

21 March 2024

New Lithium Results Expand Pilbara Projects

HIGHLIGHTS

- Assay results from Tambourah North, Shaw River and Haystack Well sampling have reported highly anomalous Li, Cs, Rb, Sn and Ta.
- At Haystack Well individual assays reported up to 1% Li₂O.
- Samples from Shaw River reported up to 4823ppm Li₂O (0.48% Li₂O).
- Samples from Tambourah North reported up to 1960ppm Li₂O (0.19% Li₂O).
- Drone mapping has identified extensions and additional LCT-pegmatite targets for immediate follow up.
- Pegmatites identified at the new Kurrana project, assays pending.

Tambourah Metals Limited ("Tambourah" or "the Company", ASX:TMB) is pleased to provide results from recent field sampling and mapping at the Haystack Well, Shaw River and Tambourah Nth lithium projects, located in the Pilbara region of Western Australia (see Figure 1).

Field sampling completed in February comprised 142 samples that have extended exploration coverage over areas where Tambourah's mapping had previously identified numerous pegmatites associated with historic alluvial workings for tin and tantalum (see Figure 2).

Registered Address

Tambourah Metals Ltd ABN: 196 46651 612 U2, LVL 2, 10 Ord St, West Perth WA 6005

Board Members

Rita Brooks Executive Chairperson Bill Marmion Non-Executive Director Wayne Richards Non-Executive Director

Contact

T: +61 8 9481 8669 E: admin@tambourahmetals.com.au W: tambourahmetals.com.au

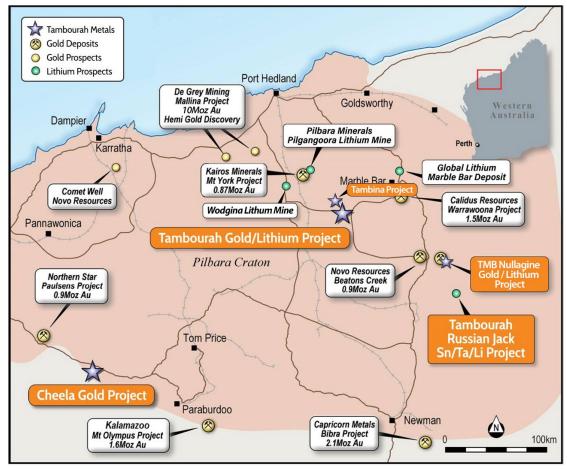


Figure 1 TMB Pilbara project location plan.

tambourahmetals.com.au admin@tambourahmetals.com.au

Tambourah Metals I to

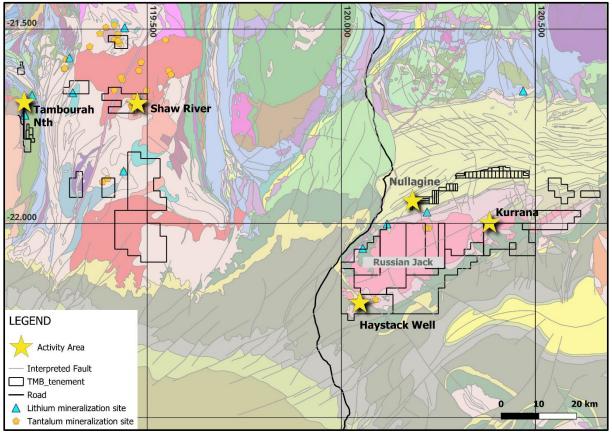


Figure 2 Location of Sampling and Drone Mapping program on GSWA interpreted geology.

Recent sampling at Tambourah's Haystack Well, Shaw River and Tambourah Nth has reported significant assay results from each of the project areas (see Table 1).

Haystack Well

The Haystack Well area is located 50km south of Nullagine (see Figure 1). Haystack Well sampling expanded the search area over abundant pegmatite exposures, 15 samples reported Li₂O of greater than 500ppm to a maximum of 11045ppm (1.1% Li₂O) from a biotite alteration margin adjacent to the pegmatite. Pegmatite samples reported up to 4478ppm Li₂O with elevated Rb, Sn and Ta (see Table 1 and Figure 3). Selected samples will now be submitted to CSIRO for analysis using the Hylogger spectral scanner to identify pegmatite mineralogy and pegmatite fertility. Tambourah has applied for EIS co-funding to fly hyperspectral and detailed aeromagnetic/radiometric surveys over Haystack Well to provide high quality data for the collaborative research project being undertaken with the CSIRO.

