

ASX: MTM

Phone +61 8 6391 0112 info@mtmmetals.com.au ABN 27 645 885 463

mtmcriticalmetals.com.au

ASX RELEASE

8 April 2024

Geochemical anomalies at Montviel South REE-Nb Project

Highlights:

- Surface geochemical sampling results highlight rare earth element (REE) and niobium (Nb) anomalies at the Montviel South project.
- The anomalies indicate the potential for additional carbonatite-hosted mineralisation adjacent to the Montviel REE-Nb deposit.
- The Montviel South area is 10km from the Company's Pomme REE-Nb project in Quebec, highlighting the regional prospectivity of the Company's claims in Quebec, Canada.
- A follow up exploration program at Montviel South is planned for summer field season, in conjunction with further work at the Pomme project.

MTM Critical Metals Limited (ASX:MTM) (MTM or the Company) has received the results of a surface geochemical sampling program completed in late 2023 at the Montviel South REE-Nb project located in Québec, Canada.

Results showed significant surface geochemical anomalies defined by the total rare earth element (TREE) values (Figure 1). Broad anomalies greater than 1,000 ppb TREE have been defined and locally the sampling has defined zones from 2,500 ppb TREE up to a maximum of 7,800 ppb TREE. Elevated soil sample grades were particularly evident in the north and north-eastern part of the claim block, consistent with the interpreted extent of the Montviel alkali intrusive complex and associated carbonatites.

Surface geochemical sampling at Montviel South was completed during the latter part of the 2023 summer field season. A total of 144 samples were collected, on a nominal 200 by 400 metre grid spacing. Assays were completed by SGS Canada, utilising its proprietary MMI technique.

The Company is assessing a follow-up exploration program at Montviel South. Further soil sampling and trenching (if appropriate) will be undertaken during the summer field season in Quebec. A high-resolution drone geophysical survey is also planned to obtain additional magnetic data for the project area.

Anticipated results of this work program should be sufficient to identify drilling targets and develop a plan for an initial drilling program plan. Drilling will be designed to discover new areas of prospective carbonatite-hosted REE-Nb mineralisation.

MTM Managing Director, Mr Lachlan Reynolds said "The geochemical anomalies highlighted by the sampling at the Montviel South project confirms that the area is geologically prospective for carbonatite-hosted REE-Nb mineralisation, similar to the nearby Montviel deposit and MTM's Pomme REE-Nb project.

"This part of the Montviel intrusive complex has not been comprehensively explored and the available exploration results show that the claims contain anomalous REE, niobium and other elements indicative of carbonatite-hosted mineralisation.

"The Company is currently considering options for the next phase of exploration at Montviel South, which will be undertaken during the summer field season in Quebec, in conjunction with our work program at the Pomme Project."

Figure 1: Interpreted geological map of the Montviel South claim block showing soil geochemistry TREE results.

Geochemical anomalies were noted for a number of other elements, including niobium and base metals (copper, lead, zinc, nickel and manganese). However, these zones are not as continuous or widespread as the TREE anomalies.

Montviel South REE-Nb Project

The Montviel South REE-Nb project is located 10km south of MTM's Pomme REE-Nb project (Figure 2) where a recently completed maiden diamond drilling has confirmed the widespread presence of carbonatite-hosted REE and Nb mineralisation, locally extending to 500 metres below surface and open at depth.

The Montviel South area is known to contain highly anomalous REE's in rock outcrops and glacial boulders identified during previous exploration programs (*refer to MTM ASX announcement dated 3 October 2023*).

Figure 2: Location of the Montviel South Project in southern Quebec, Canada

This announcement has been authorised for release by the Board of Directors.

