ASX RELEASE

28 MARCH 2024

WEST ARUNTA PROJECT

LUNI HIGH-GRADE INTERCEPTS CONTINUE

Highlights

 Assays from broad-spaced diamond and RC drilling in the central and eastern zones further extends and demonstrates continuity of the shallow high-grade blanket of niobium mineralisation at Luni

Best niobium intersection to date, located in the north-east zone:

LUDD23-013 from 87.0m: 34.0m at 4.8% Nb₂O₅

including: 16.0m at 7.9% Nb₂O₅

Best new intersections from 200m spaced drillholes include:

LURC23-085 from 39m: 42m at 1.5% Nb₂O₅

including from 50m: 10m at 2.8% Nb₂O₅

LURC23-086 from 81m: 7m at 5.5% Nb₂O₅ (to EOH)

LURC23-087 from 66m: 15m at 1.5% Nb₂O₅

Best new intersections from 100m spaced infill drillholes include:

LURCD23-002 from 44.7m: 8.8m at 2.9% Nb₂O₅

LURC23-132 from 46m: 72m at 1.0% Nb₂O₅

including from 47m: 16m at 2.6% Nb₂O₅

LURC23-134 from 35m: 36m at 2.2% Nb₂O₅

including from 39m: $20m \text{ at } 3.4\% \text{ Nb}_2\text{O}_5$

LURC23-149 from 45m: 93m at 1.3% Nb₂O₅ (to EOH)

including from 49m: 31m at 2.9% Nb₂O₅

LURC23-178 from 58m: 8m at 5.0% Nb₂O₅

LURC23-181 from 41m: 15m at 1.8% Nb₂O₅

Remaining assays from 2023 drilling are due soon and will lead into an initial
 Mineral Resource estimate which remains on schedule for the June quarter

WAI Resources Ltd (ASX: WAI) (**WAI** or **the Company**) is pleased to announce further exploration results from drilling at the 100% owned West Arunta Project in Western Australia.

WA1's Managing Director, Paul Savich, commented:

"Today's results continue to increase the scale and quality of Luni's niobium mineralisation, with further broad high-grade intercepts returned in the central and eastern zones.

"Assays were also received from drillholes to support the initial Mineral Resource estimate and included the short-range variability (cross pattern) drilling program. The results from this program have performed well and are providing important additional geological datapoints at Luni, along with delivering high-grade niobium mineralisation within expectation for this area.

"Metallurgical testwork programs are progressing well and we continue to target the release of an initial Mineral Resource estimate for Luni late in the June quarter."

Geological Discussion - Luni Carbonatite (Sambhar Prospect Area)

Assay results within this release relate to 43 reverse circulation (**RC**) drillholes (including one diamond tail) and three diamond drillholes (refer to Table 2), which were completed at the Luni carbonatite.

New significant drill intersections within this announcement predominantly relate to 100m and 200m-spaced RC and diamond drillholes in the central and eastern area of the Luni carbonatite complex (refer to Table 1).

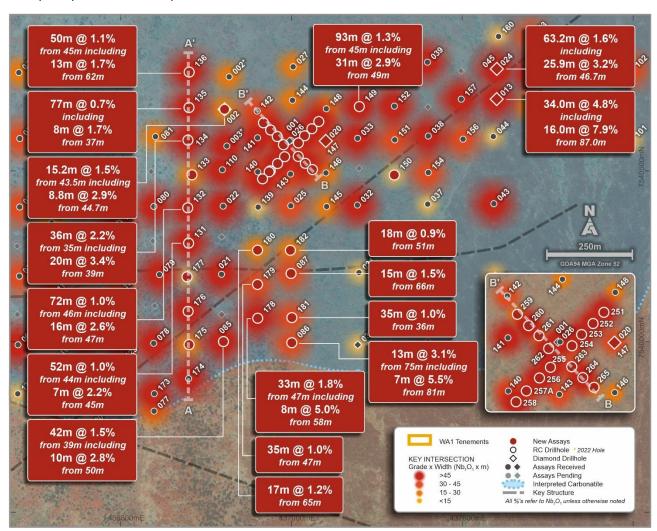


Figure 1: Luni plan view with drill collar locations and best new significant intersections

Drillholes LURC23-085, 086 and 087 are 200m step-outs and have returned high-grade mineralisation linking the south-central and south-eastern zones, while mineralisation remains open to the south-east.

LURC23-131 to 136, 175 to 182, and LURCD23-002 are 100m-spaced infill drillholes located in the central and southern zone of the carbonatite. These drillholes provide additional definition and support to the initial 200m spaced drilling.

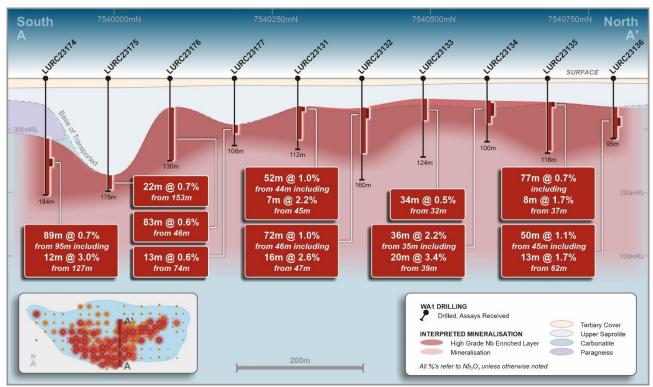


Figure 2: Simplified section looking west with new significant intersections

LURC23-149, 150, and LUDD23-013, provide 100m infill of the eastern zone. Diamond drillhole LUDD23-013 has returned the highest-grade intercept received to date at Luni.

LURC23-001, 051, 053, 056, 059 (failed to reach target depth), 060 and 061, are all located on the south-western periphery of the carbonatite and did not intercept any significant mineralisation.

Assay results have also been received relating to short-range variability testing which was completed in the eastern zone of the carbonatite. This drilling comprised 16 RC drillholes (LURC23-251 to 265) at an average spacing of 28m between holes. The program is the basis of an important study to inform the Mineral Resource estimation process and analysis of the results suggests that niobium mineralisation is continuous over shorter-ranges and provides further confidence in the current drill spacing.

Two diamond drillholes were completed as twins (or close-spaced) to RC drillholes. These drillholes returned broadly similar tenor of grades to their RC twins. LUDD23-020 is located approximately 1.4m from LURC23-147 (refer to ASX announcement dated 8 November 2023), and returned 72.1m at 0.5% Nb₂O₅ from 30.9m. LUDD23-024 is located in the north-eastern zone,

approximately 5.9m from LURC23-045 (refer to ASX announcement dated 29 June 2023), and returned 63.2m at 1.6% Nb2O5 from 46.7m, including 25.9m at 3.2% Nb₂O₅.

