

11 April 2024

High-grade extensions from multiple areas at Kokoseb

Highlights

- Extensional depth drilling at Central Zone returns high-grade intercepts including:
 - 12m at 5.15 g/t Au from 183m in KRC176
 - 10m at 5.51 g/t Au from 246m in KRC176
 - 30.2m at 2.61 g/t Au from 360.9m in diamond hole KDD023
- Further Gap Zone success returns RC drill sample splits above 10 g/t Au for the first time, within the following significant intercepts:
 - 14m at 2.72 g/t Au from 156m in KRC185
 - o 10m at 2.71 g/t Au from 47m in KRC186
- Other results continue to strongly extend the Gap Zone and Central Zone, including:
 - o 11m at 2.97 g/t Au from 248m in KRC169
 - 14m at 1.51 g/t Au from 264m in KRC169
 - 16m at 1.74 g/t Au from 169m in KRC175
 - 21m at 1.66 g/t Au from 120m in KRC184
 - 12m at 1.35 g/t Au from 312m in KRC188
- Impending Kokoseb Mineral Resource Estimate (MRE) update.

Wia Gold Limited (ASX: WIA) (**Wia** or the **Company**) is pleased to report assay results from eighteen (18) RC drillholes – **KRC165 to KRC176**, **KRC184 to KRC188**, **and KRC190** – and one (1) diamond drillhole – **KDD023** – completed at its Kokoseb Gold Deposit (**Kokoseb**) in Namibia. These 19 drillholes totalled 4,791m of drilling and included 8 sample splits that returned grades over 10 g/t Au.

Drillholes **KRC176** and **KDD023** both returned high-grade intercepts which will significantly extend modelled mineralisation continuity in their respective areas. **KRC176** intercepted **12m at 5.15 g/t Au** and **10m at 5.51 g/t Au** up-dip of KRC086 (which previously returned 37m at 9.46 g/t Au)², and **KDD023** intersected **30.2m at 2.61 g/t Au** beneath previous diamond hole KDD016 (which previously returned 33.9m at 1.53 g/t Au)³.

At the Gap Zone, significant mineralised intercepts included the return of +10 g/t Au sample splits for the first time, both within KRC185 (14m at 2.72 g/t Au) and KRC186 (10m at 2.71 g/t Au).

Other RC drillholes completed at the Gap Zone and the Central Zone have returned mineralised intercepts in line with their neighbouring intersected mineralisation, confirming grade and thickness continuities within these mineralised shoots.

Wia's Chairman, Andrew Pardey, commented:

"The drill results reported in this announcement show extended continuity and excellent consistency within identified mineralised zones at both the Gap Zone and Central Zone. The extended high-grade core within some of these shoots is well supported as demonstrated by these latest results. We are pleased to be on track to deliver the updated MRE for Kokoseb within the next few weeks."

Extensional success at Central Zone with significant high-grade results

Seven (7) drillholes from the Central Zone are reported in this announcement, located both in the area of the previous KRC086 high-grade gold mineralisation² and in the northern area where it connects to the NW Zone (Figure 1 and Figure 3).

Drill hole **KRC176** intersected gold mineralisation approximatively 100m up dip from KRC086¹ as three main zones, including two at high-grade levels with three samples returning grades over 10 g/t Au. This mineralisation was intersected between 150m and 200m vertical depth, under the existing MRE pit shell, and includes the following significant intercepts:

3m at 1.07 g/t Au from 121m 12m at 5.15 g/t Au from 183m 13m at 1.51 g/t Au from 215m 10m at 5.51 g/t Au from 246m

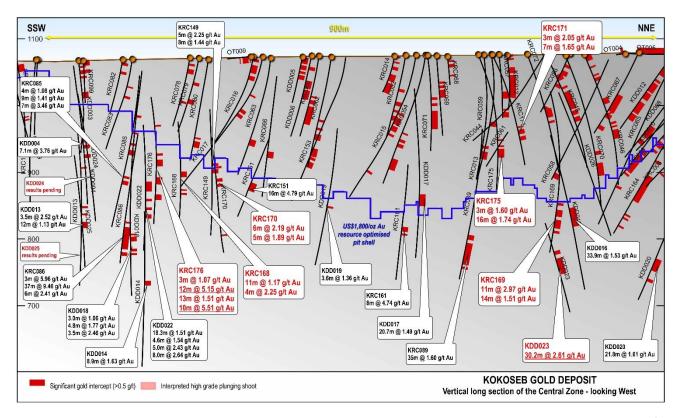


Figure 1 – Vertical long section of Central Zone; focus below the MRE (intercepts in black previously reported)²

In the same area, RC drillholes **KRC168** and **KRC170** also returned the following significant intercepts, just under the MRE pit shell:

11m at 1.17 g/t Au from 218m in KRC168 4m at 2.25 g/t Au from 260m in KRC168 6m at 2.19 g/t Au from 216m in KRC170 5m at 1.89 g/t Au from 226m in KRC170

¹ See ASX announcement dated 29 May 2023.

² See ASX announcements dated 15 May 2023, 29 May 2023, 17 October 2023, 13 December 2023, 5 February 2024 and 12 March 2024.

Diamond drill hole **KDD023** was completed on section approximately 85m beneath diamond drill hole KDD016, which returned 33.9m at 1.53 g/t Au³ at the northern side of the Central Zone. The main mineralised zone from KDD023 includes three sample splits at over 10 g/t gold, as part of the broader significant intercept of **30.2m** at **2.61** g/t Au.

This intercept is located at approximatively the same depth level as the intercept returned by drillhole KRC089 (35m at 1.60 g/t Au⁴), located approximately 145m to the south, and the intercept returned by drillhole KDD020 (21.8m at 1.61 g/t Au⁵), located approximately 140m to the north.

Three other RC drillholes, completed above **KDD023** to infill the Mineral Resource pattern, have returned the following significant intercepts, all in-line with the respective neighbouring intersected mineralisation:

11m at 2.97 g/t Au from 248m in KRC169 14m at 1.51 g/t Au from 264m in KRC169 3m at 2.05 g/t Au from 134m in KRC171 8m at 1.00 g/t Au from 140m in KRC171 7m at 1.65 g/t Au from 152m in KRC171 3m at 1.60 g/t Au from 163m in KRC175 16m at 1.74 g/t Au from 169m in KRC175

Strong intercepts including super high-grade splits returned at the Gap Zone

The Gap Zone has for the first time returned RC samples at over 10 g/t Au, both demonstrating and strengthening continuity in high-grade zones within mineralised shoots. These samples are from shallow drillholes KRC185 and KRC186, which are both part of the interpreted mineralised shoots. KRC185 intercepted 14m at 2.72 g/t Au from 156m and KRC186 intersected 10m at 2.71 g/t Au from 47m (Figure 2 and Figure 3).

