

QUARTERLY EXPLORATION UPDATE

Highlights

Mt Gibson Gold Project (MGGP)

- A further 17,023 metres of RC resource definition and extensional drilling was completed at the MGGP during the March 2024 quarter.
- Assays received from 158 resource definition holes (22,851 metres) since the last update in January 2024 continue to return exceptional results within and extensional to the resource including:
 - 46 metres @ 2.26g/t from 178 to 224m
 - 32 metres @ 2.38g/t from 220 to 295m
 - 19 metres @ 3.75g/t from 177 to 196m*
 - 12 metres @ 5.28g/t from 90 to 102m
 - 9 metres @ 6.13g/t from 170 to 179m
- 19 metres @ 4.42g/t from 276 to 295m
- 2 metres @ 37.13g/t from 62 to 64m
- 11 metres @ 6.11g/t from 95 to 106m
- 11 metres @ 5.57/t from 20 to 31m
- 15 metres @ 3.62/t from 29 to 44m

- 89,543 metres of drilling over the last year at the MGGP delivered a 380,000 ounce (26%) increase to the Ore Reserve Estimate (ORE) to 1.83 million ounces (refer ASX announcement dated 19 April 2024).
- Broad high-grade gold intercepts under the Orion and Lexington pits continue to demonstrate underground mining potential. A 2,000 metre diamond drilling programme to continue testing for extensions to these zones has commenced.
- Drilling on unmined areas at the Comanche prospect, Orion Supergene, Lexington Trend, Tobais Find, Saratoga, Sheldon and Orion North (east of the main Gibson trend) continues to define zones of highgrade mineralisation.
- A total of 9 near mine exploration RC holes for 1,080 metres were completed at the Ace High and Big Whiskey prospects following up first pass AC intercepts reported in the December 2023 quarter. Excellent first pass composite results were returned including:
 - 16 metres @ 10.57g/t from 24 to 40m
- 12 metres @ 1.78g/t from 60 to 72m
- A total of 199 Aircore holes for 10,562 metres were completed across near mine exploration targets.
 Outstanding first pass composite results were returned including:
 - 12 metres @ 3.86g/t from 48 to 60m
- 12 metres @ 2.74g/t from 40 to 52m

Karlawinda Gold Project (KGP)

- An RC infill drilling programme of 20,440 metres (114 holes) commenced at the Bibra, Southern Corridor and Berwick deposits to infill drill the deeper parts of the deposit to a drill density of 25 x 25 metres and allow the conversion of inferred material to indicated category for an update to the KGP ORE in the September 2024 quarter.
- RC results received from RC drilling completed in the December 2023 quarter at the Mumbakine Well and Carnoustie projects. Encouraging results were returned including:
 - 8 metres @ 5.90g/t from 27 to 35m
- 11 metres @ 1.87g/t from 30 to 41m
- 4 metres @ 2.64g/t from 72 to 76m
- 12 metres @ 0.79g/t from 176 to 188m
- A 7,059 metre (38 holes) RC and 1,230 metre (43 holes) AC drilling programme was completed within the Mumbakine Well and Carnoustie project areas during the March 2024 quarter.
- 2,098-line km regional airborne gravity gradiometer and gravity survey completed. Multiple gravity-high anomalies identified along magnetic corridors in proximity to known gold occurrences.

^{*} intercept is outside of current resource pit shell

Mt Gibson Gold Project

Exploration activities at the MGGP during the March 2024 quarter focussed on progressing the extensional and infill resource drilling that commenced in January 2022 as well as near mine exploration drilling at prospects immediately adjacent to the Mt Gibson trend. A total of 380 holes for 37,473 metres of resource, regional exploration and mine development drilling were drilled across the MGGP in the March 2024 quarter. The Company has drilled a total of 2,766 holes for 269,223 metres since acquisition as shown in Figure 1 below.

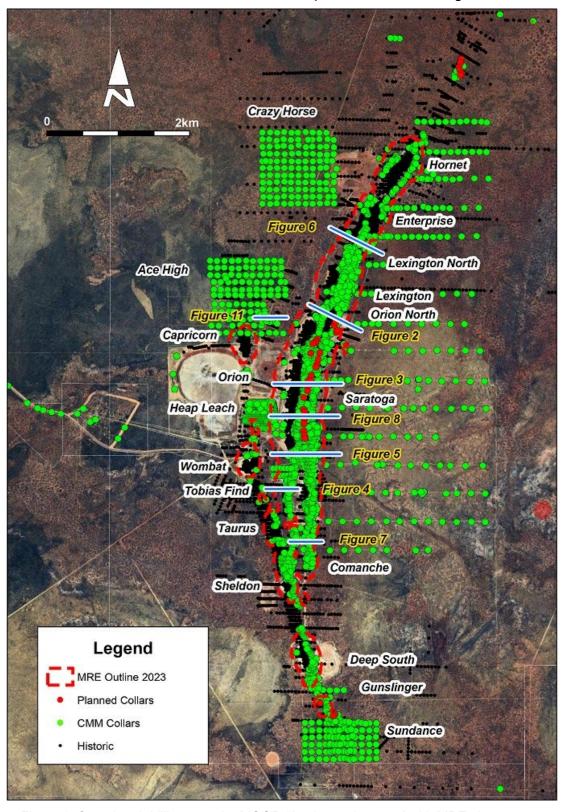


Figure 1. Completed drilling over the MGGP 8km long mine trend with MRE pit crests.

Assays received since the last update continue to return very encouraging results, including:

CMACO711* Easting Northing From (m) To (m) Width (m) Grade (g/t) CMACO714* 516883 6703999 40 52 12 2.74 CMACO807* 5168676 6703891 48 60 12 3.86 CMACO808* 516511 6710158 83 87 4 11.09 CMRC0892 516487 6709644 61 72 11 2.81 CMRC0892 516448 6709671 170 179 9 6.13 CMRC0894 516479 6709686 50 56 6 6.88 CMRC0901 516221 6708109 29 44 15 3.62 CMRC0903 516220 6708046 90 102 12 5.28 CMRC0903 516220 6708209 26 53 27 1.77 CMRC0920 516059 6707852 83 89 6 6.12 CMRC0923 516813 671096							
CMAC0714* 516876 6703891 48 60 12 3.86 CMAC0807* 516469 6710128 105 108 3 11.3 CMAC0808* 516511 6710158 83 87 4 11.09 CMRC0892 516487 6709644 61 72 11 2.81 CMRC0894 516479 6709686 50 56 6 6.88 CMRC0901 516221 6708109 29 44 15 3.62 CMRC0903 516206 6708046 90 102 12 5.28 CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0934 516825 6710634 178							
CMAC0807* 516469 6710128 105 108 3 11.3 CMAC0808* 516511 6710158 83 87 4 11.09 CMRC0892 5164487 6709644 61 72 11 2.81 CMRC0892 516448 6709671 170 179 9 6.13 CMRC0894 516479 6709686 50 56 6 6.88 CMRC0901 516221 6708109 29 44 15 3.62 CMRC0903 516206 6708046 90 102 12 5.28 CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710658 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
CMAC0808* 516511 6710158 83 87 4 11.09 CMRC0892 516487 6709644 61 72 11 2.81 CMRC0892 516448 6709671 170 179 9 6.13 CMRC0894 516479 6709686 50 56 6 6.88 CMRC0901 516221 6708109 29 44 15 3.62 CMRC0903 516206 6708046 90 102 12 5.28 CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220							
CMRC0892 516487 6709644 61 72 11 2.81 CMRC0892 516448 6709671 170 179 9 6.13 CMRC0894 516479 6709686 50 56 6 6.88 CMRC0901 516221 6708109 29 44 15 3.62 CMRC0903 516206 6708046 90 102 12 5.28 CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710694 178 224 46 2.26 CMRC0933 516702 6710658 1		516469	6710128				11.3
CMRC0892 516448 6709671 170 179 9 6.13 CMRC0894 516479 6709686 50 56 6 6.88 CMRC0901 516221 6708109 29 44 15 3.62 CMRC0903 516206 6708046 90 102 12 5.28 CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0933 516816 6710668 1	CMAC0808*	516511	6710158	83	87	4	11.09
CMRC0894 516479 6709686 50 56 6 6.88 CMRC0901 516221 6708109 29 44 15 3.62 CMRC0903 516206 6708046 90 102 12 5.28 CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710668 1 6 5 8.95 CMRC0936 516724 6710664 20	CMRC0892	516487	6709644	61	72	11	2.81
CMRC0901 516221 6708109 29 44 15 3.62 CMRC0903 516206 6708046 90 102 12 5.28 CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516816 6710658 1 6 5 8.95 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710664 20	CMRC0892	516448	6709671	170	179	9	6.13
CMRC0903 516206 6708046 90 102 12 5.28 CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0957 516560 6709950 165	CMRC0894	516479	6709686	50	56	6	6.88
CMRC0904 516220 6708209 26 53 27 1.77 CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0957 516560 6709950 165 <td>CMRC0901</td> <td>516221</td> <td>6708109</td> <td>29</td> <td>44</td> <td>15</td> <td>3.62</td>	CMRC0901	516221	6708109	29	44	15	3.62
CMRC0920 516069 6707853 59 60 1 46.4 CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516500 6709950 165 </td <td>CMRC0903</td> <td>516206</td> <td>6708046</td> <td>90</td> <td>102</td> <td>12</td> <td>5.28</td>	CMRC0903	516206	6708046	90	102	12	5.28
CMRC0920 516055 6707852 83 89 6 6.12 CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709172 24	CMRC0904	516220	6708209	26	53	27	1.77
CMRC0923 516813 6710967 116 137 21 1.68 CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 <td< td=""><td>CMRC0920</td><td>516069</td><td>6707853</td><td>59</td><td>60</td><td>1</td><td>46.4</td></td<>	CMRC0920	516069	6707853	59	60	1	46.4
CMRC0924 516834 6711067 40 68 28 1.58 CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 <	CMRC0920	516055	6707852	83	89	6	6.12
CMRC0932 516682 6710634 178 224 46 2.26 CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC1277 516862 6710935	CMRC0923	516813	6710967	116	137	21	1.68
CMRC0933 516702 6710692 220 252 32 2.38 CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 <	CMRC0924	516834	6711067	40	68	28	1.58
CMRC0936 516825 6710658 1 6 5 8.95 CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1284 517053 6711190	CMRC0932	516682	6710634	178	224	46	2.26
CMRC0936 516816 6710664 20 31 11 5.57 CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1284 517053 6711365 <	CMRC0933	516702	6710692	220	252	32	2.38
CMRC0936 516724 6710728 276 295 19 4.42 CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277	CMRC0936	516825	6710658	1	6	5	8.95
CMRC0937 516696 6710606 228 244 16 2.61 CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277	CMRC0936	516816	6710664	20	31	11	5.57
CMRC0941* 515687 6710079 24 40 16 10.57 CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC0936	516724	6710728	276	295	19	4.42
CMRC0957 516560 6709950 165 195 30 1.05 CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC0937	516696	6710606	228	244	16	2.61
CMRC0960 516330 6709936 224 252 28 1.45 CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC0941*	515687	6710079	24	40	16	10.57
CMRC0961 516152 6709172 244 269 25 1.37 CMRC0976** 516275 6706881 102 120 18 2.03 CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC0957	516560	6709950	165	195	30	1.05
CMRC0976** 516275 6706881 102 120 18 2.03 CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC0960	516330	6709936	224	252	28	1.45
CMRC0991 516141 6708207 46 63 17 1.95 CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC0961	516152	6709172	244	269	25	1.37
CMRC1277 516862 6710935 62 64 2 37.13 CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC0976**	516275	6706881	102	120	18	2.03
CMRC1280 516806 6710989 38 42 4 8.36 CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC0991	516141	6708207	46	63	17	1.95
CMRC1282** 516969 6711190 177 196 19 3.75 CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC1277	516862	6710935	62	64	2	37.13
CMRC1284 517053 6711365 95 106 11 6.11 CMRC1287 517022 6711277 92 107 15 3.52	CMRC1280	516806	6710989	38	42	4	8.36
CMRC1287 517022 6711277 92 107 15 3.52	CMRC1282**	516969	6711190	177	196	19	3.75
	CMRC1284	517053	6711365	95	106	11	
	CMRC1287	517022	6711277	92	107	15	3.52
	CMRC1307D	516191	6708763	21	32		4.5

^{*}Regional 4m Composite Drilling

A comprehensive table of significant results is included in Appendix 1.

An updated ORE was completed at the MGGP in April 2024 resulting in a 380,000 ounce (26%) increase from 1.45 million ounces to 1.83 million ounces. This significant increase was on the basis of the updated Mineral Resource Estimate (MRE) completed in the December 2023 quarter with none of the drilling results received in the March 2024 quarter used in the updated ORE. This drilling will form the basis of future updates to the MGGP MRE and ORE.

Resource Definition Drilling

Resource definition drilling at the MGGP during the March 2024 quarter focussed on extensional and infill resource drilling under the Orion, Orion North and Lexington pits as well as the unmined areas across the Mt Gibson and Taurus trends.

Current and previously reported drilling at the depth extremities of the resource optimisation shells (where historic drill density is broader spaced) and below them has returned results consistent with Capricorn's geological interpretations of mineralisation location, widths and grade tenor. Drilling across the project to date indicates that mineralisation remains open down dip and along strike to the north and south with multiple stacked lodes intersected.

Continuing extensional drilling to underpin further updates to the MRE and ORE will be targeted in the next twelve months.

^{**}Outside of current resource pit shell

The cross sections below (Figures 2-4) show drilling during the quarter intersecting broad mineralisation outside of the current ORE.

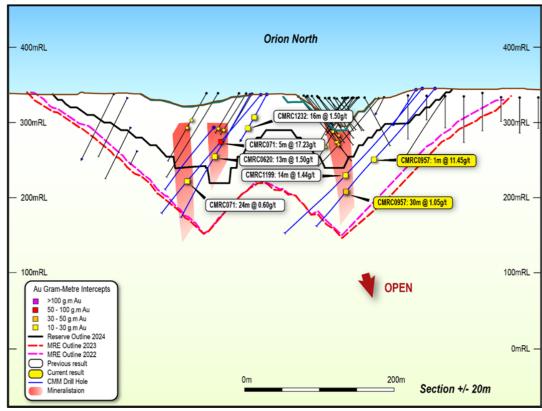


Figure 2. Orion North Section with significant open broad mineralisation outside of the current A\$1,900/oz reserve outline.

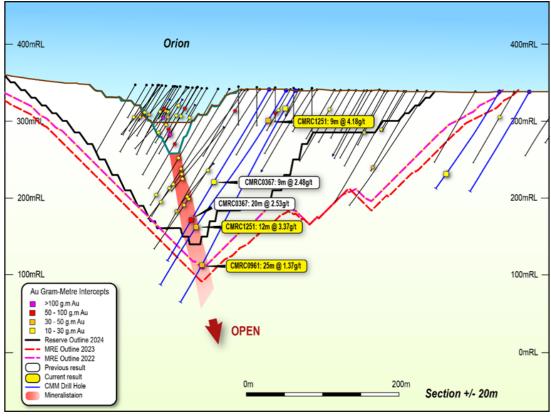


Figure 3. Orion Section with significant open broad mineralisation outside of the current A\$1,900/oz reserve outline.

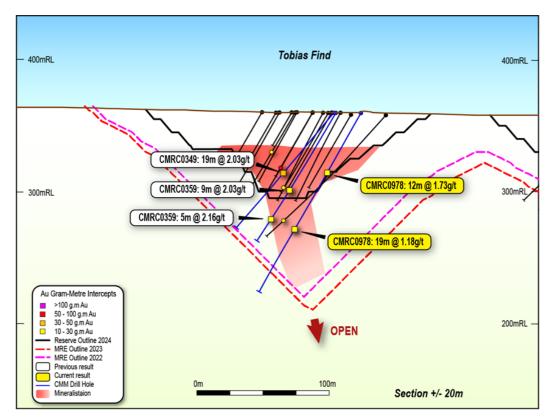


Figure 4. Tobias Find Section with shallow open significant broad mineralisation intersected outside of the current A\$1,900/oz reserve outline.

The cross sections below (Figures 5-7) show drilling during the quarter intersecting broad mineralisation outside of the current ORE and MRE.

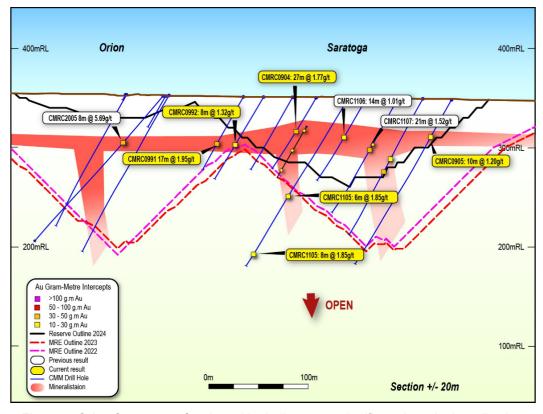


Figure 5. Orion Supergene Section with shallow open significant broad mineralisation intersected outside of the current A\$1,900/oz reserve outline and A\$2,200/oz resource outline.

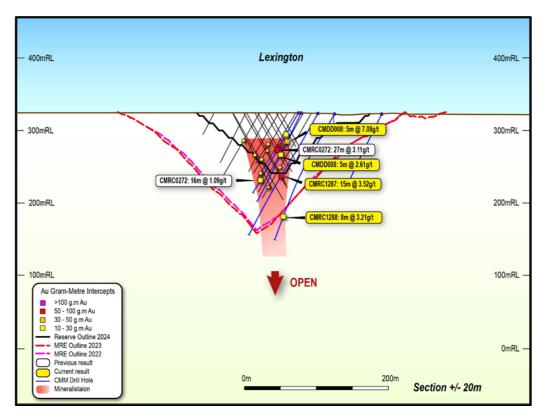


Figure 6. Lexington Section with shallow open significant broad mineralisation intersected outside of the current A\$1,900/oz reserve outline and A\$2,200/oz resource outline.

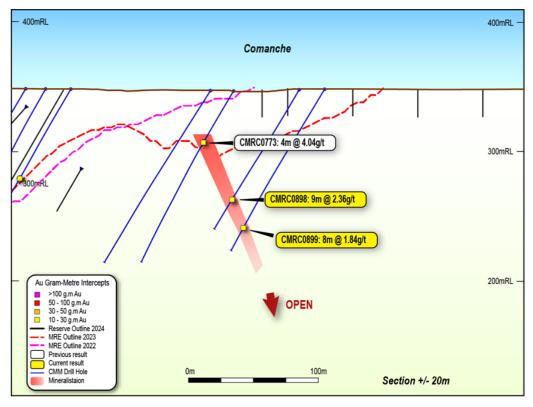


Figure 7. Comanche Section with shallow open significant broad mineralisation intersected outside of the current A\$1,900/oz reserve and \$2,200/oz resource outline.

Underground Potential

Capricorn drilling under the Orion and Lexington pits has returned broad high-grade gold intercepts demonstrating that mineralisation extends significantly at depth and shows the potential for underground mining operations. A 2,000 metre diamond drilling programme has commenced in the current quarter to follow-up four diamond holes drilled in the September 2023 quarter that returned encouraging results.

Diamond and RC Rigs drilling underground and resource targeted holes at Orion Pit

The cross-section below illustrates the high grade zone defined by drilling beneath the Orion pit with the location of proposed underground targeted drillhole.