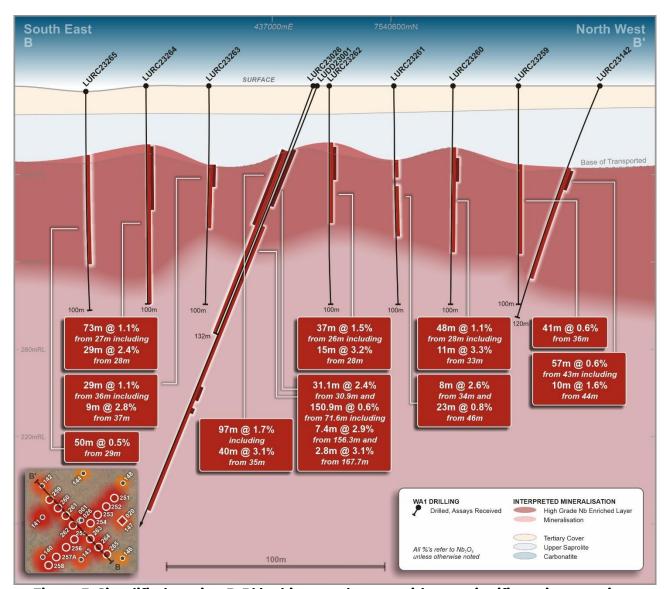


Figure 3: Simplified section B-B' looking south-west with new significant intersections

The orientation of enriched, oxide mineralisation (true width) intersected to date is generally interpreted to be sub-horizontal and coincident with the flat-lying transition between intensely and moderately weathered carbonatite. Drilling to date has focussed on outlining the mineralisation in the weathered zone of the Luni carbonatite. The potential for primary mineralisation in the deeper, unweathered zone is considered significant and will be tested at the appropriate time. The deeper transitional and fresh mineralisation remains poorly constrained, and the orientation of mineralisation in these zones is uncertain at this stage. For details of key intersections refer to the annotated images and Table 1.

Current & Upcoming Field Activities

Diamond drilling re-commenced at Luni in late February and has been progressing well despite intermittent pauses due to weather. To date this year, six drillholes have been completed in the eastern portion of Luni with the dedicated purpose of providing additional samples for planned metallurgical testwork. Drilling will continue with this purpose for the short-term before moving on to extensional and infill drilling. A second drill rig remains on-track to arrive at Luni in April.

Gravity and passive seismic surveys are also currently underway with the aim of infilling and extending coverage of the existing geophysical datasets at Luni and P2. Other field activities including heritage and environmental surveys are scheduled to commence in April.

The remaining RC and diamond drilling samples from the 2023 program are progressing through laboratory analysis and are expected shortly. These final results will form the basis for an initial Mineral Resource estimate which is on-schedule to be reported late calendar Q2-2024.

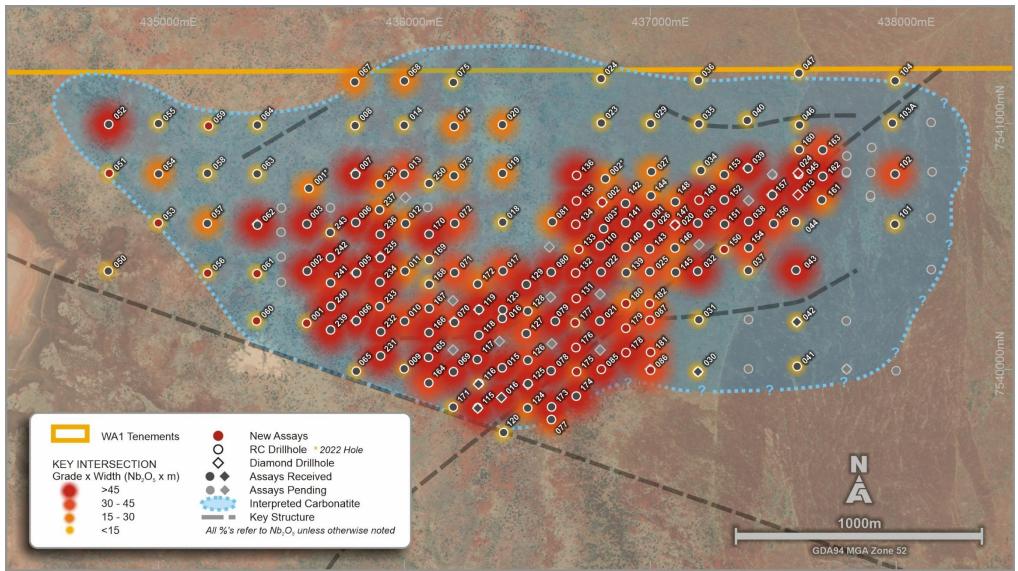


Figure 4: Luni carbonatite plan view of completed grid drilling with grade by width intersections to date

For previously released results refer to ASX announcements dated 6 Feb, 1 May, 5 Jun, 29 Jun, 21 Aug, 28 Aug, 26 Sept, 26 Oct, 8 Nov, 11 Dec 2023, 2 Feb and 21 Feb 2024

Niobium Overview - Market

Niobium is a critical metal with unique properties that make it essential as the world transitions to a low carbon economy.

The primary niobium product is Ferroniobium (FeNb, ~65% Nb) which accounted for 105,000tpa¹ of sales in 2022, representing approximately 90% of niobium product sales. Ferroniobium is primarily utilised as a micro alloy in the steel industry to improve the mechanical properties of steel.

Niobium pentoxide (Nb_2O_5) represents a key growth market, with significant recent developments in lithium-ion battery technology which utilises niobium to substantially reduce charge times down to six minutes while enhancing battery life (up

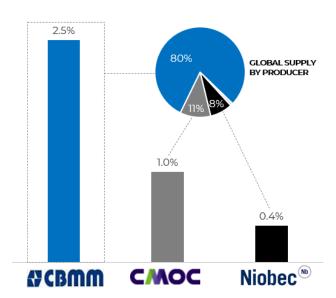


Figure 5: Grade of Key Niobium Producers
Source: See table 3 for full details

to 20,000 charge cycles), an increase of up to 10x compared to existing technologies².

Whilst global supply is concentrated in Brazil (90% of global production), global demand for niobium products is widespread. There are many end users and a growing number of applications.

Niobium Overview - Metallurgy

Niobium production at existing operations currently involves the concentration and further processing of niobium ore to produce a concentrate grading between ~50-60% $\mathrm{Nb_2O_5}^3$. This clean concentrate is then converted to an end-product, typically ferroniobium (FeNb, 65% Nb), via pyrometallurgical processes.

The initial concentration phase is completed via a combination of physical beneficiation (i.e. magnetic separation and desliming) and flotation (one to three stages) to achieve a lower-grade concentrate.

This lower-grade concentrate then typically undergoes an intermediate hydrometallurgical step (one to two stages of leaching), or pyrometallurgical step (electric arc furnace), to remove any remaining deleterious elements and achieve a clean, high-grade concentrate to take forward into conversion.

Of the processing steps, the most critical component is the development of a commercially viable flotation regime which, in the first instance, will show the ability to concentrate (i.e. separate) key niobium bearing minerals. The flotation step is integral as it provides the majority of the uplift from ore-grade to concentrate-grade and is also the step that incurs most of the recovery losses in the overall process.