For further information, please contact:

Investors Craig Sainsbury Automic Markets +61 428 550 499 craig.sainsbury@automicgroup.com.au Media Tristan Everett Automic Markets +61 403 789 096 tristan.everett@automicgroup.com.au

About MTM Critical Metals Limited

MTM Critical Metals Limited is an exploration company which is focused on searching for niobium (Nb) and rare earth elements (REE) in Western Australia and Québec. Additionally, the Company has acquired an option to exclusively negotiate the licencing rights to an early-stage processing technology for REE and precious metals known as Flash Joule Heating, which has been developed by researchers at Rice University, USA. MTM's West Arunta Nb-REE licences lie within one of Australia's critical metal exploration hotspots where over \$60m in exploration expenditure has been collectively invested in the district by a number of ASX companies including WA1 Resources Limited (ASX:WA1), Encounter Resources Limited (ASX:ENR), Rio Tinto Limited (JV with Tali Resources Pty Ltd) (ASX:RIO), CGN Resources Limited (ASX:CGR), and IGO Limited (ASX:IGO). The Company also holds tenements in other prolific and highly prospective mineral regions in Western Australia. The Mukinbudin Nb-REE Project comprises two exploration licences located 250km northeast of Perth in the South West Mineral Field of Western Australia. The East Laverton Projects is made up of a regionally extensive package of underexplored tenements prospective for REE, gold and base metals. The Mt Monger Gold Project comprises an area containing known gold deposits and occurrences in the Mt Monger area, located ~70km SE of Kalgoorlie and immediately adjacent to the Randalls gold mill operated by Silver Lake Resources Limited. In Québec, the Pomme Project is a known carbonatite intrusion that is enriched in REE and niobium and is considered to be an extremely prospective exploration target adjacent to a world class REE resource (Montviel deposit). The Company has an experienced Board and management team which is focused on discovery to increase value for shareholders.

Competent Person's Statement

The information in this announcement that relates to Exploration Results is based on and fairly represents information compiled by Mr Lachlan Reynolds. Mr Reynolds is the Managing Director of MTM Critical Metals Limited and is a member of both the Australasian Institute of Mining and Metallurgy and the Australasian Institute of Geoscientists. Mr Reynolds has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Reynolds consents to the inclusion in this announcement of the matters based on information in the form and context in which they appear.

Previous Disclosure

The information in this announcement is based on the following MTM Critical Metals Limited ASX announcements, which are all available from the MTM Critical Metals Limited website www.mtmcriticalmetals.com.au and the ASX website www.asx.com.au.

Date	Description
3 October 2023	New deal to expand MTM's rare earths acreage in Canada

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Cautionary Statement Regarding Values & Forward-Looking Information

The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. MTM Critical Metals does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forward-looking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forward-looking statements are based upon estimates and opinions at the date the statements are made. MTM Critical Metals undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of MTM Critical Metals from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. MTM Critical Metals, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein.