LEGEND Li2O_ppm 65 86 108 151 0 280 323 646 280 840 990 1572 65 108 1486 0 045 108 2390 1572 0 86 1981 86 1981 9602 2390 • 6115 2950 65 B615 • 2950 65 65 86 65 108 4220 4220 108 4478 6115 9602 11045 E46/1380 Drone Mapped Area Interpreted Fault Interpreted Geology (GSWA) **Haystack Well** Bonney Downs Monzogranite **Russian Jack Project** Golden Eagle Orthogneiss Kylena Formation Maddina Formation Tumbiana Formation

Ambourah

Figure 3 Haystack Well sample location plan.

Shaw River

The Shaw River Project is located 180km southeast of port Hedland (see Figure 1) and is the site of extensive historic tin-tantalum mining, having produced 6,585t of tin and 548t of tantalite concentrates up to 1975 (Blockley, 1980)¹. Pegmatites are thought to be the primary source of tin and tantalum.

Sampling has been extended beyond the immediate area of historic alluvial and eluvial workings. 6 samples reported above 500ppm Li₂O, to a maximum of 4823ppm (see Table 1 and Figure 4). Drone mapping was employed to extend the search into new areas and successfully identified numerous potential LCT-pegmatite targets outside the current exploration area (see Figure 5).

¹ Blockley, J. G. (1980). The Tin Deposits of Western Australia with Special Reference to the Associated Granites. Geological Survey of Western Australia, Mineral Resources Bulletin 12, p26.

 Tambourah Metals Ltd

 ASX: TMB | T +61 8 9481 8669

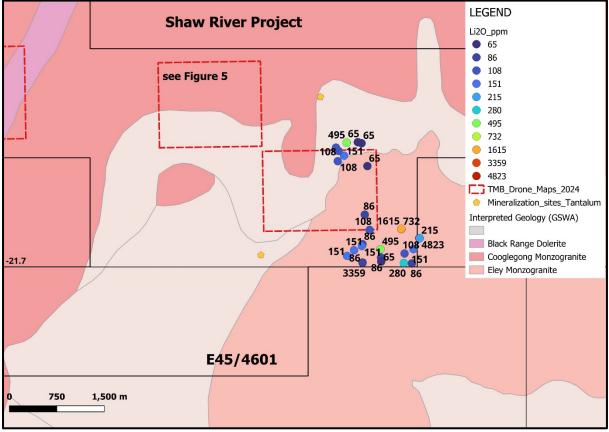


Figure 4 Shaw River sample location plan.

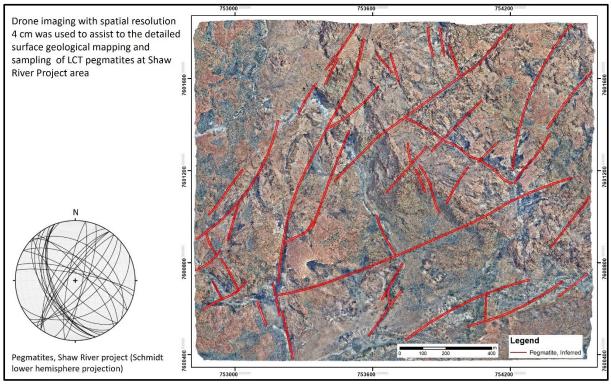


Figure 5 Shaw River pegmatite structures and targets identified from drone mapping.

Tambourah Metals Ltd ASX: TMB | T +61 8 9481 8669 tambourahmetals.com.au admin@tambourahmetals.com.au

TMB will conduct further field work follow up, test and sample pegmatite targets, some extending for over 700m, identified by drone mapping.

Tambourah Metals I to

Tambourah Nth

Tambourah North is located 85km southwest of Marble Bar (see Figure 1). Tambourah Nth sampling was conducted to test extensions to mineralized pegmatites adjacent to the project. 21 samples were collected with 2 samples reporting >500ppm Li₂O, to a maximum of 1916ppm Li₂O from pegmatite (see Table 1 and Figure 6). Additional targeting is underway in the area covered by recent drone mapping.