Drillholes **KRC172** and **KRC173** are single shallow holes per sections drilled at 100m spacing over the remaining untested length of the Gap Zone strike. They successfully link the mineralisation between the Gap Zone and the Southern Zone, returning the following significant intercepts:

3m at 1.01 g/t Au from 66m in KRC172 15m at 0.82 g/t Au from 74m in KRC172 6m at 1.20 g/t Au from 69m in KRC173 15m at 0.72 g/t Au from 78m in KRC173 6m at 0.54 g/t Au from 102m in KRC173

Other RC drillholes completed at the Gap Zone also all returned significant intercepts, including:

3m at 1.42 g/t Au from 162m in KRC166 6m at 0.67 g/t Au from 189m in KRC166 21m at 1.66 g/t Au from 120m in KRC184 14m at 1.01 g/t Au from 251m in KRC187 12m at 1.35 g/t Au from 312m in KRC188 24m at 0.99 g/t Au from 200m in KRC190

³ See ASX announcement dated 13 December 2023.

⁴ See ASX announcement dated 15 May 2023.

⁵ See ASX announcement dated 12 March 2024.

Drillhole KRC167 was targeted to understand the junction between the northern side of the Gap Zone, and the Western Zone. Significant intercepts returned in this hole include 3m at 0.46 g/t Au from 192m and 3m at 0.64 g/t Au from 215m.

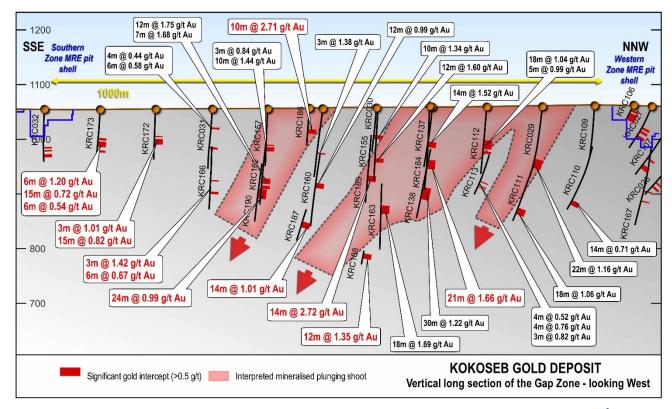


Figure 2 – Vertical long section of the Gap Zone (intercepts in black were previously reported)6

⁶ See ASX announcements dated 14 December 2022, 10 July 2023 13 December 2023 and 5 February 2024.

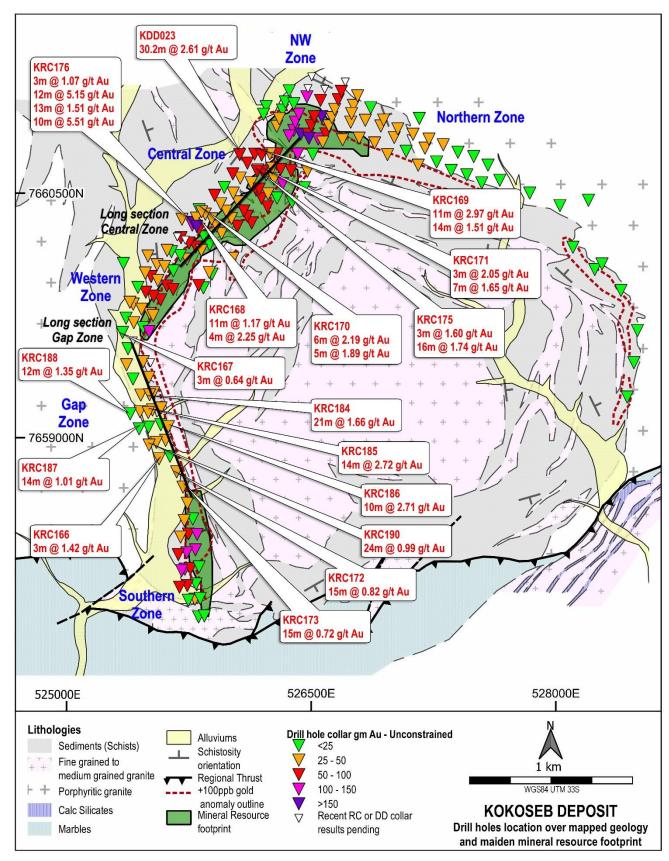


Figure 3 – Drill holes location on Kokoseb geology and interpreted surface mineralisation footprint⁷, location of all cross sections of this announcement and significant intercepts on drill holes reported in this announcement⁸

This announcement has been authorised for release by the board of directors of Wia Gold Limited.

⁷ See ASX announcement dated 15 May 2023 for further information on previously reported Kokoseb MRE.

⁸ Intercept calculated using 0.5 g/t cut-off grade and 2m max consecutive internal low grade.

Contact details

Andrew Pardey Chairman +61 8 9420 8270 Michael Vaughan Fivemark Partners +61 422 602 720

Competent Person's Statement

The information in this announcement that relates to exploration results at the Kokoseb Gold Deposit located on the Company's Damaran Gold Project is based on information compiled by Company geologists and reviewed by Mr Pierrick Couderc, in his capacity as Exploration Manager of Wia Gold Limited. Mr. Couderc is a member of both the Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Couderc consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

Reference to previous ASX Announcements

In relation to previously reported exploration results included in this announcement, the dates of which are referenced, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements.

In relation to the information in this announcement that relates to the Mineral Resource Estimate for the Kokoseb Project that was first reported on 15 May 2023, other than subsequently released drilling results, WIA confirms that it is not aware of any new information or data that materially affects the information included in that release. All material assumptions and technical parameters underpinning the estimates in that ASX release continue to apply and have not materially changed.

About The Kokoseb Gold Deposit

The Kokoseb Gold Deposit is located in the north-west of Namibia, a country that is a well-recognised mining jurisdiction, with an established history as a significant producer of uranium, diamonds, gold and base metals. The Kokoseb gold deposit is situated 320km by road from the capital Windhoek.

Kokoseb lies in the Okombahe exploration licence, which is held under joint venture (Wia 80%) with the state-owed mining company Epangelo. The Okombahe licence is part of Wia's larger Damaran Project, which consist of 12 tenements with a total area of over 2,700km².

A maiden Inferred Mineral Resource Estimate of 1.3Moz at 1.0 g/t Au, at a cut-off grade of 0.5 g/t Au, including a higher-grade gold portion of 0.72 Moz at 1.5 g/t Au using a cut-off grade of 1.0 g/t Au, was first announced on 15 May 2023, 11 months after the discovery holes and at a discovery cost of US\$2/oz.

The location of Kokoseb and the Company's Namibian Projects is shown in Figure 4.

