

27 March 2024

ASX ANNOUNCEMENT (ASX: TGM)

DRILLING AND SAMPLING ON THE TGME TAILINGS DAMS

Theta Gold Mines Limited ("Theta Gold" or "Company") (ASX: TGM) is pleased to announce that the Power China team has been onsite drilling and collecting samples for metallurgical test work. The test work will assist in refining plant design and evaluating the tailings at the TGME mine site. The tailings dams contain 140,000 oz gold (Appendix A) and will be tested for metallurgical gold recovery.

SGS South Africa (Pty) (Assay Laboratory) Ltd, engaged by TGM's preferred Engineering Procurement and Construction ("EPC") partner Power China subsidy (Yellow River Co., Pty ("YRC") to complete a drilling and sampling program at various tailing dams around the Company's TGME gold plant for metallurgical test work.

Figure 1 – Drilling by SGS team been conducted on the main TGME DSF

The program is now complete with a total of 407 meters drilled, 273.5 meters drilled into the TGME main and four (4) Blyde tailings and 133.5 meters into the Glynn's tailings. All samples will be assayed in the coming weeks with various selected samples to be metallurgically tested to allow for the Company to decide the possibility of adding tailings recovery to its early production schedule and generate early cashflow ahead of the planned underground development. Theta Gold currently records 141,000 ounces of gold JORC Resources (see Appendix A) across multiple tailings dams around the gold plant.

In total, 174,000 gold ounces sit on the surface surrounding the TGME gold plant, including 140,000 ounces indicated as a resource in various tailings dams (Refer to JORC Table Appendix A) around the TGME plant area.

Theta Gold Chairman Mr. Bill Guy stated: "With the high gold price, our abundant surface source of gold resources has dramatically increased in value. The Company will carefully examine the possibility of bringing forward gold production ahead of its planned underground operations."

Figure 2 – Drilling by SGS at the Blyde #2 tailing near the TGME plant

Figure 3 – Drill samples been labelled by SGS at the Blyde #2 tailing near the TGME plant

Figure 4 – Drilled samples been indexed by SGS team

Earlier in the year TGME selected EPC partner YRC (a controlled subsidiary of Power Construction Corporation of China) has already conducted a sampling program to confirm the surface sources of gold resources, grade and metallurgy to its satisfaction as part of the on-going due diligence¹

Figure 5 – Sampling at the main TGME DSF adjacent to the TGME Processing Plant completed by YRC's team

[ENDS]

This announcement was approved for release by Theta Gold Mines Limited's Board.

For more information, please visit <u>www.thetagoldmines.com</u>or contact: Bill Guy, Chairman Theta Gold Mines Limited

¹ Ref to ASX Release dated 14 February 2024, titled "Theta Gold Selects PowerChina Subsidiary as its preferred EPC Partners to build its stage one TGME Gold Plant and TSF Facilities Estimated at US\$30 Million".

T: + 61 2 8046 7584 E: billg@thetagoldmines.com

Investor Relations

Australia: Ben Jarvis, Six Degrees Investor Relations: +61 (0) 413 150 448

Webpage: www.thetagoldmines.com

y in https://twitter.com/ThetaGoldMines

https://www.linkedin.com/company/thetagoldmines/

Interactive Investor Hub: <u>http://investors.thetagoldmines.com</u>

ABOUT THETA GOLD MINES LIMITED

Theta Gold Mines Limited (ASX: TGM | OTCQB: TGMGF) is a gold development company that holds a range of prospective gold assets in a world-renowned South African gold mining region. These assets include several surface and near-surface high-grade gold projects which provide cost advantages relative to other gold producers in the region.

Theta Gold's core project is located next to the historical gold mining town of Pilgrim's Rest, in Mpumalanga Province, some 370km northeast of Johannesburg by road or 95km north of Nelspruit (Capital City of Mpumalanga Province).

Following small scale production from 2011 - 2015, the Company is currently focusing on the construction and financing of a new gold processing plant within its approved footprint at the TGME plant.

The company has completed a FS in July 2022 for the first four mines Beta, CDM, Frankfort and Rietfontein (TGME Underground Project). The Base Case LOM plan will comprise a 12.9-year mining operation starting in 2023 and delivering production of 1.24 million ounces of contained gold.

The estimated development capital or peak funding requirement is USD77 million (AUD102 million), with the Project forecast to generate a pre-tax NPV10% of USD324 million (AUD432 million) and pre-tax Internal Rate of Return (IRR) of 65% at the forecast gold price of averaging USD1,642/oz over the LOM. The Company aims to build a solid production platform to over next 5 years to 160kozpa based primarily around shallow, openpit or adit-entry shallow underground hard rock mining sources. Theta Gold has access to over 43 historical mines and prospect areas that can be accessed and explored, with over 6.7Moz of historical production recorded.

Theta Gold holds 100% issued capital of its South African subsidiary, Theta Gold SA (Pty) Ltd ("TGSA"). TGSA holds a 74% shareholding in both Transvaal Gold Mining Estates Limited ("TGME") and Sabie Mines (Pty) Ltd ("Sabie Mines"). The balance of shareholding is held by Black Economic Empowerment ("BEE") entities. The South African Mining

Charter requires a minimum of 26% meaningful economic participation by the historically disadvantaged South Africans ("HDSAs"). The BEE shareholding in TGME and Sabie Mines is comprised of a combination of local community trusts, an employee trust and a strategic entrepreneurial partner.

DISCLAIMER

This announcement has been prepared by and issued by Theta Gold Mines Limited to assist in informing interested parties about the Company and should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this announcement.

This announcement may contain forward looking statements. Whilst Theta Gold has no reason to believe that any such statements and projections are either false, misleading or incorrect, it does not warrant or guarantee such statements. Nothing contained in this announcement constitutes investment, legal, tax or other advice. This overview of Theta Gold does not purport to be all inclusive or to contain all information which its recipients may require in order to make an informed assessment of the Company's prospects. Before making an investment decision, you should consult your professional adviser, and perform your own analysis prior to making any investment decision. To the maximum extent permitted by law, the Company makes no representation and gives no assurance, guarantee or warranty, express or implied, as to, and take no responsibility and assume no liability for, the authenticity, validity, accuracy, suitability or completeness of, or any errors in or omissions, from any information, ideas and analysis which are proprietary to Theta Gold.

The Company confirms that all material assumptions underpinning the production target, or the forecast financial information derived from the production target continue to apply and have not materially changed from those previously released to ASX in a Feasibility Study dated 27 July 2022.

COMPETENT PERSON'S STATEMENTS

MINERAL RESOURCES

Mr. Uwe Engelmann confirms that he is the Competent Person for the TGM Mineral Resources as reported on TGM's Mineral Resources which is extracted from TGM's ASX announcement dated 8 April 2021(Initial Maiden Underground Mining Reserve) available to view at <u>www.asx.com.au</u> and was prepared in accordance with the guidelines of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012). Mr. Engelmann has read and understood the requirements of the JORC Code (2012).

Mr. Engelmann is a Competent Person as defined by the JORC Code, 2012, having more than five years' experience that is relevant to the style of mineralisation and type of deposit described in this report and to the activity for which he is accepting responsibility. Mr. Engelmann (BSc (Zoo. & Bot.), BSc Hons (Geol.), Pr.Sci.Nat. No. 400058/08, MGSSA), is a director of Minxcon (Pty) Ltd and a member of the South African Council for Natural Scientific Professions. Mr. Engelmann is a full time employee of Minxcon (Pty Ltd and has reviewed this report and consents to the inclusion of the matters based on his supporting information in the form and context in which it appears.

The information in this announcement that relates to TGM's Mineral Resources is extracted from TGM's ASX announcement dated 8 April 2021 (Initial Maiden Underground Mining Reserve) available to view at www.asx.com.au, and was prepared in accordance with the guidelines of the JORC Code (2012). TGM confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the Mineral Resources estimates in the relevant market announcement continue to apply and have not materially changed other than as disclosed in TGM's ASX announcement dated 25 October 2021 regarding the TGME Project Permitting Update. TGM confirms that the form and content in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ORE RESERVES

The information in this report relating to Ore Reserves is based on, and fairly reflects, the information and supporting documentation compiled by Mr. Daniel van Heerden (B.Eng (Mining M.Com (Business Management), member of Engineering Council of South Africa (Pr.Eng. Reg. No. 20050318)), a director of Minxcon (Pty) Ltd and a fellow of the South African Institute of Mining and Metallurgy (FSAIMM Reg. No. 37309).

Mr van Heerden has sufficient experience that is relevant to the style of mineralisation under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the JORC Code (2012). Mr van Heerden consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to TGM's Ore Reserves is extracted from TGM's ASX announcement dated 8 April 2021 (Initial Maiden Underground Mining Reserve) available to view at www.asx.com.au, and was prepared in accordance with the guidelines of the JORC Code (2012).

TGM confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the Ore Reserve estimates in the relevant market announcement continue to apply and have not materially changed other than as disclosed in TGM's ASX announcement dated 25 October 2021 regarding the TGME Project Permitting Update. TGM confirms that the form and content in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

FORWARD-LOOKING AND CAUTIONARY STATEMENTS

This announcement may refer to the intention of Theta Gold Mines regarding estimates or future events which could be considered forward looking statements. Forward looking statements are typically preceded by words such as "Forecast", "Planned", "Expected", "Intends", "Potential", "Conceptual", "Believes", "Anticipates", "Predicted", "Estimated" or similar expressions. Forward looking statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change without notice, and may be influenced by such factors including but not limited to funding availability, market-related forces (commodity prices, exchange rates, stock market indices and the like) and political, environmental or economic events (including government or community issues, land owners, global or systemic events). Forward looking statements are provided as a general reflection of the intention of the Company as at the date of release of the document, however are subject to change without notice, and at any time. Future events are subject to risks and uncertainties, and as such results, performance and achievements may in fact differ from those referred to in this announcement. Mining, by its nature, and related activities including mineral exploration, are subject to a large number of variables and risks, many of which cannot be adequately addressed, or be expected to be assessed, in this document. Work contained within or referenced in this report may contain incorrect statements, errors, miscalculations, omissions For this reason, any conclusions, inferences, judgments, opinions, and other mistakes. recommendations or other interpretations either contained in this announcement, or referencing this announcement, cannot be relied upon. There can be no assurance that future results or events will be consistent with any such opinions, forecasts or estimates. The Company believes it has a reasonable basis for making the forward looking statements contained in this document, with respect to any production targets, resource statements or financial estimates, however further work to define Mineral Resources or Reserves, technical studies including feasibilities, and related investigations are required prior to commencement of mining. No liability is accepted for any loss, cost or damage suffered or incurred by the reliance on the sufficiency or completeness of the information, opinions or beliefs contained in this announcement.

Theta Gold undertakes no obligation to update publicly or release any revisions to these forwardlooking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events other than required by the Corporations Act and ASX Listing Rules. Accordingly, you should not place undue reliance on any forward-looking statement.

The Feasibility Study referred to in this announcement is based on technical and economic assessments to support the estimation of Ore Reserves. There is no assurance that the intended development referred to will proceed as described, and will rely on access to future funding to implement. Theta Gold Mines believes it has reasonable grounds

the results of the Feasibility Study. At this stage there is no guarantee that funding will be available, and investors are to be aware of any potential dilution of existing issued capital. The production targets and forward looking statements referred to are based on information available to the Company at the time of release, and should not be solely relied upon by investors when making investment decisions. Theta Gold cautions that mining and exploration are high risk, and subject to

change based on new information or interpretation, commodity prices or foreign exchange rates. Actual results may differ materially from the results or production targets contained in this release. Further evaluation is required prior to a decision to conduct mining being made. The estimated Mineral Resources quoted in this release have been prepared by Competent Persons as required under the JORC Code (2012). Material assumptions and other important information are contained in this release.

Cautionary Statement for the LOM Base Case – The Base Case is presented as potential upside to the Project. However, the Base Case is supported by a significant portion of Inferred Mineral Resources. Inferred Mineral Resources inherently have a lower level of confidence and although it would be reasonable to expect that the majority of Inferred Mineral Resources would upgrade to Indicated Mineral Resources with continued exploration, it should not be assumed that such upgrading will occur. The realisation of the full potential of the Base Case as presented thus cannot be guaranteed.

APPENDIX A

JORC RESOURCE TABLE

Pasourco		Combined Mineral Resource				
Classification	Type of Operation	Tonnage	Gold Grade	Gold C	ontent	
		Mt	g/t	Kg	koz	
	Underground	0.091	5.37	489	15.7	
Measured	Open pit					
	Tailings					
Total Measured		0.091	5.37	489	15.7	
	Underground	4.774	6.21	29 661	953.7	
Indicated	Open Pit	8.109	2.14	17 364	558.2	
	Tailings	5.244	0.83	4 373	140.6	
Total Indicated		18.128	2.84	51 398	1652.5	
	Underground	21.452	5.22	111 880	3597.0	
Informed	Open pit	4.907	5.11	25 057	805.6	
mened	Tailings	0.023	0.57	13	0.4	
	Rock Dump	0.885	1.20	1 059	34.0	
Total Inferred		27.267	5.06	138 009	4 437.0	
Grand Total		45.485	4.17	189 896	6 105.2	

Table 1: Combined Mineral Resource as at 1 February 2021

Notes:

1. Columns may not add up due to rounding.

 $2. \qquad {\rm Gold\ price\ used\ for\ the\ cut-off\ calculations\ is\ USD1,500/oz.}$

3. UG Mineral Resources are reported at a cut-off of 160 cm.g/t, open pit at 0.5 g/t and 0.35 g/t, tailings and rock dumps at 0.35 g/t.

4. Fault losses of 5% for Measured and Indicated, 10% for Inferred Mineral Resources.

5. Mineral Resources are stated as inclusive of Ore Reserves.

6. Mineral Resources are reported as total Mineral Resources and are not attributed.

Mineral Resources for the TGM Tailings Dams as at 1 February 2021

Mineral Resource	Surface	Boof	Tonnage	Gold	Gold C	ontent
Classification	Operation	peration Reel		g/t	kg	koz
	Glynn's Lydenburg	Tailings	1.211	0.80	972	31.3
Indicated	Blyde 1	Tailings	0.590	0.73	434	14.0
	Blyde 2	Tailings	0.280	0.83	234	7.5
	Blyde 3	Tailings	0.316	0.87	275	8.8
	Blyde 4	Tailings	0.164	0.72	119	3.8
	Blyde 5	Tailings	0.022	0.61	14	0.4
	TGM Plant	Tailings	2.661	0.87	2,325	74.8
Total Indicated			5.244	0.83	4,373	140.6

Mineral Resource	Surface	Reef	Tonnage	Gold	Gold C	ontent
Classification	Operation		Mt	g/t	kg	koz
Inferred	Blyde 3a	Tailings	0.023	0.57	13	0.4
Total Inferred			0.023	0.57	13	0.4

Notes:-

3. Gold price used for the cut-off calculations is USD1,500/oz.

4. Mineral Resources are stated as inclusive of Ore Reserves.

5. Mineral Resources are reported as total Mineral Resources and are not attributed.

^{1.} Mineral Resource cut-off of 0.35 g/t applied.

^{2.} TGM Plant tailings: 10% discount applied for volume uncertainty.

Mineral Resources for the TGM Rock Dumps as at 1 February 2021

Mineral Resource	Surface Operation	Poof	Tonnage	Gold	Gold C	ontent
Classification	Surface Operation	Reel	Mt	g/t	kg	koz
Inferred	Vaalhoek	Rock Dump	0.121	1.64	199	6.4
Inferred	South East (DGs)	Rock Dump	0.408	0.93	379	12.2
Inferred	Peach Tree	Rock Dump	0.092	1.23	114	3.7
Inferred	Ponieskrantz	Rock Dump	0.129	1.63	211	6.8
Inferred	Dukes Clewer	Rock Dump	0.134	1.16	156	5.0
Total Inferred			0.885	1.20	1,059	34.0

Notes:-

1. Mineral Resource cut-off of 0.35 g/t applied.

2. Gold price used for the cut-off calculations is USD1,500/oz.

3. Mineral Resources are stated as inclusive of Ore Reserves.

4. Mineral Resources are reported as total Mineral Resources and are not attributed.

APPENDIX B

JORC Checklist – Table 1 Assessment and Reporting Criteria

NB - JORC Table 1 Sections 1 to 3 include all mineralised targets that are encompassed and quantified within the TGM portfolio as they occur in the Mpumalanga Province. The section 4 as presented below includes only the FS results of the Beta, Rietfontein, Frankfort and CDM underground operations.

	SECTION 1: SAMPLING TECHNIQUES AND DATA				
Criteria	Explanation		Detail		
of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	Sampling types discussed in this se exception of the Theta Project subs Drilling data sampling types include percussion and auger drilling. Other channel chip sampling (as individual plans or as development or stope fa as well as trench and sample pit sat size fraction analysis. The table below outlines the types of Mineral Resource or Exploration Ta	ection mainly pertain to historical data with the equent to the 2017-2019 drilling campaign. diamond, reverse circulation ("RC"), r sampling data types include underground al sample section composite data points on ace composite stretch values), grab sampling mpling for bulk sampling for the purposes of of sampling data collected or utilised in the rget estimates for each of the Project Areas.			
	handheld XRF	Project Area	Reef		
	instruments, etc.). These examples	Rietfontein	Rietfontein		
	should not be taken as limiting the broad	Beta	Beta		
	meaning of sampling.	Frankfort	Bevetts and Theta		
		Clewer, Dukes Hill & Morgenzon	Rho		
Sampling techniques	Olifantsgeraamte	Olifantsgeraamte			
	Vaalhoek	Vaalhoek and Thelma Leaders			
	Glynn's Lydenburg	Glynn's			
	Theta Project (Theta Hill, Browns Hills and lota section of Columbia Hill)	Beta, Shale, Lower Theta, Upper Theta, Lower Rho, and Bevetts			
		Columbia Hill (remaining)	Rho, Shale and Shale Leaders		
		Hermansburg	Eluvial		
		DG2	Eluvial		
		DG5	Eluvial		
		Glynn's Lydenburg TSF	Tailings		
		Blyde TSFs (1, 2, 3, 3a, 4, 5)	Tailings		
		Vaalhoek, South East (DGs), Peach Tree, Ponieskrantz, Dukes Clewer	Rock Dump		
		 a) Channel Chip Sampling Data:- Historical (Pre-1946) chip sam (dwt) units for gold content and the chip samples could not be there-of; however, it should be sampling method in the underg sampling activity on the mines department and were usually of standards. More recent chip sample value and channel widths were recon while under ownership of Simr Minxcon audited the chip sample Jack and found the procedures 	ple values were captured in 'pennyweight' d in inches for channel width. The quality of ascertained due to the historical nature noted chip sampling is a well-established ground South African mining industry. The was usually managed by each mine's survey conducted to specific company-wide es were captured as cm.g/t content values rded in centimetres as is the case at Frankfort ner & Jack Mines Limited. During 2008, oling procedure as employed by Simmer & s employed to be of industry standard.		