Overall niobium recoveries at existing operations fluctuate between 30-70%⁴ and are generally regarded as secondary to the optimisation of a commercially viable, low cost, concentration regime.

^{1.} Internal company estimated production figures compiled from data published by CBMM, USGS, and CMOC

^{2.} https://www.batterydesign.net/niobium-in-batteries/accessed on 18 August 2023

^{3.} Gibson. C.E., Kelebek. S, and Aghamirian.M: 'Niobium Oxide Mineral Flotation: A Review of Relevant Literature and the Current State of Industrial Operations' International Journal of Mineral Processing (2015)

^{4.} IAMGOLD Corporation, NI 43-101 Technical Report, Update on Niobec Expansion, December 2013

ENDS

This Announcement has been authorised for market release by the Board of WA1 Resources Ltd.

For further information, please contact:

Investors	Media
Paul Savich	Michael Vaughan
Managing Director	Fivemark Partners
T: +61 8 6478 7866	T: +61 422 602 720
E: psavich@wal.com.au	E: michael.vaughan@fivemark.com.au

Or visit our website at www.wal.com.au

Competent Person Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Ms. Stephanie Wray who is a Member of the Australian Institute of Geoscientists. Ms. Wray is a full-time employee of WA1 Resources Ltd and has sufficient experience which is relevant to the style of mineralisation under consideration to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Ms. Wray consents to the inclusion in the announcement of the matters based on her information in the form and context in which it appears.

Disclaimer: No representation or warranty, express or implied, is made by the Company that the material contained in this announcement will be achieved or proved correct. Except for statutory liability which cannot be excluded, each of the Company, its directors, officers, employees, advisors and agents expressly disclaims any responsibility for the accuracy, fairness, sufficiency or completeness of the material contained in this presentation and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this presentation or any effort or omission therefrom. The Company will not update or keep current the information contained in this presentation or to correct any inaccuracy or omission which may become apparent, or to furnish any person with any further information. Any opinions expressed in the presentation are subject to change without notice.

About WA1

WA1 Resources Ltd is based in Perth, Western Australia and was admitted to the official list of the Australian Securities Exchange (ASX) in February 2022. WA1's shares are traded under the code WA1.

WAl's objective is to discover Tier I deposits in Western Australia's underexplored regions and create value for all stakeholders. We believe we can have a positive impact on the remote communities within the lands on which we operate. We will execute our exploration using a proven leadership team which has a successful track record of exploring in WA's most remote regions.

Forward-Looking Statements

This ASX Release may contain "forward-looking certain statements" which may be based forward-looking on information that are subject to a number of known unknown risks, uncertainties, and other factors that may cause actual results to differ materially from those presented Where the Company implies expresses or expectation or belief as to future results. events or such expectation or belief is expressed in good faith and believed to have a reasonable basis. For a more detailed discussion of such risks and other factors, see the Company's **Prospectus** and Annual Reports, as well as the Company's other ASX Releases. Readers should not place undue reliance on forward-looking information. The Company does not undertake any

obligation to release publicly any revisions to any forward-looking statement to reflect events or circumstances after the date of this ASX Release, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

Table 1: Drilling Results - Significant Intercepts

Hole ID		From	То	Interval	Nb₂O₅	TREO	Nd+Pr	NdPr:TREO	Sc₂O₃	Ta₂O₅	SrO	Th	U	P ₂ O ₅	TiO ₂
noie iD		(m)	(m)	(m)	(%)	(%)	(ppm)	(%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(%)	(%)
		87.0	121.0	34.0	4.79	0.93	2,456	27	44	7	1.4	26	54	19.9	0.1
LUDD23013	incl	87.0	103.0	16.0	7.93	1.43	3,793	26	65	5	1.9	41	59	24.0	0.2
LODDZJOIJ	and	107.0	113.3	6.3	5.66	0.74	1,969	34	41	5	1.6	21	93	25.8	0.1
	and	118.0	119.0	1.0	1.19	0.12	327	27	5	3	0.3	6	6	4.5	0.0
		30.9	103.0	72.1	0.49	0.20	392	21	18	138	0.3	24	15	2.5	0.5
	incl	35.0	36.0	1.0	1.45	0.65	1,338	20	23	234	0.6	50	31	1.3	1.3
LUDD23020	and	40.8	43.4	2.6	1.23	0.55	1,094	23	31	182	0.8	50	50	8.2	1.4
LODD23020	and	88.0	90.0	2.0	1.83	0.55	1,025	20	23	134	0.6	133	112	8.8	0.5
	and	108.0	128.0	20.0	0.34	0.08	142	20	24	49	0.7	8	3	5.5	0.1
	and	133.6	152.1	18.6	0.28	0.11	190	22	16	66	0.5	15	11	2.2	0.3
		31.8	33.0	1.2	0.25	0.13	252	16	24	20	0.1	38	8	0.2	2.0
	and	46.7	109.9	63.2	1.64	0.44	1,123	27	62	7	1.0	86	19	15.4	0.2
LUDD23024	incl	46.7	72.6	25.9	3.18	0.75	1,922	30	106	2	1.7	158	38	26.1	0.2
LUDD23024	and	77.4	84.0	6.6	1.83	0.72	1,846	31	77	1	1.5	121	17	23.7	0.1
	and	113.0	161.8	48.8	0.32	0.11	265	27	6	22	0.4	18	10	3.7	0.0
	incl	136.0	137.0	1.0	1.03	0.17	454	26	3	54	0.4	14	21	6.4	0.0
LURC23051		34.0	35.0	1.0	0.28	0.12	250	20	39	57	0.0	67	7	0.1	0.8
LURCZJUJI	and	68.0	71.0	3.0	0.42	0.08	143	18	15	83	0.0	107	56	0.1	1.1
		39	81	42	1.52	1.59	2,739	18	39	122	0.8	122	101	4.2	3.9
	incl	40	46	6	3.24	2.87	4,920	17	84	52	1.4	316	80	6.1	1.1
	and	50	60	10	2.79	2.49	4,316	17	59	240	1.2	199	173	5.1	2.8
	and	76	79	3	1.72	0.39	870	22	12	205	0.5	35	195	10.1	3.9
LURC23085	and	87	89	2	0.40	0.55	1,074	19	10	165	0.2	35	90	7.4	1.2
	and	93	95	2	0.36	0.23	492	21	9	38	0.2	19	65	6.1	1.4
	and	100	119	19	0.43	0.82	1,488	18	10	195	0.3	38	119	11.9	0.6
	and	124	125	1	0.20	0.36	660	18	10	27	0.2	17	83	7.6	0.7
	and	139	142	3	0.33	0.17	315	19	5	40	0.1	17	44	3.2	0.7
		75	88	13	3.14	1.44	3,104	20	44	218	0.8	77	76	1.2	1.7
LURC23086	incl	75	76	1	1.32	0.38	780	20	35	68	0.2	33	34	0.4	0.9
	and	81	88	7	5.45	2.53	5,485	21	60	384	1.3	127	130	2.1	2.7
LURC23087		56	113	57	0.71	0.21	423	19	38	10	1.3	13	18	10.0	0.5

