m. Metallurgical test work is ongoing with initial results demonstrating the potential for high recovery of spodumene to high grade concentrates².

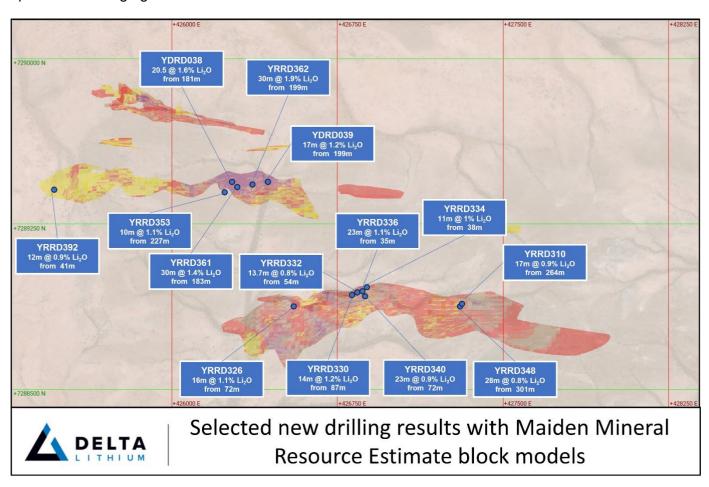


Figure 2: Plan showing block models with selected recent intercepts

Exploration is ongoing at Yinnetharra with additional groundwork commencing within the recently acquired RR1 and VSR tenements.

Drilling at the Jamesons Prospect (Figure 3) is scheduled to start this quarter utilising an RC rig, accessed and supported from the Malinda Camp. The Jamesons Prospect has very consistent high tenor lithium in soil anomalies with rock chips up to 4% Li₂O and coarse spodumene within outcropping pegmatites at surface. The area has been mapped extensively in preparation for the upcoming drill program.

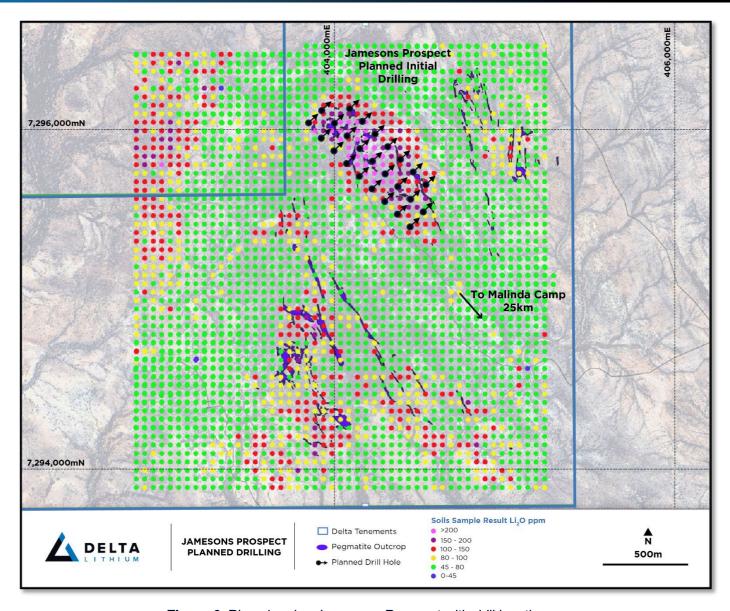


Figure 3: Plan showing Jamesons Prospect with drill locations

Release authorised by the Managing Director on behalf of the Board of Delta Lithium Limited.

For further information, please contact:

Delta Lithium

James Croser, Managing Director Peter Gilford, CFO & Company Secretary +61 8 6109 0104 info@deltalithium.com.au

Investor/Media Enquiries

Citadel-MAGNUS Michael Weir +61 402 347 032 Jono van Hazel +61 411 564 969

About Delta Lithium

Delta Lithium (ASX: DLI) is an exploration and development company focused on bringing high-quality, lithium-bearing pegmatite deposits, located in Western Australia, into production. With current global JORC compliant resources of 40.4Mt@1.1%Li₂O, strong balance sheet and an experienced team driving the exploration and development workstreams, Delta Lithium is rapidly advancing its Lithium Projects. The Mt Ida Lithium Project holds a critical advantage over other lithium developers with existing Mining Leases and an approved Mining Proposal. Delta Lithium is pursuing a development pathway to unlock maximum value for shareholders.