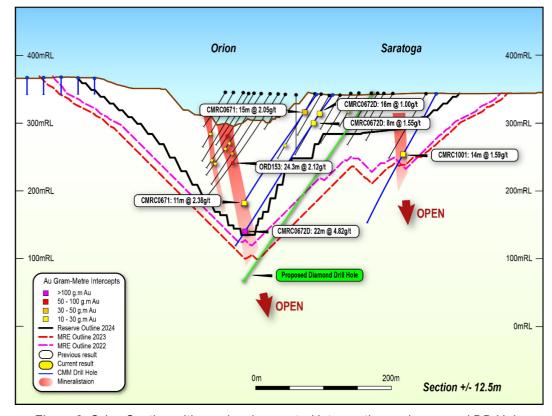


Figure 8. Orion Section with previously reported intersection and proposed DD Hole.

The strategy to drill incrementally deeper and along strike from current intercepts will continue with a view to maximising the value proposition of the drilling and enhance the prospects for continued success. This will allow the Company to understand the structure, geometry and extent of high-grade zones with a view to developing an underground model in the medium term. Results from current and additional drilling will form the basis to future updates to the projects current MRE and ORE.

Near Mine Exploration

First pass Aircore and RC drill programmes continued across a number of targets in close proximity to the Mt Gibson mining centre including the Sundance, Gunslinger, Ace High, Crazy Horse and Big Whiskey prospects. A total of 199 AC holes (10,562 metres) and 9 RC holes (1,080 metres) were completed with drilling intersecting granite, mafic and volcaniclastic lithological contacts. Drilling returned very encouraging 4m composite Au results which highlight the high prospectivity of the area to host further near surface satellite resources as well as major gold discoveries.

Encouragingly the most prospective mineralised zones appear geologically analogous to the Capricorn, Sheldon and Deep South deposits (refer Figure 10 - 12). Multiple zones of anomalous low-grade Au and pathfinder results were also identified with follow up drilling planned in the June 2024 quarter. Best results included:

- 16 metres @ 10.57g/t from 24 to 40m
- 12 metres @ 3.86g/t from 48 to 60m
- 12 metres @ 1.78g/t from 60 to 72m
- 12 metres @ 2.74g/t from 40 to 52m

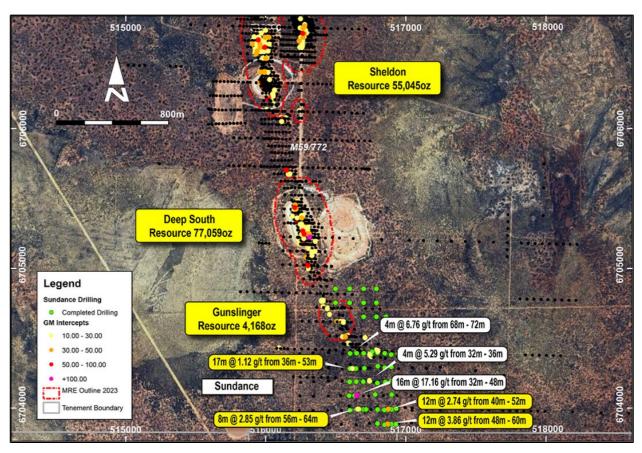


Figure 9. Completed Sundance drilling

Figure 10. Completed Ace High drilling.

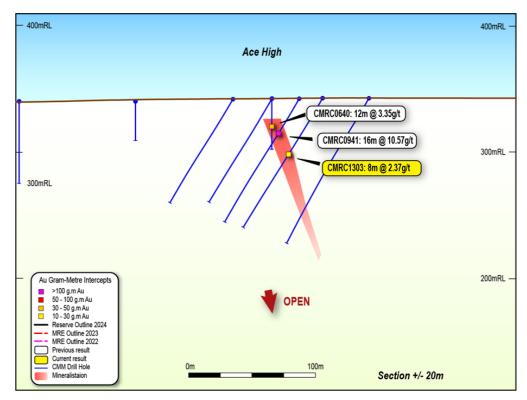


Figure 11. Ace High Section with shallow open significant broad mineralisation

Karlawinda Gold Project

Near Mine RC Drilling

During the quarter significant RC results were returned from drilling completed in the December 2023 and March 2024 quarters at the Mumbakine Well project area and Carnoustie prospect. The project areas are proximal to the existing KGP operation and indicate high prospectivity to host further near-surface satellite resources as well as major gold discoveries (refer Figure 13). Encouraging results include:

Hole_ID	Easting	Northing	From (m)	Depth (m)	Width	Grade (g/t Au)
KBAC3217	172015	7365792	102	103	1	18.16
KBAC3219	172114	7365697	27	35	8	5.90
KBAC3223	172036	7365674	30	41	11	1.87
KBRC2144	199060	7371519	72	76	4	2.64

A comprehensive table of significant results is included in Appendix 1.

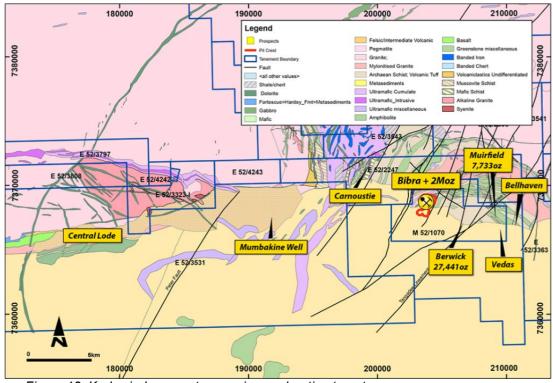


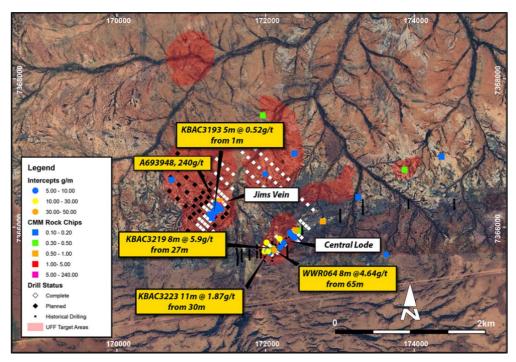
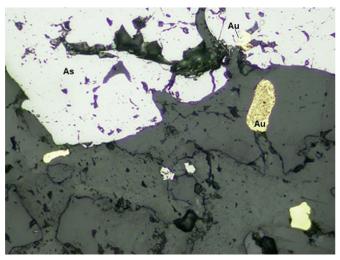
Figure 12. Karlawinda current near mine exploration targets

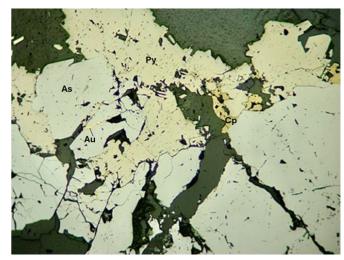
Mumbakine Well

The Mumbakine Well project is located 30 kilometres west of Bibra and includes the highly prospective Jim's Vein, Central Lode and the newly identified Wide World prospect. During the March 2024 quarter, 2,390 metres (18 holes) of RC and 1,230 metres (43 holes) of AC drilling were completed within the project area. Drilling has been planned based on historic downhole anomalies, soil sampling work completed in the September 2023 quarter and recently acquired gravity survey imagery.

At the Central Lode prospect drilling has returned encouraging shallow first pass gold results over a strike length of +200m which highlight the areas high prospectivity to host near surface satellite resources as well as major gold discoveries, (refer Figure 14). Mineralisation is hosted in a large ENE shear zone with quartz stockwork vein systems along mafic/sediment contacts and granite/sediment contacts. Follow up drilling is planned for the June 2024 quarter. Best results included:

- 8 metres @ 5.90 g/t from 27 to 35m
- 11 metres @ 1.87g/t from 30 to 41m


Figure 13. Completed drilling at Jims Vein Central Lode prospects.

Carnoustie

In 2022 a 400 x 100m Aircore gold and arsenic anomaly was identified at the Carnoustie Prospect, approximately 5 km north-west of the Bibra deposit. Follow up first pass RC drilling completed in November 2022 returned encouraging results identifying mineralisation is hosted within an inferred intermediate intrusion. A single RC hole (KBRC2132) for 210 metres was drilled in November 2023 and returned a very encouraging intercept of 7 metres @ 13.53 g/t Au from 144 metres (refer ASX announcement 25 January 2024).

Petrographic analysis of the mineralised zone in hole KBRC2132 interpreted the host lithology to be an intrusive porphyritic hornblende microtonalite with strongly mineralised vein material including gold grains and coarse arsenopyrite as shown below:

The occurrence of gold within intrusive lithologies along the Pilbara – Yilgarn craton margin demonstrates the region's prospectivity to host major gold discoveries.

Follow up drilling during the quarter consisted of 20 holes for 4,669 metres. Assays have been received from the first 16 holes of the 20 hole programme with best results including:

4 metres @ 2.64 g/t from 72 to 76m
 12 metres @ 0.79g/t from 176 to 188m

A follow-up programme will be planned once all results from this programme have been received.

Resource to Reserve Conversion Drilling

A 20,440 metre (114 holes) RC drilling programme commenced in the March 2024 quarter across the Bibra, Southern Corridor and Berwick deposits with 5,303 metres (38 holes) completed to the end of the quarter. Drilling is targeting areas of the MRE below current ORE pit shell where increased data density is required to underpin Ore Reserve optimisations and studies. All assays are currently pending. Drilling results are to be included in the next MRE and ORE update expected in the September 2024 quarter.

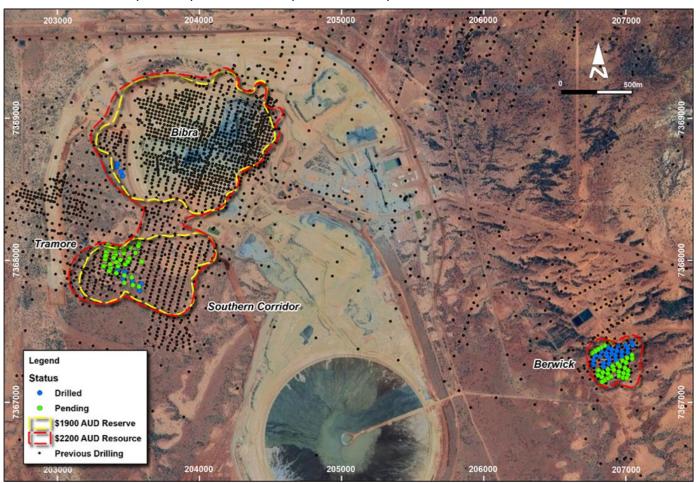


Figure 14. Resource Drilling progress and current A\$1,900/oz ORE and A\$2,200/oz MRE pit design crests

Regional Falcon Airborne Gravity Gradiometer and Gravity Survey

Results were received from a regional Falcon airborne gravity gradiometer and gravity survey completed in the December 2023 quarter, with processed imagery returned during the March 2024 quarter. The survey was flown at 200m line spacing, 80m flight height in an east-west orientation, totalling 2,098 line kilometres. The survey area covers 62 kilometres of strike centred around the Bibra open pit and along the highly prospective Pilbara – Yilgarn craton margin. The data has identified geological settings prospective for Bibra style and intrusion related mineralisation including multiple gravity-high anomalies identified along magnetic corridors in proximity to known gold occurrences (refer Figures 15 and 16).

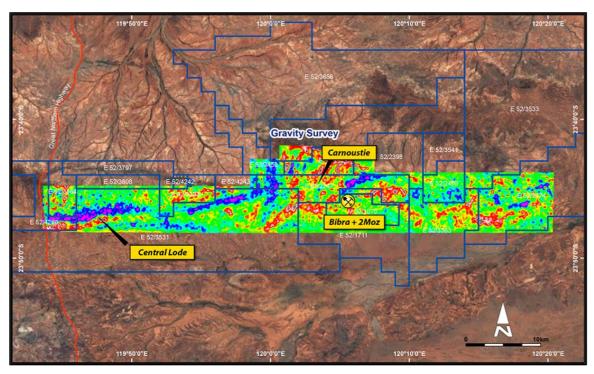


Figure 15. Airborne gravity survey Imagery with current main target locations.

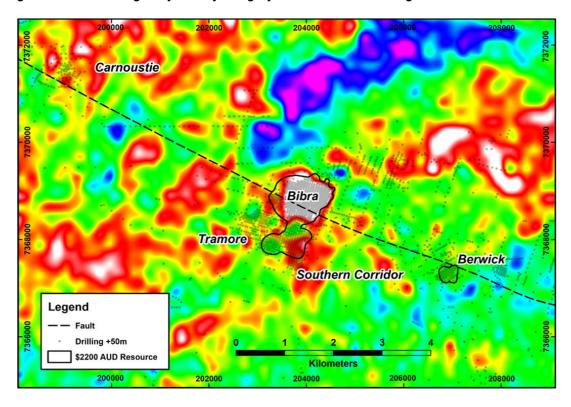


Figure 16. Airborne gravity survey imagery over the Bibra mine area showing multiple gravity-high anomalies along magnetic corridors in proximity to known gold occurrences including +2Moz Bibra deposit.

By successfully defining a large gravity anomaly over the Bibra deposit, the high resolution imagery can be used as a guide to future drill targeting along known trends of gold occurrences. In particular, the survey illustrates the Carnoustie target area lies in proximity to multiple gravity anomalies as well as a number of newly defined gravity highs that have been untested with drilling. Exploration programmes are currently being planned to drill a number of these newly identified gravity anomalies in the coming quarters.

This announcement has been authorised for release by the Capricorn Metals Ltd board.

For further information, please contact:

Mr Kim Massey Chief Executive Officer

E: enquiries@capmet.com.au

T: +61 8 9212 4600

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation of belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. The detailed reasons for that conclusion are outlined throughout this announcement and all material assumptions are disclosed.

However, forward looking statements are subject to risks, uncertainties, assumptions and other factors, which could cause actual results to differ materially from future results expressed, projected or implied by such forward-looking statements.

Such risks include, but are not limited to resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as governmental regulation and judicial outcomes.

For a more detailed discussion of such risks and other factors, see the Company's Annual Reports, as well as the Company's other filings. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr. William Higgins who is a full-time employee of the Company. Mr. Higgins is a current Member of the Australian Institute of Geoscientists and has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Higgins consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The detailed information relating to the Ore Reserves and Mineral Resources for the Karlawinda Gold Project was contained in the Company's ASX announcement dated 27 July 2023 entitled "Quarterly Exploration and Annual Resource/Reserve Update". The information relating to the Mineral Resource for the Mt Gibson Gold Project Gold Project was contained in the Company's ASX announcement dated 15 December 2023 entitled "Mt Gibson Gold Project Mineral Resources Increase to 3.24 Million Ounces". The information relating to the Ore Reserve for the Mt Gibson Gold Project Gold Project was contained in the Company's ASX announcement dated 19 April 2024 entitled "MGGP Ore Reserve Grows to 1.83 Million Ounces"

The Company confirms that it is not aware of any new information or data that materially affects the information included in the ASX announcements dated 27 July 2023, 15 December 2023 and 19 April 2024 and all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Persons' findings are presented have not materially changed from previous market announcements. The reports are available to view on the ASX website and on the Company's website at www.capmetals.com.au

The Competent Person's consents remain in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by subsequent report and accompanying consent.

APPENDIX 1 - SIGINIFICANT RESULTS

Reported intercepts include a minimum of 0.5g/t Au value over a minimum length of 1m with a maximum 2m length of consecutive internal waste. No upper cuts have been applied.

Mt Gibson

Hole_ID	NAT_East	NAT_North	NAT_RL	Max_Depth	Dip/Azi	Depth From	Depth To	Interval Width	Grade
CMAC0681	516691	6704402	336	95	-60/270	40.00	44.00	4.00	0.52
CMAC0683	516800	6704401	336	84	-60/270	32.00	36.00	4.00	0.54
CMAC0683	516800	6704401	336	84	-60/270	72.00	76.00	4.00	0.51
CMAC0684	516846	6704391	336	80	-60/270	28.00	32.00	4.00	0.63
CMAC0684	516846	6704391	336	80	-60/270	60.00	68.00	8.00	0.72
CMAC0691	516641.16	6704288.53	336.004	53	-60/270	28.00	32.00	4.00	0.76
CMAC0691	516641.16	6704288.53	336.004	53	-60/270	36.00	53.00	17.00	1.12
CMAC0693	516798.61	6704311.09	335.622	52	-60/270	48.00	52.00	4.00	2.01
CMAC0694	516848.19	6704296.83	335.398	78	-60/270	56.00	60.00	4.00	0.69
CMAC0694	516848.19	6704296.83	335.398	78	-60/270	68.00	72.00	4.00	0.63
CMAC0697	516644.68	6704197.71	335.391	71	-60/270	56.00	60.00	4.00	0.84
CMAC0698	516696	6704194	335	86	-60/270	72.00	76.00	4.00	0.75
CMAC0699	516795.33	6704187.6	334.646	68	-60/270	32.00	44.00	12.00	0.70
CMAC0700	516851.86	6704194.25	334.557	65	-60/270	28.00	32.00	4.00	0.90
CMAC0702	516595.56	6704099.61	334.839	69	-60/270	36.00	40.00	4.00	1.52
CMAC0704	516779.81	6704105.74	334.293	78	-60/270	60.00	64.00	4.00	0.79
CMAC0707	516645.71	6703997.99	333.886	72	-60/270	16.00	20.00	4.00	0.69
CMAC0708	516691.93	6703998.79	333.877	85	-60/270	56.00	64.00	8.00	2.85
CMAC0711	516897.74	6703996.87	333.334	89	-60/270	40.00	52.00	12.00	2.74
CMAC0713	516845.43	6703889.34	332.643	93	-60/270	76.00	80.00	4.00	1.01
CMAC0714	516898.87	6703891.22	332.659	89	-60/270	48.00	60.00	12.00	3.86
CMAC0714	516898.87	6703891.22	332.659	89	-60/270	72.00	76.00	4.00	0.61
CMAC0807	516516	6710102	337	136	-60/300	36.00	41.00	5.00	0.58
CMAC0807	516516	6710102	337	136	-60/300	49.00	65.00	16.00	1.51
CMAC0807	516516	6710102	337	136	-60/300	105.00	108.00	3.00	11.30
CMAC0807	516516	6710102	337	136	-60/300	133.00	136.00	3.00	0.51
CMAC0808	516534	6710145	337	136	-72/300	83.00	87.00	4.00	11.09
CMAC0808	516534	6710145	337	136	-72/300	133.00	134.00	1.00	2.44
CMAC0808	516534	6710145	337	136	-72/300	123.00	125.00	2.00	0.85
CMAC0808	516534	6710145	337	136	-72/300	104.00	114.00	10.00	0.71
CMAC0808	516534	6710145	337	136	-72/300	61.00	63.00	2.00	1.14
CMAC0808	516534	6710145	337	136	-72/300	22.00	27.00	5.00	0.52
CMAC0808	516534	6710145	337	136	-72/300	56.00	57.00	1.00	0.96
CMAC0808	516534	6710145	337	136	-72/300	70.00	71.00	1.00	0.59
CMAC0809	516513	6710215	334.511	100	-60/300	1.00	2.00	1.00	0.85
CMAC0809	516513	6710215	334.511	100	-60/300	22.00	26.00	4.00	1.28
CMAC0809	516513	6710215	334.511	100	-60/300	51.00	58.00	7.00	0.57
CMAC0809	516513	6710215	334.511	100	-60/300	75.00	76.00	1.00	0.55
CMAC0809	516513	6710215	334.511	100	-60/300	80.00	81.00	1.00	0.61
CMAC0809	516513	6710215	334.511	100	-60/300	96.00	97.00	1.00	1.53
CMAC0810	516587	6710228	333.757	120	-60/300	48.00	50.00	2.00	0.53