Hala ID		From	То	Interval	Nb₂O₅	TREO	Nd+Pr	NdPr:TREO	Sc₂O₃	Ta₂O₅	SrO	Th	U	P ₂ O ₅	TiO ₂
Hole ID		(m)	(m)	(m)	(%)	(%)	(ppm)	(%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(%)	(%)
	incl	60	61	1	2.16	0.99	1,990	20	60	19	0.9	49	41	3.5	0.5
	and	66	81	15	1.51	0.49	1,014	20	98	10	3.3	27	40	13.7	1.0
	and	103	104	1	1.04	0.04	71	18	16	3	0.5	3	3	12.8	0.0
		44	96	52	0.96	0.36	834	23	10	19	0.4	15	11	10.4	0.3
	incl	45	52	7	2.19	0.88	2,072	24	39	66	0.8	32	30	4.9	0.8
LURC23131	and	68	73	5	0.93	0.26	617	24	8	14	0.3	17	7	9.4	0.4
LURCZSISI	and	79	84	5	1.00	0.24	575	24	3	12	0.2	14	5	6.4	0.1
	and	88	94	6	1.55	0.32	772	24	3	16	0.2	14	6	8.4	0.1
	and	100	104	4	0.44	0.09	205	22	3	13	0.4	6	3	7.4	0.0
		46	118	72	1.01	0.56	1,381	25	10	155	0.4	69	38	5.7	0.9
	incl	47	63	16	2.58	1.73	4,284	25	34	256	1.3	174	96	9.7	2.8
	and	67	70	3	1.14	0.41	1,020	25	7	248	0.3	65	40	5.9	0.8
LURC23132	and	85	87	2	1.14	0.28	695	25	3	239	0.3	76	51	6.5	0.8
LURCZ3I3Z	and	122	129	7	0.27	0.12	289	25	2	18	0.4	11	6	3.3	0.1
	and	133	141	8	0.39	0.13	299	23	3	30	0.1	10	13	4.0	0.2
	and	148	151	3	0.28	0.13	320	24	2	27	0.1	8	7	4.7	0.2
	and	157	160	3	0.21	0.17	392	23	3	125	0.1	17	20	3.9	0.2
		32	66	34	0.53	0.35	783	22	33	106	0.5	73	53	6.3	0.8
	incl	32	33	1	1.36	0.98	2,339	24	67	322	1.4	167	178	7.5	1.6
LURC23133	and	39	43	4	1.11	0.34	733	22	25	283	0.5	151	155	6.9	0.9
LURCZ3133	and	73	77	4	0.40	0.14	310	22	8	60	0.2	38	12	3.0	0.3
	and	87	112	25	0.33	0.15	333	23	9	44	0.2	40	12	3.6	0.2
	and	121	122	1	0.27	0.16	342	22	12	72	0.2	34	30	4.6	0.4
		35	71	36	2.17	0.58	1,445	24	54	31	1.0	77	50	8.8	0.5
	incl	39	59	20	3.37	0.86	2,159	25	81	44	1.5	113	86	12.1	0.5
LURC23134	and	66	70	4	1.35	0.19	478	25	18	14	0.8	23	7	9.5	0.0
	and	76	87	11	0.24	0.10	223	23	23	1	0.5	11	2	3.6	0.0
	and	91	97	6	0.22	0.09	212	23	20	1	0.6	11	2	4.1	0.0
		37	114	77	0.66	0.25	519	20	58	6	0.4	8	6	3.7	0.1
	incl	37	45	8	1.66	0.79	1,732	20	105	26	1.0	23	14	10.9	0.3
LURC23135	and	49	50	1	1.04	0.41	854	21	37	13	0.4	9	8	6.7	0.5
	and	58	59	1	1.42	0.17	354	21	57	8	0.1	8	4	2.6	0.1
	and	78	79	1	1.59	0.15	342	22	75	7	0.5	6	3	4.1	0.1

Hole ID		From (m)	To (m)	Interval (m)	Nb₂O₅ (%)	TREO (%)	Nd+Pr (ppm)	NdPr:TREO (%)	Sc₂O₃ (ppm)	Ta₂O₅ (ppm)	SrO (%)	Th (ppm)	U (ppm)	P ₂ O ₅ (%)	TiO₂ (%)
	and	102	106	4	1.02	0.15	297	19	72	5	0.3	10	9	1.5	0.1
		45	95	50	1.05	0.68	1,452	21	38	43	0.7	35	41	8.6	0.7
LURC23136	incl	46	56	10	1.74	1.37	2,848	21	75	54	1.3	62	75	13.1	0.7
	and	62	75	13	1.65	0.96	2,094	22	49	60	0.9	45	62	14.3	0.7
		34	35	1	0.34	0.05	74	15	24	46	0.0	30	7	0.1	3.7
	and	45	138	93	1.29	0.53	1,281	23	47	45	0.8	61	65	11.4	8.0
LURC23149	incl	49	80	31	2.88	1.24	2,992	24	113	44	1.9	129	96	25.5	0.7
	and	96	102	6	1.11	0.36	885	25	25	72	0.5	46	32	12.0	0.7
	and	111	114	3	1.07	0.20	449	22	24	84	0.7	55	224	11.0	1.0
LURC23150		41	43	2	0.44	0.56	1,297	22	21	46	0.3	64	16	7.3	1.8
		105	106	1	0.25	0.14	242	17	26	19	0.1	21	10	0.2	1.9
LURC23175	and	153	175	22	0.72	1.36	2,151	17	13	96	0.3	60	61	2.2	1.8
LURCZ31/3	incl	153	159	6	1.41	1.66	2,805	17	15	175	0.5	83	84	2.4	1.0
	and	170	171	1	1.60	2.70	4,210	16	3	146	0.4	121	145	3.5	1.1
		46	129	83	0.59	0.11	243	22	11	3	0.6	6	9	10.8	0.1
	incl	47	49	2	1.41	0.97	2,314	24	48	10	0.8	36	29	2.6	0.3
LURC23176	and	79	81	2	2.02	0.10	202	21	17	7	1.1	10	8	17.4	0.3
	and	85	86	1	1.00	0.14	331	23	12	4	1.8	11	5	25.1	0.1
	and	122	127	5	2.54	0.08	162	21	3	7	0.3	15	12	3.8	0.2
		74	87	13	0.56	0.35	699	21	42	4	1.8	21	36	22.0	0.9
LURC23177	incl	75	77	2	1.61	0.83	1,576	19	104	9	4.6	59	61	13.5	2.7
	and	105	106	1	0.27	0.12	265	23	12	1	1.0	7	9	20.4	0.1
		47	80	33	1.82	0.68	1,277	19	50	20	1.5	35	32	7.3	0.8
	incl	47	52	5	2.13	0.73	1,553	20	45	31	0.9	49	37	2.9	1.3
LURC23178	and	58	66	8	4.99	1.77	3,254	19	104	7	3.9	75	46	11.6	0.6
	and	100	111	11	0.35	0.07	130	18	10	8	0.5	6	13	11.7	0.1
	and	115	116	1	0.22	0.35	492	14	4	11	0.2	14	19	2.9	0.2
		47	82	35	1.03	0.37	771	21	79	10	1.6	21	32	12.8	0.6
LUDCOZIZO	incl	48	50	2	5.34	0.56	1,210	22	178	6	0.8	55	71	3.2	0.7
LURC23179	and	55	62	7	1.52	0.80	1,740	21	173	10	3.4	40	58	11.3	0.8
	and	68	69	1	1.31	0.38	769	20	49	12	2.2	20	26	20.3	0.4
LUDC27100		65	82	17	1.20	0.37	858	23	42	5	0.8	14	23	19.1	0.2
LURC23180	incl	66	73	7	2.10	0.53	1,247	24	65	8	0.9	24	29	12.7	0.3