Delta Lithium also holds the highly prospective Yinnetharra Lithium Project that is already showing signs of becoming one of Australia's most exciting lithium regions. The Company has recommenced exploration activities at Yinnetharra in the new calendar year, and an extensive multi-rig campaign will be ongoing throughout 2024 to test additional targets and build on the Maiden Resource released in December 2023.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Charles Hughes, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AUSIMM). Mr. Hughes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Hughes is an employee of Delta Lithium Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Refer to www.deltalithium.com.au for past ASX announcements.

Past Exploration results and Mineral Resource Estimates reported in this announcement have been previously prepared and disclosed by Delta Lithium in accordance with JORC 2012. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.deltalithium.com.au for details on past exploration results and Mineral Resource Estimates.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on Delta Lithium management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Delta Lithium, which could cause actual results to differ materially from such statements. Delta Lithium makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing

Refer to www.deltalithium.com.au for past ASX announcements.

	Delta Lithium Group Mineral Resource estimate						
		Cut-off	Li ₂ O			Ta ₂ O ₅	
	Resource category	grade	Tonnes	Grade	Li ₂ O	Grade	
		(Li ₂ O%)	(Mt)	(% Li ₂ O)	(Kt)	(Ta ₂ O ₅ ppm)	
	Measured		-	-	-	-	
Yinnetharra	Indicated	0.5	6.7	1.0	65	51	
Tillieulalla	Inferred	0.5	19.0	1.0	181	67	
	Total Resource		25.7	1.0	246	62	
	Measured		-	-	-	-	
Mt Ida	Indicated	0.5	7.8	1.3	104	224	
Mt Ida	Inferred	0.5	6.8	1.1	76	154	
	Total Resource		14.6	1.2	180	191	
	Total Measured		-	-	-	-	
	Total Indicated		14.5	1.2	169	144	
Total Inferred		25.8	1.0	257	90		
	Total		40.4	1.1	426	109	

Notes:

Tonnages and grades have been rounded to reflect the relative uncertainty of the estimate. Inconsistencies in the totals are due to rounding.

Appendix 1 Recent Drilling Information

	11000111						
HoleID		From	То	Length	Li2O pct	Ta2O5 ppm	Fe2O3 pct
YDRD034	and	227.14	234.29	7.15	0.72	166	0.39
YDRD034		211.45	216.4	4.95	0.5	51	4.95
YDRD036		ant results					
YDRD037	no signific	ant results					
YDRD038		177.36	201.54	24.18	1.41	110	4.38
YDRD039		199	216.05	17.05	1.25	80	2.22
YDRD040		98.29	114.25	15.96	0.65	38	0.81
YDRD041	no signific	ant results					
YDRD042	no signific	ant results					
YRRD302	no signific	ant results					
YRRD304	no signific	ant results					
YRRD306	no signific	ant results					
YRRD308		244	252	8	1.08	53	1.72
YRRD310		264	281	17	0.95	42	4.03
YRRD310	and	320	325	5	1.24	38	0.75
YRRD312	no signific	ant results					
YRRD314	no signific	ant results					
YRRD315	no signific	ant results					
YRRD316		70	75	5	0.79	36	0.51
YRRD320	and	108	118	10	0.88	27	0.63
YRRD320		99	102	3	0.56	38	0.62
YRRD321	no signific	ant results					
YRRD322		ant results					
YRRD323	_	ant results					
YRRD325	and	133	149	16	0.44	83	0.83
YRRD325		0	8	8	0.43	39	2.26
YRRD325	and	123	126	3	0.68	63	0.94
YRRD326		72	88	16	1.06	54	0.96
YRRD327		162	167	5	0.55	80	0.77
YRRD328	no signific	ant results					
YRRD329		ant results					
YRRD330		84	103	19	0.95	59	1.28
YRRD330	and	108	118	10	0.33	6	8.55
YRRD331		ant results					
YRRD332		54	74	20	0.7	60	1.28
YRRD333	and	153	166	13	0.63	44	0.75
YRRD333		143	146	3	0.41	46	13.11
YRRD334		38	50	12	0.95	66	1.70
YRRD335	no significant results		33		5.55		1.75
YRRD336	3.5	35	60	25	1.01	85	0.85
YRRD337	no significant results			25	1.01	- 55	0.03
YRRD338	89		103	14	0.54	50	0.68
YRRD339	no signific	ant results	103	17	0.54	30	0.00
YRRD340	no signific	72	95	23	0.92	61	1.11
YRRD341	no signific	cant results	33		0.32	01	1.11
11/1/0341	I IIO SIBIIIIIC	ant results					

