

EXPLORATION DRILLING UNDERWAY AT PELÉ PROJECT

- Successful exploration at the Pelé project has confirmed the key pathfinders of intense anomalies with high-grade monazite sand mineralisation extending over large areas, and identified a series of high priority drill targets at Pelé Target 1 and Target 2
- Ground reconnaissance at Pelé Target 1, that includes over 18 line-km of gamma surveys, has discovered three large outcropping zones of weathered REE-Nb-Sc-U mineralisation, with outcrop widths of over ~20m, along a highly prospective ~1km trendline strike
- A total of 61 hard rock REE-Nb-Sc-U outcrop samples across Pelé Target 1 returned high-grade assays of up to 10.4% TREO¹ with 12,798ppm NdPr, 402ppm DyTb, 3,759ppm Nb₂O₅ and 910ppm U₃O₆ (R590)
- In light of these compelling results, a +5,000m maiden diamond drilling program at Pelé Target 1 is now underway to target ultra-high grade REE-Nb-Sc-U mineralisation at depth
- Additionally, new assay results from the historical Rio Tinto drillholes at Pelé identified shallow, high-grade monazite sand 'pathfinder' mineralisation over an extensive ~13km corridor at Pelé Targets 2 and 4
- High-grade monazite sand results at Pelé Target 2 define a high-priority exploration target area of over 8km in strike and 1km in width, and a ~20 line-km of gamma survey was executed over this area
- Results from the Pelé Target 2 gamma line survey highlight extensive geophysical anomalies, combined with high-grade rare earth mineralised intercepts. Three parallel high intensity geophysical trendlines currently cover a target area of ~1.8km²
- The district-scale Pelé project is highly prospective for ultra-high grade REE-Nb-Sc-U mineralisation, and has a total exploration target area that is over ~30 times larger than the Monte Alto project

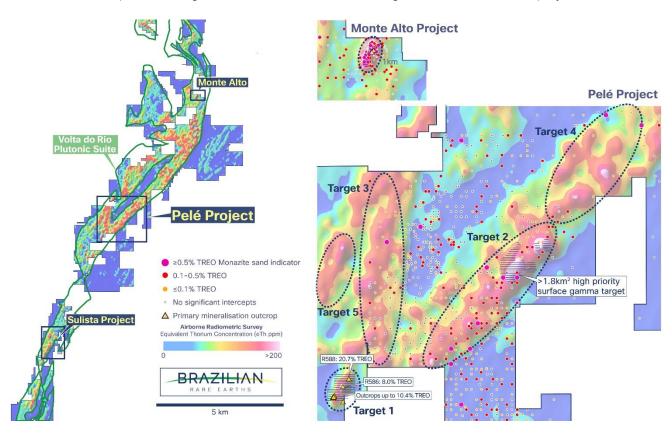


Figure 1: Pelé project location and relative size

Note 1 TREO = Total Rare Earth Oxides; NdPr = Nd₂O₃ + Pr₆O₁₁; DyTb = Dy₂O₃ + Tb₄O₂

Brazilian Rare Earths' MD and CEO, Bernardo da Veiga commented:

'The latest ground-based exploration at Pelé Target 1 has rapidly delineated the largest strike of weathered REE-Nb-Sc-U outcrops since exploration commenced at the Rocha da Rocha province. The discovery of a massive trendline of outcropping rare earth mineralisation is a high priority diamond drill target and, together with confirmed exploration pathfinders present across the larger Pelé project, underpins our confidence to expedite a diamond drill program for potential high-grade rare earth mineralisation at depth.'

Brazilian Rare Earths Limited (ASX: BRE) (BRE) confirms the discovery of high-grade REE-Nb-Sc-U mineralisation across large, weathered outcrops at the Pelé project, located ~60km southwest of the Monte Alto project. The Pelé project is a district-scale exploration area that covers a cumulative ~16km chain of intense geophysical anomalies. The latest exploration program returned a range of excellent exploration results, including high-grade rare earth assays from extensive hard rock outcrop mineralisation at Target 1, large-scale geophysical anomalies, and high-grade monazite sand mineralisation from shallow auger drillholes.

Pelé Target 1

Pelé Target 1 is in the southern zone of the Pelé project and is defined by an intense geophysical anomaly (Figure 3) with a target exploration area of ~1km by ~0.5km, or similar dimensions to the Monte Alto project.

A systematic gamma spectrometry survey over Pelé Target 1 delineated the largest expanse of weathered REE-Nb-Sc-U outcrops found since exploration commenced at the Rocha da Rocha rare earth province. A strong combination of positive exploration pathfinders accelerated plans for a diamond drilling program for REE-Nb-Sc-U mineralisation at depth, and exploration drilling is now underway.

