

FINAL RESULTS RECEIVED FROM 2023 MANNA DRILLING PROGRAM

Mineralisation still open in multiple directions, MRE update underway, and CY24 exploration drilling soon to commence

Key Highlights

- Complete assay results received from the CY23 60,000m Reverse Circulation (RC) and Diamond Drilling (DD) Program at GL1's Manna Lithium Project
- Mineral Resource Estimate (MRE) update underway, expected Q2 CY24, to be included in the Manna Definitive Feasibility Study (DFS)
- A new series of pegmatite lenses identified to the southwest of Manna under shallow cover
- Follow up targeted exploration campaign to begin Q2 CY24

Manna North

ASX:GL1

- Drilling at depth in the Manna North area has returned significant high-grade intercepts which will help support potential underground development;
 - 15.4m @ 1.28% Li₂O from 212.5m in MDD0040
 - 12m @ 1.55% Li₂O from 191m in MRC0238
 - 16m @ 1.65% Li₂O from 342m in MRC0243
 - 8m @ 1.32% Li₂O from 329m and,
 9m @ 1.44% Li₂O from 380m in MRC0247
 - 11m @ 1.10% Li₂O from 314m in MRC0250
 - 8m @ 0.96% Li₂O from 265m and,
 8m @ 1.36% Li₂O from 285m and,
 13m @ 0.89% Li₂O from 315m in MRC0274
 - 11m @ 1.23% Li₂O from 282m and,
 15m @ 0.93% Li₂O from 315m and,
 7m @ 1.29% Li₂O from 341m in MRC0343
- Mineralised pegmatites still open at depth and along strike
- Separate underground mine study underway focussing on the Manna North lithium mineralisation

Manna Central

- Further high-grade intercepts from the resource infill drilling at the Manna Central resource area include;
 - 11m @ 1.61% Li₂O from 68m in MRC0422
 - 13.9m @ 1.56% Li₂O from 308.1m in MDD0038
- Key sections of the Manna Central resource are now infilled to a 40x40m spacing to support mine planning and the MRE update.

Manna South

- Step out exploration drilling suggests potential new zones of mineralised pegmatite under shallow cover to the southwest of the Manna Central resource area.
- Highlights include;
 - 21m @ 0.99% Li₂O from 91m in MRC0312
 - 11m @ 0.95% Li₂O from 50m in MRC0316

Established multi-asset West Australian lithium company, Global Lithium Resources Limited (**ASX: GL1**, "**Global Lithium**" or "the **Company**") is pleased to report final results from the recently completed resource infill and expansion drilling program at the Company's **100% owned Manna Lithium Project**, located 100km east of Kalgoorlie in the Goldfields region.

Complete assay results have been returned following a successful year during which over 60,000m of RC and diamond drilling was completed.

Manna North

Many of the recent results relate to extensional and infill drilling from Manna North. The results indicate the Manna pegmatite system is open to the north and at depth (Figures 1, 2, and 3). Several high-grade zones, such as the recently returned **16m @ 1.65% Li₂O from 342m in MRC0243**, may be amenable to underground mining and are part of a study progressing concurrently with the overall Manna DFS due in CY24.

Manna North has been drilled on an 80x80m grid with multiple pegmatite sheets dipping steeply to the southeast and includes drill hole intercepts >1% Li_2O of up to 22m downhole width. The Manna North pegmatite zone has currently been tested over a 1.7km strike and to a vertical depth of 450m. Significant results from the 2023 extensional and infill drilling of the Manna north area include;

- 15.4m @ 1.28% Li₂O from 212.5m in MDD0040
- 12m @ 1.55% Li₂O from 191m in MRC0238
- 16m @ 1.65% Li₂O from 342m in MRC0243
- 22m @ 1.03% Li₂O from 461m MRC0252¹
- 15m @ 1.11% Li₂O from 468m MRC0261¹

1. Previously announced in ASX Announcement 19th December 2023. HIGH-GRADE DRILLING RESULTS CONTINUE AT MANNA

Page 2 of 20 | ACN 626 093 150 | ASX: GL1Level 1, 16 Ventnor Ave, West Perth, WA 6005info@globallithium.com.au | www.globallithium.com.au

Manna Central

Results from infill drilling on a 40x40m grid within the Manna Central mineralised zone are helping to refine the pegmatite system model and increase the understanding of grade variability and pegmatite continuity within the deposit. This infill drilling was designed to support technical studies, pending resource update and to coincide with the potential initial stages of open pit mining. The Manna Central pegmatite zone has currently been tested over a 1.4km strike and to a vertical depth of 450m (Figures 1, 4 and 5). Multiple pegmatite sheets dip steeply to the SE and vary in thickness up to ~20m. Significant results from the 2023 infill drilling of the Manna Central area include;