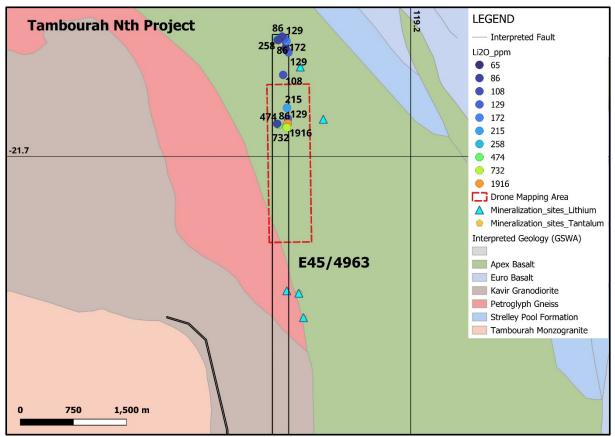


Figure 6 Tambourah Nth sample location plan.

The field program consisted of outcrop sampling and systematic drone mapping that provided high resolution photography and digital terrane elevation models. In areas of outcrop drone mapping is very effective in rapidly identifying linear features as potential LCT-pegmatite (lithiumcaesium-tantalum) targets for follow up sampling. Drone mapping has identified extensions and significant new targets subject to ground truthing that will guide the next phase of sampling beyond the LCT anomalies already identified.

tambourahmetals.com.au admin@tambourahmetals.com.au

Recent sampling has successfully identified numerous pegmatites anomalous in lithium, tin and tantalum in areas that are known for historic mining of tin and tantalum but acutely underexplored for LCT-pegmatite mineralization. This scenario is comparable to established and recently discovered Pilbara lithium pegmatite projects associated with historic extraction of tin and tantalum.

ambourah

Metals I td

Compilation of Tambourah's systematic sampling data, geological mapping and the use of drone mapping to identify potential LCT-pegmatite targets is progressively refining targets for initial drill testing.

Executive Chairperson Rita Brooks commented "We have taken a systematic approach to mapping and sampling and these latest results confirm LCT-pegmatites at the surface with no previous sampling for lithium. At Shaw River, we have two sets of pegmatites one northeast trending and the other northwest trending and we aim to identify which pegmatites warrant immediate follow up. We are looking forward to planning a drill program which will test multiple targets."

This announcement has been authorised for release by the Board of Tambourah Metals Ltd.

Authorised on Behalf of the Board of Tambourah Metals Ltd. Rita Brooks **Executive Chairperson** E: <u>admin@tambourahmetals.com.au</u> P: + 61 8 9481 8669

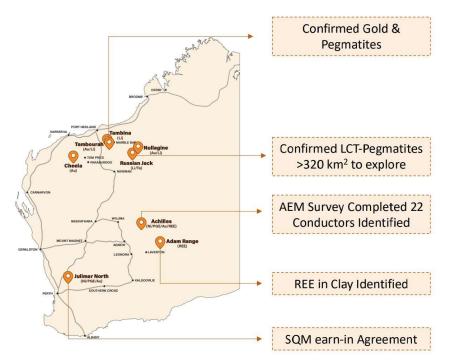


Figure 7. Tambourah Metals Project Locations

About Tambourah Metals

Tambourah Metals is an exciting junior exploration company established in 2020 to develop critical minerals in Western Australia. Tambourah has proposed exploration Lithium drilling programs at Tambourah Gold and Lithium project and its Russian Jack Lithium project in the Pilbara.

TMB is progressing exploration programs on multiple fronts:

- Mapping and sampling at new Kurrana lithium project.
- Shaw River ground truthing, field mapping and sampling over new pegmatite targets.
- Collaborating with CSIRO, assessing Lithium pegmatites at Russian Jack-Haystack Well.

Competent person statement

The information in this report that relates to Exploration Results is based on information compiled by Mr. Bill Clayton, a full-time employee of Golden Stake Pty and consultant to the company, who is a Member of the Australian Institute of Geoscientists. Mr. Bill Clayton has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Clayton consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements

Certain statements in this document are or may be "forward-looking statements" and represent Tambourah's intentions, projections, expectations, or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forwardlooking statements don't necessarily involve known and unknown risks, uncertainties, and other factors, many of which are beyond the control of Tambourah Metals, and which may cause Tambourah Metals actual performance in future periods to differ materially from any express or implied estimates or projections. Nothing in this document is a promise or representation as to the future. Statements or assumptions in this document as to future matters may prove to be incorrect and differences may be material. Tambourah Metals does not make any representation or warranty as to the accuracy of such statements or assumptions.

