

SANELA'S DISCOVERY POTENTIAL FIRMS UP AS AUGER DRILLING CONFIRMS ANOMALIES

Highlights

- Continued Auger Drilling success at Sanela: 91 new auger holes (161 holes in total-Annex 1) were drilled and assayed at the Sanela prospect as part of the ongoing exploration strategy 140 holes have encountered uranium anomalism
- Significant Anomalism Identified: Building on the success of the recent RC drilling campaign, auger drilling has targeted the major termite mound uranium anomaly (pXRF) in the northernmost part of Sanela, reaching saprolite beneath the colluvial laterite and confirming high uranium anomalism
- **High Uranium Values:** Of the 91 holes drilled, 29 recorded significant uranium pXRF readings in saprolite samples, with concentrations ranging from 14ppm to 81ppm Uranium
- Strategic Drilling Focus: The auger drilling campaign is designed to trace the contact between Saraya granite, associated graphic pegmatites, and sheared sediments, following up on termite mound anomalism highlighted during earlier infill sampling
- **Previous RC Drilling Success²:** Recent RC drilling results at Sanela, included significant finds such as 8 m @ 351 ppm eU₃O₈ from 35 m depth in hole 24-SAR-RC-019, including a high-grade section of 3 m @ 583 ppm eU₃O₈ from 40 m
- **Discovery potential:** The significant termite mound anomalism, high uranium concentrations (pXRF) in augered saprolite and confirmation of mineralisation from RC drilling are <u>all indicating the potential that Sanela could lead to a new discovery</u>
- **Ongoing work:** RC drill assays, metallurgical results and a JORC classification upgrade to the mineral resource is expected in May. Following receipt of RC drill assays, an expected resource upgrade is expected by end of June. Auger drilling, termite mound regional and infill sampling remain on-going.

Cautionary Statement: The uranium results quoted in this announcement are acquired using our in-house pXRF device. The device is an Olympus Vanta M Series XRF analyzer and is measuring the U content. This is a semi-quantitative process and does not equate to a laboratory assay, despite the accuracy of the latest technological advances. These results will not be relied on in any resource estimation undertaken at our Senegalese projects.

Haranga Resources Limited (ASX: HAR; FRA: 65E0; "Haranga" or "the Company") is pleased to report that the auger drilling efforts at the Sanela prospect have provided encouraging results, reinforcing the prospect's discovery potential for uranium mineralisation.

Mr. Peter Batten, Managing Director, commented on the progress: "These positive results are a further indication of the immense prospectivity of the Saraya permit for uranium mineralisation. The auger program is proving its viability, locating uranium anomalous weathered bedrock below the blanketing laterite within the wider surface expression provided by our hard working insects – the termites.

Sanela is the first of the remaining 10 termite anomalies to be subjected to intense auger coverage and we are excited by the possibilities for further deposits within our portfolio of prospects."

Sanela Exploration

The Sanela prospect is located in the southern part of the central **25km long prospective corridor of the Saraya Granite**. This area revealed Termite Mound Sample (TMS) pXRF Uranium anomalies³, during the regional TMS survey conducted at 1,000 m by 100 m intervals and subsequently confirmed through infill sampling at 200m by 50m intervals. The Sanela prospect consists of a set of TMS pXRF Uranium anomalies that are predominantly NNE oriented along a 2.5km corridor (Figure 1).

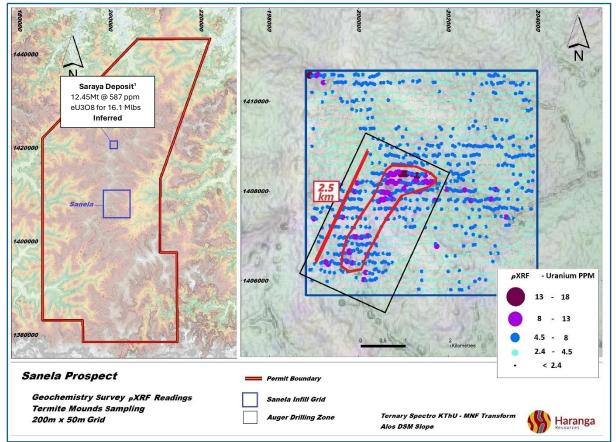
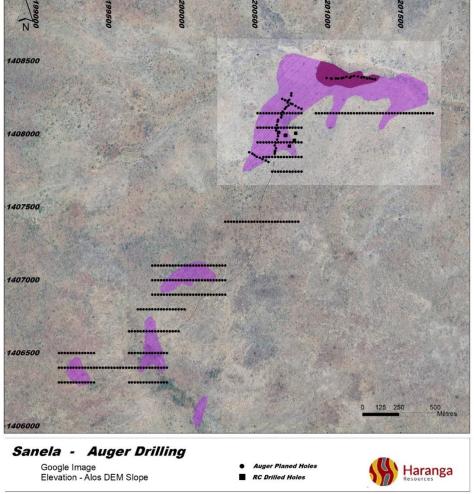


Figure 1: Location of the Sanela NNE trend and auger drilling zone on the Sanela Prospect^{1&3}


Historically, the area was partially explored by Cogema and Areva, who conducted both diamond drilling (DD) and reverse circulation (RC) drilling. The drilling orientations were inconsistently disposed and oriented, reflecting the limited understanding of the underlying geological structures and lithologies.