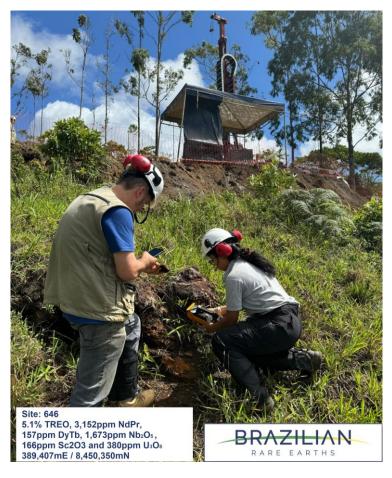


Figure 2: Chief Geologist Alexandre Rocha da Rocha and Geophysicist Asmminey Nacimento inspecting outcrops near the diamond drill rig at Pelé Target 1

Since the initial discovery at Pelé Target 1, the BRE exploration team has quickly advanced systematic ground reconnaissance with outcrop mapping and sampling, and a large ~18 line-km gamma survey. The ground exploration program has identified three extensive outcrop zones of weathered hard rock REE-Nb-Sc-U mineralisation which is controlled within a granitic gneiss host rock. The linear sequence of hard rock REE-Nb-Sc-U mineralised outcrops covers a highly prospective ~1km trendline.

At the northern end of this trendline, a grab sample of an intensively weathered outcrop returned an assay grade of 20.7% TREO from an elevation of 580 metres above sea level (masl). At the middle the outcropping trendline, a grab sample returned an assay grade of 8% TREO from a large ~20m wide outcrop of coarse grained highly weathered REE-Nb-Sc-U mineralisation. At the southern end of Pelé Target 1, a total of 61 grab samples from highly weathered outcrops recorded assay grades up to 10.4% TREO at a higher elevation of 810 masl. This linear sequence of outcropping discoveries suggests that the REE-Nb-Sc-U mineralisation may extend over a vertical range of ~230m within the granite gneiss host rock.

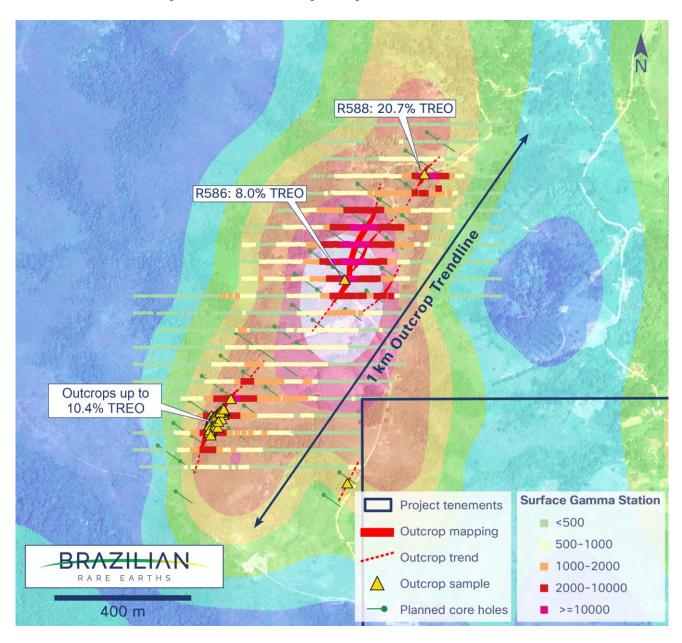


Figure 3: Pelé Target 1 - Rare earth outcrop locations over a prospective ~1km trendline

The intense weathering of the surface outcrops at Pelé Target 1, with a cluster of assay grades from 4% TREO to 8% TREO, appears to be formed via a gossan-style weathering process of the ultra-mafic fresh REE-Nb-Sc-U mineralisation that may be at depth.

A total of 61 grab samples from large weathered REE-Nb-Sc-U outcrops returned assay grades up to 10.4% TREO (R590), 12,798ppm NdPr (R590), 430ppm DyTb (R620), 5,010ppm Nb₂O₅ (R615) and 506ppm Sc₂O₃ (R623) and 1,035ppm U₃O₈ (R630).

The linear and vertical extent of these outcropping discoveries indicates a highly prospective REE-Nb-Sc-U mineralisation target at Pelé Target 1, that may include a larger depth extension at the southern end of the trendline. The width of the surface hard rock outcrops at the southern zone are up to ~20m.