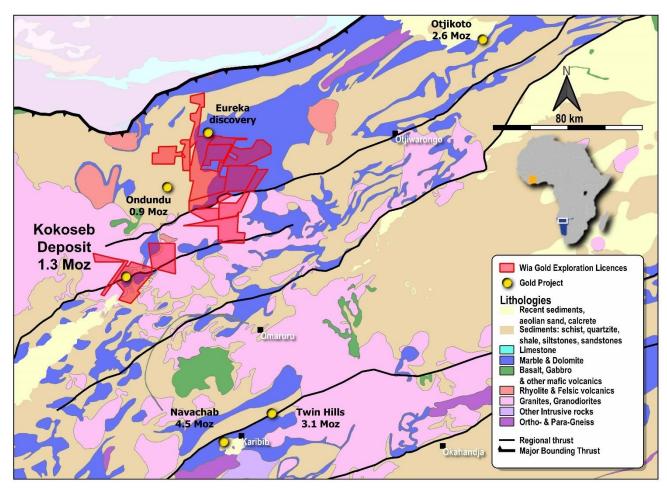


Figure 4 – Location of Wia's Namibia Projects

Appendix 1. Kokoseb - Location of RC and diamond drillholes

Hole ID	Easting	Northing	RL	Length (m)	Dip (°)	Azi (°)
KDD023	526061	7660737	1072	461.98	-60	86
KRC165	526393	7661049	1075	330	-60	196
KRC166	525567	7658870	1055	230	-60	80
KRC167	525343	7659645	1061	270	-60	80
KRC168	525796	7660347	1069	320	-60	120
KRC169	526196	7660734	1075	317	-60	88
KRC170	525828	7660386	1070	350	-60	120
KRC171	526202	7660635	1077	201	-55	88
KRC172	525675	7658790	1057	130	-55	80
KRC173	525714	7658696	1057	135	-55	80
KRC174	525801	7660290	1069	96	-60	120
KRC175	526169	7660636	1077	244	-60	90
KRC176	525798	7660296	1069	300	-60	120
KRC184	525509	7659263	1059	190	-60	80
KRC185	525501	7659154	1058	220	-60	80
KRC186	525624	7659068	1057	85	-60	80
KRC187	525445	7659054	1057	295	-60	80
KRC188	525390	7659146	1059	336	-60	80
KRC190	525506	7658955	1060	280	-60	76

Appendix 2. RC and diamond drill holes gold assays, using a cut-off grade of 0.2 g/t gold and max 2m consecutive internal waste material

Hole ID	From (m)	To (m)	Gold g/t
KDD023	345.8	346.8	0.535
KDD023	346.8	347.8	0.174
KDD023	347.8	348.8	1.345
KDD023	348.8	349.8	0.396
KDD023	349.8	350.8	0.351
KDD023	350.8	351.8	0.505
KDD023	351.8	352.8	0.12
KDD023	352.8	353.8	0.302
KDD023	353.8	354.8	0.244
KDD023	354.8	355.51	0.125
KDD023	355.51	356.5	0.098
KDD023	356.5	357.5	0.429
KDD023	357.5	358.55	0.408
KDD023	358.55	359.9	0.029
KDD023	359.9	360.9	0.317
KDD023	360.9	361.9	0.948
KDD023	361.9	362.9	1.28
KDD023	362.9	363.8	12.9
KDD023	363.8	364.8	2.72
KDD023	364.8	365.8	1.465
KDD023	365.8	366.9	1.765
KDD023	366.9	367.9	1.545
KDD023	367.9	368.9	0.886
KDD023	368.9	369.9	3.03
KDD023	369.9	370.9	1.485
KDD023	370.9	371.9	2.65
KDD023	371.9	372.9	2.91
KDD023	372.9	373.9	0.774
KDD023	373.9	374.9	1.235
KDD023	374.9	375.9	0.492
KDD023	375.9	376.9	0.356
KDD023	376.9	377.9	2.64
KDD023	377.9	378.9	3.87
KDD023	378.9	379.65	10.85
KDD023	379.65	380.15	0.798
KDD023	380.15	381.4	0.034
KDD023	381.4	381.96	0.705
KDD023	381.96	382.95	0.845
KDD023	382.95	383.95	1.3
KDD023	383.95	384.6	0.546
KDD023	384.6	385.6	11.25
KDD023	385.6	386.65	9.36
KDD023	386.65	387.6	2.88
KDD023	387.6	388.6	0.261
KDD023	388.6	389.6	0.148
KDD023	389.6	390.6	1.1
KDD023	390.6	391.1	0.586
KDD023	391.1	392.1	0.099
KDD023	392.1	393.1	0.206
KDD023	393.1	394.1	0.026
KDD023	394.1	395	0.147
KDD023	395	396	0.449
KDD023	396	397	0.224
KDD023	397	398	0.409
KRC165	158	159	0.203
KRC165	159	160	1.5
KRC165	160	161	0.338
KRC165	205	206	1.12
KRC165	206	207	0.316

Hole ID	From (m)	To (m)	Gold g/t
KRC165	207	208	0.036
KRC165	208	209	0.113
KRC165	209	210	0.368
KRC165	210	211	0.083
KRC165	211	212	1.135
KRC165	212	213	0.089
KRC165	213	214	0.24
KRC165	214	215	0.029
KRC165	215	216	0.372
KRC165	216	217	0.109
KRC165	217	218	0.557
KRC165	218	219	0.574
KRC165	219	220	0.077
KRC165	220	221	0.323
KRC165	221	222	0.267
KRC165	222	223	0.111
KRC165	223	224	1.095
KRC165	224	225	0.939
KRC165	225	226	0.247
KRC165	226	227	0.96
KRC165	241	242	0.431
KRC165	242	243	0.298
KRC165	243	244	0.146
KRC165	244	245	0.328
KRC165	245	246	0.53
KRC165	246	247	0.46
KRC165	247	248	1.08
KRC165	248	249	0.618
KRC165	249	250	0.244
KRC165	250	251	0.029
KRC165	251	252	0.398
KRC165	252	253	0.068
KRC165	253	254	0.252
KRC165	254	255	0.406
KRC166	23	24	0.338
KRC166	24	25	0.217
KRC166	25	26	0.212
KRC166	117	118	0.202
KRC166	118	119	0.092
KRC166	119	120	0.103
KRC166	120	121	0.274
KRC166	121	122	1.065
KRC166 KRC166	126	127 128	0.672
KRC166	127 128	-	0.081 0.034
KRC166		129	
KRC166	129 130	130 131	0.211 0.062
KRC166	131	131	0.062
KRC166	132	133	0.164
KRC166	137	138	0.227
KRC166	138	139	3.25
KRC166	139	140	0.761
KRC166	140	141	0.144
KRC166	141	142	0.468
KRC166	142	143	0.066
KRC166	143	144	0.337
KRC166	144	145	0.174
KRC166	145	146	0.091
KRC166	146	147	0.359