Haranga's latest RC drilling² over Sanela has confirmed the presence of a sediment sleeve within the Saraya granite and its associated graphic pegmatites. The sediments are composed of sandstones and partially carbonaceous siltstones, probably limited by a NNE sheared contact with the granite.

The uranium mineralisation encountered during recent RC drilling has yielded elevated uranium concentrations using the pXRF, notably, in hole 24-SAR-RC-019, 8 metres at 351 ppm eU₃O₈ (pXRF) from a depth of 35 metres, including a particularly high-grade section of 3 metres at 583 ppm eU₃O₈ (pXRF) from 40 metres, hosted within altered pegmatitic material.

Auger Drilling Program

Haranga has designed a new auger drill plan to explore for the sheared structural corridor, intersected in RC drilling², the host of the uranium mineralisation. A 345 auger hole campaign commenced in April.

Figure 2: Location of the planned auger drilling and the RC drilled holes at the Sanela Prospect, over known TMS anomalies (+12ppm U pXRF)³.

The auger drill lines (Figure 2) are designed to intersect mineralisation beneath the laterite blanket, exploring for the potential source of the TMS surface anomalism discovered during infill sampling.

A total of 91 holes have been drilled and assayed so far during April and early May. To date 161 holes of the planned 345 holes have been completed, with nearly all holes drilled recording uranium anomalism.

The northernmost line, drilled along the main anomaly, has shown barren sedimentary saprolite, suggesting that the uranium recorded along the river is remobilised from ground water drainage and evaporation.

A second line of auger holes drilled at the northern edge of the previous RC drilling² has intersected anomalism within the saprolite, east and west of the RC drill line. Values within this auger drilling range from 14ppm to 98 ppm U (pXRF) (Figure 3).

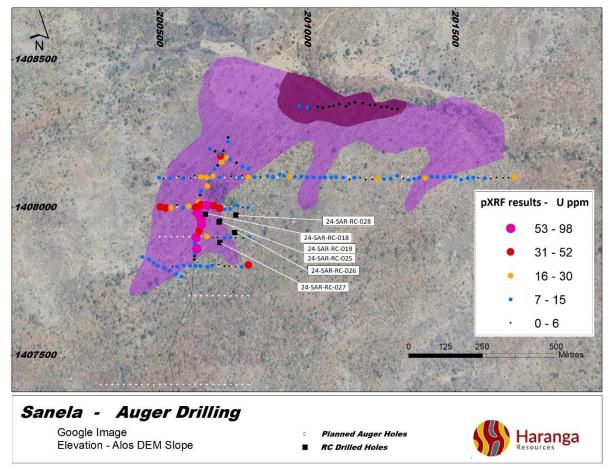


Figure 3: pXRF readings of the Auger drilling at Sanela Prospect with location of the RC drilled holes.

Ongoing work

The samples from the recently completed RC drilling campaign are still being processed at the ALS laboratory in Canada. Results are expected in May.

The ore characterisation work undertaken by SGS Lakefield, Canada is completed and final reports are in preparation. The report is expected in May.

An upgrade of the JORC classifications for the 16.1Mlbs U₃O₈ @ 587ppm Inferred Mineral Resource Estimate¹ (MRE) completed in September 2023 is being undertaken, which follows the recent RC drilling's close correlation (pXRF) to existing anomalous intersections from historic results², as well as the successful initial leach tests⁴. The upgrade is expected in May and final assay results are expected in May.

On receipt of the final RC drilling results from ALS Canada a revision of the MRE will be undertaken. This report is expected in early June.

TMS regional and infill programs are ongoing, and results will be reported as they come to bear. The regional program is expected to be completed for the entire permit by end of June. Infill work is being undertaken at Badiola.

pXRF Instrument

Samples are collected at surface at the Auger drilling site, producing about 3kg of naturally dry samples. Collected samples then laid under the sun to extract any remaining moisture.

Auger samples are riffle split to produce a 200gm fraction. Samples are collected in small PET plastic bags.

Samples are assayed using the Olympus Vanta-M recent XRF device in a dedicated room kept at 24°C ambient temperature.

The XRF uses a graphene detector operating at -30°C with a silicon drift detector (SDD) for rapid and accurate elemental identification.

For the Auger samples Haranga use the machines Geochem3 counting mode specific to Olympus that optimizes the detection for the 40 elements selected, enhancing the detection and counting of the particular elements that are of primary interest in geochemical studies, from low grade elements to ore grade elements.

The Geochem 3 method, using Fundamental Parameters, uses the adjusted rates, the tube spectrum, and the x-ray properties of the elements to calculate the sample chemistry. Fundamental Parameters considers the effect of each element on every other element. This requires very intensive calculations.

The device has been programmed for a 3 X-ray energy beam analyses with emphasis on the high energy Beam1: analyses time is programmed for 90 seconds on Beam 1, 30 seconds on Beam 2 and 30 seconds on Beam 3.

Emphasis on Beam1 allows for 2-3 ppm limit of detection for Uranium.