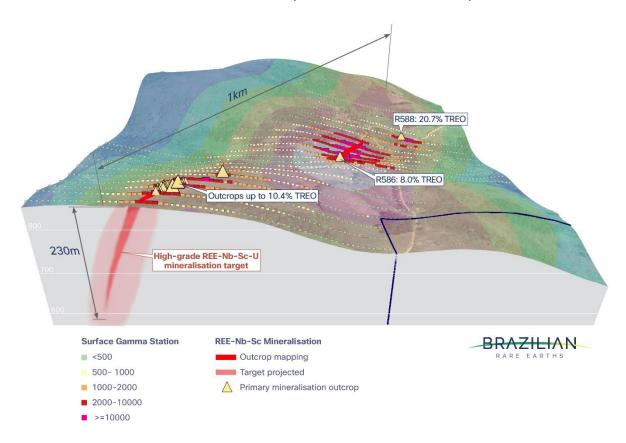


Figure 4: Illustrative 3D view of Pelé Target 1

Significant assays from the grab samples of the highly weathered REE-Nb-Sc-U outcrops at the southern zone at Pelé Target 1 include:

- 10.4% TREO, 12,798ppm NdPr, 402ppm DyTb, 3,759ppm Nb₂O₅, 910ppm U₃O₈ (R590)
- 7.8% TREO, 8,923ppm NdPr, 352ppm DyTb, 2,799ppm Nb₂O₅, 202ppm Sc₂O₃, 1,035ppm U₃O₈ (R630)
- 7.4% TREO, 8,850ppm NdPr, 413ppm DyTb, 2,655ppm Nb₂O₅, 190ppm Sc₂O₃, 823ppm U₃O₈ (R632)
- **6.5% TREO**, 6,558ppm NdPr, 259ppm DyTb, 1,634ppm Nb₂O₅, 58ppm Sc₂O₃, 756ppm U₃O₈ (R638)
- 6.4% TREO, 9,512ppm NdPr, 403ppm DyTb, 3,785ppm Nb₂O₅, 457ppm Sc₂O₃, 965ppm U₃O₈ (R631)
- **6.1% TREO**, 7,182ppm NdPr, 360ppm DyTb, 2,217ppm Nb₂O₅, 152ppm Sc₂O₃, 597ppm U₃O₈ (R639)
- **6.0% TREO**, 6,632ppm NdPr, 270ppm DyTb, 2,723ppm Nb₂O₅, 480ppm Sc₂O₃, 575ppm U₃O₈ (R628)
- 5.9% TREO, 11,317ppm NdPr, 430ppm DyTb, 1,667ppm Nb₂O₅, 277ppm Sc₂O₃, 412ppm U₃O₈ (R620)

At the southern end of Pelé Target 1, geological mapping identified highly weathered REE-Nb-Sc outcrop mineralisation with dimensions of ~200m long and ~15m wide along a north-east trending zone that also recorded overlapping high gamma readings from the ground survey.

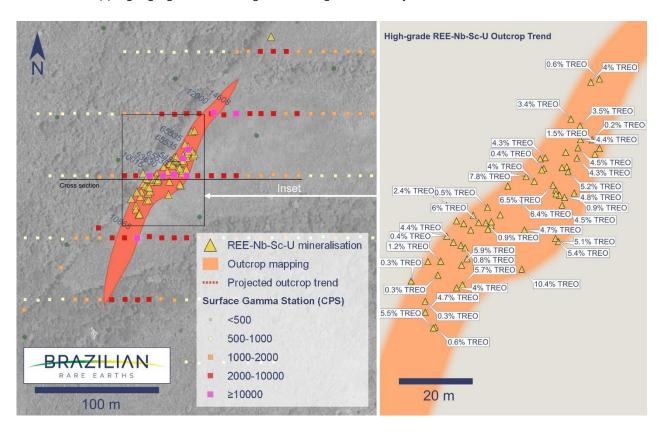


Figure 5: Pelé Target 1: Southern outcrop zone with grab sample assay results

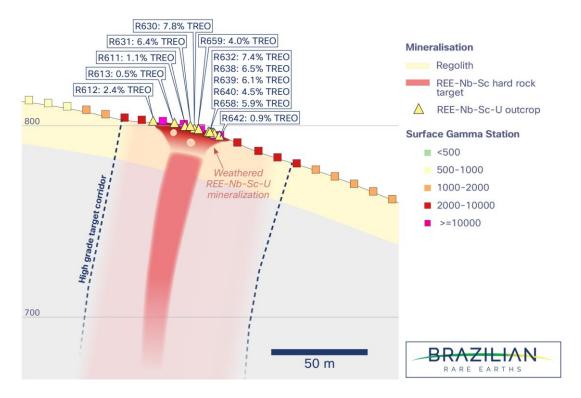


Figure 6: Schematic cross-section with Pelé Target 1 REE-Nb-Sc-U target exploration zone

Figure 7: Pelé Target 1 - Outcrop sample R590 with REE-Nb-Sc-U mineralisation

At the middle of Pelé Target 1, a high-grade sample of saprolite REE-Nb-Sc-U mineralisation was collected from a large ~20m wide hard rock outcrop in a road cut which returned assay grades of:

■ 8.0% TREO, 2,537ppm NdPr, 128ppm DyTb, 1,329ppm Nb₂O₅, 1,255ppm U₃O₈ (R586)

The saprolite mineralisation had visible, primary and coarse-grained textures that is interpreted to potentially represent the underlying bedrock.