Hole ID	From (m)	To (m)	Gold g/t
KRC166	153	154	0.367
KRC166	154	155	0.227
KRC166	155	156	0.163
KRC166	156	157	0.434
KRC166	157	158	0.088
KRC166	158	159	0.416
KRC166	162	163	1.445
KRC166	163	164	1.92
KRC166	164	165	0.885
KRC166	168	169	0.304
KRC166	169	170	0.461
KRC166	170	171	0.558
KRC166	171	172	0.528
KRC166	172	173	0.245
KRC166	173	174	0.264
KRC166	174	175	0.43
KRC166	175	176	0.531
KRC166	176	177	0.271
KRC166	177	178	0.319
KRC166	178	179	0.078
KRC166	179	180	0.23
KRC166	180	181	0.308
KRC166	181	182	0.476
KRC166	182	183	0.61
KRC166	186	187	0.223
KRC166	187	188	0.156
KRC166	188	189	0.289
KRC166	189	190	0.6
KRC166	190	191	0.481
KRC166	191	192	0.852
KRC166	192	193	0.17
KRC166	193	194	0.951
KRC166	194	195	0.992
KRC166	195	196	0.494
KRC166	196	197	0.095
KRC166	197	198	0.075
KRC166	198	199	0.246
KRC166	199	200	0.531
KRC167 KRC167	186	187	0.281
KRC167	187	188	0.219
	188	189	0.118
KRC167 KRC167	189 190	190 191	0.372 0.128
KRC167	191	191	0.128
KRC167	192	193	0.057
KRC167	193	194	0.282
KRC167	194	195	0.597
KRC167	195	196	0.29
KRC167	200	201	0.6
KRC167	201	202	0.473
KRC167	202	203	0.114
KRC167	203	204	0.061
KRC167	204	205	0.482
KRC167	205	206	0.317
KRC167	206	207	0.547
KRC167	207	208	0.719
KRC167	208	209	0.357
KRC167	214	215	0.323
KRC167	215	216	0.744
KRC167	216	217	0.475

Hole ID	From (m)	To (m)	Gold g/t
KRC167	217	218	0.697
KRC168	178	179	0.23
KRC168	179	180	1.28
KRC168	180	181	0.206
KRC168	184	185	0.641
KRC168	185	186	0.27
KRC168	206	207	0.213
KRC168	207	208	0.321
KRC168	208	209	0.023
KRC168	209	210	0.313
KRC168	218	219	0.518
KRC168	219	220	1.52
KRC168	220	221	0.638
KRC168	221	222	2.53
KRC168	222	223	1.02
KRC168	223	224	1.015
KRC168	224	225	3.89
KRC168	225	226	0.62
KRC168	226	227	0.101
KRC168	227	228	0.113
KRC168	228	229	0.917
KRC168	253	254	1.41
KRC168	254	255	0.352
KRC168	255	256	0.71
KRC168	256	257	0.45
KRC168	257	258	0.347
KRC168	258	259	0.162
KRC168	259	260	0.106
KRC168	260	261	5.06
KRC168	261	262	2.15
KRC168	262	263	1.195
KRC168	263	264	0.585
KRC168	264	265	0.193
KRC168	265	266	0.208
KRC168	266	267	0.3
KRC168	267	268	1.28
KRC168	268	269	0.233
KRC168	278	279	2.65
KRC168	279	280	0.484
KRC168	280	281	0.223
KRC168 KRC168	293 294	294	0.613
KRC168	295	295 296	0.717 0.402
KRC169	233	234	0.34
KRC169	234	235	0.34
KRC169	235	236	0.447
KRC169	236	237	0.447
KRC169	237	237	0.799
KRC169	238	239	0.733
KRC169	239	240	0.41
KRC169	240	240	1.935
KRC169	241	242	0.39
KRC169	242	243	0.328
KRC169	243	244	0.073
KRC169	244	245	0.228
KRC169	245	246	0.276
KRC169	246	247	0.492
KRC169	247	248	0.404
KRC169	248	249	2.02
KRC169	249	250	4.79
			5

Hole ID	From (m)	To (m)	Gold g/t
KRC169	250	251	0.941
KRC169	251	252	0.051
KRC169	252	253	1.56
KRC169	253	254	1.49
KRC169	254	255	1.685
KRC169	255	256	5.3
KRC169	256	257	8.16
KRC169	257	258	1.055
KRC169	258	259	5.63
KRC169	259	260	0.394
KRC169	264	265	3.42
KRC169	265	266	4.13
KRC169	266	267	3.25
KRC169	267	268	2.15
KRC169	268	269	0.824
KRC169	269	270	0.887
KRC169	270	271	0.785
KRC169	271	272	1.975
KRC169	272	273	0.517
KRC169	273	274	0.888
KRC169	274	275	0.832
KRC169	275	276	0.143
KRC169	276	277	0.281
KRC169	277	278	1.1
KRC169	278	279	0.48
KRC169	279	280	0.303
KRC169	280	281	0.368
KRC169	281	282	0.492
KRC169	282	283	1.54
KRC169	283	284	0.228
KRC169	284	285	0.642
KRC169	285	286	0.831
KRC169	286	287	0.128
KRC169	287	288	0.3
KRC169	288	289	0.112
KRC169	289	290	0.93
KRC169	290	291	0.235
KRC170	194	195	1.225
KRC170	195	196	0.12
KRC170 KRC170	196	197 198	1.425
	197		0.504
KRC170 KRC170	198 199	199 200	0.103 0.092
KRC170	200	200	0.092
KRC170	215	201	0.261
KRC170	216	217	1.665
KRC170	217	217	1.225
KRC170	218	219	6.02
KRC170	219	220	1.84
KRC170	220	221	0.084
KRC170	221	222	2.28
KRC170	226	227	0.71
KRC170	227	228	4.49
KRC170	228	229	0.45
KRC170	229	230	1.365
KRC170	230	231	2.44
KRC170	231	232	0.456
KRC170	232	233	0.42
KRC170	246	247	0.369
KRC170	247	248	0.204
	277	270	J.20 4

