CGN Resources Set for Drilling After Compelling Geophysical Survey Results (Inclusion of JORC Table 1 & 2) CGN Resources Limited hereby provides the announcement dated 19 March 2024 with the inclusion of a JORC Table 1 at the rear of the announcement. Daniel (Stan) Wholley Managing Director 20th March 2024 ### **CGN Resources Set for Drilling After Compelling Geophysical Survey Results** #### **Highlights:** - Induced polarisation surveys completed at Surus, Shep, Snorky, and Horton. - Strong IP chargeability anomaly coincident with the gravity anomaly at Surus enhances compelling IOCG drilling target. - Gravity surveys confirm the presence of regionally significant gravity targets at Surus, Tantor, Snorky and Horton. - Commencement of diamond drilling at Surus in early April, bolstered by \$220k in EIS funding. - EM Survey underway at the Shep base metal target. CGN Resources Limited (ASX: CGR, or "the Company") is pleased to announce the completion of its ground gravity and induced polarisation (IP) geophysical programs at the Webb project in the West Arunta region of Western Australia. These survey results have been strongly supportive for all the high priority target areas. Notably, the IP survey at the Surus target has provided compelling evidence of a large chargeable and conductive body coincident with the gravity anomaly, corroborating the Company's exploration model and underscoring the potential of the upcoming deep diamond drilling. The ground gravity surveys have confirmed and significantly refined the gravity targets at Surus, Snorky and Horton, which will improve our drill targeting for the 2024 drilling campaign. Preliminary results from Snorky, Horton and Shep also suggest conductive rocks are present and will be targeted with drilling in the coming months. CGN Resources is well funded and has secured all the necessary permits to commence work immediately. In the event of a discovery, additional clearances are already in place to expedite further exploration. #### **CGN Resources Managing Director Stan Wholley** commented: "It is truly exciting to receive such positive results from our initial ground geophysical surveys. In all cases the surveys have refined and enhanced the targets we are looking to test with drilling in 2024. The gravity surveys confirm the quality of these regionally significant anomalies and provided far better resolution for drill targeting. The IP data has been particularly pleasing at Surus with clear and compelling chargeable and conductive bodies present coincident with our gravity target. This provides great confidence that our targeting strategy at the project is working well. Data processing is ongoing at the Snorky, Horton and Shep targets but preliminary raw data appears very encouraging. Drilling will commence in early April at the Surus target with a 650m deep diamond hole partially funded by a \$220k EIS grant. With such positive results from the recent IP survey, the team cannot wait to get the drill rig turning and test the source of this large dense and strongly chargeable target. As a geophysical IOCG target, this has everything we want to see. And, with \$8.5 million in the bank we are strongly positioned to push hard on the exploration front and try and emulate the success of some of our neighbours in the West Arunta." #### **2024 Exploration Programs** The Company commends the geophysical contractors, Zonge and Atlas, for maintaining high productivity despite challenging weather conditions. The works were completed on time and budget. The EM Survey at Shep has now commenced and is expected to take about 8 days to complete. A dual-method RC/Diamond drill rig is mobilising from one of our neighbours and is set to commence at the Surus IOCG target at the start of April 2024. The planned 650m diamond hole has received \$220k in grant funding via the Exploration Incentive Scheme and is aiming to test the coincident gravity and IP anomalies (Figure 1). Figure 1. Schematic diagram showing Falcon Gravity data draped on surface and Line 4 IP section showing chargeable and conductive target. Proposed Hole In blue. The Surus target is a large, regionally significant gravity anomaly adjacent to major a crustal feature that splays off the Central Australian Suture. The recent IP survey also suggests chargeable and conductive rocks are present coincident with the gravity anomaly (Figure 2). The attributes are consistent with geophysical features seen in other IOCG systems in Australia and globally. Additionally, the site's proximity to niobium-rich carbonatite discoveries by WA1 Resources (ASX: WA1) and Encounter Resources (ASX: ENR) introduces the possibility that the anomaly may represent a carbonatite body. Figure 2. Falcon gravity data anomaly showing IP Lines in blue, inset shows results of IP modelling. The IP survey, conducted by Zonge, was completed using a pole-dipole array and 100m Rx dipoles. The results of the preliminary models are highly