- 13.9m @ 1.56% Li₂O from 308.1m in MDD0038
- 26m @ 1.53% Li₂O from 249m in MRC0290¹
- 15m @ 1.58% Li₂O from 251m in MRC0306¹
- 13m @ 1.34% Li₂O from 75m in MRC0356¹
- 14m @ 1.59% Li₂O from 110m in MRC0357²
- 16m @ 1.57% Li₂O from 176m in MRC0379²
- 13m @ 1.73% Li₂O from 26m in MRC0385²
- 1. Previously announced in ASX Announcement 19th December 2023. HIGH-GRADE DRILLING RESULTS CONTINUE AT MANNA
- 2. Previously announced in ASX Announcement 26th October 2023. MANNA DRILLING DELIVERS FURTHER HIGH-GRADE RESULTS

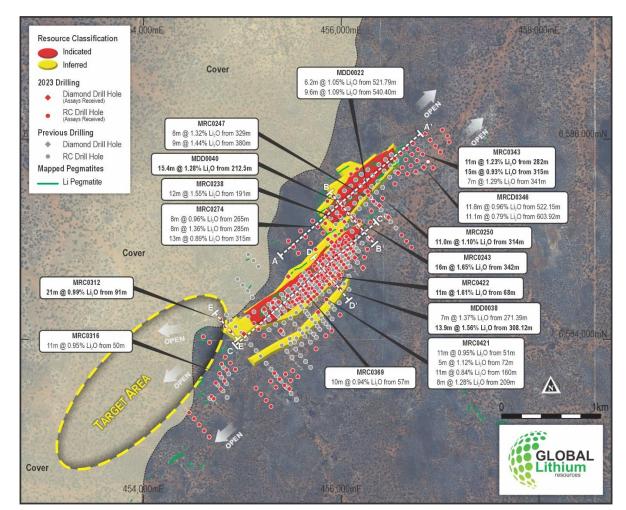
Manna South

A series of new pegmatites outside the current resource have been intercepted under shallow cover to the southwest of the Manna Central area. A significant result of **21m @ 0.99% Li₂O from 91m in MRC0312** was returned and highlights potential to define further material mineable by open pit methods (Figure 6).

In total the Manna pegmatites have, so far, returned grades >1% Li_2O over a strike length of 3.2km and down to a vertical depth of 450m.

With the receipt of all assay results from the 2023 drill program, a new MRE update is underway and on track for completion in Q2 CY24. A significant amount of infill and extensional drilling, and an increased number of diamond drillholes, will help produce a robust model to feed into the DFS.

Upcoming exploration drilling will be targeted along the Manna fault zone to the southwest and northeast of the Manna Lithium Deposit to test under areas of cover for shallow spodumene bearing pegmatites. Extensions to the Manna fault zone, which is the interpreted host to the Manna pegmatites, have been interpreted from aeromagnetic imagery extending under cover for over 5km to the southwest of the Manna Lithium Deposit. Approximately 6,000m of RC drilling is planned for Q2 CY24.



Global Lithium General Manager – Geology, Logan Barber commented,

"After delivering a safe and successful 2023 drill campaign it is rewarding to have received final assay results that demonstrate the continuity and high-grade nature of the Manna Lithium Deposit. We look forward to incorporating these results into the updated Mineral Resource Estimate, which will form part of the Manna DFS.

The GL1 exploration team is now gearing up to embark on the Company's third successive drill campaign at Manna that will focus on drill testing potential new zones of shallow lithium mineralisation southwest and along strike of the Manna Lithium Deposit."

The Manna Lithium Project currently hosts a Mineral Resource of 36.0Mt @ 1.13% Li2O3.

3. ASX Announcement 26th July 2023. Manna Lithium Project Resource Grows

Figure 1. Manna Project showing all RC and DD drill collars with select new significant intercepts. Target Area represents a potential under cover extension of the pegmatite system hosted within the Manna Fault zone.

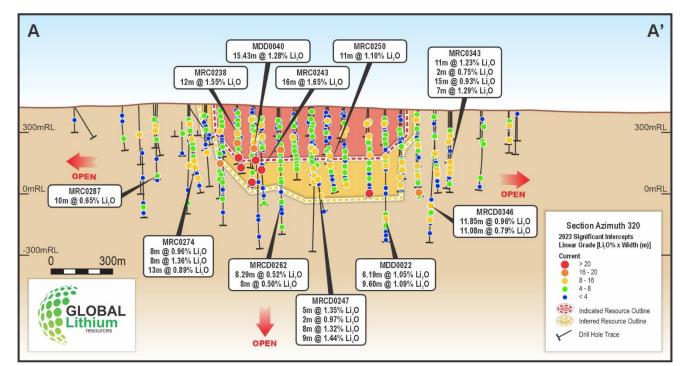


Figure 2. Long section A-A' through the northern zone of the Manna lithium deposit looking northwest with call-outs for select new significant Li₂O intercepts.