JORC Checklist – Table 1 Assessment and Reporting Criteria

SECTION 1: SAMPLING TECHNIQUES AND DATA			
Criteria	Explanation		Detail
		b)	Stretch Values:- In some instances (such as at Vaalhoek and Glynn's Lydenburg) in areas where original sample plans were not available, stretch value plans recording a composite content and channel width value for a stope length or development end were available and included in the database. The integrity of these plans as a source of grade information has been proven in other areas on the same mines where both chip sample plans and stretch value plans were available and were compared. It was found that the correlation to old sampling has been representative of the stretch values in these areas.
		c)	Drillhole Data:- Historical (pre-2007/8) drillhole data (inclusive of diamond, RC, and auger) exists on many of the operations. However very little backing data is available for many of these older holes and it must be assumed that QAQC was not included in the process. Minxcon has however reviewed the general quality of the survey data for these drillholes. For the most part, collar data has been found to agree well with local topography and is considered to be acceptable for modelling purposes.
			Downhole survey data with respect to diamond and RC drilling is also often absent from the older holes; however, it should be noted that over 98% of these holes were seldom drilled to depths in excess of 150 m and were vertically collared. Only 1.40% of all the drillholes on all the properties were drilled as inclined drillholes, thus it is Minxcon's view that the holes and their relative reef intercept points would be spatially acceptable for modelling purposes.
			The historical drillhole data has no accompanying assay QAQC, however this fact is considered in allocation of Mineral Resource classification during modelling.
			More recent drillhole data (inclusive of diamond, RC and auger) from 2008 onward is considered to be of high quality as it was conducted to updated industry standards with the incorporation of drillhole collar survey as well as assay QAQC where blanks and certified reference material were inserted for monitoring purposes, with the inclusion of coarse duplicate samples. These later drilling programmes were also either monitored, audited or managed by Minxcon personnel under Minxcon previous sister company Agere Project Management ("Agere").
		d)	Trench, Sample Pit and Bulk Sampling (Vaalhoek Rock Dump):- In order to evaluate the Vaalhoek Rock Dump, trenches and sample pits were dug. The trenches and pits were surveyed by a Mine Surveyor and were sampled in sections down to a depth 1.2 m, each sample representing a composite of 40 cm down the wall of the trench or pit. These samples were then assayed. The discard material from the trenches and pits was then composited to form a bulk sample of 50 tonnes for conducting size fraction analysis. The nature and quality of the sampling in question has been considered in the Mineral Resource classification for the Vaalhoek Dump, which is Inferred.
		e)	Bulk Sampling (South East (DGs), Peach Tree, Ponieskrantz, Dukes Clewer):- Bulk sampling was done through a triple deck screening plant (bulk samples were between 20t and maximum 520t per waste rock dump).
		f)	Trench Sampling (Theta Project Browns Hill):- Trenching was conducted on Browns Hill during the 2017-2019 drilling campaign to assist in locating the Lower Theta Reef outcrop. Trenches were dug in roughly an east-west orientation to a depth of between 1.0 m to 2.1 m. A total of 10 trenches were dug with an approximate spacing of approximately 30 to 35 m. The trenches were sampled near to vertical at 2 m intervals, due to the very shallow dip of the reef, where full side-wall composite samples were taken. Samples were dispatched to SGS Laboratory in Barberton for analysis. The trench sampling was not used in any evaluation as its only purpose was to locate reef outcrops.
	Include reference to measures taken to ensure sample representivi ty and the appropriate	a)	Chip Sampling:- In concordant reef underground projects chip samples were taken normal to the reef dip and calculated to give a composited value for a true reef thickness. In the case of cross-reefs such as that at Rietfontein, chip sample positions were plotted on the development centre lines indicating face sampling normal to the reef dip. Scatter plots were also generated to examine the data set for errors introduced while capturing the data. All values were converted using factors of 2.54 cm for 1 inch and 1.714285 g/t for 1 dwt.

	SECTION 1: SAMPLING TECHNIQUES AND DATA			
Criteria	Explanation	Detail		
	calibration of any measureme nt tools or systems used.	The older underground sampling took place at approximately 6 m spacing along on-reef development, whilst in newer mining areas this spacing was reduced to approximately 2 to 3 m along on-reef development. In the stoping areas a grid was targeted on an approximate 5 m by 5 m grid where applicable, which is a historical grid (Pre-1946). This grid was put in place due to the nugget effect of the reef. The minimum size of the samples was 20 cm to obtain a minimum weight of 500 g.		
		b) Trench, Sample pit and Bulk Sampling (Vaalhoek Rock Dump):- The trenches at Vaalhoek Rock Dump were located and spread as evenly as possible on the top of the dump, while pits were located on the sides of the dump and these were sampled in sections down to a depth 1.2 m, each sample representing a composite of 40 cm down the wall of the trench or pit. The discard material from the trenches and pits was then composited to form a bulk sample of 50 tonnes for conducting size fraction analysis and screened at -10 mm, +40 mm and -75 mm. The nature and quality of the sampling in question has been considered in the Mineral Resource classification for the Vaalhoek Dump, which is Inferred.		
		c) Trench, Sample pit and Bulk Sampling (Theta Project):- The trenches were dug in roughly an east-west orientation to a depth of between 1.0 m to 2.1 m. A total of 10 trenches were dug with an approximate spacing of approximately 30 m to 35 m. The trenches were sampled near to vertical at 2 m intervals, due to the very shallow dip of the reef, where full side-wall composite samples were taken. The trench sampling was not used in any evaluation as its only purpose was to locate reef outcrops.		
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where	Samples presented in the historical database represent full reef composites for both diamond drilling as well as chip sampling. The historical nature of the data and the high grades encountered implies the use of fire assay as an assay technique. Sample preparation and aspects regarding sample submission for assay are not known due to the historical nature of the sampling data.		
	'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was	Underground sampling, for metallurgical purposes, was undertaken at the northern Neck section of Vaalhoek during February 2018. Two samples weighing approximately 4kg were taken from exposed faces of the Vaalhoek Reef, in two separate underground localities of previous mining. Two samples were also taken of Thelma Leader mineralisation located in underground exposures adjacent to the Vaalhoek Dyke. These samples also weighed approximately 4 kg each. All samples were composites of rock chipped over the reef width. The four samples were submitted for Bottle Roll testwork at SGS Barberton, which is discussed under the Metallurgical section.		
	produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems.	The smallest split drillcore sample taken was 15 cm in length. After crushing and pulverising the core sample, a 30 g cupel was utilised for analysis. Low core recoveries resulted in reverting to RC drilling for evaluation purposes. For the RC drilling conducted at the Theta Project, the mass of recovered sample obtained was recorded on a per metre drilled basis, with approximately 3 kg of sample per metre run, being split off by means of a 3-tier riffle splitter for submission to SGS Laboratories in Barberton. Assays pertaining to the Theta Project were conducted by means of gold by fire assay with a gravimetric and/or flame atomic absorption spectrometry ("AAS") utilising a 30 g cupel.		
	commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.			
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type,	a) Underground/Hard Rock Projects:- All historic (pre 2007/2008) Mineral Resource evaluation drilling for the underground projects was conducted in the form of diamond drilling. Information regarding drilling diameter, drill tube type and core orientation is not available or discernible for the earlier 1995/1996 drilling as the core is no longer available. Only core loss, intersection length and grade (g/t) are recorded with various levels of geological lithological information. Due to the age of the data in question and the non-availability of the historical drill core, information regarding drilling diameter, drill tube type, core orientation is not available. More recent drillhole data (inclusive of diamond, RC and auger) from 2008 onward is considered to be high quality as it was conducted to updated industry standards with the incorporation of assay QAQC where blanks and certified reference material ("CRM") were inserted for monitoring purposes. Core drilling utilised an NQ (47.6 mm) drill bit.		

	SEC	CTION 1: SAMPLING TECHNIQUES AND DATA
Criteria	Explanation	Detail
	whether core is oriented and if so, by what method, etc.).	Details pertaining to earlier drilling programs' core orientation are not available. Due to poor diamond drillcore recoveries during the 2017-2019 drilling campaign, core orientation was not conducted.
		b) Open Pit or Eluvial Projects:- Drilling on the eluvial deposits took place under the auspices of Horizon Blue Resources and is regarded as being of high quality due to good survey control and inclusion of QAQC practices. The main drilling method (95% of drillholes) utilised to evaluate these projects was reverse circulation (4.5 inch (115 mm) and 6 inch (150 mm) diameter) drilling, vertical reverse circulation drillholes, with or without temporary casing depending on ground condition in the vicinity of the various drill sites. Rotary core drilling (NQ size with 75.7 mm outside diameter and 47.6 mm inside diameter) was utilised in 5% of the drillholes on these projects. More recent drillhole data (inclusive of diamond, RC and auger) from 2008 onward is considered to be of high quality as it was conducted to updated industry standards with the incorporation of assay QAQC where blanks and certified reference material ("CRM") were inserted for monitoring purposes. Core drilling utilised an NQ (47.6 mm) drill bit. Details pertaining to earlier drilling programs' core orientation are not available. Due to poor diamond drillcore recoveries during the 2017-2019 drilling campaign, core orientation was not conducted.
		c) Tailings Projects:- Drilling on the tailings projects was conducted by means of small diameter (45 mm and 50 mm) auger drilling. Drillhole positions have been surveyed by TGM utilising a GPS based Total station. All holes were drilled vertically.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 a) Diamond Drilling:- Information regarding the 1995/1996 recoveries is not available. However, during the 2008 and 2012/2013 drilling campaigns the recoveries were recorded. Diamond drill core recoveries were recorded during the 2013 drilling programmes, which was managed by Minxcon Exploration (Pty) Ltd. Core recovery percentage was calculated for each drill run. Sample recoveries were maximised through drilling techniques (diamond drilling), however drilling recoveries versus grade relationships were not assessed. During the 2017-2019 drilling campaign consistent and accurate records relating to core and RC drill sample recovery were maintained on a per sample basis. Diamond drill samples were measured on a per sample basis and related back to the recorded drill run length versus the length of drill core recovery achieved during the diamond drilling campaign was approximately 65%, with at least 33.3% of samples achieving recoveries of 50% or less. This low recovery resulted in reverting to RC drilling sa means of obtaining representative drill data for evaluation purposes. b) RC Drilling:- Details regarding the chip sample recovery of the historical RC drilling for the eluvial project are not available or existent in Minxcon's data records. For the RC drilling conducted at the Theta Project, the mass of recovered sample obtained was recorded on a per metre drilled basis, with approximately 3 kg of sample per metre run, being split off by means of a 3-tier riffle splitter for submission to SGS Laboratories in Barberton.
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and	 taken to maximise sample recovery and ensure the representative nature of the samples are not known. During the 2008, 2012/2013 and 2017-2019 drilling campaign, sample recoveries were maximised through utilising appropriate drilling techniques depending on the deposit in question. In order to ensure the representative nature of the drilled intersections and due to the dip of the reefs being very shallow at between 3° to 12°, drillholes were drilled vertically in order to obtain an intersection as close to normal as possible. Owing to low core recoveries achieved in the 2017-2019 drilling campaign, RC drilling was utilised to maximise sample recovery. Sample recovery versus grade was not assessed due to the lack of historical drill core and sample rejects, as well as due to the low diamond drilling sample recovery and grade relations with regard to the RC drilling was not possible due to not
	grade and whether sample bias may have occurred due to preferential	having a historical RC dataset to compare with. It is Minxcon's view that samples recording a core loss would result in a net negative bias, resulting in a potentially lower reported gold value. Twinning of these holes might serve to support this theory.

	SEC	TION 1: SAMPLING TECHNIQUES AND DATA
Criteria	Explanation	Detail
	loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	Historical drillholes (pre-2007/2008) in most cases have no original drillhole logs available for review. Summary lithological strip logs or MS Excel™ logs are available in most cases however and present lithological changes and reef positions. It is Minxcon's view that the level of detail available is still supportive and appropriate for Mineral Resource estimation. This level of detail has been considered in allocation of Mineral Resource classification. All 2008 drillholes were geologically logged including the deflections (or wedges)
	estimation, mining studies and metallurgical studies. Whether logging is	and the 2012/2013, as well as the 2017-2019 drilling campaign drillholes were both geologically and geotechnically logged. It is Minxcon's view that logging was done to a level of detail appropriate to support Mineral Resource estimation.
	qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	drilling. No core or core photography is available for review. The 2008 and 2012/2013 logging was qualitative in nature and core photos of all intersections were also taken. Logging conducted during the 2017-2019 drilling campaign was also qualitative in nature. All drill core and reference RC Chip sample trays were photographed and archived for record purposes.
	The total length and percentage of the relevant intersections logged.	Historical drillholes (pre-2007/2008) in most cases have no original drillhole logs available for review. Summary lithological strip logs or MS Excel™ logs are available in most cases however and present lithological changes and reef positions. Based on the information available it is assumed that all historical intersections represented in the Mine Resource estimation dataset were logged. All drilling and relevant intersections relating to 2007 through to and including the 2017-2019 drilling programme were logged. The logging information per Project is presented in the full CPR document and described in detail.
		It is not known how core was split in historical drilling (pre-2007/2008) campaigns. It is assumed that core was split as has been routine exploration practice. However, sampling/core records/libraries or protocols for this period are not available for review.
	If core, whether cut or sawn and whether quarter, half or all core taken.	In later drilling programmes (including the 2017-2019 drilling campaign) core was sawn in half lengthwise down the core axis. Once the core had been split the core was sampled along lithological boundaries. The smallest sample that was taken was 15 cm which was governed by the low core recovery, as well as the minimum weight required for a laboratory sample.
		Individual samples for NQ cores were 20 cm long. Reef samples were >10 cm and <40 cm.
Sub- sampling techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Historical Protocols pertaining to the RC and auger drilling sample splitting are not available for scrutiny and thus unknown. During the 2017-2019 RC drilling programme, samples were dry sampled and riffle split through a 3-tier riffle splitter
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	For historical diamond drilling (pre-2007/2008) no protocols pertaining to sample preparation techniques are available for scrutiny. Recent (inclusive of the 2017-2019 drilling campaign) drilling sampling preparation and its appropriateness is in line with industry practice.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Historical (pre-2007/2008) historical sub-sampling techniques were not available for review. All later drilling programmes utilised blanks and certified reference materials in order to maximise representivity of samples. In the 2017-2019 drilling campaign, coarse duplicates were added to the QAQC programme to test repeatability and thus representivity of samples.
	Measures taken to ensure that the sampling is representative of the in situ material	Pertaining to historical (pre-2007/2008) drilling programmes, sub-sampling techniques were not available for review. In 2008, only blanks and certified reference material were used. No field duplicate/second –half or subsequent quarter sampling was conducted to Minxcon's knowledge.
	collected, including for instance results for field duplicate/second- half sampling.	Later drilling programmes utilised only blanks and certified reference material. No field duplicate/second-half or subsequent quarter sampling was conducted. In the 2017-2019 drilling campaign, coarse field duplicates were added to the QAQC programme to test repeatability and thus representivity of samples. Out of 292 duplicates taken, three were identified as outliers. Once these were removed from the dataset, a correlation coefficient of 0.9683 was achieved,

	SEC	CTION 1: SAMPLING TECHNIQUES AND DATA
Criteria	Explanation	Detail
		presenting very high correlation, thus supporting the view of sample representivity.
		Pre-2007/2008: Not known. Historical sample size taken were not recorded.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Later programmes considered sample length versus core diameter together with assay laboratory techniques and protocols to ensure sample sizes were appropriate relative to the material in question being sampled. It is Minxcon's view that the sample sizes take are appropriate to the gold grain size being sampled due to the fact that out of 292 duplicates taken (2017-2019 drilling programme), three were identified as outliers. Once these were removed from the dataset, a correlation coefficient of 0.9683 was achieved, presenting very high correlation, thus supporting the view of sample representivity.
	The nature, quality	Historical underground channel chips were reported in dwt, it is assumed that
	appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	In 2008, all diamond core samples including blanks and certified reference material ("CRM") were dispatched to Set Point Laboratories ("Set Point") in Isando, Johannesburg, South Africa. Set Point is a SANAS certified laboratory, in accordance with the recognised international standard ISO/IES 17025:2005, with accreditation number T0223. The samples were analysed for Gold ("Au") by standard fire assay with ICP finish, and specific gravity ("SG") analysis were conducted on selected samples. It is assumed that the technique represents total analysis. Up to May 2007, all RC samples were sent to ALS Chemex Laboratory. From
		May 2007 onwards, RC samples were sent to Performance Laboratories (now SGS Performance Laboratories) and core samples to ALS Chemex (which is SANAS accredited) for fire assay by lead separation and AA finish. Each sample was also analysed for a spectrum of 34 metals using Inductively Coupled Plasma ("ICP") techniques. It is assumed that the technique represents total analysis.
		In 2017, samples from drillholes V6 and V8 including blanks and certified reference material were dispatched to Super Laboratory Services (Pty) Ltd ("Super Labs") in Springs, South Africa. Super Labs is a SANAS certified laboratory, in accordance with the recognised international standard ISO/IES 17025:2005, with accreditation number T0494. The assay samples are 50 g samples in mass and are assayed for gold (Au) by means of fire assay with gravimetric finish. It is assumed that the technique represents total analysis.
Quality of assay data and laboratory tests		For the 2017-2019 drilling campaign, all drillhole samples were sent to SGS Performance Laboratories in Barberton. SGS Performance Laboratories, Barberton is a SANAS certified laboratory, in accordance with the recognised international standard FAA303, with accreditation number T0565. Assays pertaining to the Theta Project were conducted by means of gold by fire assay with a gravimetric and/or flame AAS utilising a 30 g cupel. This assay technique is viewed as being total.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No assay methods other than those conducted by laboratories as mentioned above were utilised in the generation of any of the TGM projects sampling database.
	nature of quality control procedures adopted (e.g. standards, blanks,	there-of (<i>i.e.</i> pre-1946 for channel chip sampling, and for drilling predating 2007/2008) and due to the accepted practices in place at the time.
	duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Drilling campaigns conducted post 2007/2008 and the accompanying sampling was conducted according to industry standards. QAQC measures were implemented by regular insertion of blanks and standards into the sampling stream. Minxcon considers that the QAQC measures, as well as data used for Mineral Resource estimation, were of adequate quality. Approximately 17% of the samples sent to the laboratory represented assay control material. Minxcon is of the opinion that an adequate number of control samples were utilised during this drilling programme. No field duplicates were however used during the 2008 drilling and sampling programmes.