CMAC0810	516587	6710228	333.757	120	-60/300	85.00	86.00	1.00	1.21
CMAC0811	516543	6710255	334	115	-60/300	53.00	54.00	1.00	0.93
CMAC0811	516543	6710255	334	115	-60/300	58.00	60.00	2.00	0.99
CMAC0811	516543	6710255	334	115	-60/300	66.00	68.00	2.00	1.70
CMAC0811	516543	6710255	334	115	-60/300	88.00	89.00	1.00	5.05
CMAC0811	516543	6710255	334	115	-60/300	29.00	30.00	1.00	1.21
CMAC0812	516568	6710295	334	113	-60/300	46.00	49.00	3.00	2.60
CMAC0812	516568	6710295	334	113	-60/300	62.00	63.00	1.00	0.86
CMAC0826	516623	6710441	335	130	-63/300	43.00	44.00	1.00	0.68
CMAC0826	516623	6710441	335	130	-63/300	49.00	50.00	1.00	1.00
CMAC0827	516617	6710260	335	121	-60/300	87.00	88.00	1.00	3.34
CMAC0827	516617	6710260	335	121	-60/300	1.00	2.00	1.00	0.51
CMDD0027	517525.52	6712351.55	319.025	243.2	-60/160	110.00	112.00	2.00	1.89
CMDD0027	517525.52	6712351.55	319.025	243.2	-60/160	17.81	19.00	1.19	0.54
CMDD0028	516549.81	6710447.98	334.046	251.9	-50/354	54.00	55.00	1.00	3.74
CMDD0028	516549.81	6710447.98	334.046	251.9	-50/354	150.00	151.00	1.00	0.99
CMRC033	516185.54	6708475.26	345.8	144	-60/270	2.00	5.00	3.00	0.89
CMRC033	516185.54	6708475.26	345.8	144	-60/270	36.00	39.00	3.00	6.16
CMRC033	516185.54	6708475.26	345.8	144	-60/270	46.00	47.00	1.00	1.49
CMRC033	516185.54	6708475.26	345.8	144	-60/270	54.00	55.00	1.00	0.81
CMRC033	516185.54	6708475.26	345.8	144	-60/270	61.00	62.00	1.00	0.90
CMRC033	516185.54	6708475.26	345.8	144	-60/270	85.00	86.00	1.00	0.59
CMRC033	516185.54	6708475.26	345.8	144	-60/270	94.00	95.00	1.00	1.67
CMRC0864	516677.29	6704285.94	335.877	126	-62/269	72.00	73.00	1.00	1.74
CMRC0864	516677.29	6704285.94	335.877	126	-62/269	29.00	33.00	4.00	0.87
CMRC0865	516728	6704291	340	150	-60/269	33.00	34.00	1.00	0.99
CMRC0866	516660.67	6704090.9	334.646	96	-61/270	48.00	52.00	4.00	0.73
CMRC0866	516660.67	6704090.9	334.646	96	-61/270	57.00	58.00	1.00	1.18
CMRC0866	516660.67	6704090.9	334.646	96	-61/270	40.00	42.00	2.00	2.84
CMRC0868	516739.48	6704092.45	334.465	138	-60/269	38.00	39.00	1.00	1.78
CMRC0869	516725.63	6704199.67	335.116	168	-61/272	35.00	36.00	1.00	1.39
CMRC0870	516777.42	6704189.13	334.832	192	-61/271	35.00	38.00	3.00	2.22
CMRC0870	516777.42	6704189.13	334.832	192	-61/271	72.00	73.00	1.00	1.07
CMRC0870	516777.42	6704189.13	334.832	192	-61/271	78.00	79.00	1.00	0.59
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	66.00	68.00	2.00	1.91
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	142.00	143.00	1.00	0.50
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	147.00	148.00	1.00	0.50
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	108.00	113.00	5.00	1.19
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	44.00	45.00	1.00	0.85
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	37.00	38.00	1.00	1.00
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	6.00	9.00	3.00	0.95
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	56.00	59.00	3.00	1.35
CMRC0875	516258.81	6708451.27	345.566	150	-60/271	137.00	138.00	1.00	0.69
CMRC0876	516091.59	6707105.18	350.318	78	-61/270	52.00	53.00	1.00	0.54
CMRC0876	516091.59	6707105.18	350.318	78	-61/270	32.00	33.00	1.00	1.46
CMRC0876	516091.59	6707105.18	350.318	78	-61/270	40.00	47.00	7.00	1.31
CMRC0877	516076.39	6707051.79	351.274	78	-59/267	72.00	73.00	1.00	3.34

CMRC0877	516076.39	6707051.79	351.274	78	-59/267	57.00	58.00	1.00	1.15
CMRC0877	516076.39	6707051.79	351.274	78	-59/267	1.00	2.00	1.00	0.83
CMRC0877	516076.39	6707051.79	351.274	78	-59/267	51.00	52.00	1.00	0.92
CMRC0891	516496.21	6709638.87	350.569	210	-60/301	70.00	71.00	1.00	2.30
CMRC0891	516496.21	6709638.87	350.569	210	-60/301	188.00	189.00	1.00	0.86
CMRC0891	516496.21	6709638.87	350.569	210	-60/301	193.00	194.00	1.00	2.33
CMRC0891	516496.21	6709638.87	350.569	210	-60/301	158.00	167.00	9.00	0.91
CMRC0891	516496.21	6709638.87	350.569	210	-60/301	111.00	120.00	9.00	0.59
CMRC0891	516496.21	6709638.87	350.569	210	-60/301	79.00	96.00	17.00	1.36
CMRC0891	516496.21	6709638.87	350.569	210	-60/301	5.00	9.00	4.00	0.40
CMRC0891	516496.21	6709638.87	350.569	210	-60/301	104.00	105.00	1.00	0.85
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	126.00	128.00	2.00	0.69
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	230.00	232.00	2.00	2.57
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	225.00	226.00	1.00	0.97
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	211.00	212.00	1.00	1.40
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	170.00	179.00	9.00	6.13
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	186.00	187.00	1.00	2.67
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	152.00	154.00	2.00	0.60
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	140.00	148.00	8.00	1.06
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	107.00	108.00	1.00	0.85
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	98.00	99.00	1.00	4.02
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	89.00	90.00	1.00	0.54
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	121.00	122.00	1.00	1.02
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	81.00	84.00	3.00	1.80
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	61.00	72.00	11.00	2.81
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	45.00	46.00	1.00	4.10
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	40.00	41.00	1.00	5.68
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	1.00	5.00	4.00	0.38
CMRC0892	516515.5	6709627.78	350.72	234	-60/299	200.00	206.00	6.00	0.92
CMRC0893	516483.17	6709683.01	349.229	120	-61/301	82.00	83.00	1.00	0.67
CMRC0893	516483.17	6709683.01	349.229	120	-61/301	100.00	101.00	1.00	0.54
CMRC0893	516483.17	6709683.01	349.229	120	-61/301	14.00	18.00	4.00	1.89
CMRC0893	516483.17	6709683.01	349.229	120	-61/301	42.00	43.00	1.00	1.56
CMRC0893	516483.17	6709683.01	349.229	120	-61/301	106.00	107.00	1.00	0.72
CMRC0893	516483.17	6709683.01	349.229	120	-61/301	61.00	77.00	16.00	1.55
CMRC0894	516501.09	6709672.8	349.743	150	-60/301	99.00	104.00	5.00	0.83
CMRC0894	516501.09	6709672.8	349.743	150	-60/301	131.00	133.00	2.00	1.95
CMRC0894	516501.09	6709672.8	349.743	150	-60/301	125.00	126.00	1.00	0.81
CMRC0894	516501.09	6709672.8	349.743	150	-60/301	108.00	109.00	1.00	0.68
CMRC0894	516501.09	6709672.8	349.743	150	-60/301	78.00	87.00	9.00	1.28
CMRC0894	516501.09	6709672.8	349.743	150	-60/301	50.00	56.00	6.00	6.88
CMRC0894	516501.09	6709672.8	349.743	150	-60/301	37.00	38.00	1.00	1.22
CMRC0894	516501.09	6709672.8	349.743	150	-60/301	115.00	118.00	3.00	0.78
CMRC0895	516529	6709660	351	216	-60/302	139.00	140.00	1.00	0.57
CMRC0895	516529	6709660	351	216	-60/302	196.00	197.00	1.00	3.44
CMRC0895	516529	6709660	351	216	-60/302	182.00	183.00	1.00	0.53
CMRC0895	516529	6709660	351	216	-60/302	157.00	158.00	1.00	0.62

CMRC0895	516529	6709660	351	216	-60/302	129.00	135.00	6.00	0.74
CMRC0895	516529	6709660	351	216	-60/302	92.00	93.00	1.00	0.77
CMRC0895	516529	6709660	351	216	-60/302	85.00	87.00	2.00	0.71
CMRC0895	516529	6709660	351	216	-60/302	66.00	77.00	11.00	1.82
CMRC0895	516529	6709660	351	216	-60/302	52.00	53.00	1.00	2.01
CMRC0895	516529	6709660	351	216	-60/302	6.00	7.00	1.00	0.58
CMRC0895	516529	6709660	351	216	-60/302	145.00	147.00	2.00	0.60
CMRC0896	516912	6710457	335	306	-60/300	272.00	280.00	8.00	0.38
CMRC0896	516912	6710457	335	306	-60/300	298.00	299.00	1.00	1.12
CMRC0896	516912	6710457	335	306	-60/300	256.00	265.00	9.00	0.71
CMRC0896	516912	6710457	335	306	-60/300	246.00	251.00	5.00	0.75
CMRC0896	516912	6710457	335	306	-60/300	238.00	239.00	1.00	0.81
CMRC0896	516912	6710457	335	306	-60/300	161.00	165.00	4.00	0.83
CMRC0896	516912	6710457	335	306	-60/300	153.00	154.00	1.00	0.64
CMRC0896	516912	6710457	335	306	-60/300	145.00	147.00	2.00	2.01
CMRC0896	516912	6710457	335	306	-60/300	10.00	12.00	2.00	0.69
CMRC0896	516912	6710457	335	306	-60/300	221.00	234.00	13.00	1.66
CMRC0897	516263.27	6706955.6	347.723	156	-58/272	62.00	71.00	9.00	0.37
CMRC0897	516263.27	6706955.6	347.723	156	-58/272	0.00	1.00	1.00	1.11
CMRC0897	516263.27	6706955.6	347.723	156	-58/272	121.00	122.00	1.00	0.80
CMRC0897	516263.27	6706955.6	347.723	156	-58/272	55.00	56.00	1.00	0.60
CMRC0897	516263.27	6706955.6	347.723	156	-58/272	42.00	48.00	6.00	0.71
CMRC0897	516263.27	6706955.6	347.723	156	-58/272	12.00	14.00	2.00	2.49
CMRC0897	516263.27	6706955.6	347.723	156	-58/272	145.00	146.00	1.00	4.99
CMRC0898	516331.74	6706955	348.453	126	-60/269	11.00	12.00	1.00	0.51
CMRC0898	516331.74	6706955	348.453	126	-60/269	42.00	47.00	5.00	1.89
CMRC0898	516331.74	6706955	348.453	126	-60/269	56.00	66.00	10.00	0.90
CMRC0898	516331.74	6706955	348.453	126	-60/269	70.00	76.00	6.00	0.89
CMRC0898	516331.74	6706955	348.453	126	-60/269	95.00	104.00	9.00	2.36
CMRC0899	516351.74	6706955.48	348.775	144	-59/271	0.00	1.00	1.00	0.53
CMRC0899	516351.31	6706955.48	348.775	144	-59/271	120.00	128.00	8.00	1.84
CMRC0899	516351.31	6706955.48	348.775	144	-59/271	100.00	101.00	1.00	5.50
CMRC0899				144	-59/271	93.00	94.00	1.00	0.62
CMRC0899	516351.31 516351.31	6706955.48 6706955.48	348.775 348.775	144	-59/271 -59/271	86.00	87.00	1.00	1.27
CMRC0900	516171.25	6708148.31	351.517	60	-59/271	40.00	42.00	2.00	5.09
CMRC0900	516171.25	6708148.31	351.517	60	-59/270	54.00	58.00	4.00	1.65
CMRC0900	516240.12	6708148.31	351.001	96	-59/270	3.00	5.00	2.00	0.75
CMRC0901	516240.12	6708109.67	351.001	96	-59/270 -59/270	29.00	44.00	15.00	3.62
CMRC0901	516240.12	6708109.67		96	,	67.00	73.00	6.00	1.02
CMRC0901	516254.59	6708046.98	351.001 350.769	120	-59/270 -60/268		4.00	1.00	0.81
					-60/268 60/268	3.00			
CMRC0903	516254.59	6708046.98	350.769	120	-60/268 60/268	118.00	119.00	1.00	0.89
CMRC0903	516254.59	6708046.98	350.769	120	-60/268 60/268	113.00	114.00	1.00	0.57
CMRC0903	516254.59	6708046.98	350.769	120	-60/268	90.00	102.00	12.00	5.28
CMRC0903	516254.59	6708046.98	350.769	120	-60/268	59.00	66.00	7.00	1.29
					-				
					,				
CMRC0903 CMRC0903 CMRC0904	516254.59 516254.59 516240.99	6708046.98 6708046.98 6708209.43	350.769 350.769 350.084	120 120 84	-60/268 -60/268 -60/269	26.00 44.00 0.00	27.00 47.00 2.00	1.00 3.00 2.00	0.71 2.46 0.99

CMRC0904	516240.99	6708209.43	350.084	84	-60/269	26.00	53.00	27.00	1.77
CMRC0904	516240.99	6708209.43	350.084	84	-60/269	59.00	60.00	1.00	1.90
CMRC0905	516377.21	6708199.6	348.098	192	-60/272	95.00	96.00	1.00	2.76
CMRC0905	516377.21	6708199.6	348.098	192	-60/272	155.00	156.00	1.00	1.27
CMRC0905	516377.21	6708199.6	348.098	192	-60/272	125.00	126.00	1.00	0.50
CMRC0905		6708199.6	348.098	192	-60/272	116.00	120.00	4.00	0.70
CMRC0905	516377.21		348.098	192	-60/272	62.00	63.00	1.00	0.70
CMRC0905	516377.21	6708199.6 6708199.6	348.098	192	-60/272	53.00	54.00	1.00	0.63
CMRC0905	516377.21 516377.21	6708199.6	348.098	192	-60/272	38.00	48.00	10.00	1.20
CMRC0905	516377.21	6708199.6	348.098	192	-60/272	174.00	175.00	1.00	4.83
CMRC0905	516377.21	6708199.6	348.098	192	-60/272	74.00	75.00	1.00	0.52
CMRC0905	516394.28	6708253.36		96	-60/272	5.00	6.00	1.00	0.32
			347.773		,		33.00		
CMRC0906	516394.28	6708253.36	347.773	96	-60/268	32.00		1.00	0.50
CMRC0906	516394.28	6708253.36	347.773	96	-60/268	62.00	67.00	5.00	0.88
CMRC0906	516394.28	6708253.36	347.773	96	-60/268	82.00	83.00	1.00	0.70
CMRC0907	516279.84	6708256.57	349.576	84	-59/271	1.00	2.00	1.00	0.58
CMRC0907	516279.84	6708256.57	349.576	84	-59/271	73.00	74.00	1.00	1.58
CMRC0907	516279.84	6708256.57	349.576	84	-59/271	61.00	64.00	3.00	1.29
CMRC0907	516279.84	6708256.57	349.576	84	-59/271	17.00	18.00	1.00	1.48
CMRC0907	516279.84	6708256.57	349.576	84	-59/271	34.00	46.00	12.00	0.94
CMRC0908	516310.08	6708294.4	348.958	66	-60/270	1.00	7.00	6.00	0.47
CMRC0908	516310.08	6708294.4	348.958	66	-60/270	27.00	28.00	1.00	0.53
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	151.00	152.00	1.00	4.97
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	167.00	169.00	2.00	0.95
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	179.00	180.00	1.00	1.45
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	157.00	162.00	5.00	0.55
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	96.00	99.00	3.00	2.63
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	79.00	84.00	5.00	1.48
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	36.00	41.00	5.00	0.59
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	1.00	2.00	1.00	0.72
CMRC0909	516423.24	6708295.94	347.491	198	-59/271	28.00	30.00	2.00	0.90
CMRC0910	516269.94	6708328.32	348.797	78	-60/269	23.00	24.00	1.00	0.52
CMRC0910	516269.94	6708328.32	348.797	78	-60/269	31.00	35.00	4.00	7.06
CMRC0910	516269.94	6708328.32	348.797	78	-60/269	77.00	78.00	1.00	0.89
CMRC0911	516279.86	6708344.26	348.529	90	-60/272	59.00	63.00	4.00	1.30
CMRC0911	516279.86	6708344.26	348.529	90	-60/272	37.00	40.00	3.00	0.41
CMRC0911	516279.86	6708344.26	348.529	90	-60/272	46.00	49.00	3.00	1.36
CMRC0912	516236.12	6708351.85	349.361	114	-60/272	85.00	86.00	1.00	0.51
CMRC0912	516236.12	6708351.85	349.361	114	-60/272	67.00	72.00	5.00	1.70
CMRC0912	516236.12	6708351.85	349.361	114	-60/272	7.00	8.00	1.00	0.72
CMRC0913	516191.46	6708397.81	347.418	96	-59/273	0.00	1.00	1.00	1.39
CMRC0913	516191.46	6708397.81	347.418	96	-59/273	39.00	40.00	1.00	0.79
CMRC0913	516191.46	6708397.81	347.418	96	-59/273	46.00	52.00	6.00	2.66
CMRC0913	516191.46	6708397.81	347.418	96	-59/273	61.00	62.00	1.00	0.56
CMRC0913	516191.46	6708397.81	347.418	96	-59/273	68.00	74.00	6.00	0.54
CMRC0913	516191.46	6708397.81	347.418	96	-59/273	93.00	95.00	2.00	1.76
CMRC0914	516212.2	6708449.01	346.848	108	-59/271	100.00	101.00	1.00	2.20