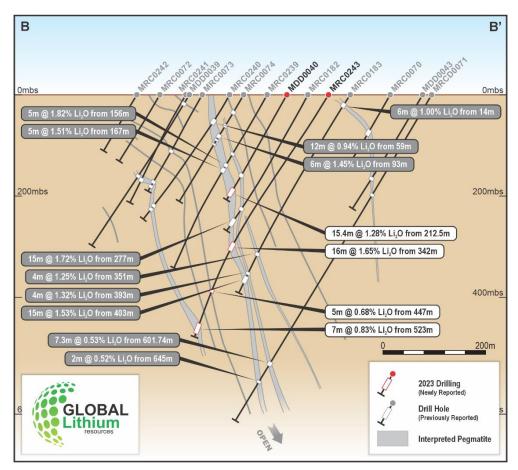
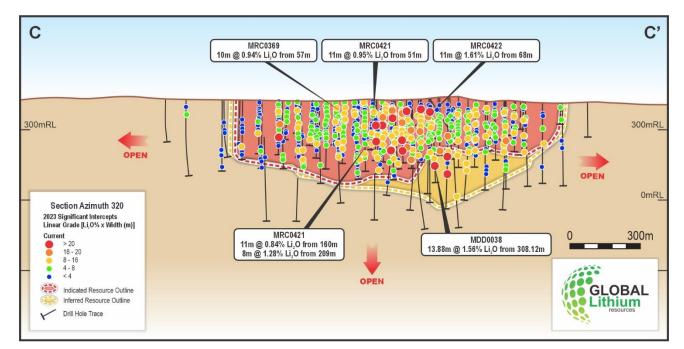



Figure 3. Cross section B-B' through the Manna lithium deposit with significant Li₂O intercepts.

Page 5 of 20 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

Figure 4. Long section C-C' through the Central zone of the Manna lithium deposit looking northwest call-outs for select new significant Li₂O intercepts.

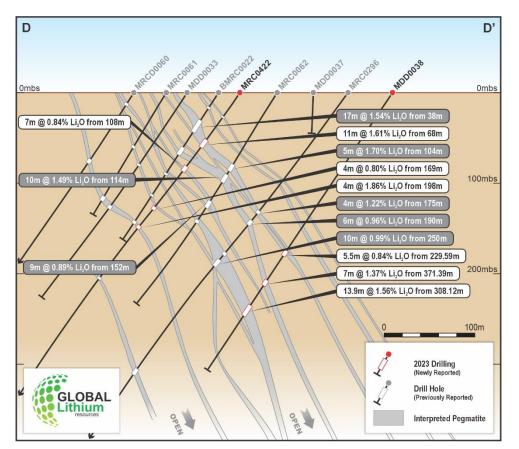


Figure 5. Cross section D-D' through the Manna lithium deposit with significant Li₂O intercepts.

Page 6 of 20 | ACN 626 093 150 | ASX: GL1 Level 1, 16 Ventnor Ave, West Perth, WA 6005 info@globallithium.com.au | www.globallithium.com.au

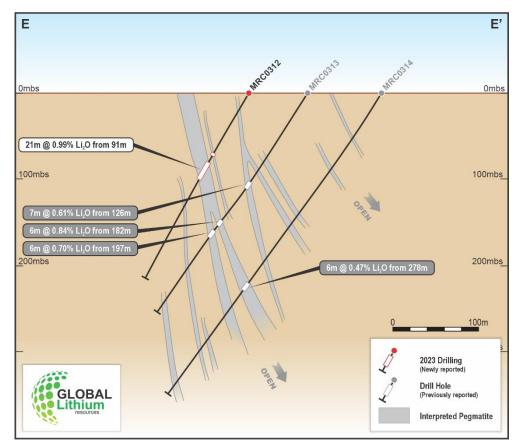


Figure 6. Cross section E-E' through the Manna lithium deposit with significant Li₂O intercepts.