APPENDIX I – Geochemical Sampling Results

Sample ID	East	North	Се	Dy	Er	Eu	Gd	La	Nb	Nd	Pr	Sm	Tb	Y	Yb	TREE
Sample ID	EdSt	NOTUT	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
23MSGC001	385488	5515759	392	46.6	21.3	14.6	49	188	26.5	254	55.9	52	8.4	189	14.1	1285
23MSGC002	385270	5515778	225	23.4	11.4	6	17.5	86	11.8	86	22.3	20	3.2	86	9.8	597
23MSGC003	385100	5515772	1300	83.8	31	39.2	107	621	32.4	783	195	138	16.2	290	17.7	3622
23MSGC004	384889	5515770	852	34.3	15.5	11	34.6	230	25.1	208	56.6	41	5.7	122	12.2	1623
23MSGC005	384930	5516124	39	4.6	3.3	1.3	3.2	21	11.1	19	4.7	4	0.7	19	3.7	124
23MSGC006	385089	5516114	36	3.3	2	0.8	2.3	21	31.8	16	4.4	3	0.4	12	2.4	104
23MSGC007	385288	5516121	491	63	31.2	19	50.7	230	5.1	343	80.6	59	9	287	21.4	1685
23MSGC008	385482	5516111	98	16.6	11.1	4	12.2	40	36.4	48	11.4	12	2.4	64	8.8	329
23MSGC009	385686	5516123	42	8.8	7.5	1.2	4.5	17	1.7	17	3.9	4	1	39	6.4	152
23MSGC010	385895	5516119	115	38.3	25	5.7	21.2	61	10.9	80	18.2	18	5	196	19.9	603
23MSGC011	385893	5515762	371	55.9	36.1	9.4	33.9	168	31.6	196	48	36	7.8	240	28.1	1230
23MSGC012	385696	5515757	169	24.5	13.4	6.7	18.8	82	49.7	95	23.6	20	3.8	102	8.9	568
23MSGC013	385697	5516515	807	124	96.8	22.5	91.1	314	1.5	397	96.8	88	15.5	697	91.3	2841
23MSGC014	386869	5516538	300	97	76.2	11.5	52.9	119	2	182	41.8	47	11	556	70.4	1565
23MSGC015	387090	5516519	471	133	87.2	22.3	106	271	1.3	394	86.6	94	18.2	764	79.8	2527
23MSGC016	387283	5516517	16	5.9	11.2	0.6	1.7	7	2.7	7	2.2	2	0.4	30	17.3	101
23MSGC017	387495	5516498	304	17.7	8.3	5.3	16	196	40.9	108	31.4	20	2.6	68	6.8	784
23MSGC018	387690	5516510	105	14.4	14.6	1.6	6.3	44	27	34	9.2	7	1.5	72	13.8	323
23MSGC019	386037	5517715	871	216	137	37	192	489	<0.5	679	147	166	29.6	1170	128	4262
23MSGC020	385908	5517714	298	83.4	49.4	9.7	40.8	120	29.4	157	38.4	37	9.8	400	41.1	1285
23MSGC021	386486	5517307	43	4.7	18.2	0.8	2.8	22	2.9	20	5	4	0.5	25	34	180
23MSGC022	386291	5517324	466	28.7	12.8	12.1	35.4	232	11.5	262	62.3	46	5.3	127	8.9	1299
23MSGC023	385930	5517296	166	79.9	53.9	15.2	73.9	163	<0.5	233	49.6	57	10.6	489	49	1440
23MSGC024	386059	5517324	165	88.9	64.4	8.1	36.6	70	4.7	126	27.2	30	9.3	463	50.3	1139
23MSGC025	385885	5516885	78	37.8	29.7	3.8	19.1	33	0.7	60	13.1	15	4.4	234	21.8	550
23MSGC026	386371	5516957	712	87.5	65.4	16.5	76.1	313	6.2	370	87.2	76	12.6	446	56.3	2319
23MSGC027	386501	5516937	111	26.2	19	5.3	29.2	60	<0.5	92	18.7	21	4.2	134	15.7	536
23MSGC028	386690	5516962	213	91.7	111	7	33.1	96	9.2	127	30.3	28	9.1	553	101	1400
23MSGC029	386902	5516920	1060	82.9	53.3	20.5	99.3	438	1.3	520	122	100	13.8	413	46.2	2969
23MSGC030	387075	5516920	676	84.9	66.6	16.1	72.8	306	7.9	369	87.6	75	12.7	459	64.3	2290
23MSGC031	387254	5516981	1390	107	69.9	26.4	113	688	6.7	745	199	133	16.3	547	64.8	4099
23MSGC032	385305	5517355	44	2.2	1.8	0.7	2	24	5	18	4.6	3	0.3	10	1.9	113
23MSGC033	384907	5517679	168	18.8	13.5	5.1	23.3	70	0.6	108	23	21	3.4	95	11.1	560
23MSGC034	385103	5517306	119	27.3	32.8	2.5	11.7	55	14.1	57	14.5	11	2.7	158	32.4	524
23MSGC035	385674	5517324	1220	47.6	29	15.4	60.2	459	4	504	129	81	7.9	246	27.2	2826
23MSGC036	385683	5517717	591	182	128	36.9	166	646	<0.5	743	166	147	26.4	995	112	3939
23MSGC037	385498	5517717	1280	112	64	32.2	129	644	3.4	745	187	141	18.6	536	51	3940