Hole ID	From (m)	To (m)	Gold g/t
KRC170	248	249	0.046
KRC170	249	250	1.44
KRC170	317	318	0.233
KRC170	318	319	0.554
KRC170	319	320	0.802
KRC170	320	321	0.637
KRC171	116	117	0.311
KRC171	117	118	13.7
KRC171	118	119	0.985
KRC171	132	133	0.317
KRC171	133	134	0.25
KRC171	134	135	3.3
KRC171	135	136	2.28
KRC171	136	137	0.583
KRC171	137	138	0.262
KRC171	138	139	0.299
KRC171	139	140	0.171
KRC171	140	141	0.825
KRC171	141	142	1.48
KRC171	142	143	1.215
KRC171	143	144	1.485
KRC171	144	145	1.27
KRC171	145	146	0.27
KRC171	146	147	0.245
KRC171	147	148	1.185
KRC171	148	149	0.321
KRC171	149	150	0.196
KRC171	150	151	0.172
KRC171	151	152	0.4
KRC171	152	153	2.02
KRC171	153	154	2.65
KRC171	154	155	1.615
KRC171	155	156	1.04
KRC171 KRC171	156 157	157	1.88 1.13
KRC171	158	158 159	1.13
KRC171	159	160	0.321
KRC171	160	161	0.369
KRC171	161	162	0.163
KRC171	162	163	0.23
KRC171	163	164	0.025
KRC171	164	165	0.225
KRC172	63	64	0.256
KRC172	64	65	0.208
KRC172	65	66	0.147
KRC172	66	67	1.7
KRC172	67	68	0.7
KRC172	68	69	0.625
KRC172	69	70	0.398
KRC172	70	71	0.199
KRC172	71	72	0.312
KRC172	72	73	0.325
KRC172	73	74	0.229
KRC172	74	75	0.606
KRC172	75	76	0.477
KRC172	76	77	0.21
KRC172	77	78	0.802
KRC172	78	79	2.86
KRC172	79	80	0.211
KRC172	80	81	2.24

Hole ID	From (m)	To (m)	Gold g/t
KRC172	81	82	0.4
KRC172	82	83	0.513
KRC172	83	84	0.359
KRC172	84	85	0.633
KRC172	85	86	0.147
KRC172	86	87	0.731
KRC172	87	88	0.776
KRC172	88	89	1.325
KRC172	89	90	0.403
KRC172	93	94	0.226
KRC172	94	95	0.09
KRC172	95	96	0.56
KRC173	68	69	0.364
KRC173	69	70	0.995
KRC173	70	71	1.565
KRC173	71	72	1.84
KRC173	72	73	2.06
KRC173	73	74	0.128
KRC173	74	75	0.6
KRC173	75	76	0.255
KRC173	76	77	0.225
KRC173	77	78	0.1
KRC173	78	79	0.826
KRC173	79	80	0.317
KRC173	80	81	1.23
KRC173	81	82	0.059
KRC173	82	83	0.176
KRC173	83	84	0.52
KRC173	84	85	0.834
KRC173	85	86	0.853
KRC173	86	87	1.14
KRC173	87	88	0.914
KRC173	88	89	0.557
KRC173	89	90	0.584
KRC173	90	91	0.464
KRC173 KRC173	91 92	92 93	0.572 1.805
	93	93	0.428
KRC173 KRC173	94	95	0.428
KRC173	95	96	0.448
KRC173	96	97	0.788
KRC173	97	98	0.379
KRC173	101	102	0.312
KRC173	102	103	0.703
KRC173	103	104	0.572
KRC173	104	105	0.156
KRC173	105	106	0.577
KRC173	106	107	0.129
KRC173	107	108	1.095
KRC175	138	139	0.479
KRC175	139	140	0.225
KRC175	140	141	3.52
KRC175	151	152	0.465
KRC175	152	153	0.731
KRC175	153	154	0.162
KRC175	154	155	0.691
KRC175	155	156	0.442
KRC175	156	157	0.179
KRC175	157	158	0.356
KRC175	158	159	0.591