Tambourah Metals I to

tambourahmetals.com.au admin@tambourahmetals.com.au

APPENDIX 1

Table 1 Assay Results (coordinates GDA94)

Sample_ID	Project	Lithology	Easting	Northing	Grid MGA	Li2O ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm
TA00101	Haystack Well	Pegmatite	194447	7541948	Z51	1981	290	839	47	7.8
TA00102	Haystack Well	Pegmatite	194447	7541948	Z51	11045	1440	4360	176	38.5
TA00103	Haystack Well	Pegmatite	194447	7541948	Z51	108	6.3	44	5	1.1
TA00104	Haystack Well	Pegmatite	194386	7540951	Z51	366	98.3	1760	244	62.8
TA00105	Haystack Well	Pegmatite	194378	7540989	Z51	409	106	1020	38	120.5
TA00106	Haystack Well	Pegmatite	194360	7540991	Z51	6115	615	8780	682	1375
TA00107	Haystack Well	Pegmatite	194129	7540476	Z51	108	17.7	159	<5	12.8
TA00108	Haystack Well	Pegmatite	194274	7540505	Z51	409	182	1565	8	80.6
TA00109	Haystack Well	Pegmatite	194275	7540492	Z51	1486	137	1320	30	148.5
TA00110	Haystack Well	Pegmatite	194285	7540458	Z51	1938	240	424	5	2
TA00111	Haystack Well	Pegmatite	194393	7540282	Z51	108	52.5	683	5	44.3
TA00112	Haystack Well	Pegmatite	194370	7540282	Z51	969	88.7	535	9	2
TA00113	Haystack Well	Pegmatite	194340	7540297	Z51	4220	828	2450	22	11.2
TA00114	Haystack Well	Pegmatite	194333	7540313	Z51	86	44	599	5	117.5
TA00115	Haystack Well	Pegmatite	194643	7540466	Z51	65	21.4	244	<5	1.4
TA00116	Haystack Well	Pegmatite	193951	7541602	Z51	65	54.9	523	<5	18.4
TA00117	Haystack Well	Pegmatite	193900	7541537	Z51	86	54.9	270	<5	0.7
TA00118	Haystack Well	Pegmatite	193908	7541509	Z51	4478	550	1395	34	5.5
TA00119	Haystack Well	Pegmatite	192837	7540402	Z51	65	21.2	200	<5	1.2
TA00120	Haystack Well	Pegmatite	193009	7540495	Z51	65	5.9	143.5	<5	0.9
TA00121	Shaw River	Pegmatite	756079	7600424	Z50	65	9.7	250	10	4.2
TA00122	Shaw River	Pegmatite	756020	7600443	Z50	65	5.4	172	5	1.3
TA00123	Shaw River	Pegmatite	755934	7600471	Z50	452	33.2	1420	59	7.9
TA00124	Shaw River	Pegmatite	755874	7600494	Z50	409	18.8	510	391	49
TA00125	Shaw River	Pegmatite	756164	7600036	Z50	65	38.9	2340	6	5.4
TA00126	Shaw River	Pegmatite	756156	7599963	Z50	754	32.2	1305	88	17.8
TA00127	Shaw River	Pegmatite	756236	7600032	Z50	43	33.6	2640	<5	3
TA00128	Shaw River	Pegmatite	756235	7600036	Z50	452	25	738	98	22.5
TA00129	Shaw River	Pegmatite	756817	7598597	Z50	366	44.5	892	32	73.6
TA00130	Shaw River	Pegmatite	756871	7598621	Z50	151	31.9	1175	54	63.6
TA00131	Shaw River	Pegmatite	756894	7598684	Z50	43	60.3	2380	11	55.7
TA00132	Shaw River	Pegmatite	756967	7598804	Z50	4823	195	2900	176	27.5
TA00133	Shaw River	Pegmatite	756971	7598801	Z50	388	4.6	106.5	<5	0.8