The assaying process include:

1. A programmed calibration test: a built-in process that calibrates itself using a Calibration Coin n°316, provided by the manufacturer. The assaying process cannot start without the preliminary calibration test. The operating team carry out two calibration tests per day.

2. A programmed Silicon Drift calibration: this calibration is programmed once a week or when the twice daily control of the blank is showing a drift. The procedure is a bult-in drift calibration to be made on a Silicon Blank provided by the constructor.

3. A twice daily quality control on CRMs: at the start of each assaying team, a quality control is done on 3 CRMs provided by the manufacturer (Calibration Coin 316, Oreas70b and Silicon Blank). This quality control aims at verifying the SDD drift and to recalibrate if out of range. It also verifies the low Uranium detection with the Calibration Coin.

4. A twice daily control on in house reference materials: 3 pulp samples have been selected from our store of core samples to verify the Uranium detection repeatability for grades around 300, 1000 and 2000 ppm Uranium.

5. A random quality control: once in a while, a set of 40 samples from our library of core samples are used to check a whole range of Uranium grades from 100ppm to 2500ppm.

6. Duplicates: for each prospect, a set of samples from the survey is duplicated to survey the repeatability of the Uranium grades from the termite mound survey

The reference material from our pulp library have been selected based on pulps prepared and assayed by the certified laboratory ALS from Vancouver Canada. These 50cm core sample from our initial DD drilling on Saraya prospect have been crushed and ground to 75% passing 80µ then assayed for uranium using two methods: fusion digestion and XRF detection as well as 4 acid digestion and combo ICP-AES and ICP-MS. The fusion + XRF method has been repeated in a second laboratory in Vancouver (MSALab) for confirmation.

Our library of 40 elements has been refereed assayed by XRF for comparison with ALS and MSA lab analyses. All 40 samples XRF survey falls within 0.5% of the Fusion + XRF assays provided by MSALab and within 3% of the Fusion+XRF assays provided by ALS Lab.

The sampling and assaying team are trained and supervised by our Operation Manager and Project Manager. The managers have completed pXRF analyses on over 150.000 termite mounds samples, an extensive experience leading the geochemistry sampling and assaying team.

Anomalism is defined as a percentage of higher values over the background recorded.

Repeatability has so far been excellent.

The termite mound sampling and pXRF assaying process is a semi-quantitative method aiming at highlighting Uranium anomalism in the range 2 to 50ppm on weathered soil profile.

Haranga relies on chemical analyses to define, quantitatively, any mineralisation intersected in RC and DD drillholes established on rooted Auger uranium anomalies detected with the pXRF.

Further information on the calibration of the unit is in the JORC Tables below.

-ends

This announcement has been approved by the Board of Haranga Resources Limited.

Investor inquiries Haranga Resources Peter Batten, Managing Director E: <u>info@haranga.com</u>

Annex 1 – Auger Drilling at Sanela

Auger	Х	Y	Z	Depth	Azimuth	Dip	U pXRF EOH	Lithology
FNAug-001	200620	1407842	185	14.5	-	-90	11	Sediments
FNAug-002	200625	1407860	189	14.5	-	-90	86	Sediments
FNAug-003	200618	1407879	187	14.5	-	-90	7	Sediments
FNAug-004	200623	1407898	188	14.5	-	-90	72	Sediments
FNAug-005	200634	1407919	185	14.5	-	-90	47	Sediments
FNAug-006	200641	1407942	183	14.5	-	-90	63	Sediments
FNAug-007	200639	1407960	187	14.5	-	-90	75	Sediments
FNAug-008	200627	1407981	190	14.5	-	-90	97	Sediments
FNAug-009	200630	1407997	186	13.5	-	-90	66	Sediments
FNAug-010	200632	1408018	184	4.9	-	-90	17	Granite
FNAug-011	200637	1408041	181	4.8	-	-90	3	Granite
FNAug-012	200640	1408055	181	3.9	-	-90	13	Granite
FNAug-013	200661	1408071	186	3.5	-	-90	18	Granite
FNAug-014	200665	1408088	180	4.9	-	-90	7	Granite
FNAug-015	200671	1408111	177	4.6	-	-90	7	Granite
FNAug-016	200686	1408129	189	5.9	-	-90	9	Granite
FNAug-017	200696	1408142	180	6.5	-	-90	3	Granite
FNAug-018	200711	1408152	183	6.2	-	-90	16	Granite
FNAug-019	200706	1408173	172	5.2	-	-90	50	Granite
FNAug-020	200716	1408191	170	5.9	-	-90	5	Granite
FNAug-021	200730	1408221	178	7.5	-	-90	8	Granite
FNAug-022	200732	1408236	179	5.5	-	-90	0	Granite
FNAug-023	201305	1408332	169	5.1	-	-90	SNR	Granite
FNAug-024	201286	1408333	169	6	-	-90	SNR	Granite
FNAug-025	201269	1408339	162	6.2	-	-90	SNR	Granite
FNAug-026	201250	1408339	164	5	-	-90	3	Granite
FNAug-027	201229	1408345	165	4.8	-	-90	4	Granite
FNAug-028	201211	1408345	167	5.5	-	-90	4	Granite
FNAug-029	201187	1408351	168	6.2	-	-90	2	Granite
FNAug-030	201161	1408355	157	5.4	-	-90	SNR	Granite
FNAug-031	201142	1408350	160	6.6	-	-90	4	Granite
FNAug-032	201131	1408342	168	3.5	-	-90	SNR	Granite
FNAug-033	201108	1408349	167	3	-	-90	SNR	Granite
FNAug-034	201088	1408343	167	3	-	-90	SNR	Granite
FNAug-035	201075	1408340	175	4.3	-	-90	SNR	Granite
FNAug-036	201052	1408337	160	5	-	-90	SNR	Granite
FNAug-037	201035	1408339	150	6.5	-	-90	SNR	Granite
FNAug-038	201007	1408336	166	6	-	-90	SNR	Granite
FNAug-039	201002	1408338	167	5.2	-	-90	11	Granite
FNAug-040	200973	1408341	162	5.9	-	-90	8	Granite
FNAug-041	200617	1407823	188	6.4	-	-90	6	Sediments
FNAug-042	200618	1407834	185	10.5	-	-90	5	Sediments