		l		٠					
CMRC0914	516212.2	6708449.01	346.848	108	-59/271	0.00	1.00	1.00	0.58
CMRC0914	516212.2	6708449.01	346.848	108	-59/271	32.00	33.00	1.00	1.08
CMRC0914	516212.2	6708449.01	346.848	108	-59/271	47.00	48.00	1.00	3.09
CMRC0914	516212.2	6708449.01	346.848	108	-59/271	76.00	78.00	2.00	10.22
CMRC0915	516439.23	6708520.91	345.491	150	-60/271	145.00	146.00	1.00	3.29
CMRC0915	516439.23	6708520.91	345.491	150	-60/271	124.00	126.00	2.00	0.80
CMRC0915	516439.23	6708520.91	345.491	150	-60/271	117.00	119.00	2.00	1.34
CMRC0915	516439.23	6708520.91	345.491	150	-60/271	7.00	9.00	2.00	0.63
CMRC0915	516439.23	6708520.91	345.491	150	-60/271	82.00	87.00	5.00	1.49
CMRC0916	516412.46	6708443.34	347.148	240	-60/271	46.00	53.00	7.00	0.81
CMRC0916	516412.46	6708443.34	347.148	240	-60/271	61.00	68.00	7.00	1.15
CMRC0916	516412.46	6708443.34	347.148	240	-60/271	90.00	94.00	4.00	2.92
CMRC0916	516412.46	6708443.34	347.148	240	-60/271	138.00	142.00	4.00	2.93
CMRC0916	516412.46	6708443.34	347.148	240	-60/271	153.00	154.00	1.00	0.53
CMRC0916	516412.46	6708443.34	347.148	240	-60/271	196.00	199.00	3.00	1.47
CMRC0916	516412.46	6708443.34	347.148	240	-60/271	206.00	207.00	1.00	0.72
CMRC0916	516412.46	6708443.34	347.148	240	-60/271	234.00	236.00	2.00	0.92
CMRC0917	516016.37	6708137.24	352.457	96	-59/270	86.00	92.00	6.00	1.04
CMRC0917	516016.37	6708137.24	352.457	96	-59/270	58.00	59.00	1.00	0.65
CMRC0917	516016.37	6708137.24	352.457	96	-59/270	65.00	68.00	3.00	1.74
CMRC0918	516323.64	6709304.5	337.859	126	-60/271	21.00	24.00	3.00	0.72
CMRC0918	516323.64	6709304.5	337.859	126	-60/271	29.00	30.00	1.00	0.75
CMRC0918	516323.64	6709304.5	337.859	126	-60/271	68.00	92.00	24.00	1.15
CMRC0918	516323.64	6709304.5	337.859	126	-60/271	108.00	109.00	1.00	1.50
CMRC0919	516083.02	6707757.24	358.246	198	-60/267	179.00	180.00	1.00	1.14
CMRC0919	516083.02	6707757.24	358.246	198	-60/267	184.00	191.00	7.00	0.67
CMRC0919	516083.02	6707757.24	358.246	198	-60/267	146.00	147.00	1.00	0.91
CMRC0919	516083.02	6707757.24	358.246	198	-60/267	114.00	126.00	12.00	1.33
CMRC0919	516083.02	6707757.24	358.246	198	-60/267	59.00	61.00	2.00	1.11
CMRC0919	516083.02	6707757.24	358.246	198	-60/267	51.00	52.00	1.00	12.40
CMRC0919	516083.02	6707757.24	358.246	198	-60/267	1.00	3.00	2.00	0.92
CMRC0919	516083.02	6707757.24	358.246	198	-60/267	69.00	71.00	2.00	2.39
CMRC0920	516100.33	6707853.21	356.807	174	-59/270	73.00	76.00	3.00	0.86
CMRC0920	516100.33	6707853.21	356.807	174	-59/270	156.00	157.00	1.00	0.93
CMRC0920	516100.33	6707853.21	356.807	174	-59/270	104.00	107.00	3.00	1.47
CMRC0920	516100.33	6707853.21	356.807	174	-59/270	46.00	54.00	8.00	2.31
CMRC0920	516100.33	6707853.21	356.807	174	-59/270	83.00	89.00	6.00	6.12
CMRC0920	516100.33	6707853.21	356.807	174	-59/270	64.00	65.00	1.00	0.51
CMRC0920	516100.33	6707853.21	356.807	174	-59/270	59.00	60.00	1.00	46.40
CMRC0920	516100.33	6707853.21	356.807	174	-59/270	96.00	98.00	2.00	0.88
CMRC0921	516106.37	6707887.48	356.127	186	-59/270	147.00	150.00	3.00	0.86
CMRC0921	516106.37	6707887.48	356.127	186	-59/270	92.00	93.00	1.00	1.36
CMRC0921	516106.37	6707887.48	356.127	186	-59/270	185.00	186.00	1.00	0.54
CMRC0921	516106.37	6707887.48	356.127	186	-59/270	162.00	163.00	1.00	0.71
CMRC0921	516106.37	6707887.48	356.127	186	-59/270	1.00	3.00	2.00	0.71
CMRC0921	516106.37	6707887.48	356.127	186	-59/270	139.00	140.00	1.00	0.73
					,			2.00	
CMRC0921	516106.37	6707887.48	356.127	186	-59/270	74.00	76.00	2.00	1.73

CMRC0921	516106.37	6707887.48	356.127	186	-59/270	45.00	47.00	2.00	2.10
CMRC0921	516106.37	6707887.48	356.127	186	-59/270	104.00	105.00	1.00	1.27
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	161.00	164.00	3.00	0.86
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	209.00	210.00	1.00	0.52
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	186.00	193.00	7.00	0.42
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	155.00	156.00	1.00	0.82
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	133.00	134.00	1.00	1.31
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	80.00	81.00	1.00	0.61
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	74.00	75.00	1.00	0.74
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	47.00	55.00	8.00	0.87
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	141.00	147.00	6.00	0.84
CMRC0922	516890.03	6710976.5	326.796	210	-60/300	199.00	201.00	2.00	0.73
CMRC0923	516866.27	6710934.71	327.02	210	-60/300	54.00	57.00	3.00	0.97
CMRC0923	516866.27	6710934.71	327.02	210	-60/300	185.00	188.00	3.00	0.58
CMRC0923	516866.27	6710934.71	327.02	210	-60/300	152.00	153.00	1.00	1.40
CMRC0923	516866.27	6710934.71	327.02	210	-60/300	95.00	107.00	12.00	1.46
CMRC0923	516866.27	6710934.71	327.02	210	-60/300	40.00	46.00	6.00	1.78
CMRC0923	516866.27	6710934.71	327.02	210	-60/300	116.00	137.00	21.00	1.68
CMRC0924	516859.33	6711054.04	325.91	132	-58/298	40.00	68.00	28.00	1.58
CMRC0924	516859.33	6711054.04	325.91	132	-58/298	86.00	87.00	1.00	1.24
CMRC0925	516915.52	6711020.99	326.294	210	-60/301	109.00	110.00	1.00	4.04
CMRC0925	516915.52	6711020.99	326.294	210	-60/301	169.00	173.00	4.00	0.45
CMRC0925	516915.52	6711020.99	326.294	210	-60/301	78.00	79.00	1.00	0.76
CMRC0925	516915.52	6711020.99	326.294	210	-60/301	57.00	58.00	1.00	0.61
CMRC0925	516915.52	6711020.99	326.294	210	-60/301	204.00	208.00	4.00	5.09
CMRC0925	516915.52	6711020.99	326.294	210	-60/301	85.00	86.00	1.00	3.27
CMRC0926	516996.42	6710995.6	326.832	192	-60/300	123.00	125.00	2.00	4.14
CMRC0926	516996.42	6710995.6	326.832	192	-60/300	135.00	136.00	1.00	1.27
CMRC0926	516996.42	6710995.6	326.832	192	-60/300	142.00	143.00	1.00	0.54
CMRC0926	516996.42	6710995.6	326.832	192	-60/300	147.00	150.00	3.00	0.97
CMRC0926	516996.42	6710995.6	326.832	192	-60/300	162.00	170.00	8.00	1.41
CMRC0926	516996.42	6710995.6	326.832	192	-60/300	181.00	182.00	1.00	0.56
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	143.00	165.00	22.00	1.03
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	220.00	222.00	2.00	2.83
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	211.00	212.00	1.00	1.09
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	205.00	206.00	1.00	1.15
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	170.00	172.00	2.00	1.14
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	117.00	119.00	2.00	0.78
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	90.00	91.00	1.00	1.24
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	7.00	8.00	1.00	0.60
CMRC0927	517032.28	6711108.21	324.864	222	-60/303	178.00	184.00	6.00	0.70
CMRC0928	516964.76	6710822.34	328.674	174	-59/301	0.00	3.00	3.00	1.13
CMRC0928	516964.76	6710822.34	328.674	174	-59/301	40.00	41.00	1.00	0.71
CMRC0928	516964.76	6710822.34	328.674	174	-59/301	65.00	68.00	3.00	1.92
CMRC0928	516964.76	6710822.34	328.674	174	-59/301	106.00	109.00	3.00	1.13
CMRC0928	516964.76	6710822.34	328.674	174	-59/301	145.00	146.00	1.00	0.96
CMRC0928	516964.76	6710822.34	328.674	174	-59/301	154.00	157.00	3.00	0.89

CMRC0929	516911.53	6710465.13	333.6	288	-61/300	219.00	233.00	14.00	1.02
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	238.00	246.00	8.00	1.22
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	171.00	173.00	2.00	2.75
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	204.00	205.00	1.00	0.64
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	151.00	152.00	1.00	1.34
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	142.00	145.00	3.00	2.21
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	122.00	123.00	1.00	0.55
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	9.00	11.00	2.00	1.13
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	162.00	163.00	1.00	1.21
CMRC0929	516911.53	6710465.13	333.6	288	-61/300	253.00	268.00	15.00	1.05
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	78.00	80.00	2.00	0.74
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	178.00	224.00	46.00	2.26
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	145.00	146.00	1.00	0.77
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	124.00	125.00	1.00	5.39
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	84.00	85.00	1.00	0.55
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	57.00	58.00	1.00	1.52
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	49.00	51.00	2.00	3.26
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	11.00	14.00	3.00	0.53
CMRC0932	516770.74	6710581.97	336.468	300	-60/299	106.00	109.00	3.00	0.44
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	124.00	125.00	1.00	0.53
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	198.00	206.00	8.00	1.97
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	212.00	213.00	1.00	0.59
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	191.00	192.00	1.00	0.58
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	165.00	167.00	2.00	0.65
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	156.00	161.00	5.00	4.77
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	80.00	81.00	1.00	0.59
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	70.00	74.00	4.00	0.75
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	52.00	53.00	1.00	0.81
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	40.00	43.00	3.00	2.19
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	3.00	6.00	3.00	0.69
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	11.00	12.00	1.00	0.53
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	220.00	252.00	32.00	2.38
CMRC0933	516789.39	6710629.1	332.538	300	-64/302	93.00	94.00	1.00	1.37
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	133.00	135.00	2.00	1.04
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	199.00	206.00	7.00	1.83
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	182.00	183.00	1.00	0.73
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	139.00	143.00	4.00	1.66
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	119.00	129.00	10.00	1.84
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	95.00	97.00	2.00	1.26
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	58.00	64.00	6.00	0.49
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	28.00	31.00	3.00	0.78
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	13.00	14.00	1.00	0.59
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	1.00	2.00	1.00	0.55
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	156.00	157.00	1.00	0.76
CMRC0934	516878.24	6710643.12	351.382	216	-59/299	103.00	107.00	4.00	3.09
CMRC0935	516955.06	6710789.46	337.527	210	-60/299	114.00	115.00	1.00	0.58
CMRC0935	516955.06	6710789.46	337.527	210	-60/299	201.00	203.00	2.00	0.92

CMRC0935	516955.06	6710789.46	337.527	210	-60/299	156.00	158.00	2.00	2.52
CMRC0935		6710789.46		210	-60/299	6.00	12.00	6.00	0.69
CMRC0935	516955.06 516955.06	6710789.46	337.527 337.527	210	-60/299	0.00	2.00	2.00	1.04
CMRC0935	516955.06	6710789.46	337.527	210	-60/299	168.00	173.00	5.00	0.75
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	153.00	154.00	1.00	4.70
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	276.00	295.00	19.00	4.42
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	258.00	266.00	8.00	0.94
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	242.00	246.00	4.00	0.59
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	166.00	167.00	1.00	0.52
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	217.00	220.00	3.00	1.28
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	299.00	309.00	10.00	0.62
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	1.00	6.00	5.00	8.95
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	140.00	141.00	1.00	0.65
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	224.00	225.00	1.00	0.62
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	20.00	31.00	11.00	5.57
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	36.00	39.00	3.00	0.76
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	52.00	54.00	2.00	0.96
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	62.00	64.00	2.00	2.19
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	75.00	78.00	3.00	0.54
CMRC0936	516827.4	6710657.7	340.007	318	-60/300	108.00	118.00	10.00	1.03
CMRC0937	516783	6710548	340.8	312	-60/300	124.00	125.00	1.00	0.60
CMRC0937	516783	6710548	340.8	312	-60/300	255.00	258.00	3.00	2.87
CMRC0937	516783	6710548	340.8	312	-60/300	228.00	244.00	16.00	2.61
CMRC0937	516783	6710548	340.8	312	-60/300	215.00	220.00	5.00	0.83
CMRC0937	516783	6710548	340.8	312	-60/300	201.00	205.00	4.00	1.87
CMRC0937	516783	6710548	340.8	312	-60/300	194.00	197.00	3.00	2.59
			340.8	312	-60/300	177.00	180.00	3.00	1.34
CMRC0937	516783	6710548							
CMRC0937	516783	6710548	340.8	312	-60/300	263.00	282.00	19.00	0.84
CMRC0937	516783	6710548	340.8	312	-60/300	144.00	151.00	7.00	0.75
CMRC0937	516783	6710548	340.8	312	-60/300	75.00	82.00	7.00	1.34
CMRC0937	516783	6710548	340.8	312	-60/300	66.00	67.00	1.00	0.66
CMRC0937	516783	6710548	340.8	312	-60/300	60.00	61.00	1.00	7.89
CMRC0937	516783	6710548	340.8	312	-60/300	48.00	49.00	1.00	1.41
CMRC0937	516783	6710548	340.8	312	-60/300	19.00	20.00	1.00	3.27
CMRC0937	516783	6710548	340.8	312	-60/300	162.00	169.00	7.00	1.26
CMRC0939	517188.32	6711098.75	321.556	168	-59/298	118.00	119.00	1.00	0.72
CMRC0941	515703.47	6710079.2	342.096	114	-60/270	24.00	40.00	16.00	10.57
CMRC0942	515758.62	6710071.72	342.45	132	-60/270	100.00	104.00	4.00	0.72
CMRC0943	515438.71	6709343.02	345.881	120	-60/269	36.00	40.00	4.00	0.58
CMRC0943	515438.71	6709343.02	345.881	120	-60/269	60.00	72.00	12.00	1.78
CMRC0944	515456.52	6709296.66	346.78	168	-60/271	112.00	116.00	4.00	0.58
CMRC0944	515456.52	6709296.66	346.78	168	-60/271	156.00	160.00	4.00	2.76
CMRC0946	515367.79	6709301.59	358.268	120	-60/270	52.00	56.00	4.00	0.53
CMRC0947	517119.53	6711080.34	323.082	120	-61/300	77.00	81.00	4.00	1.31
CMRC0948	517161.88	6711056.96	322.301	162	-60/299	53.00	54.00	1.00	0.55
CMRC0948	517161.88	6711056.96	322.301	162	-60/299	120.00	121.00	1.00	0.71
CMRC0949	517094.12	6711037.88	323.803	120	-60/301	4.00	6.00	2.00	0.80

CMDCOOLO		C711000 F	222.042	162	CO /200	3.00	2.00	1.00	002
CMRC0950	517145.45	6711008.5	323.042	162	-60/298	2.00	3.00	1.00	0.93
CMRC0950	517145.45	6711008.5	323.042	162	-60/298	45.00	46.00	1.00	0.71
CMRC0950	517145.45	6711008.5	323.042	162	-60/298	103.00	106.00	3.00	1.37
CMRC0951	516990.7	6710883.47	326.938	222	-60/301	199.00	200.00	1.00	2.22
CMRC0951	516990.7	6710883.47	326.938	222	-60/301	205.00	210.00	5.00	1.17
CMRC0951	516990.7	6710883.47	326.938	222	-60/301	180.00	194.00	14.00	1.40
CMRC0951	516990.7	6710883.47	326.938	222	-60/301	142.00	146.00	4.00	1.75
CMRC0951	516990.7	6710883.47	326.938	222	-60/301	108.00	111.00	3.00	1.54
CMRC0951	516990.7	6710883.47	326.938	222	-60/301	0.00	1.00	1.00	0.78
CMRC0951	516990.7	6710883.47	326.938	222	-60/301	170.00	173.00	3.00	0.75
CMRC0952	517007.12	6710927.54	326.889	180	-60/298	173.00	180.00	7.00	0.71
CMRC0952	517007.12	6710927.54	326.889	180	-60/298	31.00	32.00	1.00	0.83
CMRC0952	517007.12	6710927.54	326.889	180	-60/298	142.00	143.00	1.00	1.27
CMRC0952	517007.12	6710927.54	326.889	180	-60/298	156.00	157.00	1.00	0.67
CMRC0952	517007.12	6710927.54	326.889	180	-60/298	1.00	3.00	2.00	0.67
CMRC0953	516486.22	6710028.05	337.23	210	-66/299	195.00	196.00	1.00	0.89
CMRC0953	516486.22	6710028.05	337.23	210	-66/299	173.00	178.00	5.00	0.89
CMRC0953	516486.22	6710028.05	337.23	210	-66/299	157.00	159.00	2.00	1.64
CMRC0953	516486.22	6710028.05	337.23	210	-66/299	143.00	146.00	3.00	0.40
CMRC0953	516486.22	6710028.05	337.23	210	-66/299	126.00	130.00	4.00	2.87
CMRC0953	516486.22	6710028.05	337.23	210	-66/299	32.00	34.00	2.00	4.90
CMRC0953	516486.22	6710028.05	337.23	210	-66/299	44.00	58.00	14.00	1.45
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	146.00	147.00	1.00	0.91
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	24.00	26.00	2.00	4.89
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	47.00	68.00	21.00	0.95
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	72.00	82.00	10.00	1.04
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	181.00	188.00	7.00	0.63
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	231.00	233.00	2.00	1.15
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	242.00	243.00	1.00	0.98
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	250.00	251.00	1.00	0.71
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	285.00	286.00	1.00	0.65
CMRC0954	516449.79	6709903.76	337.572	294	-57/300	118.00	121.00	3.00	0.57
CMRC0955	516426.12	6709819.74	338	198	-60/301	110.00	111.00	1.00	0.51
CMRC0955	516426.12	6709819.74	338	198	-60/301	151.00	154.00	3.00	1.93
CMRC0955	516426.12	6709819.74	338	198	-60/301	64.00	68.00	4.00	1.02
CMRC0955	516426.12	6709819.74	338	198	-60/301	57.00	60.00	3.00	5.47
CMRC0955	516426.12	6709819.74	338	198	-60/301	43.00	46.00	3.00	1.12
CMRC0955	516426.12	6709819.74	338	198	-60/301	36.00	37.00	1.00	1.07
CMRC0956	516361.59	6709752.54	341.034	72	-61/300	65.00	68.00	3.00	0.77
CMRC0957	516663.14	6709893.2	344.97	240	-50/299	69.00	70.00	1.00	1.91
CMRC0957	516663.14	6709893.2	344.97	240	-50/299	123.00	124.00	1.00	11.45
CMRC0957	516663.14	6709893.2	344.97	240	-50/299	142.00	146.00	4.00	0.79
CMRC0957	516663.14	6709893.2	344.97	240	-50/299	152.00	154.00	2.00	0.81
CMRC0957	516663.14	6709893.2	344.97	240	-50/299	165.00	195.00	30.00	1.05
CMRC0957	516663.14	6709893.2	344.97	240	-50/299	218.00	223.00	5.00	0.42
CMRC0958	516339.4	6709689.35	341.804	210	-60/300	145.00	146.00	1.00	0.53
CMRC0958	516339.4	6709689.35	341.804	210	-60/300	109.00	112.00	3.00	0.67