This REE-Nb-Sc-U outcrop is associated with a \sim 350m NNE oriented trendline of intense anomalies identified and measured by the ground geophysical survey, with gamma particle counts of up to 39,000 CPS. To the north of this outcrop, the trend bifurcates into three parallel target zones that were mapped across the outcrop trendline.

Approximately 320m to the north, a grab sample of saprolite REE-Nb-Sc-U mineralisation returned the highest TREO grade from Pelé Target 1:

■ **20.7% TREO**, 3,008ppm NdPr, 146ppm DyTb, 1,063ppm Nb₂O₅, 975ppm U₃O₈ (R588)

This outcropping mineralisation was intensely weathered and notable for a materially lower ratio of heavy rare earths (HREO) to TREO at 0.6%, relative to 1.2% recorded at R586, and an average of ~5% at the southern zone of Pelé Target 1. The depletion of HREO at this weathered surface outcrop suggests that deeper mineralisation may have potentially higher TREO grades.

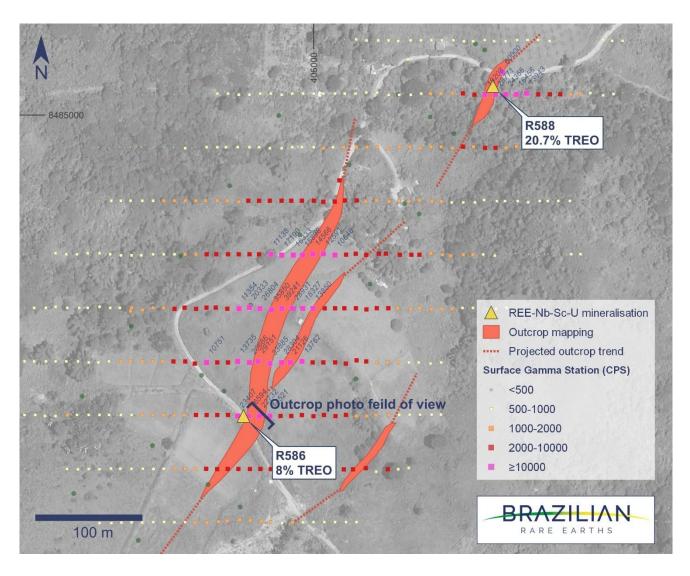


Figure 8: Pelé Target 1 - Central and Northern Zones

Figure 9: Pelé Target 1 Central Zone – Panoramic view to south along road cut with saprolite outcrop at site R586

Figure 10: Pelé Target 1 – Diamond drilling program underway

Pelé Target 2, 3, 4 and 5

The larger exploration target zones of Pelé Targets 2, 3, 4 and 5 are located across the large eastern and western limbs of the regional Tres Braços syncline. These exploration target areas have extensive chains of intense geophysical anomalies recurring in broad linear trendlines.

The latest results returned from the Rio Tinto auger drill hole re-assay program continued to identify high-grade monazite sand mineralisation across the Pelé project area. The latest assay results were from a total of 420 auger drillholes (~5,156m) and returned grades up to 2.3% TREO, 4,780ppm NdPr and 113ppm DyTb. A complete list of the new assay results from the historical auger drillholes is provided in Appendix C.

It is important to note that the historical auger holes were shallow, widely spaced, and targeted bauxite mineralisation within the upper laterite layer. The average historical auger drill hole was drilled to a depth of ~12 meters, and as noted with the Sulista project's historical auger holes, this drill hole depth is unlikely to penetrate the depleted rare earth mottled zone that has experienced deep weathering. A large portion of the rare earth intercepts finished in mineralisation and the next phase of priority exploration will focus on testing the highly prospective deeper regolith zone.

To put this into context, nearly ~80% of the high-grade monazite sand resource at the Monte Alto project is below a depth of greater than ~10m, highlighting that the historical shallow auger drill holes at the Pelé project (and Sulista project) have yet to fully explore the important saprolite horizon.

An analysis of the grade profile of BRE drilled auger holes from the Monte Alto and Sulista projects highlight the prospectivity of the deeper saprolite zone. Figure 11 below highlights the historical relationship versus the average depth of auger drill holes at the Pelé and Sulista projects.

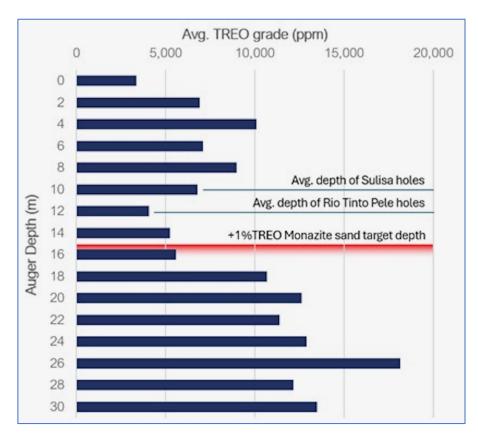


Figure 11: Grade versus depth profile of BRE drilled auger holes intersecting +1% TREO mineralisation 1,2,3,4