ASX RELEASE | 21 MAY 2024

FNAug-043	200574	1407766	165	5.5	-	-90	11	Granite
FNAug-044	200556	1407775	185	14.5	_	-90	9	Granite
FNAug-045	200533	1407785	194	14.5	-	-90	8	Granite
FNAug-046	200515	1407795	187	14.5	-	-90	8	Granite
FNAug-047	200494	1407801	187	14.5	-	-90	10	Granite
FNAug-048	200479	1407812	190	14.5	-	-90	15	Granite
FNAug-049	200464	1407823	183	12.4	-	-90	10	Granite
FNAug-050	200442	1407832	185	6.8	_	-90	10	Granite
FNAug-051	200669	1408197	180	6.8	-	-90	8	Granite
FNAug-052	200688	1408189	173	7.5	-	-90	5	Granite
FNAug-053	200705	1408181	171	6	-	-90	13	Granite
FNAug-054	200726	1408166	181	14.5	-	-90	30	Granite
FNAug-055	200738	1408162	183	6.9	-	-90	7	Granite
FNAug-056	200760	1408150	183	14.5	-	-90	4	Granite
FNAug-057	200780	1408138	181	6.4	-	-90	7	Granite
FNAug-058	200800	1408130	187	5.7	-	-90	13	Granite
FNAug-059	201702	1408102	179	2.8	-	-90	SNR	Granite
FNAug-060	200820	1408102	179	2.3	-	-90	SNR	Granite
FNAug-061	200500	1407402	199	2.6	-	-90	SNR	Granite
FNAug-062	199867	1407097	198	5.7	-	-90	2	Granite
FNAug-063	199968	1407103	198	3.4	-	-90	SNR	Granite
FNAug-064	200498	1408100	177	4.5	-	-90	14	Granite
FNAug-065	200514	1408097	186	7.2	-	-90	0	Granite
FNAug-066	200535	1408099	193	8.6	-	-90	10	Granite
FNAug-067	200564	1408103	181	4.2	-	-90	6	Granite
FNAug-068	200580	1408098	159	4.8	-	-90	14	Granite
FNAug-069	200604	1408098	177	4.6	-	-90	5	Granite
FNAug-070	200618	1408106	180	7	-	-90	0	Granite
FNAug-071	200639	1408102	183	4.3	-	-90	17	Granite
FNAug-072	200659	1408100	177	4.2	-	-90	24	Granite
FNAug-073	200680	1408105	182	4.6	-	-90	21	Granite
FNAug-074	200702	1408101	186	4.9	-	-90	7	Granite
FNAug-075	200741	1408103	183	7.2	-	-90	0	Granite
FNAug-076	200769	1408100	181	4.6	-	-90	9	Granite
FNAug-077	200779	1408106	176	5.5	-	-90	3	Granite
FNAug-078	200801	1408101	183	4.5	-	-90	16	Granite
FNAug-079	200820	1408102	179	4.6	-	-90	9	Granite
FNAug-080	200841	1408100	180	5.1	-	-90	3	Granite
FNAug-081	200865	1408105	173	5	-	-90	10	Granite
FNAug-082	200883	1408103	185	5.9	-	-90	15	Granite
FNAug-083	200906	1408110	202	5	-	-90	10	Granite
FNAug-084	200920	1408106	210	5.8	-	-90	10	Granite
FNAug-085	200940	1408103	214	5.7	-	-90	22	Granite
FNAug-086	200957	1408103	219	5.5	-	-90	10	Granite
FNAug-087	200980	1408104	216	5.8	-	-90	7	Granite