Sample ID	East	Month	Ce	Dy	Er	Eu	Gd	La	Nb	Nd	Pr	Sm	Tb	Y	Yb	TREE
Sample ID	EdSt	North	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
23MSGC038	386094	5515343	132	9.2	6.4	2.8	7.6	69	16.3	55	15.9	10	1.2	42	5.4	357
23MSGC039	385901	5515372	1640	143	87.8	39.3	159	888	12.6	929	226	180	23.7	779	78.7	5174
23MSGC040	385492	5515390	451	26.1	12.4	9.7	27.9	207	30.5	200	56.3	37	4.2	103	9.1	1144
23MSGC041	385273	5515016	133	17.3	8.8	4.5	15.7	54	22.7	79	17.9	16	3	81	5.8	436
23MSGC042	385682	5515034	222	45.3	33.2	4.7	25.6	88	10	96	24.4	21	4.5	254	34.4	853
23MSGC043	386088	5515040	36	28.1	20.3	2.4	10.6	13	2.4	28	5.8	8	2.9	142	15.9	313
23MSGC044	383724	5516177	72	20.3	16.9	3.4	17.6	31	<0.5	47	9.3	12	2.6	115	16.6	364
23MSGC045	383902	5516166	442	80.7	58.9	14.5	60	206	1.5	266	64.8	56	11.2	399	47.7	1707
23MSGC046	384098	5516120	356	20.2	11	6.5	27.6	119	0.9	162	35.5	30	3.6	94	8.3	874
23MSGC047	384321	5516066	1310	165	109	37.5	170	731	1.4	823	206	162	25.8	834	94.7	4668
23MSGC048	384479	5516122	83	49	30.1	4.4	19.5	28	9.3	53	11.4	16	5.3	210	26.3	536
23MSGC049	384698	5516117	578	46.5	16.6	25.7	65.5	315	14.4	435	107	84	8.3	168	10.7	1860
23MSGC050	385276	5516409	87	40.2	23.2	5.1	22.5	25	5	58	11.2	17	5.4	190	17.7	502
23MSGC051	385485	5516411	168	10.2	4.3	4.2	11.9	90	90.4	73	19.3	15	1.8	38	3.3	439
23MSGC052	384877	5515024	90	16.6	12.6	3	9.5	43	9.7	49	11.8	10	2	70	10.4	328
23MSGC053	386114	5515737	509	38.1	15.9	15.9	53.1	173	2.3	294	66.8	64	6.6	190	10.9	1437
23MSGC054	386500	5515729	681	49.3	20	20.8	62	283	10.5	372	91.4	78	8.6	208	12.7	1887
23MSGC055	386304	5515741	189	47	26.5	6.7	28.5	76	10.5	101	23.6	25	5.9	237	18.9	785
23MSGC056	386710	5515725	20	13.2	6.8	4.5	21.6	45	<0.5	78	14.7	18	2.5	70	5	299
23MSGC057	386886	5515725	308	14.9	7	7.1	21.9	149	12.3	156	36.1	29	2.9	63	4.5	799
23MSGC058	387114	5515725	146	17.5	9.4	4.3	14.6	82	16.2	67	17	15	2.7	70	7.1	453
23MSGC059	387297	5515711	140	10.8	5.5	3.1	9.3	74	5.4	59	16.4	11	1.5	41	4.7	376
23MSGC060	387483	5515719	424	29.1	17.4	9.6	32.1	175	8.2	186	45.2	36	4.6	167	13.6	1140
23MSGC061	387689	5515724	45	9.1	7.5	1	4.9	21	4.8	19	4.8	4	1	46	6.7	170
23MSGC062	386671	5516574	643	90.6	63.1	17.8	73.6	261	6.8	331	79	71	12.9	479	50	2172
23MSGC063	386501	5516579	1420	132	85	37.2	140	783	2.5	787	210	154	19.7	600	75.4	4443
23MSGC064	386678	5517318	220	101	72.6	8.5	41.7	87	17.9	133	29.4	33	10.7	506	61.5	1304
23MSGC065	386888	5517316	585	120	66	24	106	254	1.5	450	98.2	103	16.6	584	58.8	2466
23MSGC066	387085	5517317	631	126	74.1	30.2	130	356	0.8	584	123	133	18.7	590	66.4	2862
23MSGC067	387250	5517328	31	3.8	3.5	0.7	3.4	12	<0.5	16	3.7	4	0.5	19	3.4	101
23MSGC068	385097	5517757	135	27.1	40.2	2.7	12.3	63	13.5	62	15.9	12	2.5	157	44.5	574
23MSGC069	384902	5517307	89	59.1	47.4	4.3	23	35	6	61	12.3	16	6.5	326	41.2	721
23MSGC070	385508	5517370	127	6.1	5.7	1.7	6.8	60	18.1	48	13.7	9	0.9	31	6	316
23MSGC071	385896	5518117	375	16.6	18.7	4.5	18.2	164	37	132	38.1	24	2.5	83	22.7	899
23MSGC072	386070	5518105	12	10.9	17.5	0.6	2.2	5	<0.5	7	1.5	2	0.8	50	19.9	129
23MSGC073	385692	5515370	1380	136	91.5	32.1	139	643	15.7	734	182	147	21.1	736	80.2	4322
23MSGC074	385280	5515368	569	97.9	65.3	21.3	87.7	334	6.7	420	102	89	13.6	584	58	2442
23MSGC075	385070	5515021	437	33.1	14.7	10.8	41.9	210	14.3	256	60.3	45	6.1	167	10.7	1293
23MSGC076	385495	5515020	884	189	113	47.7	196	507	12	879	185	203	31.7	800	88.3	4124
23MSGC077	385884	5514993	22	24.9	18.1	2	11	8	1.4	21	3.8	7	2.8	148	18	287