CMRC0958	516339.4	6709689.35	341.804	210	-60/300	208.00	210.00	2.00	0.94
CMRC0958	516339.4	6709689.35	341.804	210	-60/300	170.00	171.00	1.00	2.31
CMRC0958	516339.4	6709689.35	341.804	210	-60/300	38.00	39.00	1.00	0.78
CMRC0958	516339.4	6709689.35	341.804	210	-60/300	60.00	61.00	1.00	1.11
CMRC0958	516339.4	6709689.35	341.804	210	-60/300	179.00	183.00	4.00	1.39
CMRC0958	516339.4	6709689.35	341.804	210	-60/300	54.00	55.00	1.00	1.26
CMRC0958	516339.4	6709689.35	341.804	210	-60/300	65.00	66.00	1.00	0.62
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	234.00	258.00	24.00	0.99
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	266.00	268.00	2.00	0.67
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	219.00	221.00	2.00	1.46
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	208.00	209.00	1.00	1.59
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	202.00	203.00	1.00	0.91
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	125.00	126.00	1.00	1.00
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	105.00	106.00	1.00	0.82
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	73.00	80.00	7.00	2.47
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	59.00	61.00	2.00	2.00
CMRC0959	516391.47	6709802.61	338.744	288	-60/300	190.00	198.00	8.00	1.33
CMRC0960	516442.61	6709869.66	337.354	252	-56/300	133.00	134.00	1.00	1.61
CMRC0960	516442.61	6709869.66	337.354	252	-56/300	224.00	252.00	28.00	1.45
CMRC0960	516442.61	6709869.66	337.354	252	-56/300	1.00	3.00	2.00	0.57
CMRC0960	516442.61	6709869.66	337.354	252	-56/300	198.00	199.00	1.00	1.20
CMRC0960	516442.61	6709869.66	337.354	252	-56/300	66.00	77.00	11.00	0.60
CMRC0960	516442.61	6709869.66	337.354	252	-56/300	38.00	40.00	2.00	1.97
CMRC0960	516442.61	6709869.66	337.354	252	-56/300	203.00	216.00	13.00	0.69
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	192.00	193.00	1.00	0.52
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	309.00	310.00	1.00	0.77
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	289.00	295.00	6.00	1.02
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	280.00	281.00	1.00	1.60
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	209.00	211.00	2.00	1.26
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	239.00	240.00	1.00	0.55
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	130.00	131.00	1.00	0.51
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	159.00	160.00	1.00	0.52
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	104.00	105.00	1.00	2.76
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	90.00	91.00	1.00	1.39
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	70.00	72.00	2.00	1.29
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	46.00	47.00	1.00	0.90
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	21.00	32.00	11.00	1.54
CMRC0961	516273.08	6709175.66	339.244	312	-60/269	244.00	269.00	25.00	1.37
CMRC0962	516358.83	6706686.88	344.827	222	-60/270	183.00	184.00	1.00	2.33
CMRC0962	516358.83	6706686.88	344.827	222	-60/270	207.00	209.00	2.00	0.70
CMRC0962	516358.83	6706686.88	344.827	222	-60/270	174.00	178.00	4.00	1.14
CMRC0962	516358.83	6706686.88	344.827	222	-60/270	165.00	166.00	1.00	0.57
CMRC0962	516358.83	6706686.88	344.827	222	-60/270	129.00	130.00	1.00	10.20
CMRC0962	516358.83	6706686.88	344.827	222	-60/270	115.00	116.00	1.00	2.09
CMRC0962	516358.83	6706686.88	344.827	222	-60/270	24.00	25.00	1.00	0.52
CMRC0962	516358.83	6706686.88	344.827	222	-60/270	138.00	142.00	4.00	1.03
CMRC0963	516355.15	6706635.63	344.1	222	-60/269	154.00	157.00	3.00	1.69

CNADCOOCS		6706635 63		222	CO /2CO	72.00	72.00	1.00	0.62
CMRC0963	516355.15	6706635.63	344.1	222	-60/269	72.00	73.00	1.00	0.63
CMRC0963	516355.15	6706635.63	344.1	222	-60/269	165.00	166.00	1.00	1.25
CMRC0963	516355.15	6706635.63	344.1	222	-60/269	139.00	144.00	5.00	1.23
CMRC0963	516355.15	6706635.63	344.1	222	-60/269	129.00	130.00	1.00	2.01
CMRC0963	516355.15	6706635.63	344.1	222	-60/269	115.00	121.00	6.00	1.22
CMRC0963	516355.15	6706635.63	344.1	222	-60/269	205.00	206.00	1.00	5.55
CMRC0964	516363.84	6706780.56	346.262	192	-61/271	129.00	131.00	2.00	0.89
CMRC0964	516363.84	6706780.56	346.262	192	-61/271	137.00	138.00	1.00	0.73
CMRC0964	516363.84	6706780.56	346.262	192	-61/271	142.00	143.00	1.00	1.24
CMRC0964	516363.84	6706780.56	346.262	192	-61/271	147.00	149.00	2.00	2.51
CMRC0964	516363.84	6706780.56	346.262	192	-61/271	177.00	178.00	1.00	2.65
CMRC0965	516311.79	6707006.69	349.863	150	-60/269	46.00	55.00	9.00	0.91
CMRC0965	516311.79	6707006.69	349.863	150	-60/269	131.00	132.00	1.00	0.75
CMRC0965	516311.79	6707006.69	349.863	150	-60/269	119.00	123.00	4.00	1.50
CMRC0965	516311.79	6707006.69	349.863	150	-60/269	59.00	63.00	4.00	1.32
CMRC0965	516311.79	6707006.69	349.863	150	-60/269	85.00	88.00	3.00	0.60
CMRC0965	516311.79	6707006.69	349.863	150	-60/269	101.00	102.00	1.00	1.44
CMRC0966	516365.72	6707023.92	350.209	198	-60/270	78.00	82.00	4.00	0.68
CMRC0966	516365.72	6707023.92	350.209	198	-60/270	100.00	106.00	6.00	0.42
CMRC0966	516365.72	6707023.92	350.209	198	-60/270	121.00	122.00	1.00	8.74
CMRC0966	516365.72	6707023.92	350.209	198	-60/270	127.00	132.00	5.00	2.25
CMRC0966	516365.72	6707023.92	350.209	198	-60/270	138.00	140.00	2.00	2.50
CMRC0966	516365.72	6707023.92	350.209	198	-60/270	152.00	153.00	1.00	0.69
CMRC0966	516365.72	6707023.92	350.209	198	-60/270	178.00	179.00	1.00	1.25
CMRC0967	516343.36	6707257.92	350.893	150	-59/270	79.00	86.00	7.00	0.74
CMRC0967	516343.36	6707257.92	350.893	150	-59/270	133.00	142.00	9.00	0.54
CMRC0967	516343.36	6707257.92	350.893	150	-59/270	123.00	124.00	1.00	0.50
CMRC0967	516343.36	6707257.92	350.893	150	-59/270	102.00	107.00	5.00	2.03
CMRC0967	516343.36	6707257.92	350.893	150	-59/270	70.00	74.00	4.00	2.97
CMRC0967	516343.36	6707257.92	350.893	150	-59/270	61.00	63.00	2.00	0.94
CMRC0967	516343.36	6707257.92	350.893	150	-59/270	0.00	1.00	1.00	0.78
CMRC0967	516343.36	6707257.92	350.893	150	-59/270	112.00	114.00	2.00	3.90
CMRC0968	516395.36	6707336.55	351.849	186	-60/270	0.00	2.00	2.00	0.60
CMRC0968	516395.36	6707336.55	351.849	186	-60/270	58.00	59.00	1.00	1.10
CMRC0968	516395.36	6707336.55	351.849	186	-60/270	90.00	92.00	2.00	0.92
CMRC0968	516395.36	6707336.55	351.849	186	-60/270	98.00	102.00	4.00	1.70
CMRC0968	516395.36	6707336.55	351.849	186	-60/270	141.00	144.00	3.00	2.15
CMRC0968	516395.36	6707336.55	351.849	186	-60/270	171.00	176.00	5.00	1.23
CMRC0968	516395.36	6707336.55	351.849	186	-60/270	181.00	182.00	1.00	0.51
CMRC0969	516414.49	6707394.9	353.878	180	-60/270	116.00	122.00	6.00	1.25
CMRC0969	516414.49	6707394.9	353.878	180	-60/270	168.00	169.00	1.00	2.31
CMRC0969	516414.49	6707394.9	353.878	180	-60/270	148.00	150.00	2.00	1.38
CMRC0969	516414.49	6707394.9	353.878	180	-60/270	143.00	144.00	1.00	4.76
CMRC0969	516414.49	6707394.9	353.878	180	-60/270	59.00	60.00	1.00	0.65
CMRC0969	516414.49	6707394.9	353.878	180	-60/270	0.00	4.00	4.00	1.09
CMRC0969	516414.49	6707394.9	353.878	180	-60/270	136.00	137.00	1.00	0.60
					,				
CMRC0970	516365.42	6707100.24	350.512	210	-61/269	70.00	72.00	2.00	1.06

CMRC0970	516365.42	6707100.24	350.512	210	-61/269	76.00	77.00	1.00	1.26
CMRC0970	516365.42	6707100.24	350.512	210	-61/269	85.00	92.00	7.00	1.19
CMRC0970	516365.42	6707100.24	350.512	210	-61/269	112.00	114.00	2.00	3.49
CMRC0970	516365.42	6707100.24	350.512	210	-61/269	118.00	125.00	7.00	0.56
CMRC0970	516365.42	6707100.24	350.512	210	-61/269	164.00	165.00	1.00	0.50
CMRC0970	516365.42	6707100.24	350.512	210	-61/269	187.00	188.00	1.00	1.43
CMRC0970	516365.42	6707100.24	350.512	210	-61/269	192.00	193.00	1.00	0.61
CMRC0970	516365.42	6707100.24	350.512	210	-61/269	201.00	202.00	1.00	0.51
CMRC0971	516386.84	6707169.17	351.66	192	-60/269	90.00	93.00	3.00	0.65
CMRC0971	516386.84	6707169.17	351.66	192	-60/269	104.00	106.00	2.00	2.34
CMRC0971	516386.84	6707169.17	351.66	192	-60/269	6.00	7.00	1.00	0.68
CMRC0971	516386.84	6707169.17	351.66	192	-60/269	164.00	165.00	1.00	0.51
CMRC0972	516357.15	6707192.95	350.77	168	-60/270	152.00	153.00	1.00	2.68
CMRC0972	516357.15	6707192.95	350.77	168	-60/270	0.00	1.00	1.00	0.50
CMRC0972	516357.15	6707192.95	350.77	168	-60/270	44.00	46.00	2.00	1.44
CMRC0972	516357.15	6707192.95	350.77	168	-60/270	111.00	118.00	7.00	0.71
CMRC0972	516357.15	6707192.95	350.77	168	-60/270	124.00	126.00	2.00	1.05
CMRC0972	516357.15	6707192.95	350.77	168	-60/270	137.00	139.00	2.00	5.78
CMRC0973	516315.08	6706839.01	347.333	126	-60/269	111.00	113.00	2.00	1.66
CMRC0973	516315.08	6706839.01	347.333	126	-60/269	91.00	92.00	1.00	0.64
CMRC0973	516315.08	6706839.01	347.333	126	-60/269	66.00	67.00	1.00	0.72
CMRC0973	516315.08	6706839.01	347.333	126	-60/269	42.00	48.00	6.00	1.35
CMRC0973	516315.08	6706839.01	347.333	126	-60/269	53.00	59.00	6.00	1.11
CMRC0973	516342.81	6706839.01	347.267	162		1.00	2.00	1.00	0.52
CMRC0974	516342.81	6706839.1	347.267	162	-60/270	130.00	131.00	1.00	2.67
CMRC0974	516342.81	6706839.1	347.267	162	-60/270 -60/270	146.00		10.00	0.59
CMRC0974	516342.81	6706839.1	347.267	162	,	91.00	156.00 92.00	1.00	0.59
					-60/270				
CMRC0974	516342.81	6706839.1	347.267	162	-60/270	102.00	103.00	1.00	0.92
CMRC0975	516311.03	6706881	347.936	120	-60/268	0.00	2.00	2.00	0.62
CMRC0975	516311.03	6706881	347.936	120	-60/268	40.00	41.00	1.00	0.76
CMRC0975	516311.03	6706881	347.936	120	-60/268	46.00	53.00	7.00	1.14
CMRC0975	516311.03	6706881	347.936	120	-60/268	57.00	58.00	1.00	0.54
CMRC0975	516311.03	6706881	347.936	120	-60/268	74.00	85.00	11.00	1.58
CMRC0976	516333.48	6706881.26	347.852	198	-60/270	42.00	45.00	3.00	0.49
CMRC0976	516333.48	6706881.26	347.852	198	-60/270	156.00	157.00	1.00	1.89
CMRC0976	516333.48	6706881.26	347.852	198	-60/270	145.00	148.00	3.00	2.59
CMRC0976	516333.48	6706881.26	347.852	198	-60/270	102.00	120.00	18.00	2.03
CMRC0976	516333.48	6706881.26	347.852	198	-60/270	66.00	70.00	4.00	1.07
CMRC0976	516333.48	6706881.26	347.852	198	-60/270	175.00	177.00	2.00	4.83
CMRC0976	516333.48	6706881.26	347.852	198	-60/270	78.00	79.00	1.00	0.56
CMRC0977	516038.17	6707382.03	358.197	108	-60/271	93.00	94.00	1.00	0.87
CMRC0977	516038.17	6707382.03	358.197	108	-60/271	72.00	78.00	6.00	3.47
CMRC0977	516038.17	6707382.03	358.197	108	-60/271	0.00	3.00	3.00	1.20
CMRC0977	516038.17	6707382.03	358.197	108	-60/271	58.00	62.00	4.00	2.07
CMRC0978	516027.67	6707618.42	359.606	156	-60/270	34.00	41.00	7.00	1.38
CMRC0978	516027.67	6707618.42	359.606	156	-60/270	46.00	58.00	12.00	1.73
CMRC0978	516027.67	6707618.42	359.606	156	-60/270	78.00	86.00	8.00	0.88

CMRC0978	516027.67	6707618.42	359.606	156	-60/270	92.00	111.00	19.00	1.18
CMRC0978	516027.67	6707618.42	359.606	156	-60/270	116.00	117.00	1.00	1.07
CMRC0978	516027.67	6707618.42	359.606	156	-60/270	122.00	125.00	3.00	0.41
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	125.00	126.00	1.00	0.71
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	152.00	156.00	4.00	0.45
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	164.00	166.00	2.00	0.72
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	137.00	138.00	1.00	1.22
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	91.00	92.00	1.00	0.52
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	63.00	64.00	1.00	0.68
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	0.00	2.00	2.00	0.87
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	49.00	52.00	3.00	0.67
CMRC0979	516069.52	6707738.22	359.059	192	-60/269	103.00	107.00	4.00	0.54
CMRC0980	516295.97	6708546.97	345.197	168	-59/271	128.00	129.00	1.00	1.18
CMRC0980	516295.97	6708546.97	345.197	168	-59/271	161.00	164.00	3.00	0.43
CMRC0980	516295.97	6708546.97	345.197	168	-59/271	123.00	124.00	1.00	0.53
CMRC0980	516295.97	6708546.97	345.197	168	-59/271	118.00	119.00	1.00	4.16
CMRC0980	516295.97	6708546.97	345.197	168	-59/271	113.00	114.00	1.00	0.54
CMRC0980	516295.97	6708546.97	345.197	168	-59/271	101.00	102.00	1.00	1.19
CMRC0980	516295.97	6708546.97	345.197	168	-59/271	41.00	45.00	4.00	1.36
CMRC0980	516295.97	6708546.97	345.197	168	-59/271	27.00	28.00	1.00	1.06
CMRC0981	516455.48	6708538.83	346.273	162	-60/268	100.00	102.00	2.00	1.09
CMRC0981	516455.48	6708538.83	346.273	162	-60/268	110.00	111.00	1.00	0.91
CMRC0981	516455.48	6708538.83	346.273	162	-60/268	122.00	123.00	1.00	0.92
CMRC0981	516455.48	6708538.83	346.273	162	-60/268	132.00	134.00	2.00	0.60
CMRC0981	516455.48	6708538.83	346.273	162	-60/268	10.00	12.00	2.00	0.65
CMRC0982	516175.66	6708043.89	351.76	84	-61/270	36.00	45.00	9.00	0.76
CMRC0982	516175.66	6708043.89	351.76	84	-61/270	49.00	50.00	1.00	0.87
CMRC0982	516175.66	6708043.89	351.76	84	-61/270	57.00	58.00	1.00	6.29
CMRC0982	516175.66	6708043.89	351.76	84	-61/270	71.00	73.00	2.00	1.77
CMRC0983	516198.67	6708043.89	351.131	90	-60/270	79.00	80.00	1.00	0.55
CMRC0983	516198.67	6708043.89	351.131	90	-60/270	85.00	86.00	1.00	0.50
CMRC0983	516198.67	6708043.89	351.131	90	-60/270	31.00	32.00	1.00	0.58
CMRC0983	516198.67	6708043.89	351.131	90	-60/270	2.00	5.00	3.00	0.97
CMRC0983	516198.67	6708043.89	351.131	90	-60/270	39.00	48.00	9.00	1.31
CMRC0984	516223.98	6708043.75	350.713	90	-60/268	0.00	1.00	1.00	1.65
CMRC0984	516223.98	6708043.75	350.713	90	-60/268	40.00	44.00	4.00	1.25
CMRC0984	516223.98	6708043.75	350.713	90	-60/268	51.00	59.00	8.00	2.14
CMRC0984	516223.98	6708043.75	350.713	90	-60/268	76.00	77.00	1.00	1.85
CMRC0985	516164.98	6708098.41	351.667	84	-60/270	43.00	47.00	4.00	2.03
CMRC0985	516164.98	6708098.41	351.667	84	-60/270	54.00	56.00	2.00	1.30
CMRC0985	516164.98	6708098.41	351.667	84	-60/270	60.00	61.00	1.00	1.16
CMRC0985	516164.98	6708098.41	351.667	84	-60/270	71.00	72.00	1.00	0.50
CMRC0986	516191.15	6708098.44	351.191	84	-60/269	61.00	64.00	3.00	0.94
CMRC0986	516191.15	6708098.44	351.191	84	-60/269	69.00	70.00	1.00	1.87
CMRC0986	516191.15	6708098.44	351.191	84	-60/269	39.00	41.00	2.00	7.68
CMRC0986	516191.15	6708098.44	351.191	84	-60/269	2.00	3.00	1.00	0.69
CMRC0987	516217.02	6708098.92	351.108	96	-61/271	8.00	9.00	1.00	1.04