FNAug-088	200998	1408100	219	5.5	-	-90	9	Granite
FNAug-089	201020	1408101	215	4.9	-	-90	7	Granite
FNAug-090	201042	1408101	217	4.7	_	-90	11	Granite
FNAug-091	201059	1408101	178	5.3	-	-90	8	Granite
FNAug-092	201080	1408101	172	5.2	-	-90	14	Granite
FNAug-093	201096	1408102	178	4.7	-	-90	15	Granite
FNAug-094	201121	1408100	181	5.3	-	-90	13	Granite
FNAug-095	201143	1408093	192	5.8	-	-90	5	Granite
FNAug-096	201158	1408100	181	4.9	-	-90	7	Granite
FNAug-097	201178	1408099	171	5.1	-	-90	6	Granite
FNAug-098	201198	1408092	174	5	-	-90	6	Granite
FNAug-099	201220	1408094	178	5.2	-	-90	5	Granite
FNAug-100	201238	1408096	174	5	-	-90	17	Granite
FNAug-101	201259	1408095	179	5.8	-	-90	9	Granite
FNAug-102	201281	1408097	179	5.6	-	-90	10	Granite
FNAug-103	201303	1408106	172	5.7	-	-90	12	Granite
FNAug-104	201324	1408097	182	5.9	-	-90	6	Granite
FNAug-105	201342	1408092	173	5.1	-	-90	10	Granite
FNAug-106	201361	1408097	173	4.8	-	-90	9	Granite
FNAug-107	201378	1408100	173	5.4	-	-90	10	Granite
FNAug-108	201398	1408098	172	4.5	-	-90	23	Granite
FNAug-109	201419	1408103	175	5.7	-	-90	15	Granite
FNAug-110	201440	1408103	173	4.3	-	-90	13	Granite
FNAug-111	201461	1408102	183	4.7	-	-90	7	Granite
FNAug-112	201482	1408103	173	4.8	-	-90	10	Granite
FNAug-113	201501	1408102	174	4.9	-	-90	14	Granite
FNAug-114	201520	1408093	157	4.7	-	-90	14	Granite
FNAug-115	201542	1408098	178	4.4	-	-90	7	Granite
FNAug-116	201561	1408100	166	4.4	-	-90	7	Granite
FNAug-117	201579	1408098	167	4.5	-	-90	4	Granite
FNAug-118	201600	1408098	168	4.3	-	-90	11	Granite
FNAug-119	201620	1408097	159	4.4	-	-90	5	Granite
FNAug-120	201640	1408100	160	4.5	-	-90	4	Granite
FNAug-121	201662	1408098	164	4.4	-	-90	4	Granite
FNAug-122	201681	1408099	166	4.4	-	-90	4	Granite
FNAug-123	201702	1408102	179	4.5	-	-90	30	Granite
FNAug-124	200502	1408001	181	4.5	-	-90	48	Granite
FNAug-125	200521	1407997	186	4.6	-	-90	33	Granite
FNAug-126	200538	1407997	203	4.8	-	-90	26	Granite
FNAug-127	200559	1408007	168	4.6	-	-90	6	Granite
FNAug-128	200579	1407998	180	4.3	-	-90	9	Granite
FNAug-129	200598	1408003	173	4.6	-	-90	29	Granite
FNAug-130	200622	1408000	173	4.4	-	-90	41	Granite
FNAug-131	200640	1408008	173	4.4	-	-90	31	Sediments
FNAug-132	200660	1408006	182	7.5	-	-90	81	Sediments

FNAug-133	200684	1408005	179	14.5	-	-90	43	Sediments
FNAug-134	200704	1407996	188	7.1	-	-90	35	Sediments
FNAug-135	200721	1407993	190	7.3	-	-90	15	Sediments
FNAug-136	200738	1407995	188	6.8	-	-90	7	Sediments
FNAug-137	200762	1408005	184	6.3	-	-90	9	Sediments
FNAug-138	200781	1407999	187	4.5	-	-90	0	Granite
FNAug-139	200799	1407999	185	5.2	-	-90	7	Granite
FNAug-140	200543	1407799	180	5.9	-	-90	4	Granite
FNAug-141	200559	1407800	183	7.4	-	-90	9	Granite
FNAug-142	200582	1407803	184	7.3	-	-90	7	Granite
FNAug-143	200603	1407802	182	7.5	-	-90	9	Granite
FNAug-144	200621	1407802	180	5.2	-	-90	8	Granite
FNAug-145	200638	1407801	188	7.2	-	-90	9	Granite
FNAug-146	200661	1407799	188	7.5	-	-90	8	Granite
FNAug-147	200677	1407802	182	7.4	-	-90	7	Granite
FNAug-148	200701	1407805	182	7.5	-	-90	4	Granite
FNAug-149	200720	1407800	181	7.6	-	-90	4	Granite
FNAug-150	200737	1407800	182	7.7	-	-90	5	Granite
FNAug-151	200757	1407799	180	7.3	-	-90	6	Granite
FNAug-152	200778	1407798	189	7.4	-	-90	12	Granite
FNAug-153	200801	1407805	181	7.3	-	-90	39	Granite
FNAug-154	200804	1407900	181	4.5	-	-90	10	Granite
FNAug-155	200782	1407896	213	4.5	-	-90	5	Granite
FNAug-156	200758	1407896	215	4.7	-	-90	3	Granite
FNAug-157	200739	1407898	215	4.5	-	-90	14	Granite
FNAug-158	200720	1407896	216	4.4	-	-90	11	Granite
FNAug-159	200698	1407897	221	7.3	-	-90	6	Granite
FNAug-160	200681	1407897	216	7.4	-	-90	0	Granite
FNAug-161	200660	1407901	215	7.3	-	-90	24	Granite