KRC175 162 163 0.409 KRC175 163 164 3.59 KRC175 164 165 0.599 KRC175 165 166 0.603 KRC175 166 167 0.364 KRC175 168 169 0.313 KRC175 169 170 0.637 KRC175 170 171 0.0025 KRC175 170 171 0.0025 KRC175 172 173 0.911 KRC175 172 173 0.911 KRC175 172 173 0.911 KRC175 174 175 0.764 KRC175 174 175 0.764 KRC175 175 176 0.618 KRC175 175 176 177 1.56 KRC175 178 179 180 2.99 KRC175 180 181 2.13 KRC175 181	Hole ID	From (m)	To (m)	Gold g/t
KRC175 164 165 0.599 KRC175 165 166 0.603 KRC175 166 167 0.364 KRC175 167 168 0.243 KRC175 168 169 0.313 KRC175 169 170 0.637 KRC175 170 171 0.0025 KRC175 171 172 1.78 KRC175 171 172 1.78 KRC175 173 174 1.39 KRC175 173 174 1.39 KRC175 173 174 1.39 KRC175 175 176 0.618 KRC175 175 176 0.618 KRC175 177 178 1.28 KRC175 177 178 1.28 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.33	KRC175	162	163	0.409
KRC175 165 166 0.603 KRC175 166 167 0.364 KRC175 166 167 0.364 KRC175 168 169 0.313 KRC175 169 170 0.637 KRC175 170 171 0.0025 KRC175 171 172 1.78 KRC175 171 172 1.78 KRC175 173 174 1.39 KRC175 173 174 1.39 KRC175 173 174 1.39 KRC175 173 174 1.39 KRC175 175 176 0.618 KRC175 175 176 177 1.78 KRC175 177 178 1.28 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 183 2.44 KRC175 183 18	KRC175	163	164	3.59
KRC175 166 167 0.364 KRC175 167 168 0.243 KRC175 168 169 0.313 KRC175 169 170 0.637 KRC175 170 171 0.0025 KRC175 171 172 1.78 KRC175 173 174 1.39 KRC175 173 174 1.39 KRC175 173 174 1.39 KRC175 175 176 0.618 KRC175 175 176 0.618 KRC175 177 178 1.28 KRC175 177 178 1.28 KRC175 179 180 2.99 KRC175 179 180 2.99 KRC175 181 182 1.335 KRC175 181 182 1.335 KRC175 183 184 1.165 KRC175 183 184 1.65	KRC175	164	165	0.599
KRC175 167 168 169 0.313 KRC175 168 169 0.313 KRC175 169 170 0.637 KRC175 170 171 0.0025 KRC175 171 172 1.78 KRC175 171 172 1.78 KRC175 173 174 1.39 KRC175 174 175 0.764 KRC175 176 177 1.56 KRC175 176 177 1.56 KRC175 177 178 1.28 KRC175 178 179 4.89 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 181 182 1.335 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 1	KRC175	165	166	0.603
KRC175 168 169 0.313 KRC175 169 170 0.637 KRC175 170 171 0.0025 KRC175 171 172 1.78 KRC175 172 173 0.911 KRC175 173 174 1.39 KRC175 174 175 0.764 KRC175 176 177 1.56 KRC175 176 177 1.56 KRC175 176 177 1.56 KRC175 178 179 4.89 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 181 182 1.33 KRC175 181 182 1.335 KRC175 183 184 1.165 KRC175 183 184 1.165 KRC175 185 186 187	KRC175	166	167	0.364
KRC175 169 170 0.637 KRC175 170 171 0.0025 KRC175 171 172 1.78 KRC175 172 173 0.911 KRC175 173 174 1.39 KRC175 174 175 0.764 KRC175 176 177 1.56 KRC175 176 177 1.56 KRC175 177 178 1.28 KRC175 179 180 2.99 KRC175 189 189 2.99 KRC175 180 181 2.13 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 187 0.	KRC175	167	168	0.243
KRC175 170 171 0.0025 KRC175 171 172 1.78 KRC175 172 173 0.911 KRC175 173 174 1.39 KRC175 174 175 0.764 KRC175 175 176 0.618 KRC175 175 176 0.618 KRC175 177 178 1.28 KRC175 177 178 1.28 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 183 184 1.165 KRC175 185 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189	KRC175	168	169	0.313
KRC175 171 172 1.78 KRC175 172 173 0.911 KRC175 173 174 1.39 KRC175 174 175 0.764 KRC175 175 176 0.618 KRC175 176 177 1.56 KRC175 177 178 1.28 KRC175 179 180 2.99 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 185 186 0.0025 KRC175 185 186 0.0025 KRC175 188 189 0.227 <th>KRC175</th> <th>169</th> <th>170</th> <th>0.637</th>	KRC175	169	170	0.637
KRC175 172 173 0.911 KRC175 173 174 1.39 KRC175 174 175 0.764 KRC175 175 176 0.618 KRC175 176 177 1.56 KRC175 177 178 1.28 KRC175 178 179 4.89 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 181 182 1.335 KRC175 183 184 1.165 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 185 186 0.0025 KRC175 188 189 0.227 KRC175 188 189 0.227 KRC175 216 217 0.233 <th>KRC175</th> <th>170</th> <th>171</th> <th>0.0025</th>	KRC175	170	171	0.0025
KRC175 173 174 1.39 KRC175 174 175 0.764 KRC175 175 176 0.618 KRC175 176 177 1.56 KRC175 177 178 1.28 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 180 181 2.13 KRC175 180 181 2.13 KRC175 180 181 2.13 KRC175 182 183 2.44 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 189 0.227 KRC175 188 189 0.227 KRC175 216 217 0.2	KRC175	171	172	1.78
KRC175 174 175 0.764 KRC175 175 176 0.618 KRC175 176 177 1.56 KRC175 177 178 1.28 KRC175 178 179 4.89 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 187 0.27 KRC175 187 188 189 0.227 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 218 2	KRC175	172	173	0.911
KRC175 175 176 0.618 KRC175 176 177 1.56 KRC175 177 178 1.28 KRC175 178 179 4.89 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.27 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 2219 220 0.293	KRC175	173	174	1.39
KRC175 176 177 1.56 KRC175 177 178 1.28 KRC175 178 179 4.89 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 184 185 3.93 KRC175 186 187 0.27 KRC175 186 187 0.27 KRC175 188 189 0.227 KRC175 188 189 0.227 KRC175 216 217 0.233 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 220 221 0.475	KRC175	174	175	0.764
KRC175 177 178 1.28 KRC175 178 179 4.89 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 221 222 0.338 <th>KRC175</th> <th>175</th> <th>176</th> <th>0.618</th>	KRC175	175	176	0.618
KRC175 178 179 4.89 KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 221 222 0.338 KRC175 221 222 0.338 <th></th> <th>176</th> <th>177</th> <th></th>		176	177	
KRC175 179 180 2.99 KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 215 216 0.555 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 218 219 0.475 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 223 224 0.138 KRC175 223 224 0.138 </th <th></th> <th>177</th> <th>178</th> <th>1.28</th>		177	178	1.28
KRC175 180 181 2.13 KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 215 216 0.555 KRC175 217 218 0.181 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 221 220 0.293 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 223 224 0.138 KRC175 224 225 0.118 <				
KRC175 181 182 1.335 KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 221 222 0.258 KRC175 223 224 0.138 KRC175 223 224 0.18 <		-		
KRC175 182 183 2.44 KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 226 227 0.371				
KRC175 183 184 1.165 KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 229 221 0.475 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 223 224 0.138 KRC175 223 224 0.252 KRC175 226 227 0.371 KRC175 228 229 0.2 <	111102110		-	
KRC175 184 185 3.93 KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 229 221 0.475 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 226 227 0.371 KRC175 228 229 0.2 <	111102110			
KRC175 185 186 0.0025 KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 216 217 0.233 KRC175 218 219 0.181 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 229 221 0.475 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 226 227 0.371 KRC175 228 229 0.2 KRC175 232 233 0.311				
KRC175 186 187 0.27 KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 229 221 0.475 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 226 227 0.371 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 <	111102110			
KRC175 187 188 0.278 KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 218 219 0.146 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227				
KRC175 188 189 0.227 KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 217 218 0.181 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 226 227 0.371 KRC175 226 227 0.371 KRC175 232 233 0.311 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227			-	
KRC175 215 216 0.555 KRC175 216 217 0.233 KRC175 217 218 0.181 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 221 222 0.338 KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 232 233 0.311 KRC175 234 235 0.227 KRC175 234 235 0.227				
KRC175 216 217 0.233 KRC175 217 218 0.181 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 226 227 0.371 KRC175 226 227 0.371 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 236 237 0.236				
KRC175 217 218 0.181 KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 227 228 0.551 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 236 237 0.236 KRC175 238 239 0.833				
KRC175 218 219 0.146 KRC175 219 220 0.293 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 227 228 0.551 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 219 220 0.293 KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 220 221 0.475 KRC175 221 222 0.338 KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 221 222 0.338 KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 222 223 0.258 KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 227 228 0.551 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 223 224 0.138 KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 227 228 0.551 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 224 225 0.118 KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 227 228 0.551 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 238 239 0.833 KRC176 121 122 1.82	111102110			
KRC175 225 226 0.252 KRC175 226 227 0.371 KRC175 227 228 0.551 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 226 227 0.371 KRC175 227 228 0.551 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 227 228 0.551 KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 228 229 0.2 KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 232 233 0.311 KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 233 234 1.645 KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 234 235 0.227 KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 235 236 0.314 KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 236 237 0.236 KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 237 238 0.067 KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC175 238 239 0.833 KRC176 121 122 1.82				
KRC176 121 122 1.82				
KRC176 123 124 1.345				
KRC176 146 147 0.403	KRC176		147	
KRC176 147 148 0.344	KRC176	147	148	0.344
KRC176 148 149 0.036	KRC176	148	149	
KRC176 149 150 0.122	KRC176	149	150	0.122
KRC176 150 151 0.309	KRC176	150	151	0.309
KRC176 151 152 0.079	KRC176	151	152	0.079
KRC176 152 153 0.077	KRC176	152	153	0.077
KRC176 153 154 0.23	KRC176	153	154	0.23
KRC176 160 161 0.215	KRC176	160	161	0.215