encouraging and show the survey has been effective at testing to depths of ~400m. The Surus results are particularly encouraging. Using the images above, it is interpreted that a thin conductive unit, possibly a conglomerate, similar to that seen in previous drilling, is present from 0-50m. This overlies less conducive material (possibly Amadeus Basin sediments) down to ~200m at which point there are several distinct chargeable and conductive features in the basement, with a top of target at approximately 200m RL. Of particular interest is a moderate to high amplitude chargeability anomaly in the centre of the LINE 4, which is flanked by two conductors, and is coincident with the density anomalies originally identified from Falcon AGG data and confirmed by the recently completed ground gravity survey. At the completion of diamond drilling at Surus, the Company will mobilise an RC drill rig to the Shep prospect towards the end of April 2024. The drilling will initially focus on the significant nickel mineralisation intersected in previous drilling grading up to 1.18% Ni (see announcement 1/11/23). RC drilling will also be used to follow up the previous rare earth element (REE) mineralisation intersected at Hathi. Drilling will look to replicate or enhance the 37 m intercept grading 0.38% REE located in hole W14RC045 (reported in previous announcement 1/11/2023). The next phase will include RC/diamond drilling at our Snorky and Horton targets later in the year (Figure 3). Figure 3. 2024 exploration programs - heritage cleared areas. #### **Project Overview** CGN Resources' flagship Webb Project encompasses a significant 961km² package of tenements located in the highly prospective West Arunta Orogen in Western Australia (Figure 4). The region has garnered recognition as a unique opportunity for targeting copper, nickel, and critical metals within a mineral-rich terrain that has seen limited prior exploration. The Webb Project is surrounded by prominent mining corporations (Figure 4) and ambitious exploration companies, including WA1 Resources Ltd (ASX: WA1), the Rio Tinto Group – Tali Resources Pty Ltd Joint Venture, Encounter Resources Ltd (ASX: ENR) and IGO Ltd (ASX: IGO). CGN Resources has already demonstrated the potential for diamondiferous kimberlites at Webb, discovering the largest kimberlite field in Australia. During its diamond exploration efforts, the Company compiled a collection of high-quality regional datasets. These datasets include multielement geochemistry data from drill holes, a high-resolution aeromagnetic survey spanning most of the tenement area, a detailed Falcon gravity survey, as well as publicly available data from organisations such as the GSWA and Geoscience Australia. Figure 4. Location of CGN's Webb Project in the West Arunta, Western Australia. #### **ENDS** This announcement has been authorised by the Board of Directors of the Company. #### For Further Information, Please Contact: | Mr Stan Wholley | Mr Grant Mooney | |-----------------------|--| | Managing Director | Non-Executive Director / Company Secretary | | Tel: +61 421 109 664 | Tel: +61 8 9226 0085 | | Info@cgnresources.com | info@cgnresources.com | | | | #### **Forward-Looking Statements** This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning CGN Resources Limited's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although CGN Resources Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements. 20th March 2024 ## **Competent Person's Statement** The information in this announcement that relates to Exploration Results for the Webb Project is based on, and fairly represents, information compiled by Mr Daniel Wholley, a Competent Person who is a Member of the Australian Institute Geoscientists (AIG). Mr Wholley is a fulltime employee of CGN Resources Limited. Mr Wholley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Wholley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. # **JORC CODE, 2012 EDITION, TABLE 1** # Section 1 – Sampling Techniques and Data | Criteria | JORC Code explanation | Commentary | |------------------------|--|---| | Sampling
techniques | Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. | A single 555m diamond hole was completed (TNTDD001) from surface using a YDX-3L track mounted small footprint diamond drilling rig contracted through TopDrive Drillers Australia. | | | | The hole was drilled with a combination of HQ and NQ using conventional wireline core drilling technique. | | | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | Diamond core was cut lengthways, producing a nominal 2-3kg half core samples. Selected samples were submitted with a minimum 0.5m and maximum 1.2m, interval (generally 1m). | | | Aspects of the determination of mineralisation that are Material to the Public Report. | pXRF spot analysis was completed on whole diamond HQ or NQ core during logging (not reported in this release). This was completed | | | In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from | as at least one per metre and selected based on observed geology and sample competency where suitable intact core was available. | | | which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. | The diamond drill hole was selectively sampled based on observations of structural fabric, alteration minerals or veining. Sampling was carried out under CGN's protocols. Laboratory QAQC was also conducted. | | Drilling