SNR - Saprock Not Reached - no sample taken

Hole ID	Х	Y	Z	Azimuth	Dip	End of Hole (m)
24-SAR-RC-018	200645	1407970	174.4	300	-60	80
24-SAR-RC-019	200689	1407947	173	120	-60	173
24-SAR-RC-025	200693	1407949	183	300	-60	130
24-SAR-RC-026	200752	1407914	184	300	-60	120
24-SAR-RC-027	200718	1407875	191	300	-60	171
24-SAR-RC-028	200761	1407962	192	300	-60	168

Annex 2 – RC Drilling at Sanela

Disclaimer

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)", "potential(s)" and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Investors are cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and the Company does not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

About Haranga

Haranga Resources is an African focused multi-commodity company. The Company's most advanced project is the Saraya uranium project in Senegal, previously owned by Uranium giant Orano (previously Areva) and which has in excess of 65,000 m of historical drilling. In addition, Haranga owns the gold-prospective Ibel-South permit in Senegal within the prolific Kenieba Inlier of the Birimian Formation, where more than 40 Moz of gold has been discovered. Both projects are serviced from its well-established 40-man exploration camp.

The Company's immediate focus is the Saraya uranium project, where a 16.1 Mlbs U_3O_8 inferred mineral resource @ 587ppm has been defined and where further uranium anomalies are continuing to be realised across this 1,650km² permit. In conjunction, Haranga is exploring it's Ibel-South gold project, where the Company continues to define drill targets and execute a maiden drill program across this permit during 2024.

Corporately, the Company is continuing to identify and assess additional acquisition targets across the African region, primarily focused on expanding its portfolio across the clean energy and gold sectors. Haranga's collective expertise includes considerable experience running ASX-listed companies and financing and developing mining and exploration projects in Africa, Australia, and other parts of the world.

Haranga Resources Limited

ABN 83 141 128 841

Suite 7/ 63 Shepperton Road Victoria Park, 6100

T: +61 6158 9990

E: info@haranga.com.au

W: haranga.com

Directors

Trading Symbols

Michael Davy (Chairman)	Australia:	ASX:HAR
	Frankfurt:	FSE:65E0
Peter Batton (Managing Director)		

John Davis (Non-executive Director)

Hendrik Schloemann (Non-executive director)

Chief Operating Officer

Jean Kaisin

Competent Person's Statement and Previously Reported information

The information in this announcement that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation compiled by Mr Jean Kaisin working under the supervision of Mr Peter Batten, a Competent Person, who is a Member of The Australasian Institute of Mining and Metallurgy (MAusIMM). Mr Batten has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Batten is the Managing Director of Haranga Resources Limited and consents to the inclusion in this announcement of the Exploration Results in the form and context in which they appear. Mr Kaisin is a full-time employee of Haranga Resources Limited. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements as noted in footnotes 1-4. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

ASX Announcements referenced in this release

- Mineral Resource Estimate results taken from the report titled "Maiden Mineral Resource Estimate Saraya Uranium" released on the ASX on 25th of September 2023 and available to view on <u>https://haranga.com/investors/asx-announcements/</u>
- 2. "RC Drill Results from Saraya Confirms Further Uranium Mineralisation Sanela Drilling Intersects Mineralisation" released on the ASX on 11th of April 2024 and available to view on <u>https://haranga.com/investors/asx-announcements/</u>
- 3. "New Uranium Anomalies Identified at Sanela Prospect Ahead of Drill Planning" released on the ASX on 6th of October 2023 and available to view on <u>https://haranga.com/investors/asx-announcements/</u>
- 4. "Initial Leach Results Confirm >96% Uranium Extraction" released on the ASX on 4th of April 2024 and available to view on https://haranga.com/investors/asx-announcements/

Saraya – Mineral Resource

The Company confirms it is not aware of any new information or data that materially affects the information included in the Mineral Resource Estimate and all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed when referring to its resource announcement made on 25 September 2023. The Company confirms that the form and context in which the Competent Person's finding is presented have not been materially modified from the original market announcements.

Saraya – Mineral Resource Estimate

7000	Classification	Tonnage Grade		Contained eU ₃ 0 ₈	
Zone	Classification	Mt	eU₃0 ₈ ppm	Mlbs	tonnes
+30RL	Inferred	9.40	641	13.29	<mark>6</mark> 000
-30RL	Inferred	3.05	419	2.82	1 300
Total	Inferred	12.5	587	16.1	7 300

The resource as reported at 25 September 2023 is as follows:

 Table 1: Saraya Mineral Resource Estimate – 250ppm cutoff, Indicator Kriging

 (30RL is a depth measurement – approximately 160m below the topographic surface)