	SECTION 1: SAMPLING TECHNIQUES AND DATA			
Criteria	Explanation	Detail		
		During the 2012/2013 exploration programme, the project was stopped due to budgetary constraints and the completed drillholes were not assayed at the time. For the 2013 drilling programme the samples were analysed in 2017 and a total of 84 samples including blanks and certified reference material were dispatched to Super Labs. Two CRMs, namely AMIS0016 and AMIS0023, and silica sand blanks were used in the sampling sequence. Roughly every fifth sample inserted in the sampling sequence was a QAQC sample. A total of two AMIS0023, two AMIS0016, five duplicates and six blank samples were used. Approximately 18% of the samples sent to the laboratory represented assay control material. Minxcon is of the opinion that an adequate number of control samples were		
		During the 2017-2019 drilling programme the CRMs and blanks were inserted at predetermined positions in the sampling sequence, namely: analytical blank samples were placed at the beginning and at the end of a drillhole. With the diamond drilling control samples were placed in the sampling stream at every tenth sample, with a sequential rotation between a blank, CRM and duplicate. With the RC drilling, this was similarly done, but at every twentieth sample position. In both cases the control sample spacing was based upon the batch size utilised by the laboratory in order to ensure each tray included at least one blank and an additional control sample during sample preparation and analysis.		
		Approximately 2.75% of the samples sent to the laboratory represented CRM and 4.5% represented analytical blanks and 1.3% represented coarse duplicates. These samples are in addition to the in-laboratory assay conducted by the laboratory which traditionally adds up to 20% control samples to the total sample stream, usually incorporating a CRM as well as an analytical blank and two duplicate samples to each sample batch. Minxcon is of the opinion that an adequate number of control samples were utilised during this drilling programme. No verification of historical assay results is currently possible due to the historical		
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 No verification of historical assay results is currently possible due to the historical nature of the data in question and the non-availability of the core. Minxcon verified the historically bagged samples for drillholes V6 and V8 for accuracy and representativeness before sending them to the laboratory in 2017. Those samples that were not representative or missing were re-sampled from the remaining core at TGM. Minxcon reviewed all historical datasets chip sampling and the historical drilling attributed to the various historical operations, as well as digital plans (scanned DXF plans of sampling plans) and found that captured sample positions had good agreement with those in the digital dataset. In addition, different versions of the underground sampling file were found and cross validated to test for data changes or eliminations. These were corrected where applicable. Minxcon reviewed, verified and cross-checked captured assays relating to the 2008 drilling dataset by means of checking for transfer mistakes, gaps and overlaps in sampling intervals and also checked that all reef composites were correctly calculated for each reef intersection, before calculating the weighted mean of drillhole points with multiple intersections of wedges. Minxcon conducted checks on sampling during the 2017-2019 drilling programme by means of standard assay QAQC procedures and reviewing and cross-checking the .pdf assay results provided by the laboratory and those copied into the database utilised for evaluation. In addition, reviews of the sampling process were conducted by Minxcon personnel other than those managing the programme, namely the then Competent Person Mr Uwe Engelmann, and Mr Paul Obermeyer, the Minxcon Mineral Resource Manager. 		
	Discuss any adjustment to assay data. Documentation of	No adjustments were made to raw assay data according to Minxcon's knowledge.		
	primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	for review. The 2007/2008 and 2013 exploration programmes were logged and captured on hardcopy. These were then transferred to MS Excel™. Minxcon currently only has the data in this digital format for verification purposes. During the 2017-2019 drilling campaign, all logging and sampling were logged and captured on hardcopy and then captured in MS Excel™. Assay results were received from the laboratory in MS Excel™. csv format as well as .PDF, thus allowing verification and comparison between hardcopy, source and digital data files.		
	holes.	NO TWINNED NOIES WERE DIIIED.		
Location of data points	Accuracy and quality of surveys used to locate	TGM utilised a handheld GPS for the purpose of locating historical adits and mine entrances, which in turn have been utilised in conjunction with historical survey data in positioning the historical underground workings in 3D. Historical		

SECTION 1: SAMPLING TECHNIQUES AND DATA			
Criteria	Explanation	Detail	
	drillholes (collar and down-hole surveys), trenches, mine workings and other locations	survey plans with plotted survey peg positions and elevations are available for most of the historical underground operations. These pegs were installed by mine surveyors relative to fixed local mine datum's. The survey pegs and workings have been digitised in ARCView GIS 10 [™] .	
used in Mineral Resource estimation.	Each data point and stretch value on the original assay plans was marked and annotated with a reef width and gold grade. Assay plan images were imported into GIS and co-ordinates converted from a local grid co-ordinate (WG31) system to a WGS84 grid system. The plans were then captured into Datamine Studio 3 [™] . The captured assay points were plotted on a plan of the underground workings to ensure that the points plotted correctly relative to development and stoping. The sampling has in turn been fixed to the underground development and stoping voids. It is Minxcon's opinion that sample positional accuracy would be within 5 to 10 m of the original sample point (within acceptable limits of a GPS). Drillhole collars were also located by means of handheld GPS co- ordinates.		
		Assay plan images were imported into GIS and co-ordinates converted from a local grid co-ordinate system to a WGS84 grid system. The plans were then captured into Datamine®. The captured assay points were plotted on a plan of the underground workings to ensure that the points plotted correctly relative to development and stoping.	
		Historically, sampling points were measured by means of measuring tape and the resultant offsets plotted on the sampling and development plans.	
		Information pertaining to the instrument used for downhole survey conducted before and including the 2007/2008 drilling programmes is not available During the 2012/2013 drilling programme an EZ-Trac with EZ Com was used.	
		Drillholes drilled at the Theta Project did not have downhole surveys conducted due to all being drilled vertically and due to them all being under 200 m in depth. Drillhole collars were located by two means. Of the 371 holes drilled some 99 collars were surveyed utilising an RTK Trimble R8 GPS Survey Total Station, while the balance was recorded by means of handheld GPS. TGM complete a LIDAR survey over the Theta Project in March 2019 which was then used to reelevate the collar positions to the new LIDAR surface for improved accuracy. The 3D geological model was updated in June 2019 and the Mineral Resource was adjusted accordingly.	
	Specification of the grid system used.	The grid system used is Hartebeeshoek 1994, South African Zone WG31.	
	Quality and adequacy of topographic control.	Minxcon utilised the GPS co-ordinates provided by TGM for the adit positions, as well as ventilation openings to assist in verifying and fixing the underground workings in 3D space. Very good correlation between the digital topography and the underground mining profiles was found. The tailings and rock dump projects were surveyed utilising standard survey methods (Survey total station) and detailed topographical data collected. This data was subsequently rendered as digital contour plans. A LIDAR survey was conducted in March 2019 and was compared to the original digital topography utilised in the reef modelling. Discrepancies were found to be small with negligible impact on the geological model or the reef block models. The 3D geological model was revised in June 2019 and the Mineral Resource adjusted accordingly. There was an overall increase of 9% in the ounces in the Mineral Resource for the Theta Project due to the changes in the reef elevation and reef outcrop positions.	
		approximately on a 5 m x 5 m grid, while on development in older areas samples were taken at about 5 m to 6 m intervals, while in more recent areas sample sections were taken at between 2 m to 3 m spacing. Available information shows that diamond drillholes were drilled on an irregular grid of between 200 m to 500 m.	
	Data spacing for	Owing to the more advanced investigation stage (<i>i.e.</i> Mineral Resources and Ore Reserves), no Exploration Results have been reported.	
Data spacing re and E: distribution R	reporting of Exploration Results.	In the stoping areas, the sample stretch values were spaced approximately at 15 m on dip and 4 m on strike, while in more detailed areas sample spacing was found to be as little as 3 m between points. In the development, stretch values spacing varied from 4 m to 20 m, while in more detailed areas sample spacing is seen to be as close a 3 m.	
		Drillhole spacing for the underground projects varies significantly and is considered during Mineral Resource classification. In one specific case (Vaalhoek) two drillholes (V6 and V8) did not significantly affect the Mineral Resource estimation as they were beyond the variogram range of the sample points (1,000 m) as Minxcon did not include the drillhole data with the stretch value data. They did however prove continuity of the reef.	

SECTION 1: SAMPLING TECHNIQUES AND DATA			
Criteria	Explanation	Detail	
	Whether the data	For the Glynn's Lydenburg and Blyde TSF projects, auger drilling was conducted on a 25 m x 25 m grid spacing, while on the TGM Plant TSF auger drilling was conducted on an approximate 50 m x 50 m grid. The Hermansburg eluvial deposit was drilled on an approximate 25 m x 25 m grid, while the DG deposits were drilled on an approximate 20 m x 20 m by 25 m x 25 m grid spacing, depending on local topography and access. It is Minxcon's opinion that drillhole and sample spacing is adequate for the purpose of conducting meaningful Minarel Becourse acting tion in and around	
	distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	stoping areas due to the density of the chip sampling data. It is Minxcon's view that the drillhole spacing pertaining to the Theta Project conducted during the 2017-2019 drilling programme is adequate for the purpose of conducting Mineral Resource estimation. Spacing per reef is viewed as being appropriate to the Mineral Resource categories applied.	
	Whether sample compositing has been applied.	All channel chip sample points within the underground operations database represent full reef composites. Full reef composites were applied to drillholes belonging to the underground operations due to the inherent narrow nature of the reefs concerned. All eluvial, TSF drillholes and rock dump sample points were composite at fixed downhole sample intervals for the purposes of conducting full 3D Mineral Resource Estimations on these types of deposits. During the 2017-2019 drilling programme, in thin reef environments with reefs of <1 m (Upper Theta, Lower Theta and Beta Reefs) diluted (to 1 m) reef composites were utilised for evaluation purposes due to the minimum sample width obtained during the RC drilling being 1 m. In thick reef environments (Upper Rho, Lower Rho, Bevetts and Shale reefs), individual original sample widths of 1 m were maintained for utilisation in 3D estimation.	
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Concordant reefs are all near horizontal and as such these dip at between 3° to 12° to the west and strike in a north–south direction. Drillholes were drilled vertically (-90° dip) to intercept the mineralised shear zones at a near perpendicular angle in order that the sampling of the drill core minimises the sampling bias. Chip sampling in concordant reef environments was conducted normal to reef dip. It is Minxcon's view that sampling orientation has attempted to reduce sample bias with respect to angle of intersection. All intersections represented corrected reef widths. Discordant reef as encountered at Rietfontein is vertical to sub-vertical. Drillholes were orientated at angles to intercept the mineralised shear zones at as near a perpendicular angle in plan and acute angle in section as possible in order that the sampling dia. Chip sampling of drill core minimises the sampling dia. Chip sampling was	
geological structure		conducted normal to reef dip. It is Minxcon's view that sampling orientation has attempted to reduce sample bias with respect to angle of intersection. All intersections represented corrected reef widths. All sampling of the TSF was conducted vertically. This is normal to the orientation of deposition and is therefore achieves unbiased sampling	
	If the relationship between the drilling orientation and the orientation of key mineralised structures is	Available information indicates that the drilling orientation provides reasonably unbiased sampling of the mineralisation zones.	
Sample security	The measures taken to ensure sample security.	Measures taken to ensure sample security pertaining to the historical chip sampling are not available due to the historical nature of the data in question. Measures taken to ensure sample security during historical drilling programmes (1995/1996 and 2008 drilling) are not available due to the historical nature of the data in question. During 2012/2013 all core samples were stored in a locked facility prior to dispatch to the laboratory. The samples from the 2013 drilling campaign were bagged and labelled in 2013 but were not sent away to a laboratory for assayed due to the project ending prematurely. The samples were stored at the TGM Plant in Pilgrims Rest and delivered to the Minxcon Exploration offices in Johannesburg in November 2017 to check and verify the previously bagged samples. A standard chain of custody was implemented during the 2017-2019 drilling campaign. Immediately when the core arrived in the core yard daily, the geologist or core yard manager was required to sign the	

SECTION 1: SAMPLING TECHNIQUES AND DATA					
Criteria	Explanation Detail				
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Minxcon reviewed all historical datasets attributed to the various projects comprising the Mineral Resources, historical plans and sections as well as digital plans (scanned DXF plans of sampling plans) and found that historically captured sample positions had good agreement with those in the digital dataset. In addition, different versions of the underground sampling files were found and cross validated to test for data changes or eliminations. Minxcon also digitised a series of plans or sampling points and stretch values which were used in the various estimations. Minxcon was not able to audit or review the sampling			

		SECTION 2: REPORTING OF EXPLORATION RESULTS
Criteria	Explanation	Detail
Mineral tenement and land tenure status	Type, reference name/numbe r, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environment	The mining rights are held under Transvaal Gold Mining Estates Limited ("TGME"), a 74% indirect subsidiary of TGM. The mineral rights 83MR, 340MR, 341MR, 358MR and 433MR have been granted, registered and executed, held over certain Mineral Resource areas. Their accompanying environmental and social permits are also executed. The mining rights 10161MR and 10167MR have been granted and are pending execution. It is noted that the required Environmental Authorisations for these rights have not yet been awarded. The mining rights 330MR and 198MR are still in the approval process. A Section 102 amendment process for inclusion of underground redevelopment projects into 83MR is currently underway, with the environmental and socio-economic studies, as well as water use licence application process, following prescribed regulatory timelines.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	TGM is required to comply with DMRE regulations and instructions timeously in order to receive executed rights, as well as for the currently active rights to remain in force. Minxcon notes that a few years have lapsed since the last formal DMRE communication on 330MR and 198MR, and notes that the security of these rights may be at risk. There is reasonable basis to believe that 10161MR will be executed. The 83MR Section 102 application is following timelines as stipulated by applicable regulations and guided by government departments and processes. The Mineral Resources are located within the above permit areas as per the figure to follow.

		SECTION 2: REPORTING OF EXPLORATION RESULTS
Criteria	Explanation	Detail
Exploratio n done by other parties	Acknowledg ment and appraisal of exploration by other parties.	Acknowledgement is hereby made for the historical exploration conducted from 1977 to 1982 by Placid Oil and Southern Sphere over the northern areas over the TGM holdings. From 1982 to 1992, Rand Mines conducted sporadic alluvial prospecting along the Blyde River, limited surface diamond drilling, re-opening of old workings and extensive exploration programmes around the town of Pilgrims Rest. TGME and Simmer & Jack conducted drilling, geochemical soil sampling, trenching and geological mapping.
Geology	Deposit type, geological setting and style of mineralisatio n.	Epigenetic gold mineralisation in the Sabie-Pilgrims Rest Goldfield occurs as concordant and discordant (sub-vertical) veins (or reefs) in a variety of host rocks within the Transvaal Drakensberg Goldfield, and these veins have been linked to emplacement of the Bushveld Complex. Mineralisation in the region occurs principally in concordant reefs in flat, bedding parallel shears located mainly on shale partings within the Malmani Dolomites. These bodies are stratiform, and are generally stratabound, and occur near the base of these units. The discordant reefs (or cross-reefs) are characterised by a variety of gold mineralisation styles. At Rietfontein, a sub-vertical quartz-carbonate vein occurs which reaches up from the Basement Granites and passes to surface through the Transvaal. They are found throughout the Sabie-Pilgrims Rest Goldfield, and are commonly referred to as cross reefs, blows, veins, and leaders and exhibit varying assemblage of gold-quartz-sulphide mineralisation generally striking northeast to north-northeast. They vary greatly in terms of composition, depth and diameter. In addition to the above, more recent eluvial deposits occur on the sides of some of the hills and are through to represent cannibalised mineralisation is accompanied by various sulphides of Fe, Cu, As and Bi.
Drillhole Informatio n	A summary of all information material to the understandin g of the exploration results including a tabulation of the following information	A summary of the data types and the number of data attributable to each project is presented in the table below. It should be noted that all the projects listed are historical mining areas and do not constitute exploration projects in the true sense of the word. However, detailed drillhole summary tables are presented in the CPR in the appropriate sections pertaining to Exploration Targets. It should be noted that the numbers presented for drillholes in the table below represent all drillhole records, regardless of the status of the data concerned.