CMRC0987	516217.02	6708098.92	351.108	96	-61/271	29.00	43.00	14.00	1.35
	516217.02	6708098.92	351.108	96	-61/271	58.00		9.00	0.95
CMRC0987 CMRC0987	516217.02	6708098.92	351.108	96	-61/271	74.00	67.00 75.00	1.00	0.93
CMRC0987				96					
	516217.02	6708098.92	351.108		-61/271	86.00	96.00	10.00	0.90
CMRC0987	516217.02	6708098.92	351.108	96	-61/271	0.00	2.00	2.00	7.49
CMRC0988	516120.46	6708141.43	353.062	90	-59/270	48.00	50.00	2.00	1.82
CMRC0988	516120.46	6708141.43	353.062	90	-59/270	61.00	62.00	1.00	0.81
CMRC0988	516120.46	6708141.43	353.062	90	-59/270	81.00	82.00	1.00	0.53
CMRC0989	516152.17	6708141.65	351.91	90	-59/270	10.00	11.00	1.00	0.52
CMRC0989	516152.17	6708141.65	351.91	90	-59/270	56.00	57.00	1.00	2.36
CMRC0990	516193.26	6708138.6	351.138	84	-60/270	45.00	64.00	19.00	0.53
CMRC0990	516193.26	6708138.6	351.138	84	-60/270	74.00	77.00	3.00	0.78
CMRC0990	516193.26	6708138.6	351.138	84	-60/270	29.00	30.00	1.00	1.06
CMRC0990	516193.26	6708138.6	351.138	84	-60/270	39.00	41.00	2.00	1.07
CMRC0991	516167.85	6708207.99	351.066	84	-60/269	46.00	63.00	17.00	1.95
CMRC0992	516188.07	6708208	350.838	96	-60/269	42.00	43.00	1.00	4.00
CMRC0992	516188.07	6708208	350.838	96	-60/269	52.00	60.00	8.00	1.32
CMRC0992	516188.07	6708208	350.838	96	-60/269	81.00	83.00	2.00	0.79
CMRC0993	516217.26	6708207.82	350.642	84	-60/269	34.00	39.00	5.00	0.80
CMRC0993	516217.26	6708207.82	350.642	84	-60/269	48.00	54.00	6.00	1.15
CMRC0993	516217.26	6708207.82	350.642	84	-60/269	68.00	72.00	4.00	0.62
CMRC0994	516205.08	6708255.05	350.518	96	-58/272	74.00	80.00	6.00	0.57
CMRC0994	516205.08	6708255.05	350.518	96	-58/272	36.00	39.00	3.00	1.31
CMRC0994	516205.08	6708255.05	350.518	96	-58/272	57.00	61.00	4.00	1.51
CMRC0994	516205.08	6708255.05	350.518	96	-58/272	67.00	69.00	2.00	1.81
CMRC0995	516228.15	6708255.49	350.2	90	-60/273	66.00	80.00	14.00	0.92
CMRC0995	516228.15	6708255.49	350.2	90	-60/273	43.00	52.00	9.00	0.83
CMRC0995	516228.15	6708255.49	350.2	90	-60/273	24.00	26.00	2.00	1.54
CMRC0995	516228.15	6708255.49	350.2	90	-60/273	38.00	39.00	1.00	1.58
CMRC0996	516252.51	6708254.89	349.936	84	-60/271	1.00	2.00	1.00	0.67
CMRC0996	516252.51	6708254.89	349.936	84	-60/271	35.00	36.00	1.00	1.62
CMRC0996	516252.51	6708254.89	349.936	84	-60/271	47.00	48.00	1.00	0.72
CMRC0996	516252.51	6708254.89	349.936	84	-60/271	64.00	75.00	11.00	0.93
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	150.00	151.00	1.00	5.60
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	77.00	78.00	1.00	1.89
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	211.00	213.00	2.00	0.57
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	203.00	204.00	1.00	0.76
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	187.00	192.00	5.00	0.46
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	171.00	174.00	3.00	1.48
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	40.00	45.00	5.00	0.45
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	87.00	91.00	4.00	0.70
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	72.00	73.00	1.00	0.74
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	61.00	62.00	1.00	0.55
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	55.00	56.00	1.00	1.42
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	50.00	51.00	1.00	0.52
CMRC0997	516767.19	6710479.36	344.473	216	-60/298	132.00	133.00	1.00	0.32
					,				
CMRC0998	516953.69	6711076.41	325.335	228	-60/301	42.00	59.00	17.00	0.78

l	l	l .	l l	1	l	1		1	1 1
CMRC0998	516953.69	6711076.41	325.335	228	-60/301	203.00	204.00	1.00	1.36
CMRC0998	516953.69	6711076.41	325.335	228	-60/301	164.00	165.00	1.00	1.52
CMRC0998	516953.69	6711076.41	325.335	228	-60/301	120.00	121.00	1.00	0.60
CMRC0998	516953.69	6711076.41	325.335	228	-60/301	64.00	65.00	1.00	3.07
CMRC0998	516953.69	6711076.41	325.335	228	-60/301	224.00	225.00	1.00	0.62
CMRC0998	516953.69	6711076.41	325.335	228	-60/301	85.00	86.00	1.00	0.55
CMRC0999	516916.59	6711049.18	326.228	192	-60/300	173.00	174.00	1.00	1.66
CMRC0999	516916.59	6711049.18	326.228	192	-60/300	159.00	164.00	5.00	0.87
CMRC0999	516916.59	6711049.18	326.228	192	-60/300	67.00	73.00	6.00	0.96
CMRC0999	516916.59	6711049.18	326.228	192	-60/300	1.00	3.00	2.00	0.73
CMRC0999	516916.59	6711049.18	326.228	192	-60/300	61.00	62.00	1.00	0.53
CMRC1273	516869.22	6711073.5	325.68	126	-61/300	61.00	66.00	5.00	0.46
CMRC1273	516869.22	6711073.5	325.68	126	-61/300	71.00	80.00	9.00	0.53
CMRC1273	516869.22	6711073.5	325.68	126	-61/300	87.00	93.00	6.00	1.15
CMRC1273	516869.22	6711073.5	325.68	126	-61/300	108.00	109.00	1.00	0.81
CMRC1273	516869.22	6711073.5	325.68	126	-61/300	118.00	119.00	1.00	0.63
CMRC1274	516833.97	6711065.41	325.79	90	-61/301	40.00	41.00	1.00	2.20
CMRC1274	516833.97	6711065.41	325.79	90	-61/301	52.00	53.00	1.00	0.73
CMRC1275	516871.72	6711044.51	326.019	162	-58/300	74.00	77.00	3.00	0.61
CMRC1275	516871.72	6711044.51	326.019	162	-58/300	82.00	83.00	1.00	1.72
CMRC1275	516871.72	6711044.51	326.019	162	-58/300	2.00	3.00	1.00	0.69
CMRC1275	516871.72	6711044.51	326.019	162	-58/300	91.00	92.00	1.00	0.67
CMRC1276	516889.02	6711001.49	326.705	204	-60/300	50.00	51.00	1.00	4.32
CMRC1276	516889.02	6711001.49	326.705	204	-60/300	65.00	68.00	3.00	1.45
CMRC1276	516889.02	6711001.49	326.705	204	-60/300	72.00	77.00	5.00	0.67
CMRC1276	516889.02	6711001.49	326.705	204	-60/300	104.00	105.00	1.00	1.46
CMRC1276	516889.02	6711001.49	326.705	204	-60/300	130.00	131.00	1.00	1.32
CMRC1276	516889.02	6711001.49	326.705	204	-60/300	138.00	140.00	2.00	1.49
CMRC1276	516889.02	6711001.49	326.705	204	-60/300	150.00	156.00	6.00	0.46
CMRC1276	516889.02	6711001.49	326.705	204	-60/300	186.00	187.00	1.00	1.56
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	86.00	87.00	1.00	1.68
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	185.00	189.00	4.00	1.10
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	164.00	171.00	7.00	0.54
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	140.00	141.00	1.00	1.47
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	133.00	134.00	1.00	1.82
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	95.00	96.00	1.00	0.94
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	77.00	78.00	1.00	2.47
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	72.00	73.00	1.00	2.50
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	62.00	64.00	2.00	37.13
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	44.00	48.00	4.00	2.66
CMRC1277	516890.08	6710921.72	327.259	197	-61/299	119.00	120.00	1.00	0.55
CMRC1278	516859.59	6710897.19	327.221	222	-60/300	212.00	214.00	2.00	0.88
CMRC1278	516859.59	6710897.19	327.221	222	-60/300	40.00	54.00	14.00	1.45
CMRC1278	516859.59	6710897.19	327.221	222	-60/300	70.00	71.00	1.00	0.57
CMRC1278	516859.59	6710897.19	327.221	222	-60/300	104.00	113.00	9.00	0.51
CMRC1278	516859.59	6710897.19	327.221	222	-60/300	135.00	139.00	4.00	1.29
					,				
CMRC1278	516859.59	6710897.19	327.221	222	-60/300	148.00	150.00	2.00	0.85

CMRC1278	516859.59	6710897.19	327.221	222	-60/300	187.00	188.00	1.00	0.91
CMRC1279	516832.83	6711011.52	326.373	138	-60/300	118.00	119.00	1.00	0.50
CMRC1279	516832.83	6711011.52	326.373	138	-60/300	98.00	99.00	1.00	0.52
CMRC1279	516832.83	6711011.52	326.373	138	-60/300	58.00	59.00	1.00	0.67
CMRC1279	516832.83	6711011.52	326.373	138	-60/300	47.00	53.00	6.00	0.62
CMRC1280	516827.44	6710984.65	326.392	138	-60/299	131.00	132.00	1.00	0.84
CMRC1280	516827.44	6710984.65	326.392	138	-60/299	2.00	3.00	1.00	0.73
CMRC1280	516827.44	6710984.65	326.392	138	-60/299	38.00	42.00	4.00	8.36
CMRC1280	516827.44	6710984.65	326.392	138	-60/299	46.00	48.00	2.00	0.59
CMRC1280	516827.44	6710984.65	326.392	138	-60/299	52.00	57.00	5.00	0.47
CMRC1280	516827.44	6710984.65	326.392	138	-60/299	122.00	125.00	3.00	1.00
CMRC1281	516843.48	6710945.95	326.724	174	-60/300	89.00	96.00	7.00	1.01
CMRC1281	516843.48	6710945.95	326.724	174	-60/300	78.00	84.00	6.00	2.04
CMRC1281	516843.48	6710945.95	326.724	174	-60/300	54.00	59.00	5.00	0.66
CMRC1281	516843.48	6710945.95	326.724	174	-60/300	157.00	159.00	2.00	1.88
CMRC1281	516843.48	6710945.95	326.724	174	-60/300	71.00	74.00	3.00	0.42
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	155.00	156.00	1.00	0.84
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	177.00	196.00	19.00	3.75
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	200.00	203.00	3.00	0.58
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	170.00	172.00	2.00	0.62
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	143.00	144.00	1.00	0.60
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	80.00	81.00	1.00	0.58
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	52.00	55.00	3.00	0.82
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	1.00	5.00	4.00	0.63
CMRC1282	517044.94	6711141.88	324.275	222	-60/301	45.00	46.00	1.00	0.74
CMRC1283	517027.01	6711093.73	325.058	74	-60/302	1.00	2.00	1.00	0.52
CMRC1284	517098	6711339	323	168	-60/300	110.00	121.00	11.00	0.44
CMRC1284	517098	6711339	323	168	-60/300	162.00	167.00	5.00	3.15
CMRC1284	517098	6711339	323	168	-60/300	127.00	131.00	4.00	0.42
CMRC1284	517098	6711339	323	168	-60/300	80.00	81.00	1.00	0.53
CMRC1284	517098	6711339	323	168	-60/300	66.00	68.00	2.00	1.77
CMRC1284	517098	6711339	323	168	-60/300	154.00	155.00	1.00	1.09
CMRC1284	517098	6711339	323	168	-60/300	95.00	106.00	11.00	6.11
CMRC1285	517116.33	6711319.59	322.347	157	-60/300	0.00	1.00	1.00	0.69
CMRC1286	517088.05	6711288.7	323.157	210	-60/300	128.00	129.00	1.00	0.93
CMRC1286	517088.05	6711288.7	323.157	210	-60/300	187.00	202.00	15.00	1.41
CMRC1286	517088.05	6711288.7	323.157	210	-60/300	150.00	152.00	2.00	0.74
CMRC1286	517088.05	6711288.7		210	-60/300	134.00		7.00	0.74
CMRC1286	517088.05	6711288.7	323.157	210	-60/300	207.00	141.00 209.00	2.00	0.59
			323.157		,				
CMRC1286	517088.05	6711288.7	323.157	210	-60/300	9.00	10.00	1.00	0.56
CMRC1286	517088.05	6711288.7	323.157	210	-60/300	1.00	3.00	2.00	0.54
CMRC1286	517088.05	6711288.7	323.157	210	-60/300	145.00	146.00	1.00	7.27
CMRC1287	517063.45	6711254.34	322.989	192	-60/299	141.00	147.00	6.00	1.41
CMRC1287	517063.45	6711254.34	322.989	192	-60/299	184.00	187.00	3.00	0.53
CMRC1287	517063.45	6711254.34	322.989	192	-60/299	159.00	160.00	1.00	0.53
CMRC1287	517063.45	6711254.34	322.989	192	-60/299	135.00	137.00	2.00	0.62
CMRC1287	517063.45	6711254.34	322.989	192	-60/299	2.00	3.00	1.00	0.69

			l					٠	
CMRC1287	517063.45	6711254.34	322.989	192	-60/299	92.00	107.00	15.00	3.52
CMRC1288	517082.98	6711243.18	322.36	192	-60/299	0.00	3.00	3.00	0.47
CMRC1288	517082.98	6711243.18	322.36	192	-60/299	9.00	13.00	4.00	0.98
CMRC1288	517082.98	6711243.18	322.36	192	-60/299	154.00	162.00	8.00	3.21
CMRC1288	517082.98	6711243.18	322.36	192	-60/299	184.00	186.00	2.00	0.97
CMRC1288	517082.98	6711243.18	322.36	192	-60/299	191.00	192.00	1.00	8.22
CMRC1289	517043.8	6711194.56	320.824	192	-60/301	132.00	133.00	1.00	1.01
CMRC1289	517043.8	6711194.56	320.824	192	-60/301	123.00	125.00	2.00	0.74
CMRC1289	517043.8	6711194.56	320.824	192	-60/301	164.00	166.00	2.00	1.01
CMRC1289	517043.8	6711194.56	320.824	192	-60/301	43.00	50.00	7.00	0.64
CMRC1289	517043.8	6711194.56	320.824	192	-60/301	99.00	106.00	7.00	2.18
CMRC1289	517043.8	6711194.56	320.824	192	-60/301	137.00	138.00	1.00	0.51
CMRC1293	518417.45	6713521.03	315.64	150	-60/299	96.00	104.00	8.00	1.97
CMRC1294	518426.28	6713636.33	315.682	122	-61/300	68.00	72.00	4.00	0.61
CMRC1297	516644.9	6710306.12	331.967	168	-70/300	60.00	61.00	1.00	0.50
CMRC1297	516644.9	6710306.12	331.967	168	-70/300	123.00	124.00	1.00	0.55
CMRC1297	516644.9	6710306.12	331.967	168	-70/300	116.00	118.00	2.00	0.92
CMRC1297	516644.9	6710306.12	331.967	168	-70/300	73.00	82.00	9.00	1.10
CMRC1297	516644.9	6710306.12	331.967	168	-70/300	161.00	163.00	2.00	3.52
CMRC1297	516644.9	6710306.12	331.967	168	-70/300	43.00	44.00	1.00	0.68
CMRC1297	516644.9	6710306.12	331.967	168	-70/300	38.00	39.00	1.00	0.81
CMRC1297	516644.9	6710306.12	331.967	168	-70/300	92.00	97.00	5.00	0.55
CMRC1298	516692.23	6710334.07	331.92	168	-60/300	66.00	67.00	1.00	1.48
CMRC1298	516692.23	6710334.07	331.92	168	-60/300	128.00	129.00	1.00	0.55
CMRC1298	516692.23	6710334.07	331.92	168	-60/300	110.00	111.00	1.00	1.92
CMRC1298	516692.23	6710334.07	331.92	168	-60/300	38.00	46.00	8.00	1.20
CMRC1298	516692.23	6710334.07	331.92	168	-60/300	7.00	9.00	2.00	0.64
CMRC1298	516692.23	6710334.07	331.92	168	-60/300	13.00	24.00	11.00	0.67
CMRC1299	516312.24	6709661.48	341.046	186	-60/300	72.00	73.00	1.00	1.01
CMRC1299	516312.24	6709661.48	341.046	186	-60/300	130.00	132.00	2.00	1.37
CMRC1299	516312.24	6709661.48	341.046	186	-60/300	153.00	154.00	1.00	2.57
CMRC1299	516312.24	6709661.48	341.046	186	-60/300	181.00	185.00	4.00	1.27
CMRC1300	516283.7	6709640.63	341.05	246	-60/303	187.00	193.00	6.00	0.81
CMRC1300	516283.7	6709640.63	341.05	246	-60/303	197.00	212.00	15.00	1.71
CMRC1300	516283.7	6709640.63	341.05	246	-60/303	157.00	163.00	6.00	1.03
CMRC1300	516283.7	6709640.63	341.05	246	-60/303	167.00	168.00	1.00	0.78
CMRC1300	516283.7	6709640.63		246				2.00	2.17
CMRC1300	516283.7		341.05		-60/303	139.00	141.00		
CMRC1300		6709640.63 6709640.63	341.05	246 246	-60/303	87.00 81.00	88.00 82.00	1.00	0.68 2.88
	516283.7		341.05		-60/303				
CMRC1300	516283.7	6709640.63	341.05	246	-60/303	147.00	153.00	6.00	1.17
CMRC1301	516282.26	6709607.96	340.808	180	-60/299	137.00	140.00	3.00	1.24
CMRC1301	516282.26	6709607.96	340.808	180	-60/299	147.00	152.00	5.00	0.36
CMRC1301	516282.26	6709607.96	340.808	180	-60/299	100.00	101.00	1.00	0.61
CMRC1301	516282.26	6709607.96	340.808	180	-60/299	94.00	95.00	1.00	1.91
CMRC1301	516282.26	6709607.96	340.808	180	-60/299	40.00	41.00	1.00	0.60
CMRC1301	516282.26	6709607.96	340.808	180	-60/299	35.00	36.00	1.00	0.60
CMRC1301	516282.26	6709607.96	340.808	180	-60/299	156.00	157.00	1.00	0.66

l	la	l	l	l	l			l	
CMRC1303	515719.35	6710073.82	342.269	120	-60/270	48.00	56.00	8.00	2.37
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	48.00	50.00	2.00	0.79
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	125.00	137.00	12.00	0.67
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	220.00	224.00	4.00	1.75
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	179.00	180.00	1.00	0.91
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	166.00	167.00	1.00	0.65
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	156.00	162.00	6.00	2.26
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	143.00	152.00	9.00	0.75
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	115.00	118.00	3.00	0.78
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	110.00	111.00	1.00	0.65
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	95.00	96.00	1.00	1.76
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	85.00	90.00	5.00	2.16
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	58.00	59.00	1.00	0.68
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	25.00	26.00	1.00	0.50
CMRC1304D	516373.83	6709431.36	350.951	228	-60/270	64.00	65.00	1.00	0.99
CMRC1305D	516353.34	6709388.55	351.822	216	-61/270	92.00	94.00	2.00	1.36
CMRC1305D	516353.34	6709388.55	351.822	216	-61/270	200.00	201.00	1.00	0.95
CMRC1305D	516353.34	6709388.55	351.822	216	-61/270	102.00	111.00	9.00	0.96
CMRC1305D	516353.34	6709388.55	351.822	216	-61/270	50.00	51.00	1.00	1.12
CMRC1305D	516353.34	6709388.55	351.822	216	-61/270	37.00	38.00	1.00	0.52
CMRC1305D	516353.34	6709388.55	351.822	216	-61/270	117.00	132.00	15.00	0.76
CMRC1305D	516353.34	6709388.55	351.822	216	-61/270	77.00	78.00	1.00	1.03
CMRC1306D	516388.46	6709358.41	343.724	144	-59/271	31.00	40.00	9.00	0.90
CMRC1306D	516388.46	6709358.41	343.724	144	-59/271	65.00	72.00	7.00	0.55
CMRC1306D	516388.46	6709358.41	343.724	144	-59/271	92.00	93.00	1.00	1.15
CMRC1306D	516388.46	6709358.41	343.724	144	-59/271	97.00	116.00	19.00	0.63
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	87.00	88.00	1.00	0.51
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	106.00	108.00	2.00	0.68
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	68.00	69.00	1.00	2.21
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	59.00	60.00	1.00	1.83
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	21.00	32.00	11.00	4.50
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	12.00	13.00	1.00	0.56
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	0.00	1.00	1.00	0.54
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	113.00	114.00	1.00	1.31
CMRC1307D	516204.37	6708763.7	339.428	198	-60/270	37.00	38.00	1.00	0.57
CMRC1308	516040.21	6706508.64	345.628	156	-60/270	106.00	107.00	1.00	1.50
CMRC1308	516040.21	6706508.64	345.628	156	-60/270	39.00	44.00	5.00	0.71
CMRC1308	516040.21	6706508.64	345.628	156	-60/270	53.00	70.00	17.00	1.66
CMRC1308	516040.21	6706508.64	345.628	156	-60/270	100.00	102.00	2.00	0.87
CMRCWB0027	516018	6721193	318	91	-90/0	84.00	88.00	4.00	1.58
CMRCWB0027	516262	6706592	344.8	156	-90/0	56.00	60.00	4.00	2.81
CMRCWB0032	516262	6706592	344.8	156	-90/0	64.00	68.00	4.00	1.30
CMRCWB0032	516262	6706592	344.8	156	-90/0	92.00	96.00	4.00	0.59
CMRCWB0032	516262	6706592	344.8	156	-90/0	108.00	112.00	4.00	0.59
CMRCWB0032	516262	6706592	344.8	156	-90/0 -90/0	32.00	44.00		0.51
					,			12.00	
CMRCWB0033	516710	6704509	337.1	108	-90/0	28.00	36.00	8.00	1.67
CMRCWB0033	516710	6704509	337.1	108	-90/0	52.00	56.00	4.00	0.63