JORC CODE, 2012 EDITION – TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralization that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information. 	 Auger sampling is managed at the rig during drilling on a continuous basis. Rock chips are retrieved at the collar of the hole and placed on the side of the rig. A sample is collected per rod length of 1.5m as a function of the type of lithology. A minimum of two samples are collected: one in the laterite and one in the saprock. Holes are cleaned after each sample collected. All samples are assayed. Bottom of hole sample is used as reference for the hole. Samples are split to 200gm using a riffle splitter Samples are assayed using the Olympus Vanta-M recent XRF device (See below for explanation on pXRF)
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Auger drilling is the technique used for this drilling campaign with collar size of 120mm. The rig is mounted on a trailer and towed by car. Average depth of hole is 6m, depths range from 4m to 15m deep. Holes are drilled vertical.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No recovery measurement is done: the samples are collected for grades under lateritic cover.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging of the weathered and regolith profile is done at the rig site during drilling. Only two units are recorded: covering laterite and Saprolite/Saprock on granite. Logging is qualitative. No intersections are recorded: Auger is used as a geochemistry survey below lateritic cover. Level and quality of logging is not defined to establish a geological and structural model but to check and define potential source of surface termite mounds anomalous uranium samples.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples collected at the rig are +/- 3kg per unit (laterite, saprock on granite). Samples are riffle split at the workshop to 200/300gm collected in small PET plastic bags. pXRF analyses are done on the small sample bags. It is a non-destructive assaying process. Samples are stored for possible recheck. Collected samples are laid under the sun to extract any remaining moisture.

ASX RELEASE | 21 MAY 2024

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples are assayed using the Olympus Vanta-M recent XRF device in a dedicated room kept at 24°C ambient temperature. The XRF uses a graphene detector operating at -30°C with a silicon drift detector (SDD) for rapid and accurate elemental identification. For the survey samples Haranga use the machines Geochem3 counting mode specific to Olympus that optimizes the detection for the 40 elements selected, enhancing the detection and counting of the particular elements that are of primary interest in geochemical studies, from low grade elements to ore grade elements. The Geochem 3 method, using Fundamental Parameters, uses the adjusted rates, the tube spectrum, and the x-ray properties of the elements to calculate the sample chemistry. Fundamental Parameters considers the effect of each element on every other element. This requires very intensive calculations. The device has been programmed for a 3 X-ray energy beam analyses with emphasis on the high energy Beam1: analyses time is programmed for 90 seconds on Beam 1, 30 seconds on Beam 2 and 30 seconds on Beam 3. Emphasis on Beam1 allows for 2-3 ppm limit of detection for Uranium. Quality control involves : A programmed calibration test: a built-in process that collibrates itself using a Calibration Coin n°316, provided by the manufacturer. The assaying process cannot start without the preliminary calibration test. The operating team carry out two collibration tests per day. A programmed silicon Drift calibration: this calibration is programmed once a week or when the twice daily control of the blank is showing a drift. The procedure is a bult-in drift calibration to be made on a Silicon Blank provided by the constructor. A twice daily quality control on CRMs: at the start of each

Criteria	JORC Code explanation	Commentary
		 assaying team, a quality control is done on 3 CRMs provided by the manufacturer (Calibration Coin 316, Oreas70b and Silicon Blank). This quality control aims at verifying the SDD drift and to recalibrate if out of range. It also verifies the low Uranium detection with the Calibration Coin. 4. A twice daily control on in house reference materials: 3 pulp samples have been selected from our store of core samples to verify the Uranium detection repeatability for grades around 300, 1000 and 2000 ppm Uranium. 5. A random quality control: once in a while, a set of 40 samples from our library of core samples are used to check a whole range of Uranium grades from 100ppm to 2500ppm. The reference material from our pulp library have been selected based on pulps prepared and assayed by the certified laboratory ALS from Vancouver Canada. These 50cm core sample from our initial DD drilling on Saraya prospect have been crushed and ground to 75% passing 80µ then assayed for uranium using two methods: fusion digestion and XFR detection as well as 4 acid digestion and combo ICP-AES and ICP-MS. The fusion + XRF method has been repeated in a second laboratory in Vancouver (MSALab) for confirmation. Our library of 40 elements has been refereed assayed by XRF for comparison with ALS and MSA lab analyses. All 40 samples XRF survey falls within 3% of the Fusion + XRF assays provided by MSALab and within 3% of the Fusion + XRF assays provided by ALS Lab. The sampling and assaying team are trained and supervised by our Operation Manager and Project Manager. The managers have completed pXRF analyses on over 150.000 termite mounds samples, an extensive experience leading the geochemistry sampling and assaying team
Verification of sampling	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Significant anomalous samples are verified by the Project Manager involving re-assays of the higher Uranium Grades. Data are reviewed by the Project Manager and introduced in

Criteria	JORC Code explanation	Commentary
and assaying	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 our datasets. No adjustment is done on assay results: assay data is introduced in the GIS software for mapping and interpretation.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill holes have been located using a handheld GPS. The grid system is Universal Transverse Mercator, zone 28N (WGS84). A topographic control has been carried out using georeferenced high resolution satellite images of the site.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Auger drilling lines are planned on the maps to cover Termite Mounds geochemistry sampling positive assay results. Auger holes are drilled on a 20m spacing with some passes at 10m on areas defining Auger derived anomalies. The drilling is used to confirm the potential source of an exploration drilling target based on the Termite Mounds surface geochemistry survey. The spacing of the surface geochemistry survey is 50m and the drilling spacing of 20m is deemed sufficient to demonstrate the presence of saprock mineralization below the lateritic/colluvial cover.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Auger drilling is planned along E-W lines to crosscut the main NNE known mineralized trend. The shearing hosted alteration and mineralization is following the main Birrimian orientations of NNE and SES-NWN subvertical orientations. Auger holes drilled vertically at shallow depth do not aim at establishing the orientation of the mineralization at depth. Parallel Auger lines aim at highlighting potential structural alignment and trends of mineralization to guide RC drilling planning.
Sample security	The measures taken to ensure sample security.	• All samples collected at the rig are stored in PET bags, sealed then stored in the vehicle prior to shipment to the workshop. In the workshop, split samples are collected into sealed plastic buckets for transport to the XRF workshop.