Oritaria	SECTION 2: REPORTING OF EXPLORATION RESULTS						
Criteria	Explanation		r	Deta			
	for all Material				datasets (Pre	Recent Datasets	
	drillholes.		Project Area	Sampling Data	- 2007/2008)		
	* easting and		-	Types	Quantity (Incl.	Quantity	
	northing of				Wedges)	quantity	
	the drillhole			Drillhole Data	8	-	
	collar		Rietfontein	Channel Chip			
	* elevation or			Sample Data	2,265	-	
	RL (Reduced			Drillhole Data	7	20	
	elevation		Beta	Channel Chip	,		
	above sea			Sample Data	4,553	-	
	level in		Freeldert	Drillhole Data	15	59	
	metres) of		FIGHKION	Sample Data	3 187	864	
	the drillhole			Drillhole Data		-	
	* din and		CDM	Channel Chin	115		
	azimuth of			Sample Data	24.483	-	
	the hole		-	Drillhole Data	,	-	
	* down hole		Olifantsgeraamte	Ohannal Ohin	1		
	length and		5	Sample Data	316	-	
	Interception			Deille als Data	010		
	* hole length			Drilinole Data	16	8	
	noie iengin.		Vaalhoek	Channel Chip	2,020	-	
				Sample Data	3,830		
				Stretch Values	1,472	-	
				Drillhole Data	-	-	
			Glynn's	Channel Chip	06.405	-	
			Lydenburg	Sample Data	26,435		
				Stretch Values	872	-	
			Theta Project	Drillhole Data		371	
			(Theta Hill,	Treach Oceantian	263	40	
			Browns Hill &	Channel Chin	-	10	
			Columbia Hill)	Sample Data	7,472	-	
				Drillhole Data		-	
			Columbia Hill (romaining)	Channel Chin	26		
			(remaining)	Sample Data	14,478	-	
			Hermansburg	RC Drillhole Data	,	79	
			DG1	RC Drillhole Data	-		
			DG2	RC Drillhole Data	-	221	
			DG5	RC Drillhole Data		~100	
			Glynn's	Auger Drillhole		140	
			Lydenburg TSF	Data	-	140	
			Blyde I SFs (1, 2, 3, 3a, 4, 5)	Auger Drillhole	-	86	
			TCM Diant	Auger Drillhole		24	
			I GIVI Plant	Data	-	34	
				Bulk Sampling	-	1	
			Vaalhoek (Rock	Trench Sampling	<u>† </u>		
			aump)	Data	-	13	
			South East	Sampling Pit Data	-	57	
			(DGs) (Rock	Data	50	-	
			dump)				
			Peach Tree	Bulk Sampling	8	-	
			Ponieskrantz	Bulk Sampling			
			(Rock dump)	Data	10	-	
			Dukes Clewer	Bulk Sampling	13	-	
	If the		(Rock dump)	Data			
	exclusion of						
	this						
	information		voilable drillbales	an all projects and p	cient turned that we	historically sampled	
	is justified on	All the a	the access result a	vailable, were used	for Minoral Recourt	ere historically sampled	
	the basis	anu nau	ine assay lesuit a	(in the case of Rieth	ontein) where out (of eight drillholes a	
	that the	total of f	our were excluded	from the estimation	due to excessive r	poor core recovery. All	
	information	10 drillho	ples drilled in 2012	2/2013 as well as three	ee drillholes drilled	in 2008 were only	
	IS NOT Material and	used for	geological modell	ing due to the fact th	at the project was	stopped due to budget	
	this	constrair	nts and the minera	lised zones were ne	ver assayed.		
	exclusion						
	does not						
1	detract from						

	SECTION 2: REPORTING OF EXPLORATION RESULTS					
Criteria	Explanation	Detail				
Data aggregatio n methods	Explanationtheunderstanding of thereport, theCompetentPersonshouldclearlyexplain whythis is thecase.In reportingExplorationResults,weightingaveragingtechniques,maximumand/orminimumgradetruncations(e.g. cuttingof highgrades) andcut-offgrades areusuallyMaterial andshould bestated.Whereaggregateinterceptsincorporateshort lengthsof high graderesults, theprocedureused forsuchaggregationshould bestated andsome typicalexamples ofsuchaggregationsshould bestated andsome typicalexamples ofsuchaggregationsshould beshown indetail.Theassumptions	All chip samples and drillhole samples were agglomerated. Data type biases were not investigated due to the small number of drillhole intersections. Where stretch values were used in the estimation these were composited to a 3 m composite based on a minimum stretch length. These values were treated separately and not included in the chip sample database. Areas utilising stretch values were immediately relegated to Inferred Mineral Resource classification. During the 2017-2019 drilling programme, in thin reef environments with reefs of <1 m (Upper Theta, Lower Theta and Beta Reefs) diluted (to 1 m) reef composites were utilised for evaluation purposes due to the minimum sample width obtained during the RC drilling being 1 m. In thick reef environments (Upper Rho, Lower Rho, Bevetts and Shale Reefs), individual original sample widths of 1 m were maintained for utilisation in 3D estimation.				
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents were calculated.				
Relationshi p between mineralisat ion widths and intercept	If the geometry of the mineralisatio n with respect to the drillhole	For the historical drillhole intersections (as well as intersections pertaining to the 2017- 2019 drilling campaign) no downhole lengths have been reported – only true reef widths have been recorded in the estimation database on the historical sampling plans and sections. All drilling was conducted near normal to bedding so is reef width would be very closely related to the intersection length due to the low dip of the orebody and the vertical drilling of the drillholes.				
lengths	angle is known, its	therefore the true width.				

SECTION 2: REPORTING OF EXPLORATION RESULTS					
Criteria	Explanation	Detail			
	nature	Only true width data is available. All significant grades presented in the estimation			
	should be	dataset represent the value attributable to the corrected sample width and not the real			
	If it is not	Sampica length.			
	known and				
	only the				
	down hole				
	lengths are				
	there should				
	be a clear				
	statement to				
	this effect				
	(e.g. 'down				
	true width				
	not known').				
	Appropriate				
	maps and				
	sections				
	(with scales)				
	tabulations				
Diagrama	of intercepts				
	should be				
	included for				
	any				
	discovery	The TGM Mineral Resource is not a true greenfields exploration project but rather a			
	being	mature mining operation with a wealth of historical underground chip sampling and			
Diagrams	reported	drillhole intersections which have been collated, captured and digitised. The CPR has			
	These	the detail diagrams of the sampling datasets for the various operations. These include			
	should				
	include, but				
	limited to a				
	plan view of				
	drillhole				
	collar				
	locations and				
	sectional				
	views.				
	Where				
	comprehensi				
	ve reporting				
	of all Exploration				
	Results is				
	not				
	practicable,				
	representativ	The various Mineral Resource estimations were conducted by Minxcon and are based			
Balanced	both low and	bistoric sampling and drilling campaigns within the Project Area, as well as more recent			
reporting	high grades	2019 data obtained during the evaluation drilling conducted at the Theta Project and			
	and/or	provides a representative range and mean of grades intersected in the datasets.			
	widths				
	should be				
	avoid				
	misleading				
	reporting of				
	Exploration				
	Kesuits.	Various exploration compaigns have been conducted over the vesta but not all			
	exploration	information is available or relevant to the current Mineral Resource update. No other			
	data, if	exploration data other than that presented for the purposes of the Mineral Resource			
Other	meaningful	estimation is therefore presented here. TGM has undertaken additional drilling at			
substantiv	and material,	Columbia Hill (lota), Theta Hill, Browns Hill and lota (Theta Project). This data has been			
е	should be	incorporated in the Mineral Resource estimate.			
exploration	including	TGM has completed and is still in the process of completing metallurgical testwork and			
data	(but not	studies for the recoveries of the various reefs. This testwork all forms part of the			
	limited to):	feasibility study that is being completed.			
	geological				
	observations				

	SECTION 2: REPORTING OF EXPLORATION RESULTS								
Criteria	Explanation			Det	ail				
	; geophysical								
	survey								
	results;								
	geochemical								
	survey								
	results; bulk								
	samples –								
	size and								
	method of								
	treatment;								
	metallurgical								
	test results;								
	bulk density,								
	groundwater,								
	geotechnical								
	and rock								
	characteristic								
	s; potential								
	deleterious								
	or								
	contaminatin								
	g								
	Substances.	The	proportion how	o o number of notential our	loration targets that may increase the				
	and scale of	The	properties have	e a number of potential exp	horation targets that may increase the				
	allu scale ul	current mineral Resource and Ore Reserve. These are spread over a number of the							
	further work	ro_in	project areas and cover lateral extensions, depth extensions as well as compiling and						
	(e a tests for	note	re-interpreting historical datasets. The caple of the exploration depende on the evolution						
	lateral	bude	net and therefo	re cannot be defined currer	ntly.				
	extensions or depth	2003	get and there ere						
			Project	Type of Potential	Comment				
	extensions			Lateral and depth	Lateral extension is possible to the south which				
	or large- scale step- out drilling).		Rietfontein	extensions	is untested as well as at depth below the current				
			Beta	Lateral extension	nistorical mining areas				
			Dela		Lateral extension to the south toward Dukes' Hill				
			CDM	Lateral extension	South				
		[Lateral extension to the south on both Theta Hill				
			Theta	Lateral extension	and Browns Hill once 341MR is available.				
					lota				
				Depth extensions and	Near surface potential (open pit) exists on the				
			vaalhoek	open-pit opportunities	Vaalhoek Reef and Thelma Leaders Reef				
			Glynn's		The new model has identified new high-grade				
			Lydenburg	Shallow lateral extensions	exploration targets for possible near surface				
Further					The new geological interpretation has identified				
work			Columbia Hill	Shallow lateral extensions	Columbia Hill as a potential open pit target that				
					will be drilled in the near future				
		This table excludes all the other historical mines that have not been investigated yet.							
	Diagrams								
	clearly								
	highlighting								
	the areas of								
	possible								
	extensions,								
	Including the								
	main	The	potential areas	for the various mines have	e been detailed in the CPR. Detailed				
	interpretation	expl	oration strategy	and budget has not been	finalised due to the unknown available				
	s and future	budg	get.						
	drilling								
	areas								
	provided this								
	information								
	is not								
	commercially								
	sensitive.								

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES						
Criteria	Criteria Explanation Detail					
Databas e integrity	Measures taken to ensure that data has not been corrupted by, for example,	Minxcon reviewed all historical datasets attributed to all the underground projects, as well as digital plans (scanned DXF plans of sampling plans) and found that captured sample positions had good agreement with those in the digital dataset except for a small number of chip samples (<1%), which Minxcon				

	SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES				
Criteria	Explanation	Detail			
	transcription or keying errors, between its initial collection and its use for Mineral Persource actimation	subsequently corrected. In addition, different versions of the underground sampling file were found and cross validated to test for data changes or eliminations over the years. Minxcon found that database integrity was maintained over time.			
	purposes.	The chip sampling data that was captured was also verified on an ad-hoc basis by different personnel as to the personnel that captured the data. Prior to estimation a duplicate check in Datamine Studio RM [™] was carried out on the datasets to eliminate duplicate data point errors, and found that less than 2% of the population included duplicate captured sample points.			
		Minxcon reviewed existing digital drillhole logs and assay sheets for the historical drilling relative to scans of drillhole strip logs and found very good agreement. In cases were errors were encountered, these were corrected and incorporated into a date-stamped database for sign-off prior to submission for Mineral Resource estimation.			
		With regards to the 2017-2019 exploration campaign, assay data integrity was maintained by cross-validating MS Excel™.csv assay results files from the laboratory with the .pdf files also provided by the Laboratory. Hard copy geological logs were kept as a means of referral with reference to the geological information captured in the project database.			
		Minxcon reviewed all historical datasets attributed to all the underground projects, as well as digital plans (scanned DXF plans of sampling plans) and found that captured sample positions had good agreement with those in the digital dataset except for a small number of chip samples (<1%), which Minxcon subsequently corrected. In addition, different versions of the underground sampling file were found and cross validated to test for data changes or eliminations over the years. Minxcon found that database integrity was maintained over time.			
	Data validation procedures used.	The chip sampling data that was captured was also verified on an ad hoc basis by different personnel as to the personnel that captured the data. Prior to estimation a duplicate check in Datamine Studio RM [™] was carried out on the datasets to eliminate duplicate data point errors, and found that less than 2% of the population included duplicate captured sample points.			
		Minxcon reviewed existing digital drillhole logs and assay sheets for the historical drilling relative to scans of drillhole strip logs and found very good agreement. In cases were errors were encountered, these were corrected and incorporated into a date-stamped database for sign-off prior to submission for Mineral Resource estimation.			
		With regards to the 2017-2019 exploration campaign, assay data integrity was maintained by cross-validating MS Excel™.csv assay results files from the laboratory with the .pdf files also provided by the Laboratory. Hard copy geological logs were kept as a means of referral with reference to the geological information captured in the project database.			
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	Minxcon personnel have consistently visited the gold properties in the Sabie- Pilgrims Rest area since 2007. Mr Uwe Engelmann, who is a Competent Person and who is responsible for the sign-off of the Mineral Resources, undertook a site visit to the Beta Mine on 15 December 2016, as well as on 23 November 2017 and 18 May 2018 to review the current RC and diamond drilling conducted at the Theta Project to inspect the drilling and sampling procedures. During the May visit Mr Engelmann also inspected the tailings storage facilities ("TSFs") and Vaalhoek Rock Dump for possible depletions. An additional site visit by Mr Engelmann was conducted on 10 April 2019 to review the close-out procedures associated with the protracted preceding drilling programme and again on 21 January 2020 to investigate the additional waste rock dumps for which the historical data was supplied. Further visits to Beta and Frankfort were conducted by Minxcon personnel in early 2022 to oversee sampling exercises.			
	If no site visits have been undertaken indicate why this is the case.	Not applicable – refer to above.			
Geologic al interpret ation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	 Four types of digital 3D geological models were created in Datamine Studio 3[™] and Datamine Studio RM[™] for the different types of orebodies within the TGM Projects. The four types of geological models relate to the type of orebodies encountered and include:- Sub-vertical discordant (cross-reef) reef models Sub-horizontal concordant (and leader) reef models Topographical surficial reef models Topographical TSF models 			

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES							
Criteria	Criteria Explanation Detail						
		projects that they were applied to:					
		Geological Model Type	Project Area	Reef			
		Sub-vertical		ILECI			
		discordant (cross-reef)					
		reef models	Rietfontein	Rietfontein			
		Sub- borizontal	Beta (3D)	Beta			
		concordant	Frankfort (2D)	Bevetts			
		(and leader)		Theta			
		Teel models	CDM (2D)	Rho			
			Olifantsgeraamte (2D)	Olifantsgeraamte			
			Vaalboek (3D)	Vaalhoek			
				Thelma Leaders			
			Glynn's Lydenburg (3D	Glynn's			
				Shale Reefs			
				Bevetts			
				Upper Rho			
			Theta Project (Theta Hill, Browns Hill & lota	Lower Rho			
			section of Columbia Hill) (3D)	Upper Theta			
				Lower Theta			
				Beta			
				Rho			
			Columbia Hill (3D)	Shale			
				Shale Leaders			
		Topographic al surficial	Hermansburg	Eluvial			
		reef models	DG1	Eluvial			
			DG2	Eluvial			
		Tenenahia	DG5	Eluvial			
		al TSF	Glynn's Lydenburg	Tailings			
		models	Blyde 1	Tailings			
			Blyde 2	Tailings			
			Blyde 3	Tailings			
			Blyde 4	Tailings			
			Blyde 5	Tallings			
			Blyde 3a	Tailings			
			South Fast (DGs) Peach Tree Ponieskrantz	Rock Dump			
			and Dukes Clewer	Rock Dump (manual)			
	Nature of the data used and of any assumptions made.	The geological mineralised zor Minxcon geolog surveyed peg fi Where this infor outlines, pillars, (where availabl and sampling p utilised to mode deposits and TS based upon sur In the case of tt drillhole collars, limits to the geo Minxcon is of th that it supports the Mineral Res Scanned plans ordinated and r Geological plan geological map new drillholes w	ree wireframes for the Concordant and Disc hes for all the digital geological models were gists and are based upon mine development les (honouring the on-reef development) pro- rmation did not exist, Minxcon digitised the or , chip sample data, geological mapping and e) and survey pegs from digital scans of hist lans. Drillholes, survey pegs and thickness r el the stacked concordant reefs for the Theta SF models were also constructed by Minxco rveyed contour lines (in the case of the TSFs he eluvial deposits, topographical contours in , were utilised to generate the geological and blogical wireframe models. He view that the confidence in the geological the relevant Mineral Resource categorisatio source estimate. Were digitised to generate development strin epositioned relative to underground plans ar is were also used in conjunction with limited ping, underground survey pegs in conjunctio vere used in the generation of the underground	constructed by plans and historical vided by TGM. levelopment, stoping interpretation data orical mine survey modelling were Project. The eluvial in geologists and are b) and drillhole collars. in conjunction with d geographical 3D wireframes is such in currently utilised in mgs. These were co- ind survey pegs. underground in with historical and ind and open-pit			
	The effect, if any, of alternative	The geological	interpretation of the Sabie-Pilgrims Rest Go section) has not been re-interpreted but wha	dfield (as discussed t Minxcon has			
	interpretations on	undertaken is a	process of collating, capturing and digitising	the historical			

	SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES									
Criteria	SECTION 3: ES Explanation Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource	Detail datasets (chip samples, drillhole intersections and historical plans into the electronic environment (GIS and Datamine) to assist in re-investigating the undiscovered potential at the different mines and re-estimation of Mineral Resources if there is potential. Due to the quality and volume of drilling conducted on the Theta Project during 2017-2019, Minxcon was able to generate a lithological model for the first time, which assisted greatly in correctly identifying and correlating individual reefs. In addition, the lithological modelling has played a significant role in the Mineral Reserving process associated with the Theta Project. The surficial or eluvial deposits utilised topographical control as opposed to geological control. The Mineral Resource estimation has been restricted to the hard boundaries defined in the geological interpretation in the form of faulting and outcrop lines. For Rietfontein, a maximum depth below surface of 440 m restricts the depth extension. The geological reef wireframes for the various underground projects were constructed by a Minxcon geologist and are based upon mine development plans and historical surveyed peg files (honouring the on-reef development) provided by TGM. The resultant geological wireframes were then utilised as a closed volume to constrain the volume and spatial estimate of the Mineral Resources. Geological structures were constructed and utilised as hard boundaries for the purposes of Mineral Resource estimation. Due to the quality and volume of drilling conducted on the Theta Project during 2017-2019, Minxcon was able to								ate ing ed ed
	The factors affecting continuity both of grade and geology.	 Initing conducted on the first a Project during 2017, Minkcoll w generate a lithological model for the first time, which assisted greatly identifying and correlating individual reefs. In addition, the lithological has played a significant role in the Mineral Reserving process associties the Theta Project. The surficial or eluvial deposits utilised topographic as opposed to geological control. The Mineral Resource estimation has been restricted to the hard bou defined in the geological interpretation in the form of faulting and out For Rietfontein a maximum depth below surface of 440 m restricts the output of the surface o							correct odelling d with contro aries p lines.	Îy g
	The extent and variability of the	The block model extents for all the digital project models are shown in the table below. The block models cover all the structures modelled.						Э		
	Mineral Resource expressed as length				B	lock Si	78	Blo	ck Mod	el
	(along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	Geologica I Model Type	Project Area	Reef	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m
		Sub- vertical discordant (cross- reef) reef models	Rietfontein	Rietfontein	20	30	30	900	402 0	10 80
			Beta	Beta	50	50	10	435 0	455 0	10
			Frankfort	Bevetts	20	20	10	210 0	158 0	10
			Clewer, Dukes Hill & Morgenzon	Rho	50	50	10	310 0	710 0	10
Dimensi			mte	mte	20	20	1	800	100	1
0115			Vaalhoek	Vaalhoek	20	20	10	250 0 250	438 0	10
		Sub-		Leaders	20	20	10	230 0 400	430 0 300	10 60
		horizontal concordant		Beta	20	20	5	400	0 300	0 60
		(and leader)	Theta Hill &	Lower Theta	20	20	5	0 400	0 300	0 60
		models	Browns Hill	Bevette	20	∠0 20	5	0 400	0 300	0 60
				Shales	20	20	5	0 400	0 300	0 60
				Rho Upper	20	20	1	0 114	0 160	0 18
			lota section of	Rho Lower	20	20	1	0 114	0 160	20 18 20
			Columbia Hill	Bevetts	20	20	1	114 0	160 0	18 20
				Upper Theta	20	20	1	114 0	160 0	18 20
			Glynn's Lydenburg	Glynn's	20	20	10	784 0	744 0	10