CMRCWB0034	516672	6704416	336.9	113	-90/0	28.00	32.00	4.00	1.09
CMRCWB0035	516606	6704516	338	108	-90/0	92.00	96.00	4.00	2.07

Karlawinda

Hole_ID	Easting	Northing	RL	Max_Depth	Dip/Azi	Depth_From	Depth_To	IntervalWidth	Grade
KBAC3183	171397.321	7366248.48	615.15	112	-60/132	12	13	1	0.61
KBAC3184	171362.502	7366281.18	615.91	115	-60/132	1	2	1	3.81
KBAC3186	171322.687	7366319.35	614.1	112	-60/134	14	15	1	7.65
KBAC3189	171331.713	7366218.39	617.16	112	-59/134	28	29	1	1.34
KBAC3190	171310.463	7366237.15	615.96	112	-60/134	8	9	1	0.84
KBAC3193	171281.921	7366170.84	618.04	112	-59/134	1	6	5	0.52
KBAC3209	172339.414	7365910.04	631.82	112	-61/314	35	36	1	0.54
KBAC3210	172368.808	7365878.32	630.96	112	-60/312	51	52	1	0.73
KBAC3211	172405.497	7365846.06	630.9	115	-60/313	32	33	1	0.8
KBAC3211	172405.497	7365846.06	630.9	115	-60/313	86	87	1	1
KBAC3216	172262.911	7365769.04	629.99	112	-60/314	42	43	1	0.63
KBAC3217	172052.811	7365757.67	622.05	121	-59/314	102	103	1	18.16
KBAC3219	172125.195	7365686.98	624.49	115	-60/314	27	35	8	5.9
KBAC3219	172125.195	7365686.98	624.49	115	-60/314	42	43	1	1.25
KBAC3223	172048.771	7365662.08	629.83	124	-60/315	50	55	5	0.29
KBAC3223	172048.771	7365662.08	629.83	124	-60/315	30	41	11	1.87
KBAC3224	172084.02	7365625.44	629.19	124	-61/315	77	84	7	0.99
KBAC3249	171983.366	7366729.12	610.4	40	-60/134	32	36	4	0.67
KBRC2131	209693.436	7367455.37	584.41	162	-90/234	116	117	1	0.59
KBRC2132	199130.643	7371559.98	597.57	210	-60/270	138	139	1	2.42
KBRC2132	199130.643	7371559.98	597.57	210	-60/270	172	174	2	1.04
KBRC2132	199130.643	7371559.98	597.57	210	-60/270	144	151	7	13.53
KBRC2132	199130.643	7371559.98	597.57	210	-60/270	127	129	2	3.55
KBRC2132	199130.643	7371559.98	597.57	210	-60/270	93	94	1	0.68
KBRC2132	199130.643	7371559.98	597.57	210	-60/270	82	83	1	1
KBRC2132	199130.643	7371559.98	597.57	210	-60/270	71	72	1	0.73
KBRC2132	199130.643	7371559.98	597.57	210	-60/270	165	166	1	0.54
KBRC2134	199113.653	7371566.67	597.88	210	-60/269	174	178	4	0.43
KBRC2134	199113.653	7371566.67	597.88	210	-60/269	186	189	3	0.87
KBRC2135	199159.437	7371568.32	597.69	282	-60/271	152	153	1	0.64
KBRC2135	199159.437	7371568.32	597.69	282	-60/271	114	120	6	0.57
KBRC2135	199159.437	7371568.32	597.69	282	-60/271	161	162	1	0.59
KBRC2135	199159.437	7371568.32	597.69	282	-60/271	175	176	1	1.4
KBRC2135	199159.437	7371568.32	597.69	282	-60/271	180	181	1	0.84
KBRC2135	199159.437	7371568.32	597.69	282	-60/271	147	148	1	1.01
KBRC2136	199185.682	7371568.86	597.66	336	-60/269	265	266	1	0.75
KBRC2136	199185.682	7371568.86	597.66	336	-60/269	270	272	2	0.79
KBRC2136	199185.682	7371568.86	597.66	336	-60/269	279	283	4	1.15
KBRC2138	199109.409	7371592.38	597.82	204	-60/269	202	203	1	0.65
KBRC2138	199109.409	7371592.38	597.82	204	-60/269	175	176	1	0.6
KBRC2138	199109.409	7371592.38	597.82	204	-60/269	180	190	10	0.71
KBRC2139	199139.553	7371592.51	597.53	264	-62/272	201	202	1	0.75
KBRC2139	199139.553	7371592.51	597.53	264	-62/272	188	189	1	0.9
KBRC2139	199139.553	7371592.51	597.53	264	-62/272	179	182	3	1.55
KBRC2139	199139.553	7371592.51	597.53	264	-62/272	144	146	2	1.54

KBRC2139	199139.553	7371592.51	597.53	264	-62/272	81	82	1	0.51
KBRC2139	199139.553	7371592.51	597.53	264	-62/272	98	99	1	0.51
KBRC2140	199168.159	7371591.91	597.47	306	-62/273	216	224	8	0.59
KBRC2142	199099.006	7371541.75	597.59	204	-62/271	196	200	4	0.8
KBRC2142	199099.006	7371541.75	597.59	204	-62/271	176	188	12	0.79
KBRC2142	199099.006	7371541.75	597.59	204	-62/271	148	152	4	1.43
KBRC2142	199099.006	7371541.75	597.59	204	-62/271	160	164	4	0.77
KBRC2143	199156.408	7371541.85	597.51	252	-63/270	204	208	4	0.61
KBRC2144	199096.723	7371517.02	597.51	192	-61/274	24	28	4	1.44
KBRC2144	199096.723	7371517.02	597.51	192	-61/274	72	76	4	2.64
KBRC2144	199096.723	7371517.02	597.51	192	-61/274	164	172	8	0.65
KBRC2146	199137.873	7371517.42	597.56	234	-62/269	120	124	4	0.74
KBRC2147	199157.222	7371516.77	597.59	252	-61/272	172	176	4	0.84
KBRC2153	172224.168	7365699.03	626	152	-61/316	68	72	4	1.8
KBRC2163	173633.073	7365623.45	627	150	-60/313	24	28	4	0.56
KBRC2166	206875.374	7367385.3	585.89	138	-61/58	110	112	2	0.54
KBRC2166	206875.374	7367385.3	585.89	138	-61/58	66	68	2	1.6
KBRC2166	206875.374	7367385.3	585.89	138	-61/58	93	97	4	0.78
KBRC2166	206875.374	7367385.3	585.89	138	-61/58	103	105	2	1.06

Appendix 2 JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

JORC Code explanation Criteria **Commentary** Sampling RC drilling at KGP and MGGP completed by Topdrill with the same techniques and process at both. Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry techniques standard measurement tools appropriate to the minerals under investigation, such as down hole For Reverse Circulation (RC) drilling 2kg - 3kg samples are split from dry 1m bulk samples. The gamma sondes or handheld XRF instruments etc.) These examples should not be taken as sample was collected through a cyclone and cone splitter. Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney. limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate For regional first pass RC drilling 1m sample was collected in a bucket and then tipped in neat lines calibration of any measurement tools or systems used. on the ground. The piles were then sampled by using a spear to collect a field composite (4m RC) Aspects of the determination of mineralisation that are Material to the Public Report. 2.0kg to 3.0kg sample which was then placed in a calico bag. Field duplicates were not collected for In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse the regional RC drilling, CRM were inserted at a ratio of 1:30 composites for regional RC. The grade circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a ranges of the CRM's were selected based on grade populations and economic grade ranges. +100-30 g charge for fire assay'). In other cases more explanation may be required, such as where there 200ppb will then have their corresponding 1m rig split samples sent for fire assay with the below 1m is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types OAOC applied appropriate for use in JORC resource reporting. (eg submarine nodules) may warrant disclosure of detailed information. 1m RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. Samples were sent to the laboratory where they were pulverised to produce a 50 g charge for fire For regional aircore exploration (AC) drilling a primary sample was collected from the drill rig. The sample was collected in a bucket and then tipped in neat lines on the ground. The piles were then sampled by using a spear to collect a field composite (4m AC) 2.0kg to 3.0kg sample which was then placed in a calico bag. The last 1m interval for each regional AC hole (EOH) was sampled separately for multi element analysis. Field duplicates were not collected for the regional AC drilling. CRM were inserted at a ratio of 1:30 composites for regional AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. Regional AC samples were sent to ALS laboratory where they were pulverised to produce a 25 g charge for aqua regia 51 elements including Au and element multielement analysis for the field composites using ALS code AuME-TL43analysis. Rock chip samples were taken in the field by CMM geologists during field inspection. Rock samples were collected from surface outcrop. Outcrop samples are considered to be in situ resistant portions of the geology. Samples weighing between 0.5kg and 3kg were collected All sample locations were

Criteria	JORC Code explanation	Commentary
		collected using a hand-held GPS with +/-5m accuracy using MGA zone 51 (GDA94) coordinate system.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	RC: Topdrill Drilling drill rig was used to drill the RC drill holes: Hole diameter was 140mm. AC: Prospect Drilling was used for AC drilling using an 89mm blade bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	RC: Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	At the end of each metre the bit was lifted off the bottom to separate each metre drilled.
	. ,	The majority of samples were of good quality with ground water having minimal effect on sample quality or recovery. There is no obvious relationship between sample recovery and grade.
		AC: Visual recovery information was collected at the time of the AC drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Reverse circulation chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chip trays were stored on site in a sealed container. Chips were visually inspected and logged by an on-site geologist to record lithology (including rock type, oxidation state, weathering, grain size, colour, mineralogy, and texture), alteration, mineralisation, veining, structure, sample quality (dry/wet, contamination) and approximate water flow down hole. Mineralisation, veining and water flow were quantitative or semi-quantitative in nature; the remainder of logging was qualitative.
		Logging is both qualitative and quantitative or semi-quantitative in nature.
		AC: AC chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Holes of interest are retained, all others are disposed of. Chip trays of all EOH intervals are retained. Chip trays were stored on site in a sealed container. Chips were visually inspected and logged by an on-site geologist to record lithology (including rock type, oxidation state, weathering, grain size, colour, mineralogy, and texture), alteration, mineralisation, veining, structure, sample quality (dry/wet, contamination) and approximate water flow down hole. Mineralisation, veining and water flow were quantitative or semi-quantitative in nature; the remainder of logging was qualitative.
		Rockchips CMM Geologists recorded a short geological description of each sample location including lithology, alteration, veining, and mineralization.
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	RC holes samples were split from dry, 1m bulk samples via a cone splitter directly from the cyclone.
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	The duplicates and CRM's were submitted to the lab using unique sample ID's. 2kg – 3kg RC samples are submitted to the laboratory.

Criteria	JORC Code explanation	Commentary
		Samples are oven dried at 105°C then jaw crushed to -10mm followed by a Boyd crush to a nominal -2mm. Samples were rotary split to 2.5kg. Samples were then pulverised in LM5 mills to 85% passing 75µm under sample preparation code SP3000 which consists of a 5-minute extended preparation for RC/Soil/RAB. The extended time for the pulverisation is to improve the pulverisation of samples due to the presence of garnets in the samples.
		All Bibra Southern Corridor and Berwick samples were analysed for Au using the FA50AAS technique which is a 50g lead collection fire assay.
		All Carnoustie and Central Zone 1m re-split samples were analysed for Au using the Au-PA01, Au by PhotonAssay Analysis on 500g of crushed sample
		All 4m composite samples were assayed using ALS AuME-TL43, Au + ME by aqua regia extraction with ICP-MS finish.25g sample
		This sample preparation technique is appropriate for the MGGP and KGP; and is standard industry practice for a gold deposit.
		Samples greater than 3kg are split prior to pulverizing and the remainder discarded.
		Regional AC samples were collected as 4m field composites using a spear from the individual 1m sample piles on the ground. Field duplicates were not collected for the regional AC drilling. CRM were inserted at a ratio of 1:30 composites for AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. The CRM's were submitted to the lab using unique sample ID's. 2kg – 3kg AC samples are submitted to the laboratory. Samples are oven dried at 105°C then crushed and pulverised.
		Rock chips were prepared by ALS PUL-24 preperation code, Dry, crush ~2mm, pulverise 1.2kg up to 3kg.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	RC: Drilling samples were submitted to ALS in Perth. 1m RC samples were assayed by either 50gm fire assay which is a total assay or Au-PA01, Au by PhotonAssay Analysis on 500g of crushed sample
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been 	RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
	established.	Regional AC drilling samples were submitted to ALS laboratory in Perth. No field duplicates were collected for the AC drilling. CRM were inserted at a ratio of 1:30 composites for the AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
		Rock chips were analysed by ALS AuME-TL43 analysis code
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	Logging and sampling were recorded directly into a Micromine Geobank template, which utilises lookup tables and in file validation on a Toughbook by the geologist on the rig. Validated data was sent to the database administrator in Perth who then carried out independent verifications using

Criteria	JORC Code explanation	Commentary
Location of data points	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Maxwell's Datashed. Assay results when received were plotted on section and were verified against neighbouring holes. QAQC reports were generated on a hole-by-hole basis by the database administrator as results were received. Capricorn Metals sampling, data collection in field is captured in an electronic logging system for geological, regolith, sample id, assay and surveying information. All Drillhole collar positions were surveyed using hand held GPS. Drillhole location data was initially captured in the MGA94 grid system. Before further resource evaluation work the drillhole locations will be picked up with DGPS by qualified surveyors. Down hole surveys were undertaken on 30m increments from end of hole, using a Reflex down hole gyroscopic tool. The natural surface topography was modelled using a DTM generated from airborne survey, this includes waste dumps and some in-pit waste dumping. Also available are pit surveys of the mining voids at the end of historical mining to enable depletion of the CMM resource. The pit surveys and topography surface were checked in Google Earth for accuracy. Horizontal point accuracy is expected to be <5m and vertical accuracy to 0.5m. The reference datum was GDA94 and the projection was MGA Zone 50. Topographic control appears to be of good quality and is considered adequate for resource estimation. Regional AC drillhole collar positions were surveyed before and after drilling using a handheld GPS. Drillhole location data was captured in the MGA94 grid system. Down hole surveys were not undertaken for the any of the drilling due to the shallow nature of the holes. Any regional AC intercepts will be followed up with infill RC drilling using downhole surveys and more accurate collar survey technique. Soil and rock chips sample location were captured using a handheld GPS. All GPS data points were later visualised using ARCGIS software to ensure they were recorded in the correct position The grid system used is UTM GDA 94 Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	RC and DD Samples were collected and analysed for each metre down the hole. Samples were collected and analysed for each metre down the hole. RC hole spacing was between 50m N x 50m E and 25m N x 25m E, sufficient for resource estimation. Regional AC samples were collected and analysed for gold and multielement by 4m field composites down the hole, with the EOH individual metre sampled separately for multi element analysis. Hole spacing was predominantly 100m x 400m, 200m x 200m and 50m x 100m for AC.

Criteria	JORC Code explanation	Commentary
		down the hole, with the EOH individual metre sampled separately for multi element analysis. Hole spacing was predominantly 100m x 400m, 200m x 200m and 50m x 100m for AC. Sample locations for the rockchips were selected based on availability of material to sample in areas of interest.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill lines are oriented across strike on an MGA grid. MGGP orebody dips at 80 degrees to the East and KGP 25 degrees to the west. Holes in the drill Programmes have been mostly drilled at inclination of -55 to -60 degrees at MGGP and KGP. The orientation of the drilling is suitable for the mineralisation style and orientation of the target mineralisation. . Where possible the AC exploration drilling programmes are planned to be drilled perpendicular to the orientation of the geology. Significant mineralisation intervals in the AC will be followed up with infill RC drilling to better understand the orientation of mineralisation.
Sample security	The measures taken to ensure sample security.	Calico sample bags are sealed into green bags/polyweave bags and cable tied. These bags were then sealed in bulka bags by company personnel and dispatched by third party contractor. In-company reconciliation is completed with laboratory assay returns. Soil and rock chip samples collected by CMM and stored on site, prior to being transported to the laboratory ALS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Competent Person for Exploration Results reported here has visited the project areas where sampling has taken place and has reviewed and confirmed the sampling procedures.

Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	MGGP: The resource is located across mining tenements held by wholly owned Capricorn subsidiaries METROVEX PTY LTD and CRIMSON METALS PTY LTD; being M 59/772, E 59/2450, E 59/2594, E 59/2606, G 59/11, G 59/12, G 59/13, G 59/14, G 59/15, G 59/16, G 59/17, G 59/18, G 59/48, G 59/70, L 59/140, L 59/45, L 59/46, L 59/53, M 59/328, M 59/402, M 59/403, M 59/404, P 59/2286, P 59/2287, P 59/2290, P 59/2291, P 59/2306, P 59/2309, P 59/2310.
		All of the tenements are subject to a 1% NSR royalty to Avenger Projects Ltd, including gold production above 90,000 ounces. A royalty is also payable to St Barbara Limited on all gold production in excess of 20,000 ounces (excluding production from historic waste dumps and tailings) at the rate of \$10 per ounce, applicable to leases M 59/328, M 59/402, M 59/403, M 59/404, G 59/11,

Criteria	JORC Code explanation	Commentary
		G 59/12, G 59/13, G 59/14, G 59/15, G 59/16, G 59/17, G 59/18, L 59/45, L 59/46, L 59/53 No other known impediments exist to operate in the area.
		KGP: The Bibra deposit is located in M 52/1070 held by Greenmount Resources, a wholly owned subsidiary of Capricorn Metals.
		M52/1070 is within the area of granted E52/1711 exploration tenement in the Pilbara region of Western Australia. E52/1711 was acquired from BHPB in 2008. South32 (via the spin-out from BHPB) retain a 2% NSR whilst BHPB a claw-back provision whereby BHPB can elect to acquire a 70% equity in the project only if JORC compliant reported resources of 5,000,000 ounces of gold and/or 120,000 tonnes of contained nickel have been delineated. The Nyiyaparli People hold Native Title over the area including E52/1711 and M52/1070. There is no known heritage or environmental impediments over the lease. No other known impediments exist to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	MGGP: The Mt Gibson Gold Deposit (Mt Gibson) has a history of minor gold production dating back to the 1930's when prospectors operated small gold workings at Paynes-Crusoe and Tobias Find. While the area was subject to previous prospecting and company exploration in smaller leaseholdings, the Mt. Gibson Gold Project was first held in more-or-less its present configuration and extent by Reynolds Australia, who commenced exploration in the early 1980's. Soil and laterite sampling resulted in several significant gold and base metal anomalies being defined; follow up rotary air blast (RAB), air core (AC), reverse circulation (RC) and diamond drilling Programmes outlined significant economic laterite and oxide resources. A joint venture between Reynolds Australia Metals and Forsayth Mining Limited (with FML as the operator) began operations in 1986, mining and processing 6.5 million tonnes of laterite ores defined by FML in 1984, followed later by oxide and sulphide ores defined by drilling beneath the laterite orebodies. The project was sold by Reynolds to Camelot Resources in 1995. Continuing exploration resulted in the discovery of further oxide resources, mainly on the Taurus Trend, and the underground quartz-sulphide deposit at Wombat. These resources were subsequently mined and processed, all mining being completed at the end of 1997 and final milling of low grade stockpiles completed in June of 1998. A 4Mt dump leach remained in operation until November 1998, producing 68,868 ounces of gold. Including the dump leach, a total of 16,477,882 tonnes of ore was processed during the life of the operation, for 868,478 ounces of gold at an overall average grade of 1.64g/t Au. KGP: Prior to Capricorn Metals, E52/1711 was held by Independence group (IGO) who undertook exploration between 2008 & 2014. Prior to Independence group, WMC (BHPB) explored the area from 2004 to 2008.
Geology	Deposit type, geological setting and style of mineralisation.	MGGP: The Mt Gibson Gold Project tenements are located at the southern extremity of the Retaliation Greenstone Belt, in the SW portion of the Yalgoo-Singleton Greenstone Belt in the Murchison Province of the Yilgarn Craton. The tenements are mostly covered by a veneer of alluvial quartz sands and laterite gravels, with sporadic greenstone subcrop and outcrop, increasingly exposed in the north of the project area. The mineralised laterite gravels are situated slightly down-slope from