tambourahmetals.com.au admin@tambourahmetals.com.au

Sample_ID	Project	Lithology	Easting	Northing	Grid MGA	Li2O ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm
TA00134	Shaw River	Pegmatite	756974	7598805	Z50	215	33.1	1005	58	15
TA00135	Shaw River	Pegmatite	756686	7598962	Z50	732	40.3	1415	119	106.5
TA00136	Shaw River	Pegmatite	756685	7598967	Z50	1615	53.8	705	12	2.5
TA00137	Shaw River	Pegmatite	756183	7598957	Z50	108	4	68.1	276	41.2
TA00138	Shaw River	Pegmatite	756111	7599216	Z50	86	4.4	66.2	174	42.4
TA00140	Tambourah Nth	Pegmatite	725863	7599523	Z50	215	12.2	261	6	51
TRCC0970	Tambourah Nth	Pegmatite	725737	7599269	Z50	474	32.4	573	25	48.2
TRCC0967	Tambourah Nth	Pegmatite	725666	7599552	Z50	43	8	339	25	25.8
TRCC0968	Tambourah Nth	Pegmatite	725873	7599361	Z50	129	23.4	826	39	73
TRCC0969	Tambourah Nth	Pegmatite	725760	7599283	Z50	43	4.7	133	<5	36.6
TA00141	Tambourah Nth	Pegmatite	725764	7599347	Z50	22	12	1040	8	381
TA00142	Tambourah Nth	Pegmatite	725720	7599285	Z50	86	34.5	1595	10	52.9
TA00143	Tambourah Nth	Pegmatite	725684	7599394	Z50	22	51.1	2690	<5	6.6
TA00144	Tambourah Nth	Pegmatite	725670	7599404	Z50	22	25.7	1065	5	20.7
TA00501	Haystack Well	Pegmatite	196880	7542789	Z51	86	36.3	759	9	19.2
TA00502	Haystack Well	Pegmatite	196779	7542722	Z51	129	40.5	1020	<5	4.3
TA00503	Haystack Well	Pegmatite	196681	7542670	Z51	237	46.2	1550	79	14.6
TA00504	Haystack Well	Pegmatite	196593	7542578	Z51	22	49.3	786	<5	2.1
TA00505	Haystack Well	Pegmatite	196554	7542555	Z51	22	18	288	<5	6.2
TA00506	Haystack Well	Pegmatite	196552	7542652	Z51	151	18.6	410	30	17.6
TA00507	Haystack Well	Pegmatite	196597	7542737	Z51	65	34.1	560	11	60.9
TA00508	Haystack Well	Pegmatite	196656	7542810	Z51	646	27.8	543	49	18
TA00509	Haystack Well	Pegmatite	196708	7542842	Z51	840	36.7	727	55	11.3
TA00510	Haystack Well	Pegmatite	196795	7542809	Z51	280	30.1	968	38	21.8
TA00511	Haystack Well	Pegmatite	196818	7542416	Z51	151	31.4	534	37	12.9
TA00512	Haystack Well	Pegmatite	196824	7542478	Z51	129	29.6	537	39	30.3
TA00513	Haystack Well	Pegmatite	196824	7542478	Z51	194	36.9	689	62	53.8
TA00514	Haystack Well	Pegmatite	196824	7542478	Z51	86	28.4	555	25	20
TA00515	Haystack Well	Pegmatite	196824	7542478	Z51	129	31.9	640	34	35.1
TA00516	Haystack Well	Pegmatite	196824	7542478	Z51	65	48.1	902	18	38.6
TA00517	Haystack Well	Pegmatite	196824	7542478	Z51	86	43.6	1050	25	24
TA00518	Haystack Well	Pegmatite	196622	7542571	Z51	43	78.3	1380	7	162
TA00519	Haystack Well	Pegmatite	196782	7542587	Z51	194	20.1	409	27	34.9
TA00520	Haystack Well	Pegmatite	196922	7542527	Z51	22	287	3100	<5	1.3
TA00521	Haystack Well	Pegmatite	196906	7542462	Z51	65	40.9	857	8	16
TA00522	Haystack Well	Pegmatite	198160	7542359	Z51	129	23.9	834	97	32.7