Sample ID	East	Month	Ce	Dy	Er	Eu	Gd	La	Nb	Nd	Pr	Sm	Tb	Y	Yb	TREE
Sample ID	Easi	North	ppb	ppb	ppb	ppb	ppb	ppb								
23MSGC078	383887	5516530	256	32.9	14.5	12.9	41.9	102	1.6	222	46.2	48	6.2	146	9.6	938
23MSGC079	384081	5516504	195	61.7	34.6	7.9	38.8	71	10.9	122	25.6	32	8	325	27.7	949
23MSGC080	384287	5516503	394	46	22.7	12.7	46.9	181	35.7	249	58.8	50	7.8	221	16.6	1307
23MSGC081	384694	5516510	92	4.4	2.7	1.5	4.7	29	69.3	28	6.6	5	0.7	19	2.1	196
23MSGC082	384891	5516529	76	6.6	3.8	1.7	5.8	36	47	29	7.7	6	0.9	33	3.8	210
23MSGC083	385088	5516906	398	127	89.6	15.7	77	128	2.4	262	53.4	64	16.3	664	71.3	1966
23MSGC084	384687	5515778	410	150	100	22.9	118	235	1.6	427	87.3	99	21	773	83.9	2527
23MSGC085	384679	5515386	506	64.1	47.1	13.1	64.7	215	1.6	279	63	59	9.7	355	40.7	1716
23MSGC086	385105	5515345	365	143	78	27.4	114	105	4.4	380	71	100	21.7	673	57.1	2135
23MSGC087	386287	5515004	268	52.8	39.2	10.6	58.9	115	<0.5	189	36.8	46	8.2	269	34.4	1128
23MSGC088	386464	5514984	511	42.5	25.8	12.4	56.1	200	1.7	275	63.5	54	7.2	210	22.9	1480
23MSGC089	383711	5516508	271	65.8	38.9	9.9	47.1	104	10	168	36.9	42	8.7	351	31.8	1175
23MSGC090	384491	5516515	192	10.8	9.3	3.2	11.4	95	16.6	87	23.7	15	1.8	51	10.4	511
23MSGC091	384903	5516926	143	32	20.4	4.6	20.1	56	10.4	79	18.7	19	4	152	16.6	565
23MSGC092	385285	5516916	311	36.6	61.8	5.4	21.6	169	20.8	146	39.2	26	3.8	240	71.9	1132
23MSGC093	384900	5515364	35	4.9	3.8	0.8	2.9	11	2.8	11	2.8	3	0.6	24	3.2	103
23MSGC094	386678	5515004	565	60.3	44.9	13.6	62.7	238	1.2	310	71.6	61	9.2	320	42.9	1799
23MSGC095	386887	5515043	547	50.7	40.8	10.8	46.9	245	13.1	266	67.2	50	7.5	271	39.1	1642
23MSGC096	387412	5514993	64	1.9	1	0.6	1.8	17	25.5	13	3.3	2	0.3	8	0.8	114