Cuitouis	10DC Code combination	Commission
Criteria	JORC Code explanation	Commentary
		the lode deposits on the Gibson trend. Regionally, the greenstone belt has been metamorphosed to middle amphibolite facies and hosts a number of Au-Cu deposits and prospects, including Golden Grove, 90km to the northwest of Mt.Gibson.
		The lode style mineralisation at Mt. Gibson is predominantly hosted by three main trends:
		The Gibson Trend
		The majority of the known and mined mineralisation is hosted by this trend. It is hypothesised to have originally been a gold-copper-zinc rich Volcanogenic Hosted Massive Sulphide (VHMS) deposit that has been overprinted by a later hydrothermal gold mineralising event. This mineralised shear zone has an arcuate north-south to northeasterly strike (trending more north-easterly in the north) and extends for more than seven kilometres from the southern granite contact to beyond the Hornet ore body.
		The so-called "Mine Sequence" is around 400 metres wide and consists of a parcel of sheared, metamorphosed and chlorite-biotite-muscovite altered mafic volcanics. Numerous felsic porphyries intrude the Mine Sequence. Mineralisation is hosted within multiple sets of elongate lodes with strong strike continuity, which anastomose and pinch-swell along strike and to depth. The main lode systems include Hornet, Enterprise, Orion and S2.
		The Taurus Trend
		The north-westerly trending Taurus Trend lies west of and diagonal to the Gibson Trend. Mineralisation is intimately associated with an apparently continuous felsic unit emplaced into the northwest trending shear and was discovered late in the life of the mining operation. It is characterised by discontinuous ore bodies, and strongly mineralised quartz-sulphide veining. The ore bodies on this trend include Sheldon and Wombat which, although not as continuous in strike as the ore bodies on the Gibson Trend, show a higher gold tenor.
		The Highway Trend
		The Highway Trend is a northeast trending shear zone, hosted by a mafic sequence in the western terrain, 11km northwest of the main mining area. This trend hosts the Highway ore body, and the Phoenix and Aquarius Prospects. It shares many of the characteristics of the Gibson trend, but it appears to lack the VHMS mineralising event and has generally been regarded as a predominantly low-grade system, although work from previous explores suggest it may have greater persistence and significance than previously thought and hence justifies further attention. The project area also hosts a number of BIF and quartz hosted small mineral occurrences including Paynes-Crusoe and MacDonald's Find.
		KGP: Bibra is part of a large-scale Archaean aged gold mineralised system. The resource is hosted within a package of deformed meta-sediments which has developed on at least two parallel, shallow dipping structures; Laterite oxide mineralization has developed over the structures close to surface. The primary mineralisation is strata-bound with lineations identified as controlling higher-grade shoots. The deposit is oxidized to average depths of 50-70m.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All relevant drillhole information can be found in section 1 – "Sampling techniques", "Drilling techniques" and "Drill Sample Recovery" and the significant intercepts table.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Reported intercepts include a minimum of 0.5g/t Au value over a minimum length of 1m with a maximum 2m length of consecutive internal waste. No upper cuts have been applied. No aggregation methods have been applied for the rockchips. No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	MGGP: The mineralisation dips steeply to the east, and drilling is generally orientated at 60 degrees to the west, meaning intercepts are roughly perpendicular to mineralisation in the majority of cases. Some vertical holes drilled from the base of mined pits and are therefore at a high degree to the mineralisation. KGP: At Bibra, the geometry of the mineralisation has already been defined from previous drilling programs. The intersection angle between drill angle and the perpendicular angle to the ore zone is less than 10 degrees.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to the diagrams in the body of this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	The accompanying document is considered to be a balanced report with a suitable cautionary note.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other material information or data to report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work includes continued resource infill RC drilling at both projects.

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	No Mineral Resource Estimation update being reported.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	No Mineral Resource Estimation update being reported.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	No Mineral Resource Estimation update being reported.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	No Mineral Resource Estimation update being reported.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	No Mineral Resource Estimation update being reported.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	No Mineral Resource Estimation update being reported.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	No Mineral Resource Estimation update being reported.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating 	No Mineral Resource Estimation update being reported.

Criteria	JORC Code explanation	Commentary
	Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No Mineral Resource Estimation update being reported.
Environmental factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No Mineral Resource Estimation update being reported.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	No Mineral Resource Estimation update being reported.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	No Mineral Resource Estimation update being reported.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No Mineral Resource Estimation update being reported.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with 	No Mineral Resource Estimation update being reported.

Section 4 Estimation and Reporting of Ore Reserves (Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	No Ore Reserve being reported.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	No Ore Reserve being reported.
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	No Ore Reserve being reported.
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	No Ore Reserve being reported.
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. The mining recovery factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	No Ore Reserve being reported.
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples 	No Ore Reserve being reported.

Criteria	JORC Code explanation	Commentary
	 are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	
Environmental	 The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported. 	No Ore Reserve being reported.
Infrastructure	 The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed. 	No Ore Reserve being reported.
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The derivation of assumptions made of metal or commodity price(s), for the principal minerals and co-products. The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	No Ore Reserve being reported.
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	No Ore Reserve being reported.
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	No Ore Reserve being reported.
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	No Ore Reserve being reported.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	No Ore Reserve being reported.
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. 	No Ore Reserve being reported.

Criteria	JORC Code explanation	Commentary
	• The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.	
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	No Ore Reserve being reported.
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	No Ore Reserve being reported.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, 	No Ore Reserve being reported.

Criteria	JORC Code explanation	Commentary
		Samples are oven dried at 105°C then jaw crushed to -10mm followed by a Boyd crush to a nominal -2mm. Samples were rotary split to 2.5kg. Samples were then pulverised in LM5 mills to 85% passing 75µm under sample preparation code SP3000 which consists of a 5-minute extended preparation for RC/Soil/RAB. The extended time for the pulverisation is to improve the pulverisation of samples due to the presence of garnets in the samples.
		All Bibra Southern Corridor and Berwick samples were analysed for Au using the FA50AAS technique which is a 50g lead collection fire assay.
		All Carnoustie and Central Zone 1m re-split samples were analysed for Au using the Au-PA01, Au by PhotonAssay Analysis on 500g of crushed sample
		All 4m composite samples were assayed using ALS AuME-TL43, Au + ME by aqua regia extraction with ICP-MS finish.25g sample
		This sample preparation technique is appropriate for the MGGP and KGP; and is standard industry practice for a gold deposit.
		Samples greater than 3kg are split prior to pulverizing and the remainder discarded.
		Regional AC samples were collected as 4m field composites using a spear from the individual 1m sample piles on the ground. Field duplicates were not collected for the regional AC drilling. CRM were inserted at a ratio of 1:30 composites for AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges. The CRM's were submitted to the lab using unique sample ID's. 2kg – 3kg AC samples are submitted to the laboratory. Samples are oven dried at 105°C then crushed and pulverised.
		Rock chips were prepared by ALS PUL-24 preperation code, Dry, crush ~2mm, pulverise 1.2kg up to 3kg.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	RC: Drilling samples were submitted to ALS in Perth. 1m RC samples were assayed by either 50gm fire assay which is a total assay or Au-PA01, Au by PhotonAssay Analysis on 500g of crushed sample
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been 	RC Field duplicates were collected at a ratio of 1:40 and collected at the same time as the original sample through the B chute of the cone splitter. Matrix matched CRMS and OREAS certified reference material (CRM) were inserted at a ratio of 1:40. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
	established.	Regional AC drilling samples were submitted to ALS laboratory in Perth. No field duplicates were collected for the AC drilling. CRM were inserted at a ratio of 1:30 composites for the AC. The grade ranges of the CRM's were selected based on grade populations and economic grade ranges.
		Rock chips were analysed by ALS AuME-TL43 analysis code
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	Logging and sampling were recorded directly into a Micromine Geobank template, which utilises lookup tables and in file validation on a Toughbook by the geologist on the rig. Validated data was sent to the database administrator in Perth who then carried out independent verifications using

Criteria	JORC Code explanation	Commentary
		Sample locations for the rockchips were selected based on availability of material to sample in areas of interest.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drill lines are oriented across strike on an MGA grid. MGGP orebody dips at 80 degrees to the East and KGP 25 degrees to the west. Holes in the drill Programmes have been mostly drilled at inclination of -55 to -60 degrees at MGGP and KGP. The orientation of the drilling is suitable for the mineralisation style and orientation of the target mineralisation. . Where possible the AC exploration drilling programmes are planned to be drilled perpendicular to the orientation of the geology. Significant mineralisation intervals in the AC will be followed up with infill RC drilling to better understand the orientation of mineralisation.
Sample security	The measures taken to ensure sample security.	Calico sample bags are sealed into green bags/polyweave bags and cable tied. These bags were then sealed in bulka bags by company personnel and dispatched by third party contractor. In-company reconciliation is completed with laboratory assay returns. Soil and rock chip samples collected by CMM and stored on site, prior to being transported to the laboratory ALS.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Competent Person for Exploration Results reported here has visited the project areas where sampling has taken place and has reviewed and confirmed the sampling procedures.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	MGGP: The resource is located across mining tenements held by wholly owned Capricom subsidiaries METROVEX PTY LTD and CRIMSON METALS PTY LTD; being M 59/772, E 59/2450, E 59/2594, E 59/2606, G 59/11, G 59/12, G 59/13, G 59/14, G 59/15, G 59/16, G 59/17, G 59/18, G 59/48, G 59/70, L 59/140, L 59/45, L 59/46, L 59/53, M 59/328, M 59/402, M 59/403, M 59/404, P 59/2286, P 59/2287, P 59/2290, P 59/2291, P 59/2306, P 59/2309, P 59/2310. All of the tenements are subject to a 1% NSR royalty to Avenger Projects Ltd, including gold production above 90,000 ounces. A royalty is also payable to St Barbara Limited on all gold production in excess of 20,000 ounces (excluding production from historic waste dumps and tailings) at the rate of \$10 per ounce, applicable to leases M 59/328, M 59/402, M 59/403, M 59/404, G 59/11, G 59/12, G 59/13, G 59/14, G 59/15, G 59/16, G 59/17, G 59/18, L 59/45, L 59/46, L 59/53 No other known impediments exist to operate in the area.

Criteria	JORC Code explanation	Commentary
		KGP: The Bibra deposit is located in M 52/1070 held by Greenmount Resources, a wholly owned subsidiary of Capricorn Metals.
		M52/1070 is within the area of granted E52/1711 exploration tenement in the Pilbara region of Western Australia. E52/1711 was acquired from BHPB in 2008. South32 (via the spin-out from BHPB) retain a 2% NSR whilst BHPB a claw-back provision whereby BHPB can elect to acquire a 70% equity in the project only if JORC compliant reported resources of 5,000,000 ounces of gold and/or 120,000 tonnes of contained nickel have been delineated. The Nyiyaparli People hold Native Title over the area including E52/1711 and M52/1070. There is no known heritage or environmental impediments over the lease. No other known impediments exist to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	MGGP: The Mt Gibson Gold Deposit (Mt Gibson) has a history of minor gold production dating back to the 1930's when prospectors operated small gold workings at Paynes-Crusoe and Tobias Find. While the area was subject to previous prospecting and company exploration in smaller leaseholdings, the Mt. Gibson Gold Project was first held in more-or-less its present configuration and extent by Reynolds Australia, who commenced exploration in the early 1980's. Soil and laterite sampling resulted in several significant gold and base metal anomalies being defined; follow up rotary air blast (RAB), air core (AC), reverse circulation (RC) and diamond drilling Programmes outlined significant economic laterite and oxide resources. A joint venture between Reynolds Australia Metals and Forsayth Mining Limited (with FML as the operator) began operations in 1986, mining and processing 6.5 million tonnes of laterite ores defined by FML in 1984, followed later by oxide and sulphide ores defined by drilling beneath the laterite orebodies. The project was sold by Reynolds to Camelot Resources in 1995. Continuing exploration resulted in the discovery of further oxide resources, mainly on the Taurus Trend, and the underground quartz-sulphide deposit at Wombat. These resources were subsequently mined and processed, all mining being completed at the end of 1997 and final milling of low grade stockpiles completed in June of 1998. A 4Mt dump leach remained in operation until November 1998, producing 68,868 ounces of gold. Including the dump leach, a total of 16,477,882 tonnes of ore was processed during the life of the operation, for 868,478 ounces of gold at an overall average grade of 1.64g/t Au. KGP: Prior to Capricorn Metals, E52/1711 was held by Independence group (IGO) who undertook exploration between 2008 & 2014. Prior to Independence group, WMC (BHPB) explored the area from 2004 to 2008.
Geology	Deposit type, geological setting and style of mineralisation.	MGGP: The Mt Gibson Gold Project tenements are located at the southern extremity of the Retaliation Greenstone Belt, in the SW portion of the Yalgoo-Singleton Greenstone Belt in the Murchison Province of the Yilgarn Craton. The tenements are mostly covered by a veneer of alluvial quartz sands and laterite gravels, with sporadic greenstone subcrop and outcrop, increasingly exposed in the north of the project area. The mineralised laterite gravels are situated slightly down-slope from the lode deposits on the Gibson trend. Regionally, the greenstone belt has been metamorphosed to middle amphibolite facies and hosts a number of Au-Cu deposits and prospects, including Golden Grove, 90km to the northwest of Mt.Gibson.

Criteria	JORC Code explanation	Commentary
		The lode style mineralisation at Mt. Gibson is predominantly hosted by three main trends:
		The Gibson Trend
		The majority of the known and mined mineralisation is hosted by this trend. It is hypothesised to have originally been a gold-copper-zinc rich Volcanogenic Hosted Massive Sulphide (VHMS) deposit that has been overprinted by a later hydrothermal gold mineralising event. This mineralised shear zone has an arcuate north-south to northeasterly strike (trending more north-easterly in the north) and extends for more than seven kilometres from the southern granite contact to beyond the Hornet ore body.
		The so-called "Mine Sequence" is around 400 metres wide and consists of a parcel of sheared, metamorphosed and chlorite-biotite-muscovite altered mafic volcanics. Numerous felsic porphyries intrude the Mine Sequence. Mineralisation is hosted within multiple sets of elongate lodes with strong strike continuity, which anastomose and pinch-swell along strike and to depth. The main lode systems include Hornet, Enterprise, Orion and S2.
		The Taurus Trend
		The north-westerly trending Taurus Trend lies west of and diagonal to the Gibson Trend. Mineralisation is intimately associated with an apparently continuous felsic unit emplaced into the northwest trending shear and was discovered late in the life of the mining operation. It is characterised by discontinuous ore bodies, and strongly mineralised quartz-sulphide veining. The ore bodies on this trend include Sheldon and Wombat which, although not as continuous in strike as the ore bodies on the Gibson Trend, show a higher gold tenor.
		The Highway Trend
		The Highway Trend is a northeast trending shear zone, hosted by a mafic sequence in the western terrain, 11km northwest of the main mining area. This trend hosts the Highway ore body, and the Phoenix and Aquarius Prospects. It shares many of the characteristics of the Gibson trend, but it appears to lack the VHMS mineralising event and has generally been regarded as a predominantly low-grade system, although work from previous explores suggest it may have greater persistence and significance than previously thought and hence justifies further attention. The project area also hosts a number of BIF and quartz hosted small mineral occurrences including Paynes-Crusoe and MacDonald's Find.
		KGP: Bibra is part of a large-scale Archaean aged gold mineralised system. The resource is hosted within a package of deformed meta-sediments which has developed on at least two parallel, shallow dipping structures; Laterite oxide mineralization has developed over the structures close to surface. The primary mineralisation is strata-bound with lineations identified as controlling higher-grade shoots. The deposit is oxidized to average depths of 50-70m.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	All relevant drillhole information can be found in section 1 – "Sampling techniques", "Drilling techniques" and "Drill Sample Recovery" and the significant intercepts table.

Criteria	JORC Code explanation	Commentary
	 dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Reported intercepts include a minimum of 0.5g/t Au value over a minimum length of 1m with a maximum 2m length of consecutive internal waste. No upper cuts have been applied. No aggregation methods have been applied for the rockchips. No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	MGGP: The mineralisation dips steeply to the east, and drilling is generally orientated at 60 degrees to the west, meaning intercepts are roughly perpendicular to mineralisation in the majority of cases. Some vertical holes drilled from the base of mined pits and are therefore at a high degree to the mineralisation. KGP: At Bibra, the geometry of the mineralisation has already been defined from previous drilling programs. The intersection angle between drill angle and the perpendicular angle to the ore zone is less than 10 degrees.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to the diagrams in the body of this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	The accompanying document is considered to be a balanced report with a suitable cautionary note.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	No other material information or data to report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work includes continued resource infill RC drilling at both projects.

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	No Mineral Resource Estimation update being reported.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	No Mineral Resource Estimation update being reported.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	No Mineral Resource Estimation update being reported.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	No Mineral Resource Estimation update being reported.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	No Mineral Resource Estimation update being reported.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	No Mineral Resource Estimation update being reported.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	No Mineral Resource Estimation update being reported.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating 	No Mineral Resource Estimation update being reported.

Criteria	JORC Code explanation	Commentary
	Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No Mineral Resource Estimation update being reported.
Environmental factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No Mineral Resource Estimation update being reported.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	No Mineral Resource Estimation update being reported.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	No Mineral Resource Estimation update being reported.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	No Mineral Resource Estimation update being reported.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with 	No Mineral Resource Estimation update being reported.

Section 4 Estimation and Reporting of Ore Reserves (Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	 Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. 	No Ore Reserve being reported.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	No Ore Reserve being reported.
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. 	No Ore Reserve being reported.
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	No Ore Reserve being reported.
Mining factors or assumptions	 The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. The mining recovery factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. 	No Ore Reserve being reported.
Metallurgical factors or assumptions	 The metallurgical process proposed and the appropriateness of that process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the degree to which such samples 	No Ore Reserve being reported.

Criteria	JORC Code explanation	Commentary
	 are considered representative of the orebody as a whole. For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? 	
Environmental	 The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported. 	No Ore Reserve being reported.
Infrastructure	 The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed. 	No Ore Reserve being reported.
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The derivation of assumptions made of metal or commodity price(s), for the principal minerals and co-products. The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	No Ore Reserve being reported.
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	No Ore Reserve being reported.
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	No Ore Reserve being reported.
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	No Ore Reserve being reported.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	No Ore Reserve being reported.
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. 	No Ore Reserve being reported.

Criteria	JORC Code explanation	Commentary
	The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent.	
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	No Ore Reserve being reported.
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	No Ore Reserve being reported.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the 	No Ore Reserve being reported.
	relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	
	 Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. 	
	 It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