Tambourah Metals LtdASX: TMBT +61 8 9481 8669

tambourahmetals.com.au admin@tambourahmetals.com.au

Sample_ID	Project	Lithology	Easting	Northing	Grid MGA	Li2O ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm
TA00523	Haystack Well	Pegmatite	198324	7542290	Z51	1572	154	1130	336	101.5
TA00524	Haystack Well	Pegmatite	196456	7543114	Z51	990	30.5	532	55	16.6
TA00525	Haystack Well	Pegmatite	196436	7542901	Z51	22	43.1	1170	5	24.3
TA00526	Haystack Well	Pegmatite	196432	7542899	Z51	108	24.3	724	22	28.2
TA00527	Haystack Well	Pegmatite	196402	7542897	Z51	323	22.1	576	42	13.4
TA00528	Haystack Well	Pegmatite	196420	7542913	Z51	65	42	726	16	9.2
TA00529	Haystack Well	Pegmatite	196431	7542778	Z51	22	65.7	1990	16	6.6
TA00530	Haystack Well	Pegmatite	196423	7542770	Z51	65	40.8	1560	44	6.8
TA00531	Haystack Well	Pegmatite	196418	7542756	Z51	22	65.2	2430	6	10.8
TA00532	Haystack Well	Pegmatite	196416	7542745	Z51	129	28.9	896	87	12.8
TA00533	Haystack Well	Pegmatite	196392	7542650	Z51	65	31.9	974	14	63.5
TA00534	Haystack Well	Pegmatite	196527	7542643	Z51	129	9.5	168	29	17.3
TA00535	Haystack Well	Pegmatite	196590	7542915	Z51	151	39.1	1465	37	11
TA00536	Haystack Well	Pegmatite	195149	7542198	Z51	65	39.8	1135	32	16.7
TA00537	Haystack Well	Pegmatite	195188	7542218	Z51	108	36.9	1040	41	30.2
TA00538	Haystack Well	Pegmatite	195327	7541730	Z51	86	12.6	580	29	26.8
TA00539	Haystack Well	Pegmatite	195177	7541955	Z51	366	127	2330	20	24.3
TA00540	Haystack Well	Pegmatite	195349	7541787	Z51	2390	55.8	2080	156	18.6
TA00541	Haystack Well	Biotite Schist	195306	7541766	Z51	9602	1080	2530	84	10.7
TA00542	Haystack Well	Pegmatite	195559	7541255	Z51	258	50.2	893	18	5.1
TA00543	Haystack Well	Pegmatite	195586	7541241	Z51	65	98.7	1735	<5	1.9
TA00544	Haystack Well	Pegmatite	195607	7541243	Z51	2950	231	1245	81	16
TA00545	Haystack Well	Pegmatite	195982	7541046	Z51	108	63.8	807	7	8.3
TA00546	Haystack Well	Pegmatite	196041	7540994	Z51	86	25.6	387	5	11
TA00547	Haystack Well	Pegmatite	196122	7541000	Z51	194	34.1	935	56	20.8
TA00548	Haystack Well	Pegmatite	196464	7541026	Z51	151	105	2350	34	67.4
TA00549	Haystack Well	Pegmatite	196651	7540935	Z51	172	62	750	8	4.8
TA00550	Haystack Well	Pegmatite	196694	7541015	Z51	43	19.6	258	<5	5.8
TA00551	Haystack Well	Pegmatite	196769	7541141	Z51	65	40.8	370	<5	1
TA00552	Haystack Well	Pegmatite	196636	7541288	Z51	86	5.6	282	<5	1.3
TA00553	Shaw River	Pegmatite	756098	7600281	Z50	43	35.5	2020	20	4.3
TA00554	Shaw River	Pegmatite	755800	7600220	Z50	151	41.8	2660	26	2.7
TA00555	Shaw River	Pegmatite	755698	7600128	Z50	108	25	899	35	51
TA00556	Shaw River	Pegmatite	755712	7600301	Z50	108	34.4	1575	135	7.7