Hole ID		From	То	Interval	Nb₂O₅	TREO	Nd+Pr	NdPr:TREO	Sc₂O₃	Ta₂O₅	SrO	Th	U	P₂O₅	TiO ₂
Hole ID		(m)	(m)	(m)	(%)	(%)	(ppm)	(%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(%)	(%)
		21	22	1	0.21	0.11	210	20	33	15	0.1	23	7	0.1	1.5
LURC23181	and	36	71	35	1.00	0.41	750	19	47	18	1.4	24	41	8.0	0.8
LURCZSIOI	incl	41	56	15	1.83	0.61	1,127	18	85	22	2.5	35	62	9.4	1.1
	and	75	87	12	0.28	0.11	209	20	9	11	0.3	7	15	8.3	0.4
		51	69	18	0.86	0.23	514	22	38	4	1.1	13	26	7.3	0.2
LURC23182	incl	52	59	7	1.55	0.35	810	23	68	7	1.7	23	54	9.6	0.3
	and	79	82	3	0.29	0.11	255	24	5	3	0.2	3	2	4.4	0.0
		27	100	73	0.67	0.24	516	22	44	18	0.5	19	18	7.4	0.4
	incl	28	29	1	1.09	0.05	80	15	23	87	0.0	33	7	0.1	3.0
LURC23251	and	34	40	6	1.21	0.75	1,561	21	158	64	1.1	46	79	20.8	1.3
LURCZJZJI	and	74	75	1	1.11	0.15	347	23	14	12	0.1	17	6	3.9	0.2
	and	81	89	8	1.45	0.17	384	22	21	8	0.2	23	9	4.7	0.2
	and	95	96	1	1.03	0.18	414	23	43	9	0.2	22	13	3.6	0.2
		27	100	73	0.66	0.26	577	21	50	15	0.7	22	18	7.5	0.5
	incl	30	31	1	1.14	0.65	1,493	23	55	122	0.8	60	54	4.7	1.7
LURC23252	and	35	43	8	1.88	1.21	2,812	23	201	19	1.4	89	79	25.6	1.0
	and	60	61	1	1.32	0.19	392	21	26	104	0.2	40	26	8.4	0.5
	and	89	92	3	0.97	0.07	153	20	14	12	0.6	13	3	3.0	0.1
		26	100	74	1.10	0.50	1,087	22	62	16	0.5	16	15	9.4	0.4
	incl	29	46	17	2.31	1.19	2,613	22	137	6	1.5	37	44	22.9	0.6
LURC23253	and	58	60	2	1.98	0.34	809	24	25	26	0.3	22	6	9.3	0.3
LORCZJZJJ	and	64	73	9	1.34	0.23	518	23	23	53	0.2	13	7	6.0	0.3
	and	79	80	1	1.03	0.34	773	22	67	11	0.5	7	6	9.3	0.1
	and	89	91	2	1.36	0.42	924	22	58	25	0.5	13	8	8.3	0.1
		27	62	35	0.97	0.35	713	17	57	11	0.6	15	16	3.7	0.3
LURC23254	incl	29	37	8	3.07	1.16	2,467	21	134	18	1.4	40	51	13.6	0.9
	and	74	82	8	0.30	0.03	45	13	17	1	0.5	3	1	0.0	0.0
		29	30	1	0.21	0.06	98	16	15	28	0.0	23	5	0.2	1.9
LURC23255	and	61	100	39	2.21	0.20	371	19	105	34	0.7	30	34	6.3	0.3
LURCZJZJJ	incl	62	81	19	3.36	0.29	550	19	160	42	1.0	44	46	7.8	0.4
	and	85	100	15	1.24	0.11	215	19	54	32	0.5	18	26	5.3	0.1
LURC23256		27	67	40	1.34	0.48	1,095	22	72	40	0.7	51	28	9.1	0.9
LURCZJZJU	incl	32	52	20	2.30	0.77	1,757	23	114	68	1.1	81	46	13.3	1.3

		From	То	Interval	Nb₂O₅	TREO	Nd+Pr	NdPr:TREO	Sc₂O₃	Ta₂O₅	SrO	Th	U	P ₂ O ₅	TiO ₂
Hole ID		(m)	(m)	(m)	(%)	(%)	(ppm)	(%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(%)	(%)
	and	71	84	13	0.22	0.16	382	23	28	10	0.2	11	6	5.2	0.3
	and	95	100	5	0.26	0.14	309	22	12	16	0.2	18	12	5.9	0.3
1110027257		27	41	14	0.40	0.60	1,174	19	19	92	0.4	68	45	3.9	2.0
LURC23257	and	45	46	1	0.23	0.34	544	16	5	62	0.1	29	39	1.5	0.0
		26	100	74	0.46	0.90	1,302	15	13	114	0.2	49	47	2.0	0.5
LURC23257A	incl	33	35	2	1.20	0.35	664	19	20	147	0.5	79	89	2.8	0.7
	and	56	57	1	1.28	1.00	1,568	16	13	308	0.3	89	147	6.7	1.0
		26	72	46	0.97	0.54	1,002	20	22	74	0.4	67	47	6.3	0.4
LURC23258	incl	30	39	9	3.16	0.82	1,839	22	53	53	1.2	193	118	16.5	0.8
LURCZ3Z36	and	76	100	24	0.38	0.22	450	21	8	150	0.1	43	78	4.3	0.2
	incl	78	79	1	1.17	0.24	497	21	9	463	0.2	85	326	5.0	0.4
		29	30	1	0.20	0.11	191	17	16	8	0.1	18	3	0.2	0.9
	and	36	77	41	0.58	0.28	584	22	57	4	0.4	13	7	4.7	0.1
LURC23259	incl	37	41	4	1.67	0.66	1,261	20	162	18	0.7	69	31	4.2	0.4
	and	47	48	1	2.50	0.36	806	23	51	1	0.9	11	10	9.1	0.3
	and	84	100	16	0.44	0.03	52	17	34	0	0.5	4	2	0.1	0.0
		28	76	48	1.08	0.38	825	21	91	5	0.9	18	20	6.6	0.3
LURC23260	incl	33	44	11	3.26	1.17	2,551	22	250	5	2.7	52	65	20.6	0.6
	and	82	92	10	0.26	0.06	87	16	36	1	0.4	9	2	0.1	0.0
		26	30	4	0.34	0.14	254	18	21	14	0.1	22	7	0.3	1.2
	and	34	42	8	2.60	0.77	1,654	21	146	12	1.4	30	30	19.0	0.4
	incl	34	40	6	3.29	0.89	1,946	22	166	15	1.8	36	36	23.8	0.4
LURC23261	and	46	69	23	0.78	0.19	421	22	39	5	0.4	7	3	4.8	0.1
	incl	46	57	11	1.13	0.22	489	22	42	4	0.4	8	4	6.1	0.1
	and	75	81	6	0.22	0.08	160	19	32	1	0.5	10	1	1.1	0.0
	and	89	93	4	0.38	0.06	130	20	39	2	0.6	10	1	1.3	0.0
		26	63	37	1.54	0.38	715	18	92	9	0.6	39	27	5.0	0.3
	incl	28	43	15	3.17	0.82	1,575	19	173	15	0.9	86	58	11.3	0.6
	and	48	49	1	1.11	0.17	310	19	49	6	0.2	9	7	2.5	0.1
LURC23262	and	69	71	2	0.30	0.02	34	18	17	1	0.7	7	2	0.1	0.0
	and	75	79	4	0.22	0.01	22	18	16	1	0.6	5	1	0.0	0.0
	and	86	87	1	0.20	0.02	25	17	24	0	0.4	1	1	0.1	0.0
	and	93	100	7	0.50	0.02	34	18	19	1	0.7	6	2	0.0	0.0