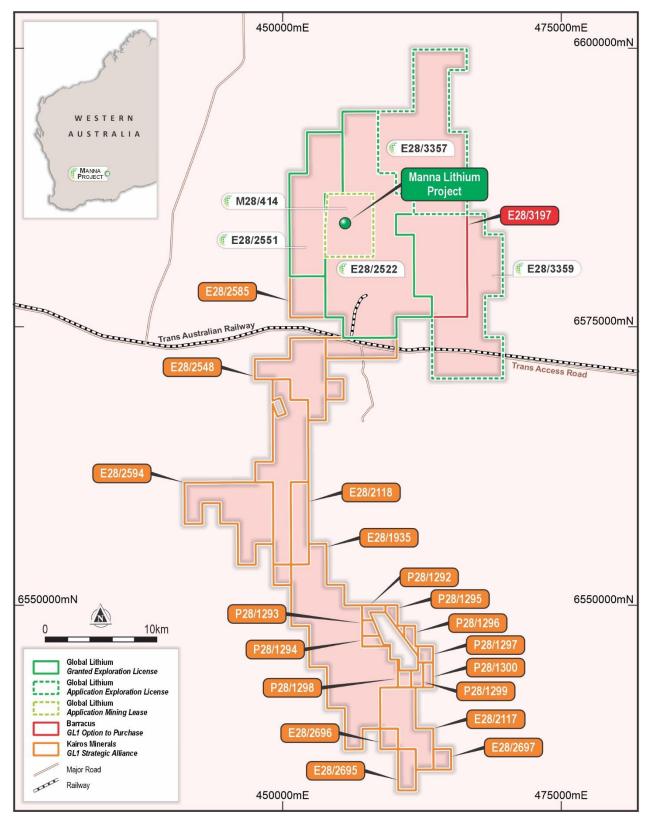


Figure 6. Tenements held within the 100% owned Manna Lithium Project, including surrounding strategic alliance with Kairos Minerals (GL1 direct and indirect Manna landholding has increased 280% from January 2023 and now covers 700km²).

Approved by the board of Global Lithium Resources Limited.

For more information:

Ron Mitchell Managing Director info@globallithium.com.au +61 8 6103 7488 Ben Creagh Media & Investor Relations ben@nwrcommunications.com.au +61 (0) 417 464 233

About Global Lithium

Global Lithium Resources Limited (ASX:GL1, Global Lithium) is a diversified West Australian lithium exploration and development company with multiple assets in key lithium branded jurisdictions with a primary focus on the 100% owned Manna Lithium Project in the Goldfields and the Marble Bar Lithium Project (MBLP) in the Pilbara region, Western Australia.

Global Lithium has now defined a total Indicated and Inferred Mineral Resource of 54Mt @ 1.09% Li₂O at its Manna and MBLP Lithium projects, confirming Global Lithium as a significant global lithium player.

Directors

Geoff Jones	Non-Executive Chair
Ron Mitchell	Managing Director
Dr Dianmin Chen	Non-Executive Director
Greg Lilleyman	Non-Executive Director
Hayley Lawrance	Non-Executive Director

Global Lithium – Mineral Resources

Project Name	Category	Million Tonnes (Mt)	Li ₂ O%	Ta₂O₅ ppm
Marble Bar	Indicated	3.8	0.97	53
	Inferred	14.2	1.01	50
	Subtotal	18.0	1.00	51
Manna	Indicated	20.2	1.12	56
	Inferred	15.8	1.14	52
	Subtotal	36.0	1.13	54
Combined Total		54.0	1.09	53

Competent Persons Statement:

Exploration Results

The information in this announcement that relates to Exploration Results for the Manna Lithium Project complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and is based on, and fairly represents, information and supporting documentation prepared by Mr Logan Barber, a full time employee of Global Lithium Resources Limited and who participates in the Company's Incentive Performance Rights and Option Plan. Mr Barber is a member of the Australasian Institute of Geoscientists. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Barber considers that the information in the market announcement is an accurate representation of the available data and studies for the mining project. Mr Barber consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Mineral Resources

Information on historical exploration results and Mineral Resources for the Manna Lithium Project presented in this announcement, together with JORC Table 1 information, is contained in an ASX announcement released on 26 July 2023.

Information on historical exploration results and Mineral Resources for the Marble Bar Lithium Project presented in this announcement is contained in an ASX announcement released on 15 December 2022

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant market announcements, and that the form and context in which the Competent Persons findings are presented have not been materially modified from the original announcements.

Where the Company refers to Mineral Resources for the Manna Lithium Project (MLP) and the Marble Bar Lithium Project in this announcement (referencing previous releases made to the ASX), it confirms that it is not aware of any new information or data that materially affects the information included in that announcement and all material assumptions and technical parameters underpinning the Mineral Resource estimate in that announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not materially changed from the original announcement.