techniques | Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | A single hole of diamond core of HQ to 161.8m and NQ diameter (standard tube) to 555.5m as reported in this announcement. | | | | Previous drilling consisted of RC and aircore drilling. | | | | Core was oriented using the Reflex EZ Trac orientation tool. | | | | Downhole surveys for diamond drilling were recorded using a North seeking GYRO survey tool. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | The drilling was reconnaissance in nature, primarily aimed at identifying lithology, structure and geological setting. | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Samples were retained in standard drill core trays. | | | | Diamond Core recovery in the reported samples is generally >99% with minor zones of broken core having lower recoveries. | | | | Diamond drilling - Recoveries from drilling were generally >95%, though occasional samples have recoveries of <50% were | | Criteria | JORC Code explanation | Commentary | |--|---|--| | | | recorded in the upper heavily oxidised sections of the hole. Recoveries also decreases (90-99%) within zones of heavily fractured lithologies however, if reported intervals are impacted by lost core, it is noted during logging and documented in the results table. Intervals of lost core and core recovery were recorded as part of the geological logging process. | | | | Core lengths recovered were verified against drilling depths marked on core blocks and inserted by the drilling contractor. | | | | No water compromised samples were reported in this program. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a | The drillhole was not geophysically logged or surveyed. | | | level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | The drill hole in this release was angled (-70 degrees) and structural information was collected. | | | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. | Drill core from the entire depth of each hole were logged. | | | The total length and percentage of the relevant intersections logged. | The diamond hole was logged for geology, structures, alteration, magnetic susceptibility and RQD | | Subsampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet | Diamond core was cut by a semi-automated Almonte core saw. Half core was taken for analysis, and the remaining 1/2 replaced in the original core tray. | | | or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. | Only laboratory standards and blanks were used for this batch of samples. These included certified standards, blanks and duplicates. | | | Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Upon receipt by the laboratory, fire assay samples were logged, weighed, and dried if wet. Samples were then crushed to 2mm (70% pass), then split using a riffle splitter, with the whole sample crushed to 75µm (85% pass). 50g charges were then fire assayed for Au, Pt and Pd. Other elements were analysed using four acid digest ICPMS and ICM OES. This method is considered appropriate for the material and mineralisation and is industry standard for this type of sample. | | | | Selected half core samples were collected based on observations of structural fabric, alteration minerals or veining. | | | | Sample sizes are considered appropriate to give an indication of mineralisation given the particle size of the material being sampled. | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. | Precious metals (Au, Pt, Pd) analysed using lead collection fire assay, using a 50g sample charge, with an ICP-AAS (atomic absorption spectroscopy) finish. The lower | | Criteria | JORC Code explanation | Commentary | |------------------------------------|---|--| | | For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | detection limit for this technique is 0.001ppm Au and the upper limit is 175ppm that is considered appropriate for the material and mineralisation. Intertek conducted internal lab checks using | | | | standards, blanks and duplicates. | | | Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. | A series of field portable XRF measurements were made on the drill core during logging, the location and number of samples per metre varied depending on the geology. Measurements are point data collected to help refine our sampling strategy. These data are not calibrated and provided indicative results of elemental grades only to support geological logging and sampling. | | Verification
of sampling
and | The verification of significant intersections by either independent or alternative company personnel. | pXRF data was obtained using a Bruker S1