Hole ID	From (m)	To (m)	Gold g/t
KRC176	161	162	0.244
KRC176	162	163	0.537
KRC176	170	171	0.263
KRC176	171	172	0.356
KRC176	172	173	0.843
KRC176	173	174	0.381
KRC176	174	175	0.036
KRC176	175	176	0.577
KRC176	176	177	0.452
KRC176	177	178	0.122
KRC176	178	179	0.212
KRC176	183	184	1.67
KRC176	184	185	0.516
KRC176	185	186	0.353
KRC176	186	187	2.09
KRC176	187	188	0.956
KRC176	188	189	40.7
KRC176	189	190	3.86
KRC176	190	191	0.164
KRC176	191	192	1.63
KRC176	192	193	3.08
KRC176	193	194	2.83
KRC176	194	195	3.92
KRC176	212	213	0.402
KRC176	213	214	0.309
KRC176	214	215	0.328
KRC176	215	216	0.526
KRC176	216	217	0.959
KRC176	217	218	5.27
KRC176	218	219	0.165
KRC176	219	220	0.253
KRC176	220	221	1.23
KRC176 KRC176	221	222	1.175
KRC176	222	223	4.63
KRC176 KRC176		224	0.889
KRC176	224 225	225 226	1.5 1.77
KRC176	226	227	0.373
KRC176	227	228	0.915
KRC176	228	229	0.228
KRC176	229	230	0.055
KRC176	230	231	0.081
KRC176	231	232	0.36
KRC176	232	233	0.207
KRC176	246	247	0.619
KRC176	247	248	1.97
KRC176	248	249	0.769
KRC176	249	250	2.16
KRC176	250	251	1.08
KRC176	251	252	0.112
KRC176	252	253	19.75
KRC176	253	254	18.1
KRC176	254	255	9.72
KRC176	255	256	0.819
KRC184	111	112	0.208
KRC184	112	113	0.532
KRC184	113	114	0.224
KRC184	114	115	0.248
KRC184	115	116	0.309
KRC184	116	117	0.199

Hole ID	From (m)	To (m)	Gold g/t
KRC184	117	118	0.364
KRC184	118	119	0.31
KRC184	119	120	0.486
KRC184	120	121	0.545
KRC184	121	122	0.418
KRC184	122	123	0.669
KRC184	123	124	0.521
KRC184	124	125	1.175
KRC184	125	126	0.497
KRC184	126	127	0.732
KRC184	127	128	0.45
KRC184	128	129	1.465
KRC184	129	130	2.34
KRC184	130	131	1.725
KRC184	131	132	3.5
KRC184	132	133	5.43
KRC184	133	134	2.04
KRC184	134	135	3.71
KRC184	135	136	2.72
KRC184	136	137	0.414
KRC184	137	138	1.125
KRC184	138	139	1.345
KRC184	139	140	3.05
KRC184	140	141	0.903
KRC184	141	142	0.23
KRC184	142	143	0.28
KRC184	143	144	0.272
KRC184	144	145	0.09
KRC184	145	146	0.564
KRC184	146	147	0.36
KRC185	147	148	0.254
KRC185	148	149	0.245
KRC185	149	150	0.214
KRC185	150	151	0.637
KRC185	151	152	0.226
KRC185	152	153	0.276
KRC185	153	154	0.022
KRC185	154	155	0.206
KRC185	155	156	0.49
KRC185	156	157	1.165
KRC185	157	158	14.75
KRC185	158	159	1.66
KRC185	159	160	1.025
KRC185	160	161	3.75
KRC185	161	162	2.03
KRC185	162	163	1.905
KRC185	163	164	2.19
KRC185	164	165	1.86
KRC185	165	166	3.26
KRC185	166	167	1.915
KRC185	167	168	1.645
KRC185	168	169	0.47
KRC185	169	170	0.524
KRC186	31	32	0.402
KRC186	32	33	0.865
KRC186	33	34	0.161
KRC186	34	35	0.212
KRC186	42	43	0.221
KRC186	43	44	0.154
KRC186	44	45	0.214

Hole ID	From (m)	To (m)	Gold g/t
KRC186	45	46	0.283
KRC186	46	47	0.299
KRC186	47	48	2.79
KRC186	48	49	1.005
KRC186	49	50	11.55
KRC186	50	51	3.4
KRC186	51	52	2.53
KRC186	52	53	2.66
KRC186	53	54	1.17
KRC186	54	55	0.662
KRC186	55	56	0.158
KRC186	56	57	1.155
KRC186	57	58	0.06
KRC186	58	59	0.172
KRC186	59	60	0.28
KRC186	60	61	0.36
KRC186	61	62	0.194
KRC186	62	63	0.858
KRC186	63	64	0.289
KRC186	75	76	0.548
KRC186	76	77	0.276
KRC186	77	78	0.293
KRC187	249	250	0.284
KRC187	250	251	0.154
KRC187	251	252	0.507
KRC187	252	253	0.235
KRC187	253	254	0.519
KRC187	254	255	0.206
KRC187	255	256	0.478
KRC187	256	257	0.561
KRC187	257	258	0.296
KRC187	258	259	1.035
KRC187	259	260	0.872
KRC187	260	261	3.09
KRC187	261	262	1.93
KRC187	262	263	1.595
KRC187	263	264	1.965
KRC187	264	265	0.92
KRC187	265	266	0.338
KRC187	266	267	0.228
KRC187	267	268	0.174
KRC187	268	269	1.705
KRC187	269	270	0.442
KRC187	270	271	0.159
KRC187	271	272	0.047
KRC187	272	273	0.282
KRC188	307	308	0.319
KRC188	308	309	0.63
KRC188	309	310	0.458
KRC188	310	311	0.367
	0-0	9	3.007

Hole ID	From (m)	To (m)	Gold g/t
KRC188	311	312	0.487
KRC188	312	313	1.18
KRC188	313	314	1.19
KRC188	314	315	2.63
KRC188	315	316	1.61
KRC188	316	317	2.15
KRC188	317	318	0.929
KRC188	318	319	0.731
KRC188	319	320	2.55
KRC188	320	321	1.305
KRC188	321	322	0.948
KRC188	322	323	0.396
KRC188	323	324	0.636
KRC190	196	197	0.402
KRC190	197	198	0.443
KRC190	198	199	0.156
KRC190	199	200	0.256
KRC190	200	201	1.06
KRC190	201	202	0.568
KRC190	202	203	0.122
KRC190	203	204	0.083
KRC190	204	205	1.095
KRC190	205	206	0.52
KRC190	206	207	0.175
KRC190	207	208	1.315
KRC190	208	209	1.935
KRC190	209	210	1.675
KRC190	210	211	1.1
KRC190	211	212	0.402
KRC190	212	213	0.669
KRC190	213	214	2.66
KRC190	214	215	1.165
KRC190	215	216	1.525
KRC190	216	217	1.1
KRC190	217	218	0.69
KRC190	218	219	1.3
KRC190	219	220	1.21
KRC190	220	221	0.501
KRC190	221	222	1.76
KRC190	222	223	0.231
KRC190	223	224	0.811
KRC190	224	225	0.088
KRC190	225	226	0.051
KRC190	226	227	0.212
KRC190	227	228	0.123
KRC190	228	229	0.347
KRC190	229	230	0.13
KRC190	230	231	0.146
KRC190	231	232	0.283