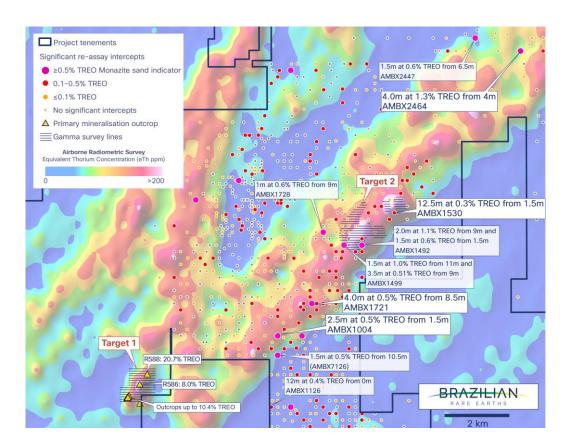


Figure 12: Map of re-assay results at the Pelé project (new auger drill re-assay results in large font)4

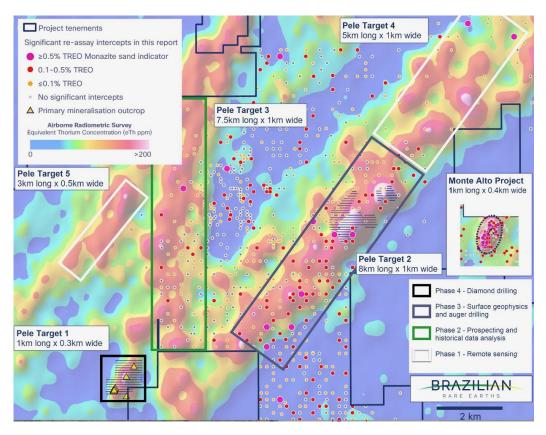


Figure 13: High priority exploration target areas across the Pelé project

Pelé Target 2

Pelé Target 2 is defined by an extensive chain of intense geophysical anomalies across the western limb of the regional Tres Braços syncline. These anomalies define a potential exploration area with a strike of ~8km and up to ~1km in width. Pelé Target 2 is a highly prospective exploration area that is ~16 times larger than the Monte Alto project (Figure 1) and larger than any of the current exploration targets across the Rocha da Rocha rare earth province.

Geophysics highlighted extensive gamma and magnetic anomalies over a ~4km strike at the northern end of the Pelé Target 2 exploration area (Figure 13: Pelé Target 2). Historical, widely spaced auger drill re-assays also confirmed the presence of shallow, high-grade rare earth monazite sand mineralisation and these (previously reported⁴) results included:

- 2.0m at 1.1% TREO from 9m, with 2,181ppm NdPr and 68ppm DyTb, within:
 - 21.5m at 0.3% TREO from 0.5m, 472ppm NdPr and 16ppm DyTb (AMBX1492 open at depth)
- 1.5m at 1.0% TREO from 11m, with 5,177ppm TREO, 1,796ppm NdPr, and 75ppm DyTb, within:
 - 12.5m at 0.2% TREO from 0m, 418ppm NdPr and 18ppm DyTb (AMBX1499 open at depth)

This combination of strong exploration pathfinders underpinned a decision by the BRE exploration team to expedite a ~20 line-km of surface gamma lines over this target area (Figure 14). The results of this survey have defined the largest gamma particle count (CPS) anomaly identified to date, which is comprised of three parallel high intensity trends that cover ~0.5km².

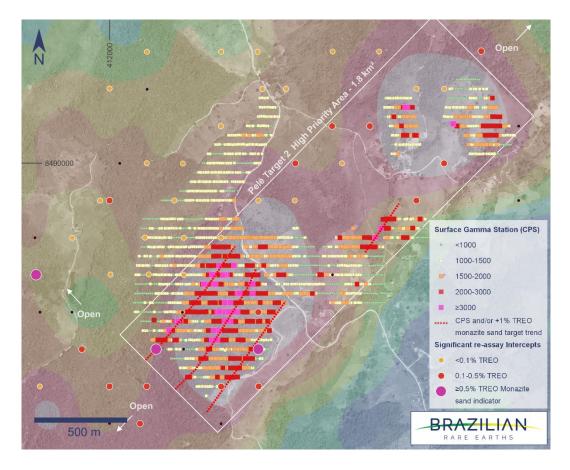


Figure 14: Extensive gamma line results over Pelé Target 2 – Northern Zone

Note ⁴ Refer to End Notes for details of previously reported exploration results

The results of these gamma line surveys highlight an extensive gamma anomaly over an area of +1.8km². This area is a high priority exploration target for the BRE auger drill teams and they will soon be mobilised to drill this highly prospective target area at depth, and with closer drill spacing, than the historical shallow auger holes.

In addition, BRE's ground reconnaissance teams will now extend the gamma survey lines southward to cover the remainder of the high intensity anomalies over the full extent of Pelé Target 2.