Table 1. Manna Drilling Summary

		Table I. Manna Di	-	-		
Hole ID	Easting	Northing	RL (m)	Dip (decrease)	Azimuth	Total Depth
	(MGA51)	(MGA51)	(m)	(degrees)	(degrees)	(m)
MDD0022	456559	6585700	405	-75	320	670
MDD0029	455371	6584101	426	-60	322	350.53
MDD0032	455746	6584289	420	-60	320	401.8
MDD0033	455821	6584700	416	-60	321	300.8
MDD0034	455964	6585030	418	-60	320	171.68
MDD0035	456114	6584851	411	-60	320	321.54
MDD0036	455885	6585002	420	-60	52	186.31
MDD0038	455968	6584528	416	-60	322	401.93
MDD0039	455987	6585388	421	-60	320	356.71
MDD0040	456103	6585242	413	-60	319	230.2
MDD0041	456252	6585512	409	-60	319	141.46
MDD0042	456365	6585373	409	-60	321	387.55
MDD0043	456271	6585041	408	-60	319	252.87
MMB24	457088	6585995	396	-90	0	200
MRC0235	456047	6585038	415	-60	321	504
MRC0238	456032	6585189	415	-60	320	318
MRC0243	456178	6585199	413	-59	319	540
MRC0245	456305	6585309	411	-60	318	356
MRC0246	456277	6585467	411	-60	318	416
MRC0247	456330	6585405	412	-60	318	474
MRC0250	456412	6585423	406	-60	320	518
MRC0268	456265	6584909	409	-59	322	396
MRC0273	455867	6585023	422	-60	322	483
MRC0274	455809	6585095	422	-60	319	360
MRC0287	455744	6584922	427	-60	320	414
MRC0289	455880	6584755	415	-61	323	300
MRC0305	455986	6584247	429	-61	319	288
MRC0310	454843	6583689	434	-60	321	267
MRC0311	454789	6583747	435	-60	319	160
MRC0312	454778	6584201	421	-60	315	245
MRC0313	454830	6584152	424	-59	321	313
MRC0314	454880	6584080	429	-60	321	439
MRC0315	454667	6583968	439	-58	322	407
MRC0316	454769	6583652	431	-61	318	160
MRC0317	454818	6583593	433	-60	320	286
MRC0318	454783	6583508	434	-60	321	268
MRC0320	454688	6583430	433	-60	321	316
MRC0321	454733	6583567	437	-60	317	219
MRC0322	454463	6583269	422	-61	322	172

Hole ID	Easting (MGA51)	Northing (MGA51)	RL (m)	Dip (degrees)	Azimuth (degrees)	Total Depth (m)
MRC0325	454606	6583086	427	-60	321	250
MRC0336	455122	6584172	424	-61	317	485
MRC0337	455168	6584117	426	-60	317	288
MRC0338	455215	6584048	426	-61	321	346
MRC0341	456722	6585989	405	-59	321	426
MRC0343	456823	6585872	399	-60	324	450
MRC0369	455555	6584454	422	-60	316	258
MRC0421	455670	6584512	425	-60	315	250
MRC0422	455852	6584651	415	-60	320	498
MRC0423	455304	6584384	423	-60	317	504
MRC0432	456899	6586027	398	-61	323	244
MRC0433	456955	6585972	397	-60	320	440
MRC0442	457119	6586020	396	-60	322	240
MRCD0262	456291	6585194	410	-61	321	727.68
MRCD0346	456817	6585759	399	-60	321	741.85

Table 2. Manna Significant Drillhole Intercepts⁽¹⁾

Hole_ID	Easting (MGA51)	Northing (MGA51)	From (m)	To (m)	Thickness (m)	Li2O (%)	Ta₂O₅ (ppm)
MDD0022	456559	6585700	388.95	392	3.05	0.91	37
MDD0022	456559	6585700	418	424	6	0.58	25
MDD0022	456559	6585700	521.79	527.98	6.19	1.05	51
MDD0022	456559	6585700	540.4	550	9.6	1.10	38
MDD0022	456559	6585700	557	564.4	7.4	0.72	17
MDD0022	456559	6585700	601.53	605	3.47	0.64	17
MDD0022	456559	6585700	628.65	631.78	3.13	0.78	23
MDD0022	456559	6585700	634.3	636.47	2.17	0.88	22
MDD0029	455371	6584101	48	50	2	0.45	1
MDD0029	455371	6584101	300.7	304.5	3.8	0.56	19
MDD0029	455371	6584101	331	337.23	6.23	0.44	65
MDD0032	455746	6584289	252.38	256	3.62	1.09	61
MDD0032	455746	6584289	266.6	272	5.4	0.85	29
MDD0032	455746	6584289	279.74	282.5	2.76	0.49	27
MDD0032	455746	6584289	297.57	303	5.43	0.86	22
MDD0032	455746	6584289	313	316.04	3.04	0.92	44
MDD0033	455821	6584700	102.55	104.97	2.42	1.12	69
MDD0033	455821	6584700	162.83	167.4	4.57	0.99	78
MDD0033	455821	6584700	259.43	261.53	2.1	1.39	135
MDD0034	455964	6585030	35	37	2	0.68	66