Hole ID		From (m)	To (m)	Interval (m)	Nb₂O₅ (%)	TREO (%)	Nd+Pr (ppm)	NdPr:TREO (%)	Sc₂O₃ (ppm)	Ta₂O₅ (ppm)	SrO (%)	Th (ppm)	U (ppm)	P₂O₅ (%)	TiO₂ (%)
	incl	94	95	1	1.08	0.03	47	18	19	2	0.7	16	5	0.0	0.0
		36	65	29	1.08	0.14	260	18	82	18	0.5	24	22	1.4	0.2
1110027207	incl	37	46	9	2.78	0.36	667	19	199	33	0.4	52	47	3.8	0.6
LURC23263	and	76	100	24	0.42	0.05	83	18	36	22	0.6	21	14	0.4	0.0
	incl	77	78	1	1.06	0.03	54	18	20	99	0.7	102	54	0.1	0.1
LUDC27267		27	100	73	1.12	0.43	786	19	67	33	0.7	35	47	4.6	0.4
LURC23264	incl	28	57	29	2.37	0.95	1,721	18	133	50	1.0	71	92	9.9	0.7
		29	79	50	0.47	0.21	349	18	15	104	0.2	35	15	2.1	0.7
	incl	34	36	2	1.31	0.32	520	17	25	244	0.7	84	50	4.5	1.2
	and	69	70	1	1.01	0.16	250	16	21	62	0.2	67	27	1.5	0.6
LURC23265	and	83	100	17	0.49	0.11	237	19	21	13	0.4	12	7	4.2	0.2
	incl	84	85	1	1.05	0.12	246	20	22	16	0.2	16	9	2.1	0.3
	and	94	95	1	1.12	0.13	308	23	25	30	0.5	13	8	4.2	0.2
	and	99	100	1	1.08	0.17	389	22	31	24	0.5	8	7	5.2	0.1
LURCD23002		43.5	58.7	15.2	1.51	0.47	1,005	27	94	7	0.5	31	18	6.6	0.2
LURCD23002	incl	44.7	53.5	8.8	2.86	0.73	1,604	27	136	10	0.7	46	28	11.0	0.2

Note: 1: Results not displayed above are considered to contain no significant mineralisation.

Note 2: 'TREO' is an abbreviation of Total Rare Earth Oxides, representing a combined group of 16 elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Sc). Note 3: LURCD23-002 had the upper part (0-29m) of hole completed with RC drilling and the lower part (29-199.3m) completed with diamond drilling.

Table 2: Collar locations for drillhole results within this release

			5 IOI GIIIIII				
Hole ID	Drill	Fasting Northing		RL	Dip	Azimuth	Depth
Hole ID	Type	Lasting	Northing	(m)	(Degrees)	(Degrees)	(m)
LUDD23013	DD	437600	7540710	382	-60	178	132.8
LUDD23020	DD	437100	7540588	381	-60	179	152.1
LUDD23024	DD	437601	7540799	382	-60	180	161.8
LURC23001	RC	435603	7540188	379	-60	180	138
LURC23051	RC	434800	7540798	380	-60	181	120
LURC23053	RC	435000	7540596	380	-60	180	120
LURC23056	RC	435200	7540391	380	-60	180	120
LURC23059	RC	435204	7540990	381	-60	180	45
LURC23060	RC	435399	7540198	379	-60	180	120
LURC23061	RC	435401	7540390	379	-60	180	120
LURC23085	RC	436801	7540000	380	-60	180	142
LURC23086	RC	437001	7539997	380	-60	180	88
LURC23087	RC	436999	7540200	380	-60	180	118
LURC23131	RC	436699	7540289	380	-90	-	112
LURC23132	RC	436696	7540392	380	-89	197	160
LURC23133	RC	436709	7540488	380	-90	-	124
LURC23134	RC	436697	7540590	381	-90	-	100
LURC23135	RC	436700	7540686	381	-90	-	118
LURC23136	RC	436701	7540789	381	-90	-	95
LURC23149	RC	437199	7540689	381	-59	181	138
LURC23150	RC	437301	7540488	381	-60	177	74
LURC23175	RC	436700	7539991	380	-90	-	178
LURC23176	RC	436698	7540089	380	-90	-	130
LURC23177	RC	436694	7540190	380	-90	-	106
LURC23178	RC	436901	7540069	380	-90	-	118
LURC23179	RC	436901	7540168	380	-90	-	82
LURC23180	RC	436901	7540268	380	-90	-	82
LURC23181	RC	437001	7540070	380	-90	-	88
LURC23182	RC	436997	7540268	380	-90	-	88
LURC23251	RC	437081	7540645	381	-90	-	100
LURC23252	RC	437060	7540624	381	-90	-	100
LURC23253	RC	437039	7540603	381	-90	-	100
LURC23254	RC	437021	7540582	381	-90	-	100
LURC23255	RC	436980	7540542	381	-90	-	100
LURC23256	RC	436960	7540522	381	-90	-	100
LURC23257	RC	436939	7540500	380	-90	-	46
LURC23257A	RC	436935	7540497	381	-90	-	100
LURC23258	RC	436916	7540477	381	-90	-	100
LURC23259	RC	436919	7540641	381	-90	-	100
LURC23260	RC	436939	7540620	381	-90	-	100
LURC23261	RC	436959	7540601	381	-90	-	100
LURC23262	RC	436977	7540577	381	-90	-	100
LURC23263	RC	437020	7540543	381	-90	-	100
LURC23264	RC	437041	7540522	381	-90	-	100
LURC23265	RC	437062	7540504	378	-90	-	100
LURCD23002	RC/DD	436804	7540680	381	-61	179	199.3