23MSGC097	387478	5514997	47	2.6	1.5	1	2.7	21	38.1	16	4	3	0.4	11	1.1	111
23MSGC098	387661	5514992	610	30.1	12.3	14	40.4	338	65.9	301	80.6	51	5.4	151	7.9	1642
23MSGC100	386495	5516143	2630	98.7	40.2	48.8	149	1400	29.5	1240	345	210	19.2	425	30.7	6637
23MSGC101	386285	5516128	71	6.5	4.2	1.6	6.1	37	53.5	30	8.4	6	1.1	39	4.5	215
23MSGC103	386102	5516120	277	20.1	7.2	9.4	28.5	103	302	159	36	33	3.6	72	5.2	754
23MSGC104	385672	5518105	336	77.4	52.7	17	89.4	230	1.2	331	70.5	76	12.4	421	50	1763
23MSGC105	385494	5518134	182	8.6	7	2.4	10	93	29.6	75	19.5	13	1.5	49	8.4	469
23MSGC106	385297	5518129	413	22.9	28.4	6.2	23.5	210	8.7	176	46.8	32	3.5	105	22.8	1090
23MSGC107	385095	5518112	1050	147	113	30.7	150	740	1.3	773	184	144	21.8	914	105	4373
23MSGC108	384909	5518121	82	3.6	3.9	1.1	4.3	40	12.4	29	8.5	6	0.6	20	6	205
23MSGC109	384896	5518531	644	89.5	67.8	12.1	50.9	272	22.1	259	77.7	58	9.7	455	70.6	2066
23MSGC110	386075	5518507	452	140	78.6	19.8	104	159	17	331	64.9	87	19.3	741	72.3	2269
23MSGC111	386238	5516359	968	46.1	19.1	22.2	68.8	525	26.8	518	126	90	8.8	224	13.1	2629
23MSGC112	385941	5516447	632	65.8	42.4	15.4	83.6	244	1.1	336	73.8	75	10.7	362	41	1982
23MSGC114	385905	5518525	1020	68.8	47.5	17.6	87	492	1.1	537	124	95	11.1	431	47.7	2979
23MSGC115	385703	5518512	415	90.9	71.2	10.6	50.8	169	31.8	205	48.9	45	10.9	512	64.6	1694
23MSGC116	385502	5518522	231	10.5	8.8	3.2	12	113	44.4	88	23	16	1.7	55	12.5	575
23MSGC117	385295	5518502	790	105	80.2	19.5	95.5	362	11.5	454	102	93	15.6	630	75.5	2822
23MSGC118	385091	5518402	723	56	32.9	11.2	42.6	361	66.5	280	81.4	51	7.6	284	28.5	1959
23MSGC119	383670	5515048	140	12	6.4	4	11.9	57	18.8	63	15.4	13	2	57	5.4	387
23MSGC120	383865	5515056	251	27	16.2	6.6	24	100	36.7	123	28.5	25	4.2	141	11.3	758