HoleID	From	То	Length	Li2O pct	Ta2O5 ppm	Fe2O3 pct
YRRD342	no significant results	5				
YRRD343	no significant results	5				
YRRD344	no significant results	5				
YRRD345	no significant results	5				
YRRD346	279	294	15	0.58	47	0.95
YRRD347	no significant results	5				
YRRD348	286	329	43	0.75	42	1.39
YRRD349	no significant results	5				
YRRD350	no significant results	5				
YRRD351	no significant results	5				
YRRD352	no significant results	5				
YRRD353	225	240	15	0.86	90	2.42
YRRD354	294	302	8	0.59	51	1.16
YRRD355	no significant results	5				
YRRD356	288	302	14	0.68	67	2.74
YRRD357	no significant results	5				
YRRD358	and 318	321	3	0.55	82	1.79
YRRD358	309	312	3	0.54	62	1.56
YRRD359	no significant results	5				
YRRD360	no significant results	5				
YRRD361	183	3 213	30	1.43	178	0.78
YRRD362	199	229	30	1.9	160	1.07
YRRD363	239	242	3	0.73	151	1.14
YRRD364						
YRRD365	no significant results	5				
YRRD366						
YRRD367	no significant results	5				
YRRD368	and 240	253	13	0.51	77	9.42
YRRD368	229	233	4	0.46	118	0.71
YRRD369	no significant results	5				
YRRD370	no significant results	5				
YRRD371	no significant results	5				
YRRD372	24	1 29	5	1.1	80	0.81
YRRD373	60	63	3	0.56	186	0.99
YRRD374	48	52	4	0.95	166	1.20
YRRD374	and 66	69	3	0.97	86	0.78
YRRD375	Assay not received					
YRRD376	Assay not received					
YRRD377	Assay not received					
YRRD378	no significant results	5				
YRRD379	45	60	15	0.4	86	7.95
YRRD380						
YRRD381	74	85	11	0.76	130	3.84
YRRD382	not sampled					
YRRD383	no significant results	5				
YRRD384	Assay not received					

HoleID		From	То	Length	Li2O pct	Ta2O5 ppm	Fe2O3 pct
YRRD385	Assay not	received					
YRRD386	Assay not	received					
YRRD387	not samp	led					
YRRD388	Assay not	received					
YRRD389	Assay not	received					
YRRD390	Assay not	received					
YRRD391	no signific	ant results					
	Assay not						
YRRD392	received	38	53	15	0.82	54	0.55
YRRD393	not samp	led					
YRRD394	no significant results						
YRRD395	no significant results						
YRRD396	no signific	ant results					
YRRD397		71	74	3	0.8	31	7.54
YRRD398	Assay not	received					
YRRD399	Assay not	received					
YRRD400	Assay not	received					
YRRD401	Assay not	received					
YRRD402	Assay not	received					
YRRD403	Assay not	received					
YRRD404	Assay not	received					
YRRD405	Assay not received						
YRRD406	Assay not received						
YRRD407	Assay not received						
YRRD408	Assay not received						
YRRD409	Assay not	received					
YRRD410		201	217	16	0.36	108	5.40

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YDRD034	279.66	426351.00	7289283.00	319.0	356.89	-60.01
YDRD036	321.76	426371.00	7289243.00	318.0	11.24	-60.57
YDRD037	246.54	426351.38	7289383.00	320.0	4.8	-63.94
YDRD038	264.4	426271.00	7289347.00	324.0	0.38	-60.9
YDRD039	243.7	426446	7289337	319.6	359.15	-59.75
YDRD040	150.78	425671	7289410	324.3	1.03	-64.21
YDRD041	192.41	425711	7289323	326.4	3.24	-61.5
YDRD042	237.8	425951	7289323	326.6	0.24	-59.81
YRRD302	210	427325	7288858	327	358.55	-55.92
YRRD304	240	427325	7288818	329	358.96	-55.01
YRRD306	270	427325	7288778	331	0.89	-54.09
YRRD308	312	427325	7288738	331	353.88	-47.65
YRRD310	360	427325	7288700	330	0	-55
YRRD312	180	426525	7288707	317	357.93	-60.27
YRRD314	54	426476	7288891	317	0.7	-59.92
YRRD315	90	425831	7289463	327	357.99	-62.2