Exploration Next Steps - Pelé Project

The priority exploration activities at the Pelé project include:

- Target 1: +5,000m Dimond drilling program taregeting ultra-high grade REE-Nb-Sc-U mineralisation
- **Target 2**: Mobilise auger teams to drill into the deeper saprolite zone across the priority anomaly zones, and extend the gamma line survey southward to cover the high intensity anomalies
- Target 3: Exploration reconnaissance teams to conduct initial vehicle-based gamma surveys
- Target 4: Exploration teams to conduct geological survey and conduct initial vehicle-based gamma surveys
- Target 5: Targeted reconnaissance on open ground at the central intense gamma anomaly

End Notes

The information contained in this announcement relating to BRE's historical exploration results is extracted from, or was set out in, the following ASX announcements (Original ASX Announcements) which are available to view at BRE's website at www.brazilianrareearths.com:

- Previously reported exploration results for the Monte Alto Project can be viewed in the ASX Announcement dated 1
 February 2024 "Ultra-High Grade Rare Earth Assays at Monte Alto Project" and the Prospectus dated 13 November
 2023 (refer ASX announcement dated 19 December 2023).
- 2. Previously reported exploration results for the Sulista Project can be viewed in the ASX Announcement dated 6 June 2024 "Ultra-High Rare Earth Grades at the Sulista Project".
- 3. Previously reported exploration results for the re-assays of the Rio Tinto holes can be viewed in the in the ASX Announcement dated 25 March 2024 "BRE Announces New Rare Earth Discovery the Pele Project" and the ASX Announcement dated 6 June 2024 "Ultra-High Rare Earth Grades at the Sulista Project".
- 4. Previously reported exploration results for the Pele Project can be viewed in the ASX Announcement dated 25 March 2024 "BRE Announces New Rare Earth Discovery the Pele Project".

BRE confirms that it is not aware of any new information or data that materially affects the information included in the Original ASX Announcements.

This announcement has been authorized for release by the CEO and Managing Director.

Bernardo da Veiga

MD and CEO

Brazilian Rare Earths

bdv@brazilianrareearths.com

Sign up to our investor hub at investors.brazilianrareearths.com

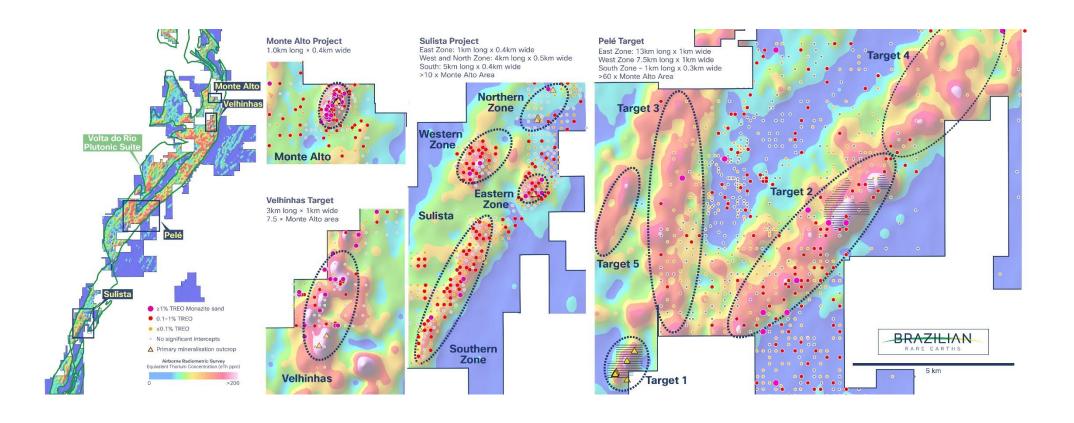
Forward-Looking Statements and Information

This Announcement may contain "forward-looking statements" and "forward-looking information", including statements and forecasts which include (without limitation) expectations regarding industry growth and other trend projections, forward-looking statements about the BRE's Projects, future strategies, results and outlook of BRE and the opportunities available to BRE. Often, but not always, forward-looking information can be identified by the use of words such as "plans", "expects", "is expected", "is expecting", "budget", "outlook", "scheduled", "target", "estimates", "forecasts", "intends", "anticipates", or "believes", or variations (including negative variations) of such words and phrases, or state that certain actions, events or results "may", "could", "would", "might", or "will" be taken, occur or be achieved. Such information is based on assumptions and judgments of BRE regarding future events and results. Readers are cautioned that forward-looking information involves known and unknown risks, uncertainties and other factors which may cause the actual results, targets, performance or achievements of BRE to be materially different from any future results, targets, performance or achievements expressed or implied by the forward-looking information.

Forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, the Directors and management of the Company. Key risk factors associated with an investment in the Company are detailed in Section 3 of the Prospectus dated 13 November 2023. These and other factors could cause actual results to differ materially from those expressed in any forward-looking statements.