	SECTION 3: ES	TIMATION AN		OF MINERA	L RES	OURCES	5			
Criteria	Explanation			Deta	ail					
		Topograph ical	Hermansburg	Eluvial	2	0 20	3	240	360	87 10
		surficial	DG1	Eluvial	2	0 20	3	292	432	10 3 21
		models	DG2 Glynn's	Eluvial	2	0 20	3	58	560	3
			Lydenburg	Tailings	2	5 25	3	360	485	19
			Blyde 1 Blyde 2	Tailings	2	5 25	3	340 156	260	20
			Blyde 3	Tailings	2	5 25	3	155	190	23
			Blyde 4	Tailings	2	5 25	3	130	145	12
			Blyde 5	Tailings	2	5 25	3	95	60	12
		Topograph	Blyde 3a	Tailings	2	5 <u>25</u> 0 10	15	120	135	7 51
		ical TSF	Vaalhoek	Rock Dump	1	0 10	1.5	280	300	40
		modela	South East	Rock Dump	N/	N/	N/ A	N/A	N/A	N/ A
			Peach Tree	Rock Dump	N/	/ N/ A	N/ A	N/A	N/A	N/ A
			Ponieskrantz	Rock Dump	N/	/ N/ A	N/ A	N/A	N/A	N/ A
			Dukes Clewer	Rock Dump	N/	/ N/ A	N/ A	N/A	N/A	N/ A
		Block	Ponieskrantz*	Portuguese	N/	N/	N/ A	N/A	N/A	N/ A
		Plans and/	Frankfort Theta*	Theta	N/	N/	N/ A	N/A	N/A	N/ A
		Listings	Nestor*	Sandstone	N/	/ N/	N/	N/A	N/A	N/
		Note: * These h resource block l	istorical mines hav lists.	ve not been col	nverted	yet and ar	e still n	nanual c	ore	Λ
	technique(s) applied and key assumptions, including treatment of extreme grade values	per project an available and variography fo	d the number of structural bound or the various are	domains use aries. The se eas are prese	ed. Dom earch pa ented in	nains we arameter the table	re bas s infor e belo	ed on o med by w with	lata typ y the the	е
	domaining,			er of sample	s used	in the es	timatio	on.		
	domaining, interpolation parameters and	Project Area	Reef	Vgrai Rang	m je	In the es	no les	рп. 	Type	n
	domaining, interpolation parameters and maximum distance of extrapolation from	Project Area	Reef	Vgrai Rang Min	m je Max	Est i Samp Min	no les Ma	E:	Type stimatio	n
	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a	Project Area Rietfontein Beta	Reef Rietfontein Beta	Vgrai Rang Min 40 40	m je Max 120 297	In the es Est I Samp Min 5	10 les Ma x 15 20	Ordii Ordii	Type stimatio	n jing
	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted octimation mothed	Project Area Rietfontein Beta Frankfort	Rietfontein Beta Bevetts	Vgrai Rang Min 40 40 115	m ge Max 120 297 120	In the est I Samp Min 5 5 3	10 les Ma x 15 20 30	Ordin Ordin Ordin Ordin	Type stimatio hary Krig hary Krig hary Krig	n jing jing
	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a	Project Area Rietfontein Beta Frankfort Olifantsgeraa	Rietfontein Beta Bevetts Rho Olifantsgeraar	Vgrai Rang Min 40 40 115 383	m ge Max 120 297 120 583	In the est Est I Samp Min 5 5 3 10	10 les Ma x 15 20 30 25	Ordii Ordii Ordii Ordii Ordii	Type stimatio nary Krig nary Krig nary Krig nary Krig	n jing jing jing
	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te	Vgrai Rang Min 40 40 115 383 n	s used m je Max 120 297 120 583 174.	In the est Est I Samp Min 5 5 3 10	10 les Ma x 15 20 30 25	Ordin Ordin Ordin Ordin Ordin Ordin	Type stimatio hary Krig hary Krig hary Krig hary Krig	n jing jing jing jing
	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek	Reef Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma	Vgrai Rang Min 40 115 383 n 68.9	s used m je Max 120 297 120 583 174. 8	In the est Est r Samp Min 5 5 3 10 4	10 10 10 10 10 10 10 15 20 30 25 20 20	Ordin Ordin Ordin Ordin Ordin Ordin Ordin	Type stimatio hary Krig hary Krig hary Krig hary Krig	n jing jing jing jing jing
Estimati	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders	Vgrat Rang Min 40 115 383 m 68.9 86.7	m je Max 120 297 120 583 174. 8 96.5	In the est Est I Samp Min 5 5 3 3 10 4 4 4 4	10 10 10 10 10 10 10 10 10 10	Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin	Type stimatio hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig	n jing jing jing jing jing jing
Estimati on and	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Leaver Theta	Vgrat Rang Min 40 40 115 383 m 68.9 86.7 90.3 99.7	m je Max 120 297 120 583 174. 8 96.5 90.3 99 7	in the es Est I Samp Min 5 5 3 3 10 4 4 4 3 3 3 10	10 10 10 10 15 20 30 25 20 20 20 15 15	Crdii Ordii Ordii Ordii Ordii Ordii Ordii Ordii	Type stimatio hary Krighary Kr	n jing jing jing jing jing jing jing
Estimati on and modellin	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta	Vgrat Rang Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4	x used m je Max 120 297 120 583 174. 8 96.5 90.3 99.7 10.4	in the es Est r Samp Min 5 5 3 10 4 4 4 4 3 3 3 3 3	Ma Ies Ma x 15 20 30 25 20 20 20 20 20 20 20 20 20 20 20 20 20 15 15	Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin	Type stimatio hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig	n jing jing jing jing jing jing jing jin
Estimati on and modellin g	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts	Vgrat Rang Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5	x used m je Max 120 297 120 583 1720 583 1720 583 174. 8 96.5 90.3 99.7 10.4 89.5	in the es Est r Samp Min 5 5 5 3 10 4 4 4 4 3 3 3 3 3	Ma Ma X 15 20 30 25 20 20 20 15 15 15 15 15	Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin	Type stimatio hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig	n jing jing jing jing jing jing jing jin
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill	Reef Reef Reef Reef Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Bevetts Shale Upper Theta	Vgrat Rang Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6	m ge Max 120 297 120 583 174. 8 96.5 90.3 99.7 10.4 89.5 79.6 72.6	in the es Est r Samp Min 5 5 5 3 10 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma Ma X 15 20 30 25 20 20 15 15 15 15 15 15 15 15 15	Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii	Type stimatio hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig hary Krig	n jing jing jing jing jing jing jing jin
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Theta Lower Rho	Vgrat Rang 40 40 40 40 40 86.7 90.3 99.7 10.4 89.5 79.6 72	m ge Max 120 120 297 120 583 174. 8 96.5 90.3 99.7 10.4 89.5 79.6 72 72	in the es Est r Samp Min 5 5 5 3 10 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma Ma x 15 20 30 25 20 20 20 15 15 15 15 15 15 15 15 15	Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii	Type stimatio nary Krig nary Krig	n jing jing jing jing jing jing jing jin
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill	Reef Reef Reef Reef Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Rho	Vgrat Rang Min 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9	x used m Je Max 120 297 120 583 583 174. 8 96.5 90.3 99.7 10.4 89.5 79.6 72 72 126. 9	in the es Est I Samp Min 5 5 3 10 10 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma X 15 20 300 25 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin	Type stimatio nary Krig nary Krig	n jing jing jing jing jing jing jing jin
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill	Reef Reef Reef Reef Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Rho Bevetts	Vgrat Rang 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2	x used m m m m m m m m m m m m m m m m m m m	in the es Est I Samp Min 5 5 3 3 10 10 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 300 25 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin Ordin	Type stimatio hary Krig hary Krig	n jing jing jing jing jing jing jing jin
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Rho Bevetts Shale	Vgrat Rang 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 72.2	Max 120 297 120 583 174. 8 96.5 99.7 10.4 89.5 79.6 72 126. 9 72.2 <tr< td=""><td>in the es Est I Samp Min 5 5 3 10 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>Ma x 15 20 300 25 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15</td><td>Ordin Ordin</td><td>Type stimatio hary Krig hary Krig</td><td>n ing ing ing jing jing jing jing jing jing jing jing jing jing jing jing</td></tr<>	in the es Est I Samp Min 5 5 3 10 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 300 25 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	Ordin Ordin	Type stimatio hary Krig hary Krig	n ing ing ing jing jing jing jing jing jing jing jing jing jing jing jing
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Lower Rho f Upper Rho Bevetts Shale Glynn's	Vgrat Rang Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 72.6 72 126.9 72.2 72.2 72.2 75	s used m Je Max 120 297 120 583 174. 8 96.5 90.3 99.7 10.4 89.5 79.6 72 126 99.7 10.4 89.5 79.6 72 120 72.2 72.2 488.5 25.8	in the est Est I Samp Min 5 5 3 10 10 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 20 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 30 40 40	Ordin Ordin	Type stimatio hary Krig hary Krig	n jing jing jing jing jing jing jing jin
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Rho Bevetts Shale Glynn's Eluvial	Vgrat Rang Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 75 25.8	s used m je Max 120 297 120 583 172 583 174. 8 96.5 90.3 99.7 10.4 89.5 79.6 72.2 722 126. 9 72.2 72.2 488. 5 25.8 122. 5	in the es Est r Samp Min 5 5 5 3 10 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 25 20 25 20 25 15 15 15 15 15 15 15 15 15 30 40 40	Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii Ordii	Type stimatio hary Krig hary Krig	n jing jing jing jing jing jing jing jing jing jing jing jing jing jing
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1 DG2	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Rho Bevetts Shale Glynn's Eluvial Eluvial	Vgrai Rang Min 40 40 115 383 n 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 72.2 75 25.8 122.5 85.8	x used m m m m m m m m m m m m m m m m m m m	in the es Est i Samp Min 5 5 3 3 10 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 20 20 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15	Ordia Ordia	Type stimatio hary Krig hary Krig	n jing jing jing jing jing jing jing jin
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1 DG2 Glynn's Lydenburg	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Lower Rho f Upper Rho Bevetts Shale Upper Rho Bevetts Shale Glynn's Eluvial Eluvial Tailings	Vgrat Rang Min 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 72.2 72.2 75 25.8 122.5 85.8 92.3	x used m m m 120 297 120 583 120 583 120 583 99.7 120 583 99.7 120 583 99.7 120 583 99.7 120 583 99.7 120 72.2 72.2 72.2 72.2 488.5 25.8 122.5 85.8 122.5 8 5 85.8 122.5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8	in the es Est I Samp Min 5 5 3 10 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 20 25 20 20 25 20 25 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40	Ordin Ordin	Type stimatio hary Krig hary Krig	n ing ing ing ing ing ing ing in
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1 DG2 Glynn's Lydenburg Blyde 1	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Lower Rho Bevetts Shale Upper Theta Lower Rho Bevetts Shale Glynn's Eluvial Eluvial Tailings Tailings	Vgrat Rang Min 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 72.2 72.2 75 25.8 122.5 85.8 92.3 31.8	s used m m 120 297 120 583 120 583 120 583 99.7 120 583 99.7 120 583 99.7 120 583 99.7 120 583 99.7 120 72.2 72.2 72.2 72.2 488.5 25.8 122. 5 85.8 122. 5 85.8 122. 5 83.1.8	in the es Est I Samp Min 5 5 3 10 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 20 25 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40 40 40	Ordin Ordin	Type stimatio nary Krig nary Krig	n ing ing ing ing ing ing ing in
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1 DG2 Glynn's Lydenburg Blyde 1 Blyde 2 DLyde 2	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Rho Bevetts Shale Upper Rho Bevetts Shale Glynn's Eluvial Eluvial Tailings Tailings	Vgrat Rang Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 72.2 75 25.8 122.5 85.8 92.3 31.8 30.1	x used m m m m m m m m m m m m m m m m m m m	in the es Est I Samp Min 5 5 3 10 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 20 25 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40 40 40 40	Ordin O	Type stimatio nary Krig nary Krig	n ing ing ing ing ing ing ing in
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1 DG2 Glynn's Lydenburg Blyde 1 Blyde 2 Blyde 3 Blyde 4	Reef Rietfontein Beta Bevetts Rho Ollfantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Rho Bevetts Shale Upper Rho Bevetts Shale Glynn's Eluvial Eluvial Tailings Tailings Tailings	Vgrat Rang Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 75 25.8 122.5 85.8 92.3 31.8 30.1 25.1	s used m m 120 297 120 583 120 583 120 583 99.7 120 583 90.3 99.7 120 583 90.3 99.7 10.4 89.5 79.6 72 72 126 72.2 72.2 72.2 72.2 488.5 5 25.8 122. 5 85.8 122. 5 85.8 122. 5 85.8 122. 5 83.18 30.1 25.1 8 30.7	in the es Est I Samp Min 5 5 3 10 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 20 25 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40 40 40 40 40 40	Ordin O	Type stimatio nary Krig nary Krig	n ing ing jing
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill lota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1 DG2 Glynn's Lydenburg Blyde 1 Blyde 2 Blyde 3 Blyde 5	Reef Rietfontein Beta Bevetts Rho Ollfantsgeraar te Vaalhoek Thelma Leaders Beta Dower Theta Upper Theta Bevetts Shale Upper Rho Bevetts Shale Upper Rho Bevetts Shale Glynn's Eluvial Eluvial Eluvial Tailings Tailings Tailings Tailings	Vgram Range Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 75 25.8 122.5 85.8 92.3 31.8 30.1 25.1 30.7 7.1	s used m m 120 297 120 583 120 583 90.3 99.7 120 583 90.3 99.7 120 583 90.3 99.7 10.4 89.5 79.6 72 72 126 72.2 72.2 72.2 72.2 488.5 5 25.8 122. 5 85.8 122. 5 85.8 122. 5 85.8 122. 5 83.1.8 30.1 25.7 30.7 7.1	in the es Est I Samp Min 5 5 3 10 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 20 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40 40 40 40 40 40 40 40	Ordin O	Type stimatio hary Krig hary Krig	n ing ing ing ing ing ing ing in
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1 DG2 Glynn's Lydenburg Blyde 1 Blyde 2 Blyde 3 Blyde 5 Blyde 3a	Reef Rietfontein Beta Bevetts Rho Ollfantsgeraar te Vaalhoek Thelma Leaders Beta Duper Beta Lower Theta Upper Theta Bevetts Shale Upper Rho Bevetts Shale Glynn's Eluvial Eluvial Tailings Tailings Tailings Tailings Tailings Tailings Tailings Tailings	Vgram Range Min 40 40 115 383 m 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 75 25.8 122.5 85.8 92.3 31.8 30.1 25.1 31.6	s used m m 120 297 120 583 174. 8 96.5 90.3 99.7 10.4 89.5 90.3 99.7 10.4 89.5 79.6 72 72 126. 99.7 10.4 89.5 72.2 72 126. 99.7 126. 99.7 10.4 89.5 72 72 126. 99.7 10.4 89.5 72 72 126. 99.7 10.4 89.5 72 72 72 126. 99.7 10.4 89.5 72 72 72 126. 99.7 10.4 89.5 72 72 72 126. 99.7 10.4 89.5 72 72 72 126. 99.7 10.4 89.5 72 72 72 126. 99.7 10.4 89.5 72 72 72 126. 99.7 10.4 89.5 72 72 72 72 126. 99.7 10.4 89.5 72 72 72 72 72 72 126. 99.7 10.4 89.5 72 72 72 72 72 72 72 72 72 72 72 72 72	in the est in Samp Min 55 53 10 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma x 15 20 20 30 25 20 20 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40 40 40 40 40 40 40 40 40 40	Ordin O	Type stimatio hary Krig hary Krig	n ing ing ing ing ing ing ing in
Estimati on and modellin g techniqu es	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	Project Area Rietfontein Beta Frankfort CDM Olifantsgeraa mte Vaalhoek Theta Hill & Browns Hill Iota section o Columbia Hill Glynn's Lydenburg Hermansburg DG1 DG2 Glynn's Lydenburg Blyde 1 Blyde 2 Blyde 3 Blyde 3 Combined the state of the sta	Reef Rietfontein Beta Bevetts Rho Olifantsgeraar te Vaalhoek Thelma Leaders Beta Lower Theta Upper Theta Bevetts Shale Upper Rho Bevetts Shale Upper Rho Bevetts Shale Glynn's Eluvial Eluvial Eluvial Tailings Tailings Tailings Tailings Tailings Tailings Tailings Tailings Tailings	Vgrat Rang Min 40 40 115 383 n 68.9 86.7 90.3 99.7 10.4 89.5 79.6 72 126.9 72.2 72.2 72.2 72.2 72.2 72.2 75 25.8 92.3 31.8 30.1 25.1 30.7 7.1 31.6 120	s used m je Max 120 297 120 583 174. 8 96.5 90.3 99.7 10.4 89.5 90.3 99.7 10.4 89.5 72.6 72. 126. 99.7 10.4 89.5 72.6 72. 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.2 72.5 85.8 195. 8 30.1 25.1 30.7 7.1 31.6 120 120 120 120 120 120 120 120	in the est in Samp Min 55 53 10 4 4 4 33 33 33 33 33 33 33 3	Ma x 15 20 20 25 20 20 25 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 40 40 40 40 40 40 40 40 40 10	Crdii Ordii O	Type stimatio hary Krig hary Krig	n jing