Titan Handheld XTF Spectrometer with a 20
second read time for each beam. | | assaying | The use of twinned holes. Documentation of primary data, data entry | Standards are checked against expected lab values and recalibrations are completed if | | | procedures, data verification, data storage | issues are identified. | | | (physical and electronic) protocols. | No calibration factors were applied. | | | Discuss any adjustment to assay data. | No cross checks against laboratory values have been obtained. | | | | No Twinned holes have been drilled. | | | | Primary data was collected into an Excel spreadsheets and paper logs and merged with the assay data. | | | | Data security is set through CGN IT security procedures and backed up via the cloud. | | | | Assays are not adjusted. No transformations or alterations are made to assay data stored in the database. The lab's primary element field is the one used for plotting purposes. No averaging of results for individual samples is employed, however some rounding is undertaken. | | Location of data points | Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and | Survey of all boreholes for the exploration programs was completed by using handheld global positioning system (GPS) equipment. | | | other locations used in Mineral Resource estimation. | All sites have been clearly identified for subsequent survey work to ensure accurate survey control for any project areas. | | | Specification of the grid system used. Quality and adequacy of topographic control. | Datum GDA 94 and projection MGAZ52 was used. | | | COTILOI. | Topographic surface was captured by GPS and validated against regional 1 second SRTM information and 1:250,000 topographic maps. | | Criteria | JORC Code explanation | Commentary | |---|--|--| | | | | | Data spacing and | Data spacing for reporting of Exploration Results. | No resources have been reported from these exploration data. | | distribution | Whether the data spacing, and distribution is sufficient to establish the degree of | A single hole has been completed and reported in this announcement. | | | geological and grade continuity appropriate for the Mineral Resource and Ore Reserve | No compositing was applied. | | | estimation procedure(s) and classifications applied. | The results reported within this release come from one drill hole. The aim of the drilling | | | Whether sample compositing has been applied. | was to drill a deep hole which was planned to pass through the overlying Neoproterozoic stratigraphy into the older Palaelproterozoic basement. | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Core sampling was nominally 1 metre samples however smaller (0.5m) and larger (1.3m) sample lengths were submitted to honour geological boundaries and to reflect areas of mineralisation. The drill hole was designed to best test the interpreted geology in relation to regional structure and lithological contacts. Drilling was all inclined with orientation based on predicted geological constraints and to allow for core orientation be conducted. | | | | Structural information obtained from the drilling confirm the horizontal nature of the drilled stratigraphy. Steeply dipping drill holes intersect the stratigraphy at an optimal angle and are unlikely to introduce bias. | | Sample
security | The measures taken to ensure sample security. | Sample security was ensured under a chain of custody between onsite personnel and the relevant laboratories being utilised. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No external audit of the sampling techniques and data has been completed. | Section 2 – Reporting of Exploration Results | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral
tenement
and land
tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Exploration took place on granted tenements E80/5496, E80/4407, E80/5499, E80/4815, E80/5471 and E80/5573 which are subject to Exploration and Land Access Agreements with the Tjamu Tjamu Aboriginal Corporation. E80/5496, E80/5956, E80/5499, E80/4815, E80/5471 and E80/5573 are held by Meteoric. CGN has earned an 86% interest in Meteoric's tenements and an 86% interest in Meteoric's rights on E80/4506. Heritage clearance surveys have been completed. | | | | Exploration took place on granted tenements with no known impediments to obtaining a licence to operate in the area and the leases are in good standing. | | Criteria | JORC Code explanation | Commentary | |---|---|---| | Exploration
done by