ASX RELEASE | 21 MAY 2024

Criteria	JORC Code explanation	Commentary
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Sampling technique and data management is reviewed by field management: Project Geologist and Operation Officer accompany and audit the process all along the drilling.

SECTION 2 REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Auger drilling assay results fully relate to the Saraya Exploration Permit in Senegal number PR 02208 granted to Mandinga Resources via Decree N°012397/MMG/DMG of 05 June 2018 and renewed for 3 years via Decree N°012403/MMG/DMG of the 23 May 2022. Haranga Resources has acquired 70% interest from Mandinga Resources who own 100% of the Saraya project. The Vendor has a 30% free carry to PFS. After PFS the Vendor will have to contribute to cost or dilute to royalty. There are no impediments known to the project.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 French Companies Cogema and Areva are known to have explored the area and produced significant historical data that has been acquired by Haranga. Significant drilling was carried out by both companies over the Saraya Prospect: Cogema worked over the Saraya region during the 70's until 1986. Cogema's logs record a total of 452 drillholes for 48,975 m at the project, including 441 holes at the Saraya Prospect. Areva drilled a total of 141 holes: 72 were completed at the Saraya prospect and a further 69 holes across several other prospects (Diobi, Kantafata, Samecouta).
Geology	 Deposit type, geological setting and style of mineralization. 	• The Uranium Mineralization lies within the Saraya Granite, a late Birrimian leucocratic granite with traces of deuteric alteration associated to fractional crystallization fluids and late-stage alteration within the regional Birrimian tectonic setting.

Criteria	JORC Code explanation	Commentary
		 Observations made during logging confirm a model of syn- to tardi-magmatic episyenitization followed by deuteric alteration. Original quartz is initially dissolved then filled with chloritized biotites followed by geodic automorphic second-generation quartz. Uranium minerals in the form of small grains, seems to accompany or replace the initial chloritized biotite. Historical data indicate that episyenitization, deuteric alteration and uranium mineralization at Saraya is structurally controlled and associated with brecciated lenses that strike mainly the NNE and dip sharply to the SE. This is consistent with the dominant Birrimian structures. Traces of episyenite and mineralisation outside of Saraya occurrence have been mentioned by previous exploration holders of the permits and in the literature.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 91 Auger holes have been drilled by Haranga at the Sanela Prospect. A summary of hole locations, orientation and length is provided in Annexes of the present announcement.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Reported grades are direct measurements from pXRF, no grades were cut. No interval has been calculated on the Auger drilling: the aim of the shallow campaign is to measure grades on saprock samples immediately below the laterite as a subsurface equivalent of surface geochemistry. No relevance for metal equivalent values
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralization is assumed subvertical for most of the targeted area for drilling. Auger drilling is aimed at capturing the surface expression of the mineralization and its lateral mushrooming. Full geometry of the mineralization over the different prospects is unknown. At Sanela, the mineralization seems associated to some sediments in a structural contact orientated NNE-SSW True width of the intercepted mineralization is unknown.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Saprock anomalies recorded are not yet part of intercepts nor significant discovery. Further RC drilling will be needed to transform Auger assay results into significant intercepts.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Comprehensive reporting of all Exploration Results from this drilling program are detailed in this announcement.
Other substantive	 Other exploration data, if meaningful and material, should be reported including (but not limited to): 	• Ground termite mounds geochemistry has yielded significant results to the extent of the Saraya Prospect and has been reported in previous announcements.

Criteria	JORC Code explanation	Commentary
exploration data	geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Ground spectrometry over the prospect of Saraya has been carried out using Nuvia PGIS2 Spectrometer, in which results have shown surface radio-isotopic activity to the extent of the known historical mineralization. Regional magnetic and spectrometry survey carried out by National Authorities have produced regional scale maps that details the regional tectonic setting. Historical data from Cogema and Areva have produced up to 60,000m of drilling over the prospect as well as surface trenching and diverse geochemical surveys. Historical data review has been presented by Haranga in previous announcements (2022-08-08: Significant Historical Drilling Results at Saraya; 2022-09-05 : Significant Uranium Exploration Target Defined at Saraya).
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Extension of the Auger drilling campaign on parallel lines to establish surface orientation of the mineralisation. Definition of RC drilling sections over more promising Auger anomalies, for exploration of in-depth possible extensions. Continuation of surface termite mounds geochemistry sampling at permit scale and infill scale to define new anomalies for the Auger drilling.