Sample ID	East	North	Се	Dy	Er	Eu	Gd	La	Nb	Nd	Pr	Sm	Tb	Y	Yb	TREE
Sample ID	EdSt	North	ppb	ppb	ppb	ppb	ppb	ppb								
23MSGC121	386295	5515375	227	29.7	17.2	8	40.7	112	0.7	172	36.6	38	5	160	16	862
23MSGC122	386515	5515361	19	5.2	6.9	0.4	1.8	8	3.1	8	1.6	1	0.5	30	10.4	93
23MSGC123	386693	5515359	343	22.6	13.9	5.7	19.6	130	27	123	31.7	23	3.4	111	11.5	838
23MSGC124	386860	5515481	1520	98.6	58.2	27.3	122	629	17.6	722	175	141	16.3	554	54.3	4118
23MSGC125	387100	5515358	1070	100	74.7	21.7	89.6	485	20.6	536	135	101	14	533	74	3234
23MSGC126	387314	5515350	349	82.4	75.8	9	41.9	151	17.7	180	43.1	37	9	471	65.6	1515
23MSGC127	387493	5515346	1970	284	142	84.8	333	951	56.7	1870	392	369	50.1	1240	116	7802
23MSGC128	387696	5515346	51	4.4	2.3	1.2	3.3	22	17.1	18	4.6	4	0.6	21	2.1	135
23MSGC129	387700	5516104	27	17.5	13.4	1.5	7.4	12	2.7	17	3.7	5	2	93	13.4	213
23MSGC130	387496	5516118	365	20.6	12.2	6.4	19.8	145	154	132	33.6	24	3.3	98	8.8	869
23MSGC131	387291	5516118	1640	105	51.6	34.1	135	588	12	783	187	155	17.9	571	42.6	4310
23MSGC132	387092	5516119	234	33.8	16.3	7.9	29.1	98	30	130	28	27	5.4	163	11.4	784
23MSGC133	386905	5516124	644	31.2	15.1	12.9	40	246	48.3	272	68.2	50	5.7	137	11.1	1533
23MSGC134	386690	5516122	1700	106	43.3	49.2	154	1000	26.5	1110	279	197	20.1	487	29.1	5175
23MSGC135	384065	5515033	356	26	11.1	12.5	36.1	147	4.7	217	48.6	45	4.9	116	7.9	1028
23MSGC137	384283	5515024	410	22.2	9.6	10.6	31	221	21.8	220	55.8	40	4.4	91	6.5	1122
23MSGC138	384453	5515029	48	7.5	6.4	1.1	4.3	23	12.8	21	5.3	4	1	38	6	166
23MSGC139	384639	5515048	199	59.7	36.4	13.5	72.5	127	<0.5	244	46.1	57	10	289	29.4	1184
23MSGC140	383680	5515768	38	6.3	5.1	0.9	3.5	22	15.9	17	4.5	4	0.8	32	5.5	140
23MSGC141	383880	5515786	145	25.8	13.6	4.6	19.7	45	5.6	82	18.4	18	3.5	141	11.1	528
23MSGC143	384082	5515776	592	87.6	42.3	18.2	85.4	238	17.7	378	87.2	87	13.1	456	34.6	2119
23MSGC144	384262	5515777	83	12	5.6	3.1	9.3	31	3.1	48	11.1	10	1.6	53	4.4	272
23MSGC145	384492	5515792	210	41	18	9.8	38.3	84	5.6	150	31.1	35	6.5	200	11.4	835
23MSGC146	383690	5515397	460	50.5	36.1	11.7	58.8	198	2.2	252	54.7	56	8	283	35.4	1504
23MSGC147	384084	5515389	721	74.4	57	16.3	81.9	298	1.7	371	84.8	76	12.1	462	54.5	2309
23MSGC149	384291	5515378	340	47.9	29.7	10.9	51.9	169	0.7	220	51.4	49	7.3	253	27.3	1257
23MSGC150	384473	5515380	296	52	33.3	7.2	32.9	111	11.9	135	34.3	31	6.4	285	25.8	1050