Forward-looking information and statements are (further to the above) based on the reasonable assumptions, estimates, analysis and opinions of BRE made in light of its perception of trends, current conditions and expected developments, as well as other factors that BRE believes to be relevant and reasonable in the circumstances at the date such statements are made, but which may prove to be incorrect. Although BRE believes that the assumptions and expectations reflected in such forward-looking statements and information (including as described in this Announcement) are reasonable, readers are cautioned that this is not exhaustive of all factors which may impact on the forward-looking information

The Company cannot and does not give assurances that the results, performance or achievements expressed or implied in the forward-looking information or statements detailed in this Announcement will actually occur and prospective investors are cautioned not to place undue reliance on these forward-looking information or statements.


Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information compiled or reviewed by Mr Adam Karst P.G, a Competent Person who is a registered member of the Society of Mining, Metallurgy and Exploration which is a Recognised Overseas Professional Organisation. Mr Karst has sufficient experience that is relevant to the style of mineralisation and types of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Karst consents to the inclusion in this report of the results of the matters based on his information in the form and context in which it appears.

APPENDIX A: Relative scale of BRE exploration projects

APPENDIX B: Grab Sample Results

Results for mineralisation grab samples collected at the Pelé project. Point locations do not represent a continuous sample along any length of the mineralised system. Refer to Table 1 for more information.

Site	Pelé Target 1 Zone	Sample ID	East	North	TREO (%)	NdPr (ppm)	DyTb (ppm)	Nb2O5 (ppm)	Sc ₂ O ₃ (ppm)	U ₃ O ₈ (ppm)	NdPr:TREO (%)	HREO:TREO (%)
R586	Central	ALP400650	405934	8484719	8.0	2,537	128	1,329		1,255	3.2	1.2
R588	North	ALP400652	406167	8485027	20.7	3,008	146	1,063		975	1.5	0.6
R589	South	ALP400653	405571	8484332	2.7	3,322	178	1,918		247	12.5	6.4
R590	South	ALP400654	405565	8484305	10.4	12,798	402	3,759		910	12.3	3.3
R609	South	ALP400674	405545	8484314	0.4	108	7	1,201	21	86	2.4	1.4
R610	South	ALP400676	405547	8484312	4.4	6,829	229	3,648	443	610	15.7	4.6
R611	South	ALP400677	405562	8484327	1.1	761	50	2,053	64	224	6.6	4.2
R612	South	ALP400678	405545	8484322	2.4	3,335	148	2,925	145	387	14.0	5.7
R613	South	ALP400679	405556	8484321	0.5	586	33	1,992	44	206	11.0	5.3
R614	South	ALP400680	405548	8484300	4.0	6,949	226	2,195	308	424	17.5	5.0
R615	South	ALP400681	405549	8484301	5.7	9,393	278	5,010	414	803	16.4	4.3
R616	South	ALP400682	405543	8484307	1.2	1,559	69	1,424	204	194	13.4	5.4
R617	South	ALP400683	405543	8484303	0.3	331	22	1,260	49	120	9.7	6.0
R618	South	ALP400684	405540	8484307	1.6	2,226	78	2,873	277	348	13.9	4.3
R619	South	ALP400686	405535	8484302	0.3	145	16	2,323	101	158	4.2	4.0
R620	South	ALP400687	405549	8484306	5.9	11,317	430	1,667	277	412	19.3	6.9
R621	South	ALP400688	405551	8484308	4.1	7,284	370	1,568	264	301	17.8	9.2
R622	South	ALP400689	405549	8484311	0.8	1,071	54	1,369	130	153	14.1	6.5
R623	South	ALP400690	405552	8484315	5.4	9,082	291	3,570	506	688	16.7	4.8
R624	South	ALP400691	405550	8484311	4.2	6,433	205	2,792	354	578	15.4	4.3
R625	South	ALP400692	405550	8484317	5.8	9,426	285	3,872	381	775	16.2	4.4
R626	South	ALP400693	405548	8484318	0.6	755	40	2,268	38	230	11.6	5.4
R627	South	ALP400694	405552	8484319	3.6	5,745	226	2,132	299	425	16.1	5.8
R628	South	ALP400696	405554	8484317	6.0	6,632	270	2,723	480	575	11.1	3.9
R629	South	ALP400697	405566	8484315	4.7	7,610	333	3,061	177	789	16.1	6.3
R630	South	ALP400698	405567	8484330	7.8	8,923	352	2,799	202	1,035	11.4	4.0
R631	South	ALP400699	405564	8484324	6.4	9,512	403	3,785	457	965	14.8	5.7
R632	South	ALP400700	405575	8484325	7.4	8,850	413	2,655	190	823	12.0	5.3
R633	South	ALP400701	405557	8484318	3.2	3,290	150	2,022	244	376	10.4	4.1
R634	South	ALP400702	405556	8484317	0.9	660	43	1,488	100	180	7.2	4.1
R635	South	ALP400703	405556	8484316	0.9	896	53	1,534	82	203	10.4	5.4
R636	South	ALP400704	405557	8484317	0.6	547	36	1,450	93	152	8.6	5.1
R637	South	ALP400706	405560	8484319	3.7	4,635	156	1,483	145	311	12.6	3.9