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YRRD316	102	426481	7288819	317	2.83	-59.3
YRRD320	240	426476	7288731	316	0.38	-60.96
YRRD321	180	425871	7289463	327	358.35	-61.95
YRRD322	156	426564	7288907	319	359.75	-61.08
YRRD323	138	425871	7289423	327	358.62	-61.74
YRRD325	174	425871	7289383	327.9	1.07	-63.14
YRRD326	210	426564	7288827	319.3	357.08	-58.16
YRRD327	203	425871	7289343	328.1	1.85	-60.43
YRRD328	192	426564	7288787	310	0.4	-60.05
YRRD329	215	425871	7289303	328.5	358.44	-66.33
YRRD330	210	426827	7288876	322	341.74	-62.12
YRRD331	150	425911	7289403	327.8	357.2	-60.99
YRRD332	168	426853	7288910	321.2	350.67	-59.79
YRRD333	197	425911	7289343	327.7	359.12	-60.46
YRRD334	102	426890	7288943	320.8	345.65	-60.11
YRRD335	161	425951	7289503	326.8	358.35	-61.26
YRRD336	114	426872	7288931	320.9	10.28	-59.72
YRRD337	108	425951	7289443	327.3	359.75	-60.95
YRRD338	198	426844	7288870	321.8	0.43	-56.16
YRRD339	132	425951	7289403	327.9	357.7	-60.13
YRRD340	168	426883	7288884	322	0.25	-54.96
YRRD341	200	426191	7289443	325.8	0.25	-59.95
YRRD342	108	426954.67	7288916.13	322	14.17	-55.52
YRRD343	187	426191	7289403	327.3	358.5	-59.53
YRRD344	354	427005	7288578	324	358.18	-57.76
YRRD345	204	426191	7289363	328.2	359.4	-58.99
YRRD346	384	427243	7288690	329	359.59	-69.45
YRRD347	204	426191	7289263	322.5	1.49	-59.25
YRRD348	378	427325	7288668	330	357.95	-57.74
YRRD349	198	426231.38	7289402.66	325.48	359.61	-68.79
YRRD350	486	427310	7288540	330	1.6	-57.77
YRRD351	186	426231	7289442	324	357.83	-65.81
YRRD352	276	427399	7288789	333	5.59	-58.09
YRRD353	270	426231.25	7289263.62	322.45	357.88	-65.19
YRRD354 YRRD355	366	427325	7288668	330	358.31	-65.76
YRRD356	216 360	426271 427400	7289443 7288697	323.1 333	357.95 359.62	-65.04 -57.55
YRRD350	210	427400	7288697	323.1	359.62	-63.83
YRRD358	365	420271	7289403	330	359.7	-62.47
YRRD359	282	427483	7289263	321	359.43	-62.79
YRRD360	202	426391	7289383	319	1.99	-62.74
YRRD361	246	426310.66	7289324.84	320.71	358.92	-65.71
YRRD362	288	426381	7289303	318.8	5.51	-63.71
YRRD363	270	426309.78	7289240.74	319.42	1.07	-63.76
YRRD364	306	426431	7289240.74	319.42	3.79	-63.77
YRRD365	240	426349.48	7289383.79	320.64	358.08	-63.28
נמכטחחז	L 240	420349.48	1209383.19	320.04	558.08	-05.28