APPENDIX II - JORC Compliance Tables

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A program of surface geochemical sampling was completed. Soil samples weighing approximately 300 grams were taken by hand from a depth of about 40 cm below surface (locally shallower or deeper depending on sample site conditions). Each sample was sieved on site using a plastic sieve to remove coarse particles and placed in plastic snap seal bags. Standard field collection procedures for MMI soil samples were used.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Not applicable, no drilling results reported.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not applicable, no drilling results reported.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Not applicable, no sample results reported.

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sample preparation of soil samples involves collection of a 50g subsample for assay. No sample preparation or drying is required for the MMI assay technique. No field duplicates were taken as this is not warranted at the current stage of exploration. The sample size and distribution of the soil samples is appropriate for the current stage of exploration.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Soil samples were submitted to SGS Canada for analysis by the proprietary mobile metal ion (MMI) technique. MMI utilised proprietary extractants with element measurement by ICP-MS and ICP-MS Dynamic Reaction Cell[™]. Elements assayed included: Ag, Al, As, Au, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hg, In, K, La, Li, Mg, Mn, Mo, Nb, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Sb, Sc, Sm, Sn, Sr, Ta, Tb, Te, Th, Ti, TI, U, W, Y, Yb, Zn, Zr. The MMI method is a partial leach and does not dissolve the majority of the minerals in the sample. Laboratory QC procedures for soil samples involve the use of internal certified reference material as assay standards, along with blanks, duplicates and replicates. A quality control procedure comprising suitable standards and blanks was implemented along with the samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The assay results have not been verified by independent or alternative company personnel. This is not required at the current stage of exploration. Primary assay data has been entered into the Company's digital database, which is maintained by an external consultant. There are no adjustments to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations have been surveyed using handheld GPS with an accuracy of approximately ±3 metres. The grid system used for is North American Datum 1983 (NAD 83), UTM Zone 18. Topographic control is based on existing topographic maps and is not well constrained but this is not considered material at the current stage of exploration.

Criteria	JORC Code Explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The soil samples were collected on east-west lines using a nominal 200m x 400m grid spacing. Soil sampling data is not appropriate to establish geological and grade continuity. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Not applicable at current stage of exploration.
Sample security	The measures taken to ensure sample security.	 Samples were collected by geological contractors and securely stored at the Company's field camp. Samples were subsequently delivered by the contract staff to the analytical laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• No audits or reviews completed, not relevant at current stage of exploration.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The tenements relevant to this announcement are 20 claims located in Québec, Canada. The claims are held 100% by Geomega Resources Inc. A net smelter royalty of 2% is payable to Osisko Gold Royalties on several of the Claims. MTM Critical Metals Ltd has executed an option agreement to acquire a 100% interest in the claims subject to cash and share based payments and exploration expenditure requirements. The tenements are located on Category II Lands of the Cree First Nation of Waswanipi. Mining, exploration and geoscientific works must be carried out in such a manner as to avoid unreasonable conflict with the rights of the First Nation people. The tenements are secure and there are no known impediments to obtaining a licence to operate in the area.

Criteria	JORC Code Explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration of the project area is limited. In 1993, Diabex inc. completed a drill hole within the current claim area to test a target for diamonds. The hole was not assayed for REE. In 2005, Niogold collected a rock chip sample from the area which was highly anomalous in rare earth elements. Subsequent prospecting by Geomega Ressources in 2016 as part of the Montviel project identified further outcrops and boulders of carbonatite in the area that are anomalous in rare earth elements and phosphorus. Broadspaced till samples also highlighted local gold anomalies.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Montviel South project is located on a carbonatite intrusive complex containing REE-Nb mineralisation. The carbonatite is interpreted to be Paleoproterozic in age and has intruded a metamorphosed sequence of basalts within the Abitibi Province of the Canadian Shield. The carbonatite is characterised by a prominent, ellipsoidal, km-scale magnetic anomaly that contains the nearby Montviel carbonatite intrusive located 4km to the northeast.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including Easting and northing of the drill hole collar, Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not applicable, no drilling results reported.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No weighted averages, grade truncations or cut-off grades have been applied. No drilling intersections are reported. Aggregate total rare earth element (TREE) grades reported, which are a simple addition of cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), lanthanum (La), neodymium (Nd), praseodymium (Pr), samarium (Sm), terbium (Tb), ytterbium (Yb) and yttrium (Y) grades (all in ppb). No metal equivalent values are reported.

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 No mineralisation widths or intercept lengths are reported. The relationship between the surface geochemical results and geometry of mineralisation is not known.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures included in the body of the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Comprehensive reporting of exploration results contained within the body of the announcement.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• None.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Geophysical surveys and further surface mapping and sampling is planned to define drilling targets.