	SECTION 3: ES	STIN	IATION AI	ND REP	ORTING OF	: M	INER	AL F	RES	SOURCE	S				
Criteria	Explanation			-			De	etail		•					
			South East	Ro	ck Dump								Manual	Historic	
			(DGS) Peach Tree	Ro	ck Dump	+						_	Manual	Historic	
			Ponieskrant	z Ro	ck Dump	1							Manual	Historic	
			Dukes Clew	er Ro	ck Dump								Manual	Historic	
			Ponieskrant	z* Po	rtuguese								Manual	Historic	
			Frankfort	Th	eta										
			I heta*	50	ndatana	-					_		Manual	Historic	
		No	nesion	historica	nusione I mines have n	not	heen c	conve	orter	l vet and a	re sti	ill man	ivianuai/	HISTOLIC	
		res	source block	lists.						. you and a	0 01.		iddi oro		
		Th teo foi	ne Mineral chniques a r the statis	Resoure applied a tics, geo	ce was then our or the statistics and	dep ed a d b	pleted appro block r	l with priat node	n th e. D el e	e mining Datamine stimation.	/oids Stuc	s. The dio™	e estim was ut	ation ilised	
	The availability of check estimates									1					
	previous estimates			Р	roject Area								Reef		
	production records		Riettontein							Rietfonte	ein				
	and whether the		Beta Executión							Beta					
	Mineral Resource		Frankfort							Bevetts					
	estimate takes		Clewer, Duk	es Hill &	worgenzon					Kho					
	appropriate account of		Olifantsgera	amte						Olifantso	jeraa	amte			
	such data.	'	Vaalhoek							vaalhoe	к				
		$ \vdash$	0							I helma	∟ead	ers			
			Giynn's Lyd	enburg						Glynn's					
										Beta					
										Lower T	heta				
			Theta Hill &	Browns	Hill					Upper T	heta				
										Bevetts					
										Shale					
										Upper I	neta				
			lota section	of Colum	bia Hill					Lower Rho					
										Upper Rho					
										Bevetts					
			Hermansbu	rg						Eluvial					
			DG1							Eluvial					
			DG2												
			Giynn s Lya Diuda 4	enburg											
			Diyue I Diyue 2							Tailings					
										Lallings					
			Blyde 3							Tailings					
			Blyde 4							l allings					
			Blyde 3a												
			TGM Plant												
		-,	Vaalhoek							Rock Di	mn				
			South Fact	(DGs)						Rock Du	mn				
			Peach Tree	200)						Rock Du	mp				
			Ponjeskrant	7						Rock Du	mn				
			Dukes Clew	er						Rock Du	mp				
			Ponjeskrant	Z*						Portugue	ese				
			Frankfort Th	- neta*						Theta					
			Nestor*							Sandsto	ne				
		No	ote: * These	historica	l mines have n	not	been c	conve	ertec	l yet and a	re sti	ill man	nual ore		
		res	source block	clists.						-					
	The assumptions	No	o investiga	tion has	been condu	cte	ed with	n rea	arc	ls second	arv ı	miner	ralisatio	on or	
	made regarding	со	rrelation b	etween	pyrite and go	old.		. 3							
	recovery of by-				5										
	products.													-	
	Estimation of	No	o estimates	s pertair	ing to delete	rio	us ele	emer	nts	or other n	on-g	grade	variab	les of	
	deleterious elements	ec	onomic sig	gnificano	e (e.g. sulph	nur	for a	cid m	nine	e drainage	cha	aracte	erisatio	n) have	
	or other non-grade	De	en conduc	ied.											
	variables of economic														
	significance (e.g.														
	drainage														
	characterisation).														
	In the case of block														
	model interpolation,		Geologi								В	lock	Model	Sam	
	the block size in		cal	Projec	Reef			Bloc	k S	ize		Dimer	nsion	ple	
	relation to the average		Model	t Area			х	Y		z	x	Y		Spac	
			туре							_	~		-	ing	

	SECTION 3: ES	TIMATION A	ND REPO	ORTING OF I	MINER.	AL RE	SOURCE	S			
Criteria	Explanation		1		De	tail	1				
	sample spacing and the search employed.	Sub- vertical discorda nt (cross- reef) reef models	Rietfo ntein	Rietfontein	20	30	30	90 0	40 20	10 80	3-5 m
			Beta	Beta	50	50	10	43 50	45 50	10	3-5 m
			Frankf	Bevetts	20	20	10	21	15	10	3-5
			Clewe					00	80		m
			r, Dukes Hill & Morge nzon	Rho	50	50	10	31 00	71 00	10	3-5 m
			Olifant sgeraa mte	Olifantsger aamte	20	20	1	80 0	10 00	1	3-5 m
			Vaalh	Vaalhoek	20	20	10	25 00	43 80	10	3-5 m
			oek	Thelma	20	20	10	25 00	43 80	10	3-5 m
	Sub-	Glynn' s Lyden	Glynn's	20	20	10	78 40	74 40	10	3-5 m	
	horizont al concord	burg	Beta	20	20	5	40 00	30 00	60 0	3- 100 m	
	ant (and leader) reef		Lower Theta	20	20	5	40 00	30 00	60 0	3- 100 m	
		models	Theta Hill & Brown s Hill	Upper Theta	20	20	5	40 00	30 00	60 0	50- 100 m
				Bevetts	20	20	5	40 00	30 00	60 0	50- 100 m
				Shales	20	20	5	40 00	30 00	60 0	50- 100 m
				Rho Upper	20	20	1	11 40	16 00	18 20	3-75 m
			lota sectio	Rho Lower	20	20	1	11 40	16 00	18 20	50- 100 m
			n of Colum bia Hill	Bevetts	20	20	1	11 40	16 00	18 20	50- 100 m
				Upper Theta	20	20	1	11 40	16 00	18 20	50- 100 m
		Topogra	Herma nsburg	Eluvial	20	20	3	24 0	36 0	87	25 m
		phical surficial	DG1	Eluvial	20	20	3	29 2	43 2	10 3	25 m
		reef models	DG2	Eluvial	20	20	3	58	56 0	21 2	25 m
			Glynn' s Lyden burg	Tailings	25	25	3	36 0	48 5	19	25 m
			Blyde 1	Tailings	25	25	3	34	26	20	25 m
			Blyde 2	Tailings	25	25	3	15 6	17 2	20	25 m
		Topogra phical	Blyde 3	Tailings	25	25	3	15 5	19 0	23	25 m
		TSF models	Blyde 4	Tailings	25	25	3	13 0	14 5	12	25 m
			Blyde 5	Tailings	25	25	3	95	60	12	25 m
			Blyde 3a	Tailings	25	25	3	12 0	13 5	7	25 m
			TGM Plant	Tailings	10	10	1.5	72 0	45 0	51	50 m
			Vaalh oek	Rock Dump	10	10	1	28 0	30 0	40	25 m

	SECTION 3: ES	TIMATION A	ND REPO	ORTING OF	MINER	AL RE	SOURC	ES			
Criteria	Explanation		Octual	Derli	De	tail	N1/*	T •			
			South East (DGs)	Rock Dump	N/A	N/ A	N/A		A A	N/ A	
			Peach Tree	Rock Dump	N/A	N/ A	N/A	N /	I/ N/ A A	N/ A	
			Ponies krantz	Rock Dump	N/A	N/ A	N/A	N	I/ N/ A A	N/ A	
			Dukes Clewe r	Rock Dump	N/A	N/ A	N/A	N 2	I/ N/ A A	N/ A	
		Block	Ponies krantz *	Portugues e	N/A	N/ A	N/A	N	I/ N/ A A	N/ A	
		Plans and/ or Block	Frankf ort Theta*	Theta	N/A	N/ A	N/A	N	I/ N/ A A	N/ A	
		Listings	Nestor *	Sandstone	N/A	N/ A	N/A	N	I/ N/ A A	N/ A	
		Note: * These resource block	historical k lists.	mines have n	not been c	onverte	ed yet and	are si	till manua	al ore	
		The Block M as shown in plan based c	odels pro the above on the stru	oduced in Da e table. Fina uctural inter	atamine al estima pretatior	Studio ited mo	RM™ c odels we	onsis re pro	ting of a bjected t	cell siz	zes eef
	Any assumptions behind modelling of selective mining units.	No assumptions were made in terms of selective mining units with respect to the cell size selected. Grade (Au g/t) and reef width were estimated - no correlation between thickness									the
	Any assumptions about correlation between variables.	Grade (Au g and grade w calculated or	/t) and re as found n a post e	ef width wer during the s estimation b	re estima statistica asis.	ated - r I analy	no correl sis, how	ation ever a	betwee a cm.g/t	n thickr value v	iess was
	Description of how the geological interpretation was used to control the resource estimates.	The Mineral encompasse	Resource ed by the	e estimation geological v	has bee wirefram	en rest es.	ricted to	the h	ard bou	ndaries	
		utilised 'Cumulative Coefficient of Variation' plots to assist with the capping. Reef widths were capped in the same manner due to anomalies in the sampling thickness and generally occur between the 95 th to the 99 th percentile. CAE Studio RM [™] was utilised for the statistics, geostatistics and block model estimation. Capping ranges as depicted in the table below represent capping range for the various domains per project. These are broken up in detail in the CPR.									
		Geological Model Type						Сар	ping	Num Estim Sam	ber of nation ples
Estimati on and modellin			al P De	Project Area	Reef	Reef		R W (c m)	Au (g/t)		
y techniqu es (continu	Discussion of basis for	Sub-vertical discordant (cross-reef) reef models	Rie	tfontein R	Rietfontein	I		23 6	123.5		2,262
ed)	using or not using grade cutting or		Bet	a B	leta			17 0.0	300		4,566
	capping.		Fra	inkfort B	sevetts			20 0- 28 1	46.6- 57.5		4,114
			Cle Dul & Mo	wer, kes Hill R rgenzon	Rho			50	314.5		24,693
		concordant (and leader)	tal Olif aar	iantsger O nte O	Dlifantsger	aamte		14 2	147.3		316
		reef models		V	'aalhoek			33 5.3	411.4		16,652
			vaa	Т	helma Le	aders		54 - 78	137- 304		901
			Gly Lyc	rnn's G denburg	Blynn's			10 5- 28 1	100- 134		29,444
				В	leta			17 6	14.0		1,673

	SECTION 3: ES	TIMATION AND I	REPORTING	OF MINERAL RESOUR	RCES			
Criteria	Explanation		_	Detail	-	r	1	
				Lower Theta	17 6	18.2	5,609	
			Theta Hill	Upper Theta	17 6	63.4	148	
			& Browns Hill	Bevetts	N/ A	14.0	155	
				Shale	N/ A	4.9	59	
				Upper Theta	N/ A	9.1	39	
			lota section of	Lower Rho	N/ A	23.0	680	
			Columbia Hill	Upper Rho	N/ A	212.0	208	
				Bevetts	N/ A	19.4	26	
		Tapagraphical	Hermansb urg	Eluvial	N/ A	67.1	1,076	
		surficial reef	DG1	Eluvial	N/ A	8.55	784	
			DG2	Eluvial	N/ A	22.5	234	
			Glynn's Lydenburg	Tailings	N/ A	1.8	793	
			Blyde 1	Tailings	N/ A	2.2	288	
			Blyde 2	Tailings	N/ A	2.1	176	
			Blyde 3	Tailings	N/ A	1.0	179	
			Blyde 4	Tailings	N/ A	0.9	104	
		_	Blyde 5	Tailings	N/ A	1.0	40	
		Topographical TSF models	Blyde 3a	Tailings	N/ A	0.9	27	
			TGM Plant	Tailings	N/ A	2.6	288	
			Vaalhoek	Rock Dump	N/ A	4.1 - 16.1	80	
			South East (DGs)	Rock Dump	N/ A	N/A	N/A	
			Peach Tree	Rock Dump	N/ A	N/A	N/A	
			Ponieskran tz	Rock Dump	N/ A	N/A	N/A	
			Dukes Clewer	Rock Dump	N/ A	N/A	N/A	
		Block Plans	Ponieskran tz*	Portuguese	N/ A	N/A	N/A	
		and/ or Block	Frankfort Theta*	Theta	N/ A	N/A	N/A	
			Nestor*	Sandstone	N/ A	N/A	N/A	
		Note: * These histo resource block lists	orical mines hav s.	ve not been converted yet a	and are a	still manu	al ore	
	The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	Swath analysis of the current estimated projects were conducted in the east-west and north-south directions in order to check correlations between the block modelled grades and the raw sampled values. Swath analysis shows a good correlation with the sample grade. In addition, correlation between the estimate and the average value of a block was investigated. Historic estimates (eluvials & TSFs and Olifantsgeraamte) were reviewed visually to ensure similar grade trends between drillholes or sampling points and the final block models. In addition, for the TSFs the mean sampled value was compared to the mean						
	Whether the tonnages	The density is ba	ased on a dry	rock mass.				
Moisture	basis or with natural moisture, and the method of determination of the							
	The basis of the	The Minoral Roa		en enlit into undorgroup	d Mine	ral Rosa		
Cut-off paramet	adopted cut-off	pit Mineral Reso	urces and tail	ings dams.			urces, open	
ers	grade(s) or quality parameters applied.							

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES								
Criteria	Explanation		Detail					
		The following parameters wer	e used for the dec	laration and	d pay limit calculation:			
		Gold price, % MCF, dilution, d	liscount rate, plant	recovery fa	actor, mining cost total			
		plant cost. The gold price of U	SD1,497/oz, is the	e 90th perc	entile of the historical			
		real term commodity prices sin	nce 1980.					
		Description	Unit		Value			
		Gold Price	USD/oz		1,500			
		% MCF	%		90%			
		Dilution	%					
		Plant Recovery Factor	%		90%			
		Mining Costs	ZAR/t		522			
		Total Plant Cost	ZAR/t		4/2			
		l otal Cost	ZAR		994			
		For the open pit Mineral Reso	urce cut-off, the fo	ollowing par	ameters were used.			
		Description			Unit			
		Gold Price			USD/oz			
		% MCF			%			
		Dilution			%			
		Plant Recovery Factor			%			
		Mining Costs			ZAR/t			
		Total Plant Cost			ZAR/t			
			<u>_</u>					
		For the tailings Mineral Resour above except the plant recove processing cost of ZAR135/t v	rce cut-off, the par ery factor which wa vith a 10% discour	rameters w as 50% and nt.	ere the same as the total mining and			
		The resultant cut-offs were 160 cm.g/t for the underground (pay limit calculation); 0.5 g/t and 0.35 g/t for the Theta Project (economic cut-off calculation) for the open pit (with in the pit shell using Datamine Maxipit software) and 0.35 g/t for the topic durate topic durate (convilinit calculation)						
Mining factors or assumpti ons	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The crowill be be proceeded.	ips (pay limit calcu 0 cm was assume ilution was increas by adding 20 cm di oplied to the open the exception of th ickness) were dilut C drilling programm	d. Where re sed accordin ilution to th pit Mineral I e new The ted to 100 o ne being at	eef width (or channel ngly. Elsewhere, the e Mineral Resource Resources, nor the ta Project where cm due to the drilling t 1 m intervals.			
Metallur gical factors or assumpti ons	Ine basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding	A different recovery estimate v Beta is 88% as it is known to b caractaristics. Frankfort is a do preg-robbers, a 69% recovery historically gave fair recoveries	via cyanide leach a e and carbon flota nd for treating dou vas used for each be a free milling ore buble refractory ore was assumed. CE s, and 88% was as	and carbon ttion step w uble refracto mine. The i e with limite e, with sign DM also cor ssumed.	adsorbsion as is done ith an oxidative leach ory ore. recovery assumed for ad preg-robbing ificant locked gold and ntains sulphides but			

	SECTION 3: ES	TIMATION AND REPORTING OF MINERAL RESOURCES
Criteria	Explanation	Detail
	metallurgical	
	and parameters made	
	when reporting	
	Mineral Resources	
	may not always be	
	rigorous. Where this is	
	the case, this should be reported with an	
	explanation of the	
	basis of the	
	metallurgical	
	assumptions made.	
	Assumptions made	No environmental factors or assumptions were applied to this Mineral Resource
	waste and process	esumation.
	residue disposal	
	options. It is always	
	necessary as part of	
	the process of	
	determining	
	for eventual economic	
	extraction to consider	
	the potential	
	environmental impacts	
	of the mining and	
Environ	While at this stage the	
mental	determination of	
factors	potential	
assumpti	environmental	
ons	impacts, particularly	
	for a greenfields	
	alwavs be well	
	advanced, the status	
	of early consideration	
	of these potential	
	environmental impacts	
	Where these aspects	
	have not been	
	considered this should	
	be reported with an	
	explanation of the	
	assumptions made.	
	Whether assumed or	No historical bulk density measurement data is available besides a tabulated
	determined. If	summary table indicating historically applied densities for the various in situ
	assumed, the basis	reefs. However, bulk density tests have been carried out for the Theta Project
	for the assumptions. If	reets host lithologies. Reet samples suitable for bulk density tests were however
	method used whether	programme. A density of 3.6 α/cm^3 was used for the calculation of in situ
	wet or dry, the	underground and open pit hard rock ore tonnes, in line with the value used in
	frequency of the	previous declarations. A density of 2.84 g/cm ³ , which is the average density of
	measurements, the	dolomite, was used for the waste or dilution tonnes. The Rietfontein estimate
	nature, size and	uses a 2.9 t/m ³ based on historical assumptions and estimates.
	the samples	The Theta Project uses a bulk density of 2 75 t/m ³ for the estimation in areas
Bulk		where there was new drilling data. The historical 3.6 t/m ³ for reef and 2.84 t/m ³
density		for the dolomites were still used in the historical areas as there was no new data.
density		In these areas the diluted reef density is in the region of 3.1 t/m ³ . The 2.75 t/m ³ is
		based on the field testing of the core samples only as the RC chips could not be
		readings were taken on the available reef core of which 27 were not reliable due
		to high clay (WAD) content and fine material. For the 129 representative core
		samples the density was 2.69 t/m ³ and for the solid core (53 samples) it was 2.78
		t/m ³ . Therefore, a density of 2.75 t/m ³ was utilised. More work is required on the
		density with further drilling campaigns to obtain more readings and a higher level
		Resource categories in the Theta Project are only Indicated and Inferred with no
		Measured Mineral Resources. Densities were determined utilising the
		Archimedes principle.

	SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES						
Criteria	Explanation	Detail					
		Bulk density for the eluvial deposits was assumed at 2.3 t/m ³ based on typical unconsolidated material densities.					
		Minxcon used an SG of 1.4 t/m ³ for the modelling of all of the historical TSFs, with the exception of the TGM Plant TSF, where SG measurements were conducted utilising the "pipe method". The SG for this TSF was calculated at 1.54 t/m ³ from a total of 40 samples taken at various locations all over the TSF. In Minxcon's view this SG may be considered to representative for this TSF.					
	The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.	The pipe method (as utilised on the TGM Plant TSF) of measuring bulk density is utilised on soft sediments and is conducted in such a manner as to ensure that little to no compaction of the material within the pipe occurs. This serves to preserve the inherent sediment porosity.					
		No historical bulk density measurement data is available besides a tabulated summary table indicating historically applied densities for the various in situ reefs. However, bulk density tests have been carried out for the Theta Project reefs host lithologies. Reef samples suitable for bulk density tests were however limited due to the poor core recovery achieved in the 2017-2019 diamond drilling programme. A density of 3.6 g/cm3 was used for the calculation of in situ underground and open pit hard rock ore tonnes, in line with the value used in previous declarations. A density of 2.84 g/cm3, which is the average density of dolomite, was used for the waste or dilution tonnes. The Rietfontein estimate uses a 2.9 t/m3 based on historical assumptions and estimates.					
	Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	The Theta Project uses a bulk density of 2.75 t/m3 for the estimation in areas where there was new drilling data. The historical 3.6 t/m3 for reef and 2.84 t/m3 for the dolomites were still used in the historical areas as there was no new data. In these areas the diluted reef density is in the region of 3.1 t/m3. The 2.75 t/m3 is based on the field testing of the core samples only as the RC chips could not be used due to the weathered nature and fine material in the samples. 156 density readings were taken on the available reef core of which 27 were not reliable due to high clay (WAD) content and fine material. For the 129 representative core samples the density was 2.69 t/m3 and for the solid core (53 samples) it was 2.78 t/m3. Therefore, a density of 2.75 t/m ³ was utilised. More work is required on the density with further drilling campaigns to obtain more readings and a higher level of confidence in the density. The density is one of the reasons that the Mineral Resource categories in the Theta Project are only Indicated and Inferred with no Measured Mineral Resources. Densities were determined utilising the Archimedes principle.					
		Bulk density for the eluvial deposits was assumed at 2.3 t/m ³ based on typical unconsolidated material densities. Minxcon used an SG of 1.4 t/m ³ for the modelling of all of the historical TSFs, with the exception of the TCM Plant TSF.					
		conducted utilising the "pipe method". The SG for this TSF was calculated at 1.54 t/m ³ from a total of 40 samples taken at various locations all over the TSF. In Minxcon's view this SG may be considered to representative for this TSF.					
Classific	The basis for the classification of the Mineral Resources	The Mineral Resource classification for the all the block models is based on a positive kriging efficiency, calculated variogram ranges and number of samples informing the estimation. Where confidence in the historical sampling values or position were low the classification was downgraded to Inferred Mineral Resource.					
	into varying confidence categories.	At the Theta Project, the highest Mineral Resource classification applied was Indicated (regardless of data spacing: 1) Historical nature associated with the chip sampling dataset, stretch values and block values and around the historical drillholes. 2) The low availability of detailed bulk density data 3) the low volume of diamond drilling conducted at the Project.					
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data,	Mineral Resources were only classified as Indicated and Inferred Mineral Resources in the vast majority of cases due to the age and spacing of the data utilised. Measured Mineral Resources were only identified on a small portion of Frankfort due to the recent nature of some areas of the channel chip sampling data. Minxcon utilised a combination of variogram ranges, spread in confidence limits and minimum number of samples to be utilised in the estimate, in conjunction with geological continuity to assign Mineral Resource categories.					
	confidence in continuity of geology	At the Theta Project, the highest Mineral Resource classification applied was Indicated (regardless of data spacing: 1) Historical nature associated with the					

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES						
Criteria	Explanation	Detail				
	and metal values, quality, quantity and distribution of the data)	chip sampling dataset, stretch values and block values and around the historical drillholes. 2) The low availability of detailed bulk density data 3) the low volume of diamond drilling conducted at the Project.				
	uuu).	The additional rock dumps (South East (DGs), Peach Tree, Ponieskrantz and Dukes Clewer) have all been classified as Inferred Mineral Resources due to the historical nature of the database. A bulk sampling programme would have to be undertaken to confirm the Mineral Resource in order for them to be converted to an Indicated Mineral Resource.				
	Whether the result appropriately reflects the Competent Person's view of the deposit.	It is the Competent Person's opinion the Mineral Resource estimation conducted by Minxcon is appropriate and presents a reasonable result in line with accepted industrial practices.				
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Minxcon, as well as the Competent Person, conducted internal reviews of the Mineral Resource estimate, geological modelling and the data transformations from 2D to 3D.				
Discussi on of relative accuracy / confiden	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	Upon completion of the estimations, the older block models were visually checked with regards to the drillholes and sample points to the estimated values. Swath plot analysis was carried out on the newly estimated block models, comparing the chip samples and drillholes in a particular swath to the estimation block model also falling within the same swath. The swath plots produce a good correlation with regards the estimation and the data in both the north-south plots and the east-west plots. The Competent Person deems the Mineral Resource estimate for the current estimated projects. The estimation conducted at the Theta Project underwent similar swath and visual checks as the historical Mineral Resource block model estimates. The Competent Person deems the Mineral Resource to the Mineral Resource categories as required by the Code for the purposes of declaration and is of the opinion that the methodologies employed in the Mineral Resource estimation, based upon the data received may be considered appropriate.				
/ confiden ce	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	Regional accuracy is considered acceptable as evidenced by the swath plots, and direct sample point versus block model checks have ensured acceptable local accuracy with regards the estimated Projects.				
	relative accuracy and confidence of the estimate should be compared with production data, where available.	be ascertained at this point as the project is still in the exploration phase. Accurate historical production figures are not readily available. At the Theta Project, a feasibility study has been completed with no accurate production data being available from the historical workings for the various reefs. Production has not commenced, thus "ground-truthing" at this point is not possible. Also, proposed open pit mining methods are not aligned to the historical underground mining methods employed.				

	SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES							
Criteria	Explanation	Detail						
Mineral	Description of	Ore Reserves and mining were investigated for the Beta, Rietfontein, Frankfort						
Resource	the Mineral	and CDM underground operations. The Ore Reserve estimation utilises the						
estimate	Resource							

	SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES								
Criteria	Explanation		Detail						
for conversio	estimate used as a basis for the	same Mineral Resou at 1 February 2021.	rce models used for the Min	eral Reso	urce classification as				
Reserves	Ore Reserve.								
	Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves.	All Mineral Resource	is are stated as inclusive of t	he Ore Re	eserves.				
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	The Competent Pers of the gold properties Mr van Heerden visti Further site visits we 22 September 2019, identify access optio September 2021 we redevelopment proje	on Mr van Heerden has con s held by TGM in the Sabie-I ed Project Area near the pla re conducted on 7 March 20 the Rietfontein Project was ns for underground operation re conducted to all the project ct.	ducted a r Pilgrims R int facility 19 and 5 l also visite ns. Later s cts include	number of site visits est area since 2007. throughout 2019. November 2019. On d with the purpose to ite visits on 27-28 ed in the underground				
	If no site visits have been undertaken indicate why this is the case.	Site visits have taken place, as described above.							
	The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves.	Two mining strategy scenario, the Base C Reserves. The secon Rietfontein, Frankfor Measured Mineral R converted to Proved appropriate modifyin for which Measured Proved Ore Reserve	scenarios have been propos ase LoM schedule have not nd scenario, the Ore Reserve t and CDM are at a Feasibili esources and Indicated Mine and Probable Ore Reserves g factors. Frankfort Mine is t Mineral Resources have bee s.	sed by Mir been con e Plan Lol ty Level of eral Resou respectiv he only ur en declare	Excon. The first verted to Ore M schedule for Beta, Study and Irces have been ely, using the Inderground operation d and converted to				
	The Code requires that a study to at least Prefeasibility Study level has been undertaken	Detailed LoM plans and schedules have been completed for the four underground operations in the Ore Reserve Plan. All components and Feasibility Study Level including detailed geotechnical studies at each four undergroung mines. The studies conducted on the underground have been deemed at an overall FS Level. Life of mine plans to a feasibility level of detail was the basis of the C classification. The mine plans take into consideration all relevant mod factors and productivities. A financial valuation was conducted on the mine plans and was found economically viable. The table below is a of the general study status.							
Study	to convert Mineral	General	Status	Study	Comment				
510105	Resources to Ore Reserves. Such studies will have been carried out and	Mineral Resource categories	Measured and Indicated	FS	The areas that were targeted for mining were only Indicated and Measured Resources.				
	will have determined a mine plan that is technically achievable and economically	Ore Reserve categories	Proved and Probable	FS	Ore Reserve can be added as they are Proved and Probable Ore Reserve categories				
	viable, and that	Mining method	Detailed and Optimised	FS					
	material Modifying Factors have	Parameters Mine design	Detailed and Optimised Detailed mine plan and	FS					
	been considered.	Infrastructure	schedule Engineering 20% - 50%	FS					
		Scheduling	Complete Monthly for the LoM	FQ					
		Mineral Processing	Detailed and optimised	FS	FS done by Met63. Reviewed by Minxcon.				
		Tailings Deposition	TSF - Surface deposition	PFS	Detailed design completed by Eco- Elementum.				

	SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES							
Criteria	Explanation	1		Detail				
			TSF - L deposit	Underground ion	PFS	Detailed design completed by Paterson & Cooke.		
		Permitting - (water, power, mining, prospecting & environmental)	Authori applica were n posses	ties engaged and tions submitted ot already in sion	FS			
		Social licence t operate	Formal o structur engage place	communication res and ement models in	PFS			
		The table below	is a summarı	of the canital cost of	study stati			
		Capital Cost Category	Disciplin e	Status	Stu Stu dy Lev el	Comment		
		Basis of Estimate to include the following areas:						
		Civil/structur al, architectural,	Mining & Shared Infrastruct ure	Engineering 20% 50% complete. Estimated materia take-off quantities Vendor quotations	- II FS			
		piping/HVAC , electrical, instrumentati	Processin g	Detailed and optimised.	FS	FS done by Met63 and reviewed by Minxcon.		
		on, construction labour, construction labour productivity, material volumes/amo unts, material/equi pment, pricing, infrastructure	TSF - Surface depositio n	Detailed from engineering at 20° to 50% complete, estimated materia take-off quantities and multiple vendor quotations	% I FS	FS completed by Eco Elementum.		
			TSF - Undergro und depositio n	Estimated from historic factors or percentages and vendor quotes based on material volumes. Engineering at 5- 20%.	PF S	Underground deposition capital completed to PFS level by Paterson & Cooke.		
			Mining & Shared Infrastruct ure	Percentage of direct cost by area for contractors; historic for subcontractors	PF S			
			Processin g	Detailed and optimised.	FS	FS done by Met63 and reviewed by Minxcon.		
		Contractors	TSF - Surface depositio n	Written quotes from contractor and subcontractor	FS	FS completed by Eco Elementum.		
			TSF - Undergro und depositio n	Included in unit cost or as a percentage of tota cost	PF I S			
		Engineering, procurement, and construction	Mining & Shared Infrastruct ure	Key parameters, Percentage of detailed construction cost	PF S	Owner will be managing the engineering, procurement and construction internally.		
		(EPCM)	Processin g	Key parameters, Percentage of detailed construction cost	PF S	managing the engineering, procurement and construction internally.		

SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES						
Criteria	Explanation		TOF	Detail	(Г Г
			Surface depositio	Percentage of estimated	PF S	
			n TSF - Undergro und depositio	Percentage of estimated construction cost	PF S	
			n Mining	FOB mine site, including taxes and duties	PF S	
		Pricing	Processin g	Detailed quotations for major equipment.	FS	Capital accuracy factor below 15%.
			TSF	FOB mine site, including taxes and duties	PF S	Capital cost scaled from recent quotation.
		Owner's costs	Total Operation	Pre-production owner's costs currently funded through TGM and not included in project financials. Development owner's costs provided for in detail.	FS	Detailed Estimates
			Mining & Shared Infrastruct ure	Escalation Applied	FS	Applicable escalation rates applied to relevant dated costs utilised to obtain costs in 2022 terms. Financial modelling done in real terms
	Escalation	Processin g	Escalation Applied	FS	Applicable escalation rates applied to relevant dated costs utilised to obtain costs in 2022 terms. Financial modelling done in real terms	
		TSF	Escalation Applied	FS	Applicable escalation rates applied to relevant dated costs utilised to obtain costs in 2022 terms. Financial modelling done in real terms	
	Ac Ra (O ma	Accuracy	Mining & Shared Infrastruct ure	Combined underground Mines ±10-15%	FS	
		Range (Order of magnitude)	Processin g	Combined open pit and underground Plants ±10-15%	FS	
			TSF	and Backfill ±15- 25%	PF S	
		Contingency Range	Mining & Shared Infrastruct ure	Combined 12% (actual to be determined based on risk analysis)	FS	Contingencies not applied directly on capital cost estimates but in financial model
		for items not specified in scope that will be	Processin g	Combined 14.4% (actual to be determined based on risk analysis)	FS	Contingencies not applied directly on capital cost estimates but in financial model
		nocucuj	TSF	Combined 19.44% (actual to be	PF S	Contingencies not applied directly on capital cost

SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES						
Criteria	Explanation			Detail determined based	oct	imatos but in
				on risk analysis)	fina	ancial model
		The table below is a summary of the operating cost study status level.				
		Operating Cost Category	Discipl ine	Status	Stud y Leve I	Comment
			Mining Proces sing	Detailed Estimates Estimated from historic factors or percentages and vendor quotes based on material volumes.	FS FS	Vendor quotes based on equipment list and material volumes.
		Basis	TSF - Underg round depositi on	Estimated from historic factors or percentages and vendor quotes based on material volumes.	PFS	
			TSF – Surface Deposit ion	Estimated from historic factors or percentages and vendor quotes based on material volumes. Factoring.	PFS	
			Mining	Detailed Estimates	FS	
			Proces sing	Specific consumption based on load list and testwork	FS	Specific estimates with no factoring.
		Operating quantities	TSF - Surface depositi on	Specific estimates with some factoring	PFS	
			TSF - Underg round depositi on	Specific estimates with some factoring	PFS	Conservative estimate for rates used
		Unit costs	Mining	Detailed Estimates	FS	
			Proces sing	Unit cost based on vendor quotations and some historic pricing	FS	
			TSF - Surface depositi on	Specific estimates for labour, power, and consumables, factoring	FS	FS completed by Eco- Elementum.
			TSF - Underg round depositi on	Specific estimates for labour, power, and consumables, factoring	FS	Detailed design by Paterson & Cooke.
		Accuracy	Mining Proces	Combined 10% - 15%	FS	
		Range	sing		FS	
			TSF	Combined 15% - 25%	PFS	
		Contingency Range	Mining	determined based on risk analysis)	FS	
		(Allowance for items not specified in	Proces sing	+ 9.8% (actual to be determined based on risk analysis)	FS	
		scope that will be needed)	TSF	+ 13% (actual to be determined based on risk analysis)	PFS	
Cut-off parameter s	The basis of the cut-off grade(s) or quality parameters applied.	A planning pay limit for each of the underground operations was calculated using current economic planning parameters and the cut-off grade was derived from the pay limit calculation. The planning pay limit was applied to the Mineral Resource model and blocks above the planning pay limit were included in the LoM designs. The Ore Reserve cut-offs applied to the underground operations are: Beta Mine: 170 cm.g/t; Rietfontein: 160 cm.g/t;				

	SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES					
Criteria	Explanation	Detail				
		Frankfort Mine: 163 cm.g/t; and CDM Mine: 424 cm.s/t.				
Mining factors or assumptio ns	The method and assumptions used as reported in the Pre- Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by optiminary or	CDM Mine: 121 cm.g/t Only Measured and Indicated Mineral Resources have been converted to Proved and Probable Ore Reserves, respectively. No Inferred Mineral Resources have been included in the Ore Reserve estimation. The basis of the Ore Reserve estimation is detailed LoM designs and schedules for the four underground operations. The Mineral Resource to Ore Reserve conversion requires application of appropriate factors which would account for any changes to the Mineral Resources in the life of mine plan as a result of mining the ore. As part of the technical studies the Ore Reserve conversion factors were determined and applied to the Mineral Resources in the LoM plan available for conversion to reserves. This includes Inferred Resources that completes the credibility of practical and technical mining sequencing. The Inferred Resource portions are not includd in the Ore Reserve estimations.				
	by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre- strip, access, etc.	The mining method selected to be implemented on the undergournd operations at Beta Mine, Frankfort Mine and CDM Mine, is mechanised long hole drilling applied to a narrow reef orebody. The mining method requires pre-development of a mining block in preparation for stoping operations. Selective Blast mining will be applied to the development ends allowing separate extraction of the reef and waste cuts. The selected mining method allows for minimal dilution. A Shrinkage Stoping method have been selected for Rietfontein mine. Conventional drill and blast methods will break the rock and retrieved via mechanized loading through drawpoints on a lower level. Mechanised development of stoping blocks will be applied to prepare mining blocks for stoping. Detailed development and stoping plans have been designed using GEOVIA Minesched [™] software. A combination of technical studies conducted at TGM and benchmarked parameters were used as mining constraints to produce a logical production sequence for each of the operations.				
	The assumptions made regarding geotechnical parameters (e.g. pit slopes, stope sizes, etc.), grade control and pre- production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate).	Geological Losses applied to the four underground operations are 0 % for Measured Mineral Resources, 5 % for Indicated Mineral Resources and 10 % for Inferred Mineral Resources.				
	The mining dilution factors used.	Area Factors Unit Value Minor Measured % 0 0 Geological Inferred % 10 Undergroun Pillar Loss Beta and CDM % 7.05 Dilution % 0.5 0.5 Dilution % 1 MCF % 85				

	SECTION 4:	ESTIMATION AND RE	EPORTING OF ORE	RESERVES		
Criteria	Explanation	Detail				
		I he pillar loss applied to the Frankfort Mine is higher than the pillar loss applied to the Beta and CDM operations.				applied to
		The Ore Reserve cor below.	blied to the Rie	ed to the Rietfontein mine is detailed		
		Fact	tors	Unit	V	alue
			Measured	%		0
		Geological Losses	Indicated	%		5
			Inferred	%		10
		Pillar Loss		%		8.0
		Ore Loss		%		3
		Stoping and Raise D	vilution	cm		20
		MCF		%		85
	The second	The stoping and raise either side of the reef	dilution to consider a contact.	an overbreak int	to the waste o	f 10 cm on
	The mining recovery factors used.	A MCF of 85 % was a from similar operations	pplied to the four une s using a similar min	derground opera ing layout and n	ations which w nining method	as derived
	Any minimum mining widths used.	A minimum mining width of 60 cm was applied in the design of Beta, Frankfort and CDM. A 15 cm hangingwall and 15 cm footwall dilution is included in the 60 cm mining width that will be used in the development end resue mining and stoping operations. A 0.9 m minimum mining width for shrinkage operations at Rietfontein was applied. The SMU design blocks for Rietfontein was 2.5 m x 0.9 m with 1.0 m interval slices.				
	The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion.	Frankfort and CDM r The Inferred Mineral estimate and the ecc LoM plan for the und Beta Mine Rietfonteir Frankfort N CDM Mine	M designs and sche nines includes a por Resources have be onomic analysis. The lerground operations : 8.67%; h: 18.82%; Mine: 22.36% e: 26.17%	tion of Inferred I en excluded from hold Inferred Minera are:	a, Redontein, Mineral Resou m the Ore Res al Resources i	rces. serve n the
		Measured Mineral Resources have been converted to Proved Ore Reserves and Indicated Mineral Resources have been converted to Probable Ore Reserves. There is sufficient confidence in the modifying factors applied in the Mineral Resource to Ore Reserve conversion to convert diluted Measured Mineral Resources to Proved Ore Reserves. No Inferred Mineral Resources have been included in the Ore Reserve estimation. The Ore Reserve estimation for TGM is detailed in the table below.				
		Ore Reserve	Tonnes	Grade	Au Conte	ent
		Category	kt	g/t	kg	koz
		Beta				
		Proved	-	-	-	-
		Probable	1,634	6.86	11,206	360
		Rietfontein				
		Proved	-	-	-	-
	Ore Reserve	Probable	509	7.76	3,954	127
	Estimation	Frankfort			· I	
		Proved	58	4.26	245	8
		Probable	258	4.08	1,053	34
		CDM	200	-1.00	1,000	7
		Proved			_	
		Prohable	205	2 30	- 008	20
		Combined		2.50	500	23
		Proved	E0	4.06	245	0
		Probablo	0.700	4.20	240	0 550
			2,796	6.12	17,121	550
		I Otal Notes:	2,853	6.09	17,366	558
		1. An Ore Reser 2. An Ore Reser 3. An Ore Reser	ve cut-off of 170 cm.g/t ve cut-off of 150 cm.g/t ve cut-off of 121 cm.g/t	t has been applied t has been applied t has been applied	l for the Beta Mi l for the Frankfo l for the CDM M	ne. rt Mine. ne.