Appendix 3. JORC Table 1 Reporting

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation (RC) drilling was completed using a dedicated RC rig. RC samples were collected from the drill rig cyclone over 1 m down-hole intervals and subsampled by cone-splitting; full length of the drill holes was sampled. Samples are typically circa 2-4kg weight. A duplicate sample was retained on site for future reference. Diamond drilling was completed using a dedicated diamond rig. Drillholes were angled at -60° from surface. Diamond core was cut in half using a core saw. Sampling intervals are decided by a Company Geologist, based on the lithological contacts and on any change in alteration or mineralisation style. Core sample length vary between 0.5m and 1.4m. The half core sampling is done by a Company Geologist.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling was carried out using a 140mm (5.5 inch) face sampling hammer. Coring was completed using HQ size from surface. All core is oriented using Reflex digital system
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC recoveries were determined by weighting each drill metre bag. Samples are sieved and logged by supervising Geologist; sample weight, quality, moisture and any contamination are recorded. RC samples quality and recovery was excellent, with dry samples and consistent weight obtained. Drill core recoveries were recorded at the drill rig. Core recoveries were excellent for all the drill program. Sample bias is not expected with the cut core.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and 	 All drill holes were logged in the field by Company Geologists. On the RC holes, lithologies, alteration, minerals were recorded. Samples chips are collected and sorted into chip trays for future

Criteria	JORC Code explanation	Commentary
	 metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 geological references. On the diamond holes, lithologies, alteration, minerals geotechnical measurements and structural data were recorded and uploaded into the Company database. Photography was taken on dry and wet core and on plain and cut core for further references. Drill holes were logged in full. Logging was qualitative and quantitative in nature.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RC samples were collected from the rig cyclone and passed through a riffle splitter to reduce sample weight to a circa 2-4kg. The sampling technique is considered industry standard and effective for this style of drilling. Samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. RC samples were assayed using method Au-AA24 for gold. The sample preparation procedures carried out are considered acceptable. Blanks, standards (CRM) and duplicates are used to monitor Quality Control and representativeness of samples. The diamond core was cut longitudinally using a core saw. Half core samples were collected by a Company Geologist and sent off to the laboratory for assay. Half core samples were crushed and pulverized at the ALS laboratory in Okahandja before being shipped to Johannesburg for assay. Drilling samples were assayed using methods Au-AA24 for gold and ME-MS61 for the multi element suite. The sample preparation procedures carried out are considered acceptable. Blanks and standards (CRM) are used to monitor Quality Control and representativeness of samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 RC samples and half core samples were assayed by 50g Lead collection fire assay in new pots and analysed by Atomic Absorption Spectroscopy (AAS) for gold. Multielement were assayed using a 4-acid digest followed by ICPMS-AES Industry best practice procedures were followed and included submitting blanks, field duplicates and Certified Reference Material. Acceptable levels of accuracy and precision have been confirmed.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 At this stage, the intersections have been verified by the Company Geologists. All field data is manually collected, entered into excel spreadsheets, validated and loaded into a database. Electronic data is stored on a cloud server and routinely backed up. Data is exported from the database for processing in a number of software packages.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes collar locations were recorded at the completion of each hole by hand-held GPS. Coordinates collected are in the WGS84 Zone 33S grid system
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC drill holes and diamond drill holes reported here were planned on a set grid with spacing of 100m in plan view and 50m between holes on sections. The data spacing and distribution of sampling is sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation procedures.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill holes were positioned using geological information collected from the trenches and from the detailed mapping completed over the prospect. They are positioned perpendicular to the main schistosity and so to the inferred mineralisation main controls.
Sample security	The measures taken to ensure sample security.	 Sampling is supervised by a Company Geologist and all samples are delivered to the laboratory in Okahandja by company staff.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No reviews or audits have been conducted on the drilling reported in this announcement.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 The Damaran Project comprises 12 exclusive prospecting licenses (EPLs 6226, 4833, 8039, 7246, 4818, 4953, 6534, 6535, 6536, 8249,7327,7980) and located in central Namibia. EPL6226 is 100% held by Wia Gold in the name of Aloe Investments One Hundred and

Criteria	JORC Code explanation	Commentary
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Ninety Two (Pty) Ltd. EPL4833, 4818, 7246, 8039 and 8249 are held under an 80% earn-in and join venture agreement with Epangelo Mining Limited, a private mining investment company with the Government of the Republic of Namibia as the sole shareholder. EPL6534, 6535, 6536, and 4953 are held under a company called Gazina Investments which is owned 90% by Wia and 10% by the vendor. • EPL7980 is 100% held by WiaGold in the name of Damaran Exploration Namibia (PTY) Ltd. • EPL7327 is under an agreement with an exclusive option to acquire the permit under a NewCo at Wia election. All granted tenements are in good standing and there are no material issues affecting the tenements.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Work completed prior to WiaGold includes stream sediment sampling, mapping, soil and rock chip sampling by Teck Cominco Namibia but data is unavailable. This work did not cover the Okombahe permit, host of the Kokoseb gold discovery.
Geology	Deposit type, geological setting and style of mineralisation.	 The Kokoseb Gold Project lies withing the Northern Central Zone of the Pan-African Damaran Orogenic Belt. The project area is underlain by neo-Proterozoic metasediments, including the Kuiseb schist formation, host of most of the known gold mineralisation in Namibia. Known gold deposits, including Kokoseb, are orogenic type deposits by nature. Kokoseb gold mineralisation is hosted by the Kuiseb schist formation, biotite-schists (metasediments) which have been intruded by several granitic phases. The gold mineralised zone appears as a contact like aureole of the central granitic pluton, with a diameter of approximately 3km in each direction. Gold mineralisation is present as native gold grains and lesser silver bearing gold grains been spacially associated with sulphides dominated by pyrrhotite, löllingite and arsenopyrite. Gold grains have developed at the contact between löllingite and arsenopyrite following a retrograde reaction.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) 	see tables in the appendix.

Criteria	JORC Code explanation	Commentary
	of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Reported intercepts are calculated using weighted average at a cut-off grade of 0.5 g/t Au and allowing internal dilution of maximum 2m consecutive low-grade material.
Relationshi p between mineralisati on widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes are inclined at around 55 to 60 degrees, with azimuths generally perpendicular to local mineralisation trends, implying a true thickness around half the down-hole intercept lengths. Intercepts are reported as they appear from the sampling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Plan view maps of all drillhole are included.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All samples with assays have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk	 No other exploration data is being reported at this time.

Criteria	JORC Code explanation	Commentary
	density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Refer to the text in the announcement for information on follow-up and/or next work programs.