Table 3: Grade of key niobium producers

	Deposit Size	Nb₂O₅	Contained Nb ₂ O₅
CBMM (Araxa)	(Mt)	(%)	(kt)
Measured	Unknown*	Unknown*	Unknown*
Indicated	Unknown*	Unknown*	Unknown*
Inferred	Unknown*	Unknown*	Unknown*
Total	462	2.48%	11,458
Source: US Geological Survey published 2 *Measured, Indicated and Inferred resou			n.pdf>
Magris Resources (Niobec)	(Mt)	(%)	(kt)
Measured	286	0.44%	1,252
Indicated	344	0.40%	1,379
Inferred	68	0.37%	252
Total	698	0.41%	2,883
Source: IAMGOLD NI 43-101 Report availa Resource as at 31 December 2012 (NI 43-1	ble at <https: www.miningda<br="">01 Compliant)</https:>	taonline.com/reports/Niobec	:_12102013_TR.pdf>
CMOC (Catalao II)	(Mt)	(%)	(kt)
Oxide			
Measured	0.3	0.86%	2
Indicated	0.1	0.74%	1
Inferred	1.3	0.83%	11
Total	1.7	0.83%	14
Fresh Rock (Open Pit)			
Measured	0	0.00%	0
Indicated	27	0.95%	258
Inferred	13	1.06%	138
Total	40	0.99%	396
Fresh Rock (Underground)			
Measured	0.0	0.00%	0
Indicated	0.2	0.89%	2
Inferred	6.3	1.24%	78
Total	6.5	1.23%	80
Total (All)	48.4	1.01%	490

Source: China Molybdenum Co. Ltd: Major Transaction Acquisition of Anglo American PLC's Niobium and Phosphate Businesses available at https://www1.hkexnews.hk/listedco/listconews/sehk/2016/0908/ltn20160908840.pdf> Resource as at 30 June 2016 (JORC 2012 Compliant)

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Section 1 Sampling Te	
CRITERIA	COMMENTARY
Sampling techniques	 Geological information referred to in this ASX Announcement was derived from Reverse Circulation (RC) and Diamond drilling programs. For most RC metres drilled a 2-3kg sample (split) was sampled into a calico bag via the rig mounted cone splitter. For samples where splitting by cone splitter was not suitable, a procedure was developed whereby the entire sample was collected and sent to the lab for later crushing and splitting. This replaced earlier field sampling methods for wet/damp RC samples. RC samples were collected over 1m intervals. Core samples were collected with a diamond drill rig and were mainly HQ3 or NQ2 core diameter. The core was logged and photographed onsite and then transported to ALS Perth for cutting and sampling. Diamond holes were sampled to major geological boundaries, or through broad mineralised intervals sampling was on a nominal 1m basis. At ALS the core was cut and sampled by two methods being either: a) competent HQ3 core was quarter-sampled, with one quarter sent for assay and the remainder retained, or; b) friable core was whole or half core sampled.
Drilling techniques	 RC holes were drilled with a diameter of 146mm or 143mm. Diamond holes were drilled with HQ3 (61mm) or NQ2 (51mm) rods. HQ core was triple tubed to enable increased core recovery.
Drill sample recovery	 RC sample recoveries were visually estimated for each metre and recorded as dry, moist or wet in the sample table. Recoveries for dry samples were generally good. Where RC drillholes encountered water, samples were recorded as moist, with some intervals having less optimal recovery through the mineralised zone. These samples are still considered to be reasonably representative based on review of the quality control data and observations of the onsite geologist. Diamond core recovery was generally moderate through the mineralised zone and the holes were triple tubed from surface to aid the preservation of the core integrity, see table below.

CRITERIA	COMMENTARY											
						Interval	Core loss					
		HoleID	Incl./ and	From (m)	To (m)	(m)	(m)					
				87.0	121.0	34.0	1.8					
		LUDD23013	incl. and	87.0 107.0	103.0 113.3	16.0 6.3	1.8					
			and	118.0	119.0	1.0	0					
				30.9	103.0	72.1	0.3					
			incl	35.0	36.0	1.0	0					
		LUDD23020	and and	40.8 88.0	43.4 90.0	2.6	0					
			and	108.0	128.0	20.0	0					
			and	133.6	152.1	18.6	0					
				31.8	33.0	1.2	0					
			and incl	46.7 46.7	109.9 72.6	63.2 25.9	10.9 4.9					
		LUDD23024	and	77.4	84.0	6.6	4.4					
			and	113.0	161.8	48.8	0					
			incl	136.0	137.0	1.0	0					
	 Less optimal 											
						_	undw	ater and where				
	the units are	highly-v	veathe	ered ar	nd fria	ble.						
	The Compan	y is cont	inuous	sly ass	essing	and o	develo	ping				
	improvemen	nts to its	drilling	g proce	edures	s with	differe	ent				
	methodolog	ies trialle	ed to e	nhanc	e sam	ple re	covery	for the drilling				
						•		S				
Logging	■ The RC rock o	conditions encountered. The RC rock chips were logged for geology, alteration, and										
959		mineralisation by the Company's geological personnel. Drill logs										
	were recorde							ici. Driii iogs				
		_	-					presentation of				
		-	-					vals in the chip				
		e criips i	etairie	u ioi a	111 11111 2	ampi	e ii itei	vais iii tile chip				
	trays.	on al con	m mlaci	oro	ر ما د م	- d - n	+ 6 0 0 1	ill pad by				
	 The metre int 				-			-				
	handheld pXI		ISL WIL	n logg	ing ar	ia the	identi	lication of				
	mineralisation											
	 Detailed logg 											
Sub-sampling	 A majority of 		oles we	ere col	lected	from	the dr	ill rig splitter				
techniques and	into calico ba	_										
sample	In all holes th		•				•					
preparation	composited b	by the sit	e geol	ogist iı	nto 4r	n inte	rvals fr	om spoil piles				
-	using a scoop).										
	Single metre	samples	were	collect	ed an	d assa	yed fr	om approx. 16m				
	depth or as d	etermine	ed by t	he site	e geol	ogist.						
	During the pr	ogram, t	the pro	ocedur	e was	upda	ted so	that RC				
	samples in th											
	•							splitter had the				
						_		ning (-2mm) and				
	sub-sampling through a riffle splitter. Coarse crushed sampled											
	duplicates were taken to monitor splitting performance.											
	Industry prep											
	frequency of		•									
	-		_		-		ands h	eing either: a)				
								e quarter sent				
			-		-			· ·				
			amder	retain	ieu, or	, w) fria	anie co	ore was whole or				
	half core sam	•	.1 .		1 1			J. Sec				
	Where triable	diamon	d core	was v	vhole	core s	ample	d, it was single				