Hole_ID	Easting	Northing	From	То	Thickness	Li ₂ O	Ta ₂ O ₅
	(MGA51)	(MGA51)	(m)	(m)	(m)	(%)	(ppm)
MDD0035	456114	6584851	142.62	147.82	5.2	1.39	70
MDD0035	456114	6584851	163.75	166.72	2.97	1.14	48
MDD0035	456114	6584851	202.59	209.18	6.59	1.42	58
MDD0036	455885	6585002	140	142	2	0.44	118
MDD0038	455968	6584528	229.59	235.1	5.51	0.84	70
MDD0038	455968	6584528	271.39	278.4	7.01	1.37	26
MDD0038	455968	6584528	308.12	322	13.88	1.56	29
MDD0039	455987	6585388	26.62	28.62	2	0.53	52
MDD0039	455987	6585388	191.96	194.6	2.64	0.99	89
MDD0040	456103	6585242	180.1	183.06	2.96	1.30	90
MDD0040	456103	6585242	212.5	227.93	15.43	1.28	36
MDD0041	456252	6585512	62	65	3	0.59	101
MDD0042	456365	6585373	225	229.25	4.25	1.05	64
MDD0042	456365	6585373	355	357.1	2.1	1.18	66
MDD0042	456365	6585373	375.69	381.3	5.61	1.22	44
MDD0043	456271	6585041	182	185	3	1.06	53
MMB24	457088	6585995	40	45	5	0.90	41
MMB24	457088	6585995	55	71	16	0.72	31
MRC0235	456047	6585038	260	264	4	0.45	39
MRC0235	456047	6585038	362	366	4	1.20	34
MRC0235	456047	6585038	433	435	2	0.96	40
MRC0238	456032	6585189	191	203	12	1.55	47
MRC0243	456178	6585199	325	329	4	0.72	9
MRC0243	456178	6585199	342	358	16	1.65	39
MRC0243	456178	6585199	447	452	5	0.68	38
MRC0243	456178	6585199	523	530	7	0.83	26
MRC0245	456305	6585309	320	327	7	0.88	46
MRC0246	456277	6585467	9	13	4	1.24	169
MRC0246	456277	6585467	186	190	4	0.99	85
MRC0246	456277	6585467	210	213	3	1.50	46
MRC0246	456277	6585467	266	272	6	0.93	56
MRC0246	456277	6585467	290	295	5	1.56	23
MRC0246	456277	6585467	306	308	2	1.40	54
MRC0247	456330	6585405	152	157	5	1.35	102
MRC0247	456330	6585405	318	320	2	0.97	51
MRC0247	456330	6585405	329	337	8	1.32	31
MRC0247	456330	6585405	380	389	9	1.44	21
MRC0250	456412	6585423	260	264	4	1.35	62
MRC0250	456412	6585423	302	304	2	0.91	50
MRC0250	456412	6585423	314	325	11	1.10	42

Hole_ID	Easting	Northing	From	То	Thickness	Li ₂ O	Ta ₂ O ₅
_	(MGA51)	(MGA51)	(m)	(m)	(m)	(%)	(ppm)
MRC0250	456412	6585423	366	370	4	1.25	30
MRC0250	456412	6585423	385	388	3	0.95	21
MRC0250	456412	6585423	456	462	6	0.45	18
MRC0250	456412	6585423	508	510	2	0.70	35
MRC0268	456265	6584909	308	310	2	0.63	39
MRC0273	455867	6585023	363	368	5	0.53	69
MRC0273	455867	6585023	395	402	7	1.40	30
MRC0274	455809	6585095	265	273	8	0.96	102
MRC0274	455809	6585095	285	293	8	1.36	85
MRC0274	455809	6585095	315	328	13	0.89	40
MRC0287	455744	6584922	385	395	10	0.65	53
MRC0287	455744	6584922	398	401	3	0.59	34
MRC0287	455744	6584922	409	412	3	0.95	54
MRC0289	455880	6584755	60	63	3	0.40	18
MRC0289	455880	6584755	180	185	5	1.01	51
MRC0305	455986	6584247	230	233	3	0.77	54
MRC0305	455986	6584247	245	247	2	0.99	70
MRC0310	454843	6583689	58	62	4	1.18	54
MRC0310	454843	6583689	169	173	4	0.58	43
MRC0311	454789	6583747	0	2	2	1.22	47
MRC0311	454789	6583747	64	67	3	0.92	77
MRC0311	454789	6583747	88	91	3	0.87	28
MRC0312	454778	6584201	78	80	2	0.58	50
MRC0312	454778	6584201	91	112	21	0.99	54
MRC0313	454830	6584152	126	133	7	0.61	42
MRC0313	454830	6584152	182	188	6	0.84	46
MRC0313	454830	6584152	197	203	6	0.70	55
MRC0314	454880	6584080	278	284	6	0.47	26
MRC0315	454667	6583968	42	44	2	0.78	88
MRC0316	454769	6583652	50	61	11	0.95	45
MRC0316	454769	6583652	96	98	2	1.57	22
MRC0316	454769	6583652	101	104	3	0.98	38
MRC0317	454818	6583593	100	102	2	0.48	49
MRC0317	454818	6583593	119	123	4	0.65	72
MRC0317	454818	6583593	127	129	2	0.47	48
MRC0318	454783	6583508	159	161	2	0.45	35
MRC0320	454688	6583430	20	22	2	0.82	54
MRC0321	454733	6583567	158	160	2	0.53	46
MRC0322	454463	6583269	60	62	2	0.43	8
MRC0325	454606	6583086	42	45	3	0.46	27