DEPTH HOLEID EAST NORTH RL **AZIMUTH** DIP 318.5 -64.77 YRRD366 354 426431 7289183 7.12 426345.81 7289240.54 359.65 -64.03 YRRD367 300 318.78 YRRD368 288 426471 7289283 321 4.98 -65.81 YRRD369 210 426391 7289423 320 2.92 -63.68 YRRD370 100 425752.39 7289858.04 321.19 186.54 -61.46 YRRD371 100 425757.82 7289903.74 320.49 187.1 -60.88 YRRD372 82 425789.93 7289863.15 321.44 205.83 -60.72 YRRD373 88 425796.29 7289898.15 320.14 190.45 -60.19 106 7289861.95 YRRD374 425828.39 321.36 169.2 -64.35 YRRD375 100 425829.21 7289888.45 320.79 172.67 -64.78 425946.03 7289778.48 -59.82 YRRD376 112 325.24 188.98 184 425950.87 7289851 322.45 177.95 -60.24 YRRD377 222 425955.55 YRRD378 7289879.49 321.99 180.37 -61.21 YRRD379 106 425989.37 7289775.33 325.7 184.67 -60.42 172 425987.99 181.26 -60.33 YRRD380 7289821.29 323.36 140 426029.67 7289778.08 325.13 185.1 -60.46 YRRD381 YRRD382 28 426071.73 7289785.01 324.95 185.95 -55.4 232 426036.85 7289855.27 322.53 185.87 -59.52 YRRD383 238 426079.36 YRRD384 7289859.23 322.38 181.77 -61.23 YRRD385 232 426117.25 7289819.5 323.2 180.42 -60.21 YRRD386 154 426150.17 7289761.74 323.76 183.21 -60.38 40 YRRD387 426196 7289774 323.1 182.1 -61.99 YRRD388 161 426223.35 7289748.75 323.43 180.81 -61.2 298 426239.3 180.52 -65.95 YRRD389 7289813.82 322.24 401 YRRD390 427485 7288660 330 3.36 -63.26 YRRD391 367 427485 7288620 330 7.16 -64.22 425471.38 323.22 359.96 -59.92 YRRD392 89 7289382.66 425511 YRRD393 77 7289482 321 355.52 -60.16 89 425511 322 356.26 -60.18 YRRD394 7289442 YRRD395 107 425511.38 7289402 322.9 355.38 -60.08 YRRD396 119 425511.38 7289362 323.6 358.56 -59.9 YRRD397 95 425569.76 7289465.96 322.4 2.36 -69.6 YRRD398 89 425542 7289442 322.2 20.29 -65.95 YRRD399 125 425545 7289402 322.8 14.63 -67.68 YRRD400 137 425548.85 7289362.7 323.45 13.8 -69.29 YRRD401 155 425631.39 7289393.48 323.57 3.43 -65.22 YRRD402 185 426479 7288673 317 0.69 -54.97 YRRD403 191 426476 7288620 317 0.84 -64.36 YRRD404 209 426476 7288590 317 1.18 -64.37 7289342.66 251 426551.38 323.73 11.7 -64.78 YRRD405 YRRD406 35 426551 7289303 324 12.88 -63.08 293 426561 324 9.18 -63.16 YRRD407 7289303 YRRD408 215 426591 7289375 323 0.98 -57.44 YRRD409 233 323 426591 7289363 3.51 -60.99 252 426471 7289323 321 9.65 YRRD410 -65.66

JORC Code, 2012 Edition
Table 1; Section 1: Sampling Techniques and Data Yinnetharra

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 Diamond (DD) and reverse circulation (RC) drilling has been carried out by DLI Metals at the Yinnetharra project RC samples are collected from a static cone splitter mounted directly below the cyclone on the rig DD sampling is carried out to lithological/alteration domains with lengths between 0.3-1.1m Limited historic data has been supplied, reverse circulation (RC) drilling and semi-quantative XRD analysis have been completed at the Project. Historic drilling referenced has been carried out by Segue Resources and Electrostate (prior holder) Historic sampling of RC drilling has been carried out via a static cone splitter mounted beneath a cyclone return system to produce a representative sample, or via scoop These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling is being carried out by DDH1 utilising a Sandvik DE880 truck mounted multipurpose rig and is HQ or NQ diameter. RC drilling is carried out by Precision Exploration Drilling (PXD) using a Schramm 850 rig Some RC precollars have been completed, diamond tails are not yet completed on these holes Historic RC drilling was completed using a T450 drill rig with external booster and auxiliary air unit, or unspecified methods utilising a 133mm face sampling bit It is assumed industry standard drilling methods and equipment were utilised for all drilling

Criteria	Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs are carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Poor recoveries were occasionally encountered in near surface drilling of the pegmatite due to the weathered nature Historic RC recoveries were visually estimated on the rig, bulk reject sample from the splitter was retained on site in green bags for use in weighing and calculating drill recoveries at a later date if required Sample weights were recorded by the laboratory
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core and RC chip logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All diamond drillholes and RC chip trays are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering No historic chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies

Criteria	Explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples are encountered, extra cleaning of the splitter is carried out afterward RC and core samples have been analysed for Li suite elements by ALS Laboratories, Samples are crushed and pulverised to 85% passing 75 microns for peroxide fusion digest followed by ICPOES or ICPMS determination Historic RC sampling methods included single metre static cone split from the rig or via scoop from the green bags, field duplicates were inserted at a rate of 1:20 within the pegmatite zones Historic samples were recorded as being mostly dry Historic samples were analysed by Nagrom or ALS Laboratories where 3kg samples were crushed and pulverised to 85% passing 75 microns for a sodium peroxide fusion followed by ICP-MS determination for 25 elements. Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative subsample that was lightly ground such that 90% was passing 20 μm to eliminate preferred orientation
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Samples have been analysed by an external laboratory utilising industry standard methods The assay method utilised by ALS for core sampling allows for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC and DD sampling, all QAQC analyses were within tolerance The sodium peroxide fusion used for historic assaying is a total digest method All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods In the historic data field duplicates, certified reference materials (CRMs) and blanks were inserted into the sampling sequence at a rate of 1:20 within the pegmatite zone Internal standards, duplicates and repeats were carried out by Nagrom and ALS as part of the assay process No standards were used in the XRD process

Criteria	Explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	 Significant intercepts have been reviewed by senior personnel Some holes in the current diamond program have been designed to twin historic RC drillholes and verify mineralised intercepts Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database Historic data was recorded in logbooks or spreadsheets before transfer into a geological database No adjustments to assay data have been made other than conversion from Li to Li₂O and Ta to Ta₂O₅
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	 Drill collars are located using a handheld GPS unit, all holes will be surveyed by third party contractor once the program is complete GDA94 MGA zone 50 grid coordinate system was used Downhole surveys were completed by DDH1 and PXD using a multishot tool Historic collars were located using handheld Garmin GPS unit with +/- 5m accuracy Historic holes were not downhole surveyed, planned collar surveys were provided
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	Drill holes were orientated to intersect the pegmatite zones as close to perpendicular as possible; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised as true orientation of the pegmatites is yet to be determined
Sample security	The measures taken to ensure sample security	Samples are prepared onsite under supervision of DLI Metals staff and transported by a third party directly to the laboratory Historic samples were collected, stored, and delivered to the laboratory by company personnel
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 2; Section 2: Reporting of Exploration Results, Yinnetharra

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	 Drilling and sampling activities have been carried on E09/2169 The tenement is in good standing There are no heritage issues

Criteria		Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The area has a long history of multi commodity exploration including base and precious metals, industrial minerals and gemstones stretching back to the 1970s, activities carried out have included geophysics and geochemical sampling, and some drilling Targeted Li exploration was carried out in 2017 by Segue Resources with follow up drilling completed by Electrostate in July 2022
Geology	Deposit type, geological setting and style of mineralisation.	The project lies within the heart of the Proterozoic Gascoyne Province, positioned more broadly within the Capricorn Orogen — a major zone of tectonism formed between the Archean Yilgarn and Pilbara cratons. The Gascoyne Province has itself been divided into several zones each characterised by a distinctive and episodic history of deformation, metamorphism, and granitic magmatism. The project sits along the northern edge of the Mutherbukin zone, along the Ti Tree Syncline. Mutherbukin is dominated by the Thirty-Three supersuite — a belt of plutons comprised primarily of foliated metamonzogranite, monzogranite and granodiorite. Rareearth pegmatites have been identified and mined on small scales
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No metal equivalents are used Significant intercepts are calculated with a nominal cut-off grade of 0.5% Li₂O
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The pegmatites are interpreted as dipping moderately to steeply toward the south Turther drilling is required to confirm the true orientation of the pegmatites across multiple lined
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drill collars, and significant intercepts have been reported in the appendix

Criteria		Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None completed at this time
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	POW's have been submitted to give DLI access to drill a further 200RC and 100 Diamond holes immediately over the area currently cleared under the existing heritage agreement (work will only be carried out under the guidelines of the heritage agreement and the agreed POW terms).