 Tambourah Metals Ltd

 ASX: TMB | T +61 8 9481 8669

tambourahmetals.com.au admin@tambourahmetals.com.au

Sample_ID	Project	Lithology	Easting	Northing	Grid MGA	Li2O ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm
TA00557	Shaw River	Pegmatite	755673	7600357	Z50	108	33.4	1655	147	7.7
TA00558	Shaw River	Pegmatite	755844	7600438	Z50	495	24.2	1045	105	14.8
TA00559	Shaw River	Pegmatite	756127	7600535	Z50	43	36.1	2260	13	1.9
TA00560	Shaw River	Pegmatite	755963	7600605	Z50	43	30.1	1830	28	8.7
TA00561	Shaw River	Pegmatite	755739	7600705	Z50	22	28.1	1710	11	5.7
TA00562	Shaw River	Pegmatite	755680	7600783	Z50	22	17.2	805	22	17.6
TA00563	Shaw River	Pegmatite	755821	7600784	Z50	22	39.4	2070	18	4.3
TA00564	Shaw River	Pegmatite	756148	7599973	Z50	474	25.2	1100	63	9.6
TA00565	Shaw River	Pegmatite	756135	7599996	Z50	624	25.7	1160	59	13
TA00566	Shaw River	Pegmatite	756843	7598380	Z50	86	36.5	1285	31	31.9
TA00567	Shaw River	Pegmatite	756715	7598388	Z50	280	26.4	784	74	23.5
TA00568	Shaw River	Pegmatite	756356	7598486	Z50	86	38	1840	16	26.5
TA00569	Shaw River	Pegmatite	756356	7598476	Z50	237	50.8	1960	35	46
TA00570	Shaw River	Pegmatite	756359	7598452	Z50	172	27.4	1055	45	47.7
TA00571	Shaw River	Pegmatite	756358	7598419	Z50	65	52.7	1420	39	41.2
TA00572	Shaw River	Pegmatite	756351	7598604	Z50	129	42.3	1945	29	31.2
TA00573	Shaw River	Pegmatite	756349	7598629	Z50	495	31.2	1090	102	26.8
TA00574	Shaw River	Pegmatite	756730	7598549	Z50	108	65.6	2480	18	43.7
TA00575	Shaw River	Pegmatite	756066	7598718	Z50	86	39.4	2500	41	6.5
TA00576	Shaw River	Pegmatite	756057	7598686	Z50	151	38.4	1780	48	24.4
TA00577	Shaw River	Pegmatite	755931	7598617	Z50	151	5.3	83.6	<5	0.8
TA00578	Shaw River	Pegmatite	755864	7598577	Z50	237	53.3	1520	63	64.9
TA00579	Shaw River	Pegmatite	755821	7598522	Z50	151	39.3	2140	40	45.7
TA00580	Shaw River	Pegmatite	755773	7598371	Z50	43	23.7	1200	5	2.5
TA00581	Shaw River	Biotite Schist	756063	7598401	Z50	3359	468	7240	769	67.1
TA00582	Shaw River	Pegmatite	756064	7598407	Z50	86	41	2300	27	63.6
TA00583	Tambourah Nth	Pegmatite	725894	7600362	Z50	129	16.6	460	47	121.5
TA00584	Tambourah Nth	Pegmatite	725853	7600425	Z50	65	23.3	567	34	134.5
TA00585	Tambourah Nth	Pegmatite	725863	7600518	Z50	86	26.2	738	53	149.5
TA00586	Tambourah Nth	Pegmatite	725871	7600532	Z50	172	42.1	1285	75	41.3
TA00587	Tambourah Nth	Pegmatite	725840	7600574	Z50	129	17.4	533	55	51.5
TA00588	Tambourah Nth	Pegmatite	725808	7600602	Z50	86	39.9	1770	29	27.1
TA00589	Tambourah Nth	Pegmatite	725741	7600558	Z50	258	101	1860	83	20.2
TA00590	Tambourah Nth	Pegmatite	725750	7600549	Z50	86	35.3	1645	22	19.4

Tambourah Metals LtdASX: TMBT +61 8 9481 8669

tambourahmetals.com.au admin@tambourahmetals.com.au

Sample_ID	Project	Lithology	Easting	Northing	Grid MGA	Li2O ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm
TA00591	Tambourah Nth	Pegmatite	725815	7600022	Z50	108	51	1355	62	58
TA00592	Tambourah Nth	Pegmatite	725848	7599343	Z50	43	2.5	63.7	10	95.6
TA00593	Tambourah Nth	Pegmatite	725869	7599288	Z50	1916	36.3	1090	62	38.1
TA00594	Tambourah Nth	Pegmatite	725857	7599226	Z50	732	47.2	2020	35	29.8