other parties | Acknowledgment and appraisal of exploration by other parties. | There has been no prior on-ground exploration for base metals in the area. Previous exploration focused on diamondiferous kimberlite pipes which was undertaken by GeoCrystal Pty Ltd (precursor company to CGN Resources Ltd). | | Geology | Deposit type, geological setting, and style of mineralisation. | The exploration project area is in the Lake Mackay region of the Gibson Desert which is within the southern portion of the Webb 1:250,000 geological map. | | | | The stratigraphy of the project area is not well constrained due to paucity of data (drillhole and outcrop) but is thought to comprise recent fluvial, alluvial and aeolian deposits and a poorly developed surficial soil. These sediments are composed of sand, silt, and clay. Areas to the east, west and south of the project tenements are mapped as being underlain by up to 1,000 m of the Neoproterozoic aged Heavitree Quartzite which in turn is overlain by limestone and dolomite of the Bitter Springs Formation and then by late Proterozoic and Cambrian aged fluvial and deltaic sandstones, siltstones and mudstones known as the Angas Hills Formation. These sequences are interpreted to overlay the basement rocks of the Arunta Complex. | | | | aged sediments and are overlain by the Angas Hills Formation. The kimberlite bodies are discrete volcanic intrusions which occur within a cluster over an area of some 400 km ² . | | Drillhole
information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: • easting and northing of the drillhole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole • downhole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | A list of the drillholes completed along with associated data is provided in Appendix 1. All information that is material to this release has been included. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of | Averaging techniques are not applicable to the current exploration results. | 20th March 2024 | Criteria | JORC Code explanation | Commentary | |--|---|--| | | high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Where applicable CGN reports length weighted intervals with lower cut-off. No significant intercepts were reported in this press release. No upper cut-offs have been applied. | | Relationship
between
mineralisatio
n widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g., 'downhole length, true width not known'). | Regional stratigraphic relationships were inferred based on observations throughout the basin. Downhole lengths have only been reported however, observed contacts suggest true withs are approximately 75-85% of downhole length. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views. | Refer to Figures and Tables in the body of the text and appendix. TANTOR TARGET Image FALCON 6010 TARGET ARGET A | | Criteria | JORC Code explanation | Commentary | |------------------------------------|---|---| | | | 406,500mE 406,500mE 406,500mE 406,500mE 406,750mE 406,750mE Surface Surface Weathered Bilter Springs Formation Ultramatic Intrusive Differ Springs Formation (lower foliated) Heavilree Quartzile TNTDD001 Geologocal Cross Section | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. | All applicable information has been reported. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | A regional 400 m line spaced aeromagnetic survey flown by the GSWA. It was this data that highlighted the presence of "bullseye" magnetic anomalies which were interpreted to be intrusive bodies, possibly kimberlites. A detailed 150 m line spaced aeromagnetic survey over a 65 km² area was flown for Meteoric in 2010. The data was interpreted by Southern Geoscience Consultants. This smaller survey provided more detailed magnetic data and allowed modelling of many of the "bullseye" magnetic targets. A follow up 100 m spaced aeromagnetic survey of 11,800 line-km was flown for CGN in 2014. The data was interpreted by R.K. Jones and identified more than 280 kimberlite targets. A limited trial VTEM survey comprising 174.3 line-km was flown in selected areas of the project area. This survey was aimed at highlighting discrete conductive bodies that may not have an associated magnetic response. In 2022, an airborne Falcon gravity gradiometry survey was flown to cover the central third of the project area; 200 m | | | spaced east-west flight lines were used for the survey with 2 km north-south tie lines. Townend Mineralogy Laboratory described a total 16 drill chip samples in 2013 (one), 2014 (two) and 2015 (13). | | 20th March 2024 | Criteria | JORC Code explanation | Commentary | |--------------|---|---| | | | 5 IP Survey lines were conducted using a pole-dipole array and 100m Rx dipoles over four target areas Surus, Snorky, Horton and Tantor | | | | Ground gravity surveys were conducted over Surus, Snorky, Horton and Tantor the surveys were completed using a 200x200 station spacing | | Further work | The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). | Drill testing of untested magnetic anomalies will continue aimed at confirming the presence of ultramafic intrusive bodies and providing material to test for the presence of base metal anomalies. | | | | Additionally, IOCG targets have been interpreted from geophysics and will be tested over the coming two years. There is also Nickel targets and REE targets within the tenure. |