Hole_ID	Easting	Northing	From	То	Thickness	Li ₂ O	Ta ₂ O ₅
_	(MGA51)	(MGA51)	(m)	(m)	(m)	(%)	(ppm)
MRC0336	455122	6584172	333	337	4	0.41	20
MRC0337	455168	6584117	108	111	3	0.48	59
MRC0337	455168	6584117	151	153	2	0.77	49
MRC0337	455168	6584117	161	163	2	0.59	47
MRC0338	455215	6584048	237	241	4	0.81	49
MRC0338	455215	6584048	261	266	5	0.75	45
MRC0341	456722	6585989	323	325	2	1.13	83
MRC0343	456823	6585872	282	293	11	1.23	46
MRC0343	456823	6585872	302	304	2	0.75	26
MRC0343	456823	6585872	315	330	15	0.93	38
MRC0343	456823	6585872	341	348	7	1.29	81
MRC0369	455555	6584454	35	40	5	0.54	44
MRC0369	455555	6584454	57	67	10	0.94	61
MRC0369	455555	6584454	77	79	2	1.04	45
MRC0369	455555	6584454	117	120	3	1.05	47
MRC0369	455555	6584454	136	138	2	0.79	102
MRC0369	455555	6584454	146	149	3	0.97	62
MRC0369	455555	6584454	168	170	2	0.64	79
MRC0421	455670	6584512	51	62	11	0.95	50
MRC0421	455670	6584512	72	77	5	1.12	38
MRC0421	455670	6584512	160	171	11	0.84	42
MRC0421	455670	6584512	209	217	8	1.28	64
MRC0422	455852	6584651	68	79	11	1.61	43
MRC0422	455852	6584651	108	115	7	0.84	42
MRC0422	455852	6584651	169	173	4	0.80	26
MRC0422	455852	6584651	198	202	4	1.86	34
MRC0422	455852	6584651	276	278	2	2.22	37
MRC0423	455304	6584384	41	44	3	0.73	35
MRC0432	456899	6586027	27	29	2	0.66	148
MRC0432	456899	6586027	37	40	3	0.72	187
MRC0432	456899	6586027	172	176	4	1.06	87
MRC0433	456955	6585972	360	365	5	0.90	62
MRC0433	456955	6585972	409	415	6	0.63	33
MRC0442	457119	6586020	3	7	4	0.88	93
MRCD0262	456291	6585194	402.5	409.5	7	0.88	40
MRCD0262	456291	6585194	526.37	534.66	8.29	0.52	20
MRCD0262	456291	6585194	538	540.68	2.68	0.53	36
MRCD0262	456291	6585194	543	551	8	0.50	28
MRCD0262	456291	6585194	568.4	575	6.6	0.49	26
MRCD0262	456291	6585194	615.7	619	3.3	0.59	31

Hole_ID	Easting (MGA51)	Northing (MGA51)	From (m)	To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
MRCD0346	456817	6585759	497.3	500.4	3.1	1.04	58
MRCD0346	456817	6585759	522.15	534	11.85	0.96	36
MRCD0346	456817	6585759	603.92	615	11.08	0.79	25
MRCD0346	456817	6585759	624.2	628.79	4.59	0.58	40

 Table 2: Significant intercepts calculated using a 0.4% Li₂O cut-off grade, minimum 2m thickness and widths including up to 2m internal dilution.

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC drillholes were drilled/sampled under supervision of a geologist. RC samples were cone split in 1 m intervals to produce a ~2 to 3 kg sample. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond Core samples were taken, generally on 1 m intervals or on geological boundaries where appropriate (minimum 0.4 m to maximum of 1.2 m). Diamond drilling was undertaken to produce core for geological logging, assaying and future metallurgical test work. Samples for lithium analysis were crushed and riffle split to 2 to 2.5 kg for pulverising to 85% passing 75 microns. For lithium analysis prepared samples are fused with sodium peroxide and digested in dilute hydrochloric acid. The resultant solution is analysed by ICP by Jinning Testing and Inspection Laboratory in Perth. The assay technique is considered to be robust as the method used offers total dissolution of the sample and is useful for mineral matrices that may resist acid digestions.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling was undertaken by Profile Drilling or K-Drill using 4.5-inch (140 mm) rods using a 5.5-inch (150 mm) diameter face sampling hammer. All reported RC drill holes collar and survey details noted in the drilling statistics