CRITERIA	COMMENTARY
	 pass crushed to 2mm and rotary split, 25% was submitted for assay and 75% retained for future metallurgical test work. Coarse crush duplicates were taken to monitor splitting performance. All samples were submitted to ALS Laboratories for elemental analyses via Lithium Borate Fusion (ME-MS81D) with overlimit determination via ALS method ME-XRF30. Core and RC samples are considered appropriate for use in resource estimation.
Quality of assay data and laboratory tests	 All samples were submitted to ALS Laboratories in Perth for select element analyses via Lithium Borate Fusion (ME-MS81D) with overlimit determination via ALS method ME-XRF30. Standard laboratory QAQC was undertaken and monitored by the laboratory and then by WA1 geologists upon receipt of assay results. Certified Reference Materials (CRMs) were inserted at a rate of one for every 20 samples. The CRM results have passed an internal QAQC review. Blanks were also inserted to identify any contamination. Some minor contamination has been noted with ongoing investigation by the Company and the laboratory to identify and mitigate any potential issues or sources. The laboratory standards have been reviewed by the company and have passed internal QAQC checks.
Verification of sampling and assaying	 Sample results have been merged by the Company's database consultants. Results have been uploaded into the Company database, checked and verified. Analytical QC is monitored assessing internal and laboratory inserted standards as well as repeat assays. Any variance in grade from the twin drilling to date is expected and may be attributable to a combination of short-range geological and grade variability, as well as differences in drilling, sampling, core recovery, preparation methods, and downhole sample location control. Performance of coarse crush duplicates indicate that the splitter of the material in the laboratory performed well. Mineralised intersections have been verified against the downhole geology. Logging and sampling data was recorded digitally in the field. Significant intersections are inspected by senior Company geologists. Previously selected samples have been sent to Intertek for umpire laboratory analysis with results showing a strong correlation to the primary laboratory.
Location of data points	 Drillhole collars were initially surveyed and recorded using a handheld GPS. Drill collars are then surveyed with DGPS system at appropriate stages of the program. All co-ordinates are provided in the MGA94 UTM Zone 52 co-ordinate system with an estimated horizontal accuracy of ±0.008m and an estimated vertical accuracy of ±0.015m for the DGPS system. Azimuth and dip of the drillholes is recorded after completion of the hole using a gyro. A reading is taken every 30m with an assumed

CRITERIA	COMMENTARY
Data spacing and	accuracy of ±1 degree azimuth and ±0.3 degree dip. See drillhole table for hole position and details.
distribution	 Data spacing is actively being assessed and will be considered for its suitability in mineral resource estimation. Drillhole spacing is mostly in the range of 200x200m to 100x100m spacing east-west and north-south. Closer spaced drilling to test variability was done at 28m spacings in a NW and SW direction over 240m and 270m.
Orientation of data in relation to geological structure	 The orientation of the oxide-enriched mineralisation is interpreted to be sub-horizontal and derived from weathering of primary mineralisation. The orientation of primary mineralisation is poorly constrained due to the limited number of drillholes that have penetrated to depth. See drillhole table for hole details and the text of this announcement for discussion regarding the orientation of holes. Drillholes were designed based on interpretation from modelled geophysical data and results from drilling to date. Oxide mineralisation is currently interpreted as a sub horizontal oxide unit.
Sample security	 Sample security is not considered a significant risk with WAI staff present during collection. All geochemical samples were collected and logged by WAI staff, and delivered to ALS Laboratories in Perth or Adelaide.
Audits or reviews	 The program and data is reviewed on an ongoing basis by senior WAI personnel.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

CRITERIA	COMMENTARY
Mineral tenement and land tenure status	 All work completed and reported in this ASX Announcement was completed on E80/5173 which is 100% owned by WA1 Resources Ltd. The Company also currently holds two further granted Exploration Licences and nine Exploration Licence Applications within the area of the West Arunta Project.
Exploration done by other parties	 The West Arunta Project has had limited historic work completed within the Project area, with the broader area having exploration focused on gold, base metals, diamonds and potash. Significant previous explorers of the Project area include Beadell Resources and Meteoric Resources. Only one drill hole (RDD01) had been completed within the tenement area by Meteoric in 2009 (located approximately 17km southwest of the Luni deposit), and more recently additional drilling nearby the Project has been completed by Encounter Resources Ltd. Most of the historic work was focused on the Urmia and Sambhar Prospects with historic exploration (other than RDD01) being limited to geophysical surveys and surface sampling. Historical exploration reports are referenced within the WA1 Resources Ltd Prospectus dated 29 November 2021 which was released by ASX on 4 February 2022.

00/750/4	
CRITERIA	COMMENTARY
	 Encounter Resources are actively exploring on neighbouring tenements and have reported intersecting similar geology, including carbonatite rocks.
Geology	 The West Arunta Project is located within the West Arunta Orogen, representing the western-most part of the Arunta Orogen which straddles the Western Australia-Northern Territory border. Outcrop in the area is generally poor, with bedrock largely covered by Tertiary sand dunes and spinifex country of the Gibson Desert. As a result, geological studies in the area have been limited, and a broader understanding of the geological setting is interpreted from early mapping as presented on the MacDonald (Wells, 1968) and Webb (Blake, 1977 (First Edition) and Spaggiari et al., 2016 (Second Edition)) 1:250k scale geological map sheets. The West Arunta Orogen is considered to be the portion of the Arunta Orogen commencing at, and west of, the Western Australia-Northern Territory border. It is characterised by the dominant west-north-west trending Central Australian Suture, which defines the boundary between the Aileron Province to the north and the Warumpi Province to the south. The broader Arunta Orogen itself includes both basement and overlying basin sequences, with a complex stratigraphic, structural and metamorphic history extending from the Paleoproterozoic to the Paleozoic (Joly et al., 2013).
Drill hole	Refer to Table 2 for drill hole details.
Information	
Data aggregation methods	 Selected significant intercepts are weight averaged by length and calculated using a 0.2% Nb₂O₅ lower cut off, with a maximum of 3m of consecutive internal dilution. The <i>Including</i> intersections were calculated using a 1% Nb₂O₅ lower cut off, with a maximum of 3m of consecutive internal dilution. Core loss is treated as an interval with the same average grade as the overall intersection. Namely, average grade of intersection is equal to sum of grade x interval lengths assayed divided by the sum of the lengths of the intervals that were assayed. Then the intersection width is the from depth minus the start depth of the intersection.
	No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	The oxide mineralisation intersected is sub-horizontal therefore drilling intercepts are interpreted be at or close-to true thickness. The orientation of the transitional and primary mineralisation remains poorly constrained and true thickness of the intercepts remain unknown.
Diagrams	Refer to figures provided within this ASX announcement.
Balanced	All relevant information has been included and provides an
reporting	appropriate and balanced representation of the results.
Other substantive exploration data	 All meaningful data and information considered material and relevant has been reported. Mineralogical assessments have been undertaken on a select number of samples.

CRITERIA	COMMENTARY
Further work	 Further interpretation of drill data and assay results will be completed over the coming months, including ongoing petrographic and mineralogical analysis. Planning and implementation of further exploration drilling is in progress and analysis of existing drill samples is ongoing. An initial Mineral Resource estimate for the Luni deposit is planned to be completed in the next quarter. More detailed quantification and examination of the deposit is under way. Preliminary metallurgical and engineering factors are under consideration and in progress. Work on the project is ongoing on multiple fronts.