 Tambourah Metals Ltd

 ASX: TMB | T +61 8 9481 8669

tambourahmetals.com.au admin@tambourahmetals.com.au

JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Approximately 1-2.5 kg of rock chips were collected from each sample site. No sub sampling was undertaken of the rock chip samples. The rock chips were collected from various points around the outcrop to ensure maximum representivity of the sample for that location. No geometrical consideration can be made from random rock chip samples.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling was undertaken during the collection of the rock chip samples.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade 	 No drilling was undertaken during the collection of the rock chip samples.

	and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	The rock chip samples were described in the field by the field geologist.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No drilling was undertaken during the collection of the rock chip samples. No QAQC samples were submitted into the assay stream for this reconnaissance sampling program.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory 	 The entire samples were dried, crushed and pulverized to 85% passing 75um. The samples were assayed using peroxide fusion and ICPMS at commercial laboratories in Perth; ALS (ME_ICP89, MEMS91) for a suite of elements including SiO2, Fe2O3, CaO, K2O, TiO2 with Li, Ta, Nb, Sn, Rb and Cs. ALS undertook standard internal QAQC sampling including reference standards and duplicate splits.

	checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No drilling was undertaken during the collection of the rock chip samples. All sample and geological data were logged onto paper in the field and then transferred to a digital database by the logging geologist. There has been no adjustment made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The rock chip sample locations were all surveyed using handheld GPS, with a +/- 5m accuracy. The survey method is appropriate for first pass exploration. MGA94 Z50 and MGA Z51 coordinate system was used. No topographic control was used as not critical to sample sites.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The sample spacing was sufficient for first pass rock chip sampling of the mineralization style within pegmatite veins. Grade continuity is yet to be established as the samples are isolated rock chip samples. No sample compositing has been undertaken.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of sampling is considered appropriate for first pass exploration of pegmatite veins. At the first pass exploration stage there does not appear to be any bias introduced into the sampling and the geological or assay results as a function of the orientation of the sampling with respect to the geological structure.
Sample security	The measures taken to ensure sample security.	• The samples were transported from site to Centurion Transport in Newman by TMB field staff, where they were appropriately packed in

		bulka bags and delivered by Centurion Transport directly to ALS Perth.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 There have been no audits conducted on the results this far. Audits will be conducted as a component of the ongoing project assessment.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The sampling was conducted on E46/1380, held in the name of Odette 5 Pty Ltd, a tenure that Tambourah acquired from Minrex Resources Limited (ASX:MRR) in 2023. E46/1380 expires on 16th August 2026. There are no third-party royalties applied to the tenements. TMB has a heritage agreement in place with the local traditional owners, the Palyku People. Sampling was conducted on E45/4601 (Shaw River) held by Minrex Resources and included in the acquisition of July 2023. E45/4601 expires on 29th December 2026. TMB has heritage agreement in place with the Palyku traditional owners. Sampling was conducted on E45/4953 held by Minrex Resources and included on E45/4953 held by Minrex Resources and included in the acquisition of July 2023. E45/4953 held by Minrex Resources and included in the acquisition of July 2023. E45/4953 expires on 17th April 2028. TMB has a heritage agreement in place with the Palyku traditional owners. Within these tenements here are no known obligations to third parties.
Explorati on done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Very little lithium exploration has been completed over the tenements. No ground geophysics and very little geological mapping has been reported. Extensive extraction of alluvial and eluvial Sn and Ta is evident at Shaw River with mining operations continuing intermittently up to the 1980's. . E46/1380 was subject to soil sampling programmes by Balx Pty Ltd and Minrex Resources Limited (MRR).

Geology	•	Deposit type, geological setting and style of mineralisation.	•	Lithium bearing pegmatites are the target geology.
Drill hole Informati on	•	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	•	See the main body of the announcement. See Table1 for a summary of assay results for the samples.
Data aggregat ion methods	•	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	•	There have been no data aggregation methods applied to the assay results. No metal equivalent grades have been reported or used in the calculating of the assay results.
Relation ship between mineralis ation widths and intercept lengths	•	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	•	Rock chips are taken from surface and are not representative of the entire thickness of pegmatite units.

Diagram s	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	See body of the announcement.
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	See Table 1
Other substanti ve explorati on data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	•	No other relevant exploration data.
Further work	•	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	•	Hyperspectral analysis Geological mapping Rock chip sampling Soil sampling Heritage surveys