Criteria	JORC Code explanation	Commentary
		 presented in Table 1. Manna diamond drilling was undertaken by DDH1 Drilling using HQ3 or NQ diameters. Core was orientated using a Reflex ACT III digital core orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample chip recovery for RC drilling was visually estimated. Sample chip recovery is very good through the interpreted mineralised zones and is estimated to be greater than 80%. RC drilling utilised an on-board compressor and auxiliary booster to keep samples dry and maximise recoveries. The diamond drill core recovered is physically measured by tape measure and the length recovered is recorded for every run. Core recovery is calculated as a percentage recovery. This is confirmed by Company geologists during core orientation activities on site. Average recovery is over 95%. No relationship between grade and recovery has been identified.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological logs exist for all drill holes with lithological codes via an established reference legend. Logging and sampling has been carried out to industry standards to support a Mineral Resource Estimate. Drill holes have been geologically logged in their entirety. Where logging was detailed, the subjective indications of spodumene content were estimated and recorded. All drill holes were logged in full, from start to finish of the hole.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being 	 and cone split from the rig cyclone on-site to produce a subsample less than 3 kg. Quarter Core samples were taken, generally on 1 m intervals or on geological boundaries where appropriate (minimum 0.4 m to maximum of 1.2 m). Sample preparation is according to industry standards, including oven drying, coarse crush, and pulverisation to 85% passing 75 microns. Field duplicate samples, field standards, laboratory standards and laboratory repeats were used to monitor quality of analyses. Sample sizes are considered to be appropriate and correctly represent the style and type of mineralisation.

Criteria	JORC Code explanation	Commentary
	sampled.	laboratory, crushed and riffled to obtain a sub- fraction and assayed using the same lab.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The industry standard assay techniques are considered to be robust as the methods used offers total dissolution (Sodium Peroxide Fusion) of the samples. For lithium exploration drilling field inserted standards are utilised for 1 sample in every 50. For lithium exploration drilling field duplicate samples are taken for 1 sample in every 50. For infill drilling field inserted standards are utilised for 2 sample in every 50. For infill drilling field duplicate samples are taken for 1 samples are taken for 1 sample in every 50. For infill drilling field duplicate samples are taken for 1 sample in every 50. For infill drilling field blank samples are taken for 1 sample in every 50.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The 2023 RC and diamond drilling programs are supervised by Global Lithium staff. Significant assay results are verified against visual logs by site supervisors. There were no twin holes drilled during the RC/diamond program in 2023. Primary data is captured by Coreplan and utilising excel. All data are exported to an external Database Administrator, validated, and loaded to a database and validated prior to use. No adjustments made to primary assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Prior to drilling, collar coordinates are situated using handheld GPS (considered accurate to within 3 m). DGPS collar surveying is completed post program to improve accuracy. For the Manna Project the grid used is GDA94z51. All holes have been surveyed with an Axis Champ north seeking gyro to determine hole deviation.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 At Manna exploration drilling has been drilled on a grid pattern. Drill spacing generally varies between a 80x80m to 40m x 40m grid in selected areas. Exploration holes targeting specific geochemical, outcrops or structural targets are not on a uniform grid spacing. Historic Breaker resources drilling undertaken was widely spaced across separate lines targeting outcrop and geochemical anomalies.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling has been angled to achieve the most representative (near perpendicular) intersections through mineralisation (i.e. angled holes for moderately dipping pegmatite bodies). The identified target lithium bearing pegmatite dykes are generally steeply dipping (70° to 85°) Southeast in nature. The true width of pegmatites is generally considered 80% to 90% of the intercept width, with minimal opportunity for sample bias.
Sample security	The measures taken to ensure sample security.	• The drill samples were collected from the drilling rig by experienced personnel, stored securely and transported directly to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken to date.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 tenement E28/2522, which is held 100% Global Lithium. Precious Metals rights are held by Ramelius Resources. There is no royalty covering the current lithium resource or extensional drilling. There are no material interests or issues associated with the tenement. The tenement is in good standing and no known
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Global Lithium Limited acquired an 100% of the Manna Lithium Project from Breaker Resources on 25 October 2022.
Geology	 Deposit type, geological setting and style of mineralisation. 	• The pegmatites are LCT type lithium bearing- pegmatites for both projects.
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 location of and distribution of drillholes in relation to the Mineral Resource. Tables of drillhole collars and significant intercepts are included.

Data	• In reporting Exploration Results, • No weighting or cut-off values were used other
aggregation methods	weighting averaging techniques, than where stated. maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.
Relationship between mineralisation widths and intercept lengths	 If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). Pegmatite orientation interpretation is at a reasonably high level due to the proximity and number of drill holes. Drilling angle is oriented across the pegmatite trend although significant intersections should not be considered true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Plan view drillhole collar maps and cross sections have been included in the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Significant Lithium results at Manna have been calculated using a 0.4% Li2O cut-off grade, minimum 2m thickness and widths including up to 2m internal dilution.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. None reported. None reported.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Additional drilling is planned to test for shallow spodumene hosting pegmatite along strike from the Manna Project. An MRE update is underway which will feed into the DFS due for completion CY 2024.