	SECTION 4	ESTIMATION AND REPORTING OF ORE RESERVES
Criteria	Explanation	Detail
		4. An Ore Reserve cut-off of 160 cm.g/t has been applied for the Rietfontein Mine.
		5. A gold price of USD1,465/oz and exchange rate of ZAR/USD 16.00 was used for the
		cut-off calculation
		Infrastructure for the selected mining method includes:
		Mining contractor site – Farth Moving Vehicle workshops, stores,
		offices, changing facilities, fuel storage facility, wash bay and
		contractor's site power and water supply;
		Administrative and other offices and facilities;
		 Underground trackless mining fleet and anciliray fleet; Haul roads;
		 Waste rock dumps ("WRDs"):
	The	Strategic ore stockpile;
	Intrastructure	RoM stockpile;
	the selected	Surface water management infrastructure – Dirty and clean water
	mining methods.	separation and storage and dewatering system.
		and water storage facilities.
		 Water supply and distribution infrastructure;
		 Power supply and distribution infrastructure;
		Underground ore transport (Conveyor systems and Incline Winding
		Plant); Surface are load out and storage facilities: and
		Low level river crossing.
	The metallurgical	Refractory Frankfort ore will be upgraded with DMS to reject some of the
	process	waste rock before the ore is trucked from the shaft to the plant. The plant will
	proposed and	firstly remove the preg-robbing omponent and then with Ultrafine Grinding to
	appropriateness	an oxidative leaching step and subsequent carbon adsorbsion, elution.
	of that process	elecrowinning and smelting.
	to the style of	Free milling ore is processed using conventional CIL processing, with a
	mineralisation.	sulphide flotation step to remove any sulphidic component.
	metallurgical	activated carbon is eather a CIL or CIP configuration
	process is well-	DMS is frequently used to concentrate ores, including gold. Ultrafine grinding
	tested	is widely used in gold and other commodities to extract metals from sulphides.
	technology or	Flotation is a well-known technology for carbon and sulphide flotation.
	The nature.	A 10-tonne bulk sample was obtained from the Frankfort mine in late 2020 for
	amount and	DMS trails, mill modelling, carbon and sulphide flotation and oxidative laching
	representativene	testwork. Further optimisations of the Frankfort ore process flow was done
	SS OI metallurgical test	With a 55.5kg sample for effect of grind, and flotation optimisation.
	work	sulphide flotation and leach testwork.
	undertaken, the	Composite samples were made from RC Drilling chips to represent Upper
	nature of the	Theta, Lower Theta and Beta. A master composite of these three was also
Metallurgi	domaining	arind
cal factors	applied and the	gina.
or	corresponding	
assumptio	metallurgical	
115	applied.	
		The significant amounts of preg-robbers in the Frankfort ore will be removed
	Any assumptions	by a flotation circuit. Additionally, the Frankfort ore will be treated in a
	or allowances	intensive CIL which will further reduce the effect of the preg-robber.
	made for	A cyanide destruction circuit was included in the plant design which will
	deleterious	ensure that the weak acid dissociable ("WAD") cyanide concentration in the
	olomono.	tailings fraction that will be pumped to the TSF does not exceed the stipulated
	The existence of	maximum level of 50 ppm.
	any bulk sample	
	or pilot scale test	
	work and the	
	such samples	No bulk sampling or pilot plant testing was completed.
	are considered	
	representative of	
	the orebody as a	
	For minerals that	
	are defined by a	Specifications are not applicable. The product will be sold as gold Doré to
	specification,	Rand Refinery with payability calculated based on the final gold content.
	has the ore	

	SECTION 4	ESTIMATION AND REPORTING OF ORE RESERVES
Criteria	Explanation	Detail
	reserve estimation been based on the appropriate mineralogy to meet the specifications?	
Environm ental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	Waste rock from the TGM underground projects considered in the detailed studies will be placed on existing WRDes located at the CDM operation. Waste from the underground operations will be very limited as it will be placed in the stoping back areas and all development will be conducted on reef. Two options have been considered for the disposal of mine residue or tailings, and they will be used at the same time. There is an existing TSF that will be used for the initial deposition. This TSF will be brought up to the latest standards such as inclusion of an HDPE liner. Deposition on the surface TSF will be hydraulic placement and the underground deposition will be storage of tailings underground as a cemented paste backfill in the mined-out sections of the Beta Mine. Both these options will require relevant approvals which are still in progress.
Infrastruct ure	The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed.	TGM has access to sufficient land for the development of required infrastructure and facilities. The TGM underground projects considered in the detailed studies are historical project with established access roads leading to the individual project areas. Road require some minor repairs and upgrades in areas. Power supply is currently available to the TGM plant area. Power is supplied from the Ponieskrans Eskom consumer substation located in close proximity to the TGM Plant at 22 kV via a single overhead line feeding from the Eskom Groothout Distribution substation. Power is stepped down at the Ponieskrans substation. The current supply allocation to the operation is 2.5 MVA (1 x 2.5 MVA 22kV / 6.6 kV transformers and 1 x 2.5 MVA 22 kV / 6.6 kV transformers providing spare capacity). TGM is in the process of securing an additional 12 MVA allocation. This will require upgrades to the Lydenburg Eskom Transmission substation. This will require upgrades to the Lydenburg Eskom Transmission substation. This will require upgrades to the Lydenburg Eskom Transmission substation. This will take 24 months to complete from the date of approval (accepted as August 2022). During the initial 17 months of mining only the Beta underground mine will be operational. Power requirements will thus consist of the first portion of the process plant as well as the requirements for the Beta operation. The requirement amounts to 7.2 MVA. The existing allocation of 2.5 MVA and the applications in process for a further 8 MVA will thus be sufficient to supply this phase of the project. Production at the process plant is however planned to start 4 months prior to the full grid power allocation being available and the process plant will thus be supplied from diesel generators. In month 34 of production the Rietfontein operation starts up and will require an additional 2 MVA. This will bring the total power requirements have been estimated for the Rietfontein operation, collected run-off water and abstraction from the Blyde River if requir

	SECTION 4	ESTIMATION AND REPORTING OF ORE RESERVES
Criteria	Explanation	Detail
		of the project operational areas (Plant, Beta, Rietfontein, Frankfort and CDM). Estimations indicate that the operation will be water-positive at peak inflow of water into the underground operations. Water from the underground operations will also be utilised for the supply of potable water to the Project, and this will pass through a potable water treatment plant. The treated water will subsequently be distributed to storage facilities located across the operation for use. The additional service water will be sourced from boreholes and potable water will be trucked from the town of Sabie and Pilgrims Rest if required
		Gold from the TGM projects considered in the detailed studies, will be transported from site to Rand Refineries via helicopter. Allowance has been made for the construction of a Helistop on site for this purpose. Well established roads are in place in the project areas that allows for easy access and transport of material and equipment to and from the projects.
		The TGM projects considered in the detailed studies are located in an area of Mpumalanga which has long been associated with mining. Skilled labour can be sourced from nearby towns such as Lydenburg, Nelspruit and Steelpoort.
		Towns such as Lydenburg, Graskop and Sabie are well developed with facilities such as hospitals, police stations, schools and churches. These towns are located within 57 km of the Theta project and can thus provide accommodation to employees of the project.
	The derivation of, or assumptions made, regarding projected capital costs in the study.	Capital costs were estimated from first principles and engineering designs. Bills of quantities were utilised to obtain quotations for the capital cost estimation. The project capital has a base date of April 2022 and an exchange rate of ZAR/USD 15.00 were utilised where applicable to convert to USD terms.
		The mining and central services operating costs for the underground operations were derived from first principles cost estimations with some factoring.
	The methodology used to estimate operating costs.	The plant operating costs were completed from first principles with consumable supplier quotes utilised were necessary.
		Environmental and Social costs were calculated using the quatums provided
	Allowances made for the content of deleterious elements	Allowance has been made for the costs associated with removal of deleterious elements (WAD cyanide) prior to deposition onto the TSF.
Costs	The derivation of assumptions made of metal or commodity price(s), for the principal minerals and co- products.	The price forecasts are based on forecasts from Consensus Economics which considers various brokers and analyst forecasts; the long-term price was derived using an in-house model based on the real historic price trends.
	The source of exchange rates used in the study.	The exchange rate forecasts are based on forecasts sourced from various South African banks (Investec, First National Bank and Nedbank) with the long-term exchange rate calculated using an in-house model based on the historic purchasing price parity of the Rand to the Dollar.
	Derivation of transportation charges.	Transport costs were provided by Client based on current actuals of similar mine
	The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc.	Gold specification, refining charges and penalties are as per refining offer from Rand Refinery.
	The allowances made for royalties payable, both	The refined Mineral and Petroleum Resources Royalty Act formula was used for this Project.

	SECTION 4	ESTIMATION AND REPORTING OF ORE RESERVES
Criteria	Explanation	Detail
	principal metals, minerals and co- products.	
Market assessme nt	The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future.	 Strong demand in Q4 2021 lifted overall demand (excluding over-the-counter (OTC') demand) for 2021 by 10% year-on-year ('y-o'). Gold demand for yewlery, technology, bar and on and central banks and institutions were significantly higher than in 2020. Demand for exchange traded funds ('ETFs') was negative with net annual outflows. Global central bank reserves grew by 208t. Total gold supply declined by 1% y-o-y primarily attributed to a significant drop in recycling. The gold price averaged USD1.800/oz in 2021 compared to USD1.770/oz in 2020, and in August 2020 broke the USD2.000/oz barrier for the first time driven largely by global uncertainty and investors looking for safe-haven assets. The gold price ended 2021 at USD1.790/oz. The average global All-In Sustaining Costs ('AISC') rose to approximately USD1.068/oz over 2021, an increase of 7% y-o-y. The AISC in Q4 2021 was USD1.129/oz. High levels of uncertainty related to the COVID-19 pandemic and the low-interest rate environment supported strong investment in safe haven commodities such as gold in 2020 through 2021. Gold specifically benefited from investors' need to reduce risk. Gold demand is forecast to increase by approximately 1% in 2022, driven primarily by increased jewellery demand is expected to continue recovering as more of the population gets vaccinated against COVID-19 and the economy recovers. The official sector is also expected to keen gold demand higher as tensions between Russia and Ukraine persist in 2022. Central banks are forecast to increase hyde on annual average rate of 4.6% on the back of improved consumer sentiment, rising income and lower prices. Alower prices word while central bank demand is projected to three gold enamon file 4% to 2027. Jewellery demand to increase at an annual average rate of 4.6% on the back of improved consumer sentiment, rising income and lower prices. Alower prices discourage apply (:2,0%) w
	with the identification of	

SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES				
Criteria	Explanation	Detail		
	likely market windows for the product.			
	Price and volume forecasts and the basis for these forecasts	Volume forecasts based on reserve LoM plan. The price forecasts are based on forecasts from Consensus Economics which considers various brokers and analyst forecasts; the long-term price was derived using an in-house model based on the real bistoric price trends.		
	For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract.	N/A		
Economic	The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc.	 In generating the financial model and deriving the valuations, the following were considered:- The cash flow model is in real money terms and completed in ZAR. The DCF valuation was set up in months and starts April 2022, but also subsequently converted to calendar years. The annual ZAR cash flow was converted to USD using real term forecast exchange rates for the LoM period. A company hurdle rate of 10.0% (in real terms) was utilised for the discount factor. The impact of the Mineral Royalties Act using the formula for refined metals was included. Sensitivity analyses were performed to ascertain the impact of discount factors, commodity prices, exchange rate, grade, operating costs and capital expenditures. Valuation of the tax entity was performed on a stand-alone basis. The full NPV of the operation was reported for the operations. The Ore Reserve Plan includes only Measured and Indicated Mineral Resources in the LoM, to determine the viability of the Ore 		
	NPV ranges and sensitivity to variations in the significant assumptions and inputs.	Reserves.		

	SECTION 4:	ESTIMATION AND REPORTING OF ORE RE	SERVES
Criteria	Explanation	Detail	
		Project Value	Reserve Plan
		NPV @ 0%	2 766
		NPV @ 2.5%	2,375
		NPV @ 5%	2,040
		NPV @ 7.5%	1,753
		NPV @ 10%	1,505
		NFV @ 12.3%	1,291
		IRR	49.7%
		USD Terms	USDm
		NPV @ 0%	179.2
		NPV @ 2.5%	132.3
		NPV @ 7.5%	113.8
		NPV @ 10%	97.8
		NPV @ 12.5%	83.9
		NPV @ 15%	71.9
		A public participation process has taken place	50.2%
	The status of	102 amendment process to establish commi impacts and incorporate social upliftment me Social engagement is ongoing until such tim	unity views and potential project easures into the social strategy. e as the EA has been approved.
Social	key stakeholders and matters	A revised SLP for the greater TGM portfolio	has been submitted. A catchup
	leading to social licence to	plan for historical non-compliance with LED	commitments is being developed.
	operate.	It is noted that as at the effective date, illega the CDM site. This may delay CDM project of arrangement for the removal of these illegal	I mining operations are active at commencement and appropriate miners should be initiated.
	To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves:	None	
	Any identified material naturally occurring risks.	The exact extent of underground flooding and ground conditions is not yet known in all existing underground workings, and underground conditions may be worse than expected once access has been obtained. Development tunnel dimensions are potentially too narrow for the primary mining machines as they were designed on OEM specifications with a low degree of tolerance.	
	The status of material legal agreements and marketing	There are no legal or marketing agreements	in place for the Project.
Other	arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the	Commissioning of the Project can only comr authorisations have been approved. A Secti has been submitted to the DMRE for the add redevelopment project areas. Currently, a W authorise the anticipated water uses. An EA	nence once all permits and on 102 amendment application dition of the 83MR underground /ULA process is underway to process is also underway.

SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES			
Criteria	Explanation	Detail	
	unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.		
	The basis for the classification of the Ore Reserves into varying confidence categories. Whether the	The Ore Reserve estimation for TGM has been conducted in accordance with the guidelines as set out in the JORC Code (2012). The appropriate category of Ore Reserve is determined primarily by the relevant level of confidence in the Mineral Resource. The Mineral Resource estimate, which includes all the underground project areas for TGM, was the basis of the Ore Reserve estimation. The level of confidence in the Indicated Mineral Resource is sufficient to convert to Probable Ore Reserves. The level of confidence in the Measured Mineral Resource is sufficient to convert to Proved Ore Reserves. The results as presented appropriately reflect the CP's view of the deposit.	
Classificat ion	result appropriately reflects the Competent Person's view of the deposit.		
	Probable Ore Probable Ore Reserves that have been derived from Measured Mineral Resources (if any).	Any Measured Mineral Resources in the Low plan have been converted to Proved Ore Reserves. No portion of Measured Mineral Resources were converted to Probable Ore Reserves.	
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	This Report includes a maiden Ore Reserve estimation for TGM. No external audits or reviews of the Beta, Rietfontein, Frankfort and CDM Ore Reserves have been conducted.	
Discussio n of relative accuracy/ confidenc e	Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate.	A detailed mine design and monthly schedule has been completed for all four underground mines. The modifying factors applied in the Mineral Resource to Ore Reserve conversion have been derived from technical studies completed for TGM. The Ore Reserve conversion factors applied correlate well with operational values at similar operations. Diluted Measured Mineral Resources have been converted to Proved Ore Reserves and Indicated Mineral Resources have been converted to Probable Ore Reserves. There is sufficient confidence in the modifying factors applied in the Mineral Resource to Ore Reserve conversion to convert diluted Measured Mineral Resources to Proved Ore Reserves.	
	should specify whether it relates	TGM. The Mineral Resource estimate completed by Minxcon as at 1 February 2022 formed the basis of the Ore Reserve estimation. The Ore Reserve	

	SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES		
Criteria	Explanation	Detail	
	to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	estimation considers Beta, Rietfontein, Frankfort and CDM underground operations, and is therefore a local Ore Reserve estimate for TGM.	
	Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage.	The modifying factors applied were determined by technical studies at the appropriate level of confidence producing a mine plan and monthly production schedule that is technically achievable and economically viable. All relevant risks are included in the CPR Risk assessment table. It is Minxcon's view that the information provided to Minxcon is sound and no other undue material risks pertaining to mining, metallurgical, environmental, permitting, legal, title, taxation, socio-economic, marketing, political, and other relevant issues pose a material risk to the Ore Reserve estimates.	
	It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	No previous Ore Reserve statements are available. However, the modifying factors were determined by technical studies and based on current operations utilising the selected mining method and are at the appropriate level of confidence to produce a mine plan and production schedule that is technically achievable and economically viable.	