Site	Pelé Target 1 Zone	Sample ID	East	North	TREO (%)	NdPr (ppm)	DyTb (ppm)	Nb2O5 (ppm)	Sc ₂ O ₃ (ppm)	U3O8 (ppm)	NdPr:TREO (%)	HREO:TREO (%)
R638	South	ALP400707	405574	8484327	6.5	6,558	259	1,634	58	756	10.1	3.5
R639	South	ALP400708	405576	8484325	6.1	7,182	360	2,217	152	597	11.7	5.7
R640	South	ALP400709	405576	8484322	4.5	6,034	320	2,182	179	454	13.3	6.5
R641	South	ALP400710	405577	8484324	4.8	7,111	244	3,530	500	636	14.9	4.5
R642	South	ALP400711	405580	8484325	0.9	1,481	77	1,400	91	184	16.5	8.1
R643	South	ALP400712	405578	8484331	5.2	4,051	147	1,438	93	513	7.7	2.5
R644	South	ALP400713	405578	8484332	2.1	1,022	45	417	31	200	4.8	1.9
R645	South	ALP400714	405580	8484335	4.3	6,375	309	1,952	115	388	14.9	6.4
R646	South	ALP400716	405575	8484312	5.1	3,152	157	1,673	166	380	6.1	2.8
R647	South	ALP400717	405575	8484313	5.4	7,633	404	3,329	247	586	14.2	7.1
R648	South	ALP400718	405585	8484336	4.1	6,086	209	2,889	235	555	14.8	4.6
R649	South	ALP400719	405586	8484337	1.5	2,200	89	2,597	173	364	14.9	5.2
R650	South	ALP400720	405584	8484340	0.2	93	5	182	10	124	4.3	2.1
R651	South	ALP400721	405581	8484344	3.5	5,665	246	1,842	105	467	16.4	6.3
R652	South	ALP400722	405579	8484345	3.4	5,424	247	2,896	106	361	16.1	6.5
R653	South	ALP400723	405577	8484336	3.4	4,582	149	1,673	76	420	13.4	3.9
R654	South	ALP400724	405576	8484332	3.9	6,777	305	2,189	263	422	17.4	7.1
R655	South	ALP400726	405571	8484332	0.4	447	21	1,454	29	188	11.9	5.1
R656	South	ALP400727	405570	8484335	2.1	3,252	148	1,342	48	247	15.8	6.8
R657	South	ALP400728	405572	8484335	4.3	6,564	316	2,790	213	555	15.3	6.7
R658	South	ALP400729	405575	8484326	5.9	7,604	413	2,809	196	851	12.9	7.2
R659	South	ALP400730	405569	8484329	4.0	6,604	310	2,583	222	410	16.4	6.9
R660	South	ALP400731	405581	8484338	4.5	6,237	348	3,059	222	690	13.9	7.9
R661	South	ALP400732	405581	8484340	4.4	6,399	320	2,951	129	548	14.7	6.4
R662	South	ALP400733	405584	8484355	4.0	857	45	1,796	92	287	2.2	1.0
R663	South	ALP400734	405586	8484356	0.6	189	11	2,198	83	203	3.0	1.5
R664	South	ALP400736	405539	8484296	0.3	153	9	2,622	27	144	5.7	3.1
R665	South	ALP400737	405539	8484293	4.7	6,259	225	3,805	357	693	13.3	4.2
R666	South	ALP400738	405541	8484289	5.5	6,885	261	3,506	299	715	12.5	4.2
R667	South	ALP400739	405542	8484289	0.6	968	42	296	119	338	16.4	5.8

APPENDIX D: Pelé Auger Information and Significant Intercepts

Auger drillhole assays at the Pelé project with significant intercepts +200ppm TREO-CeO₂ greater than 3m length downhole. All holes are drilled vertically.

Hole ID	East	North	Elev.	Depth	Label	From	To	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX0256	409400	8490298	764.0	27.0	No Sig. Ints.								
AMBX0271	419603	8491398	404.3	12.0	-	1.5	4.5	3.0	371	48	3	13.1	9.2
AMBX0286	409149	8490400	750.1	14.5	No Sig. Ints.								
AMBX0299	409400	8490348	766.6	28.0	No Sig. Ints.								
AMBX0308	409400	8490148	743.0	27.0	No Sig. Ints.								
AMBX0326	408803	8490599	814.9	23.5	No Sig. Ints.								
AMBX0357	407300	8490199	685.9	13.0		1.5	13.0	11.5	795	127	4	16.0	5.5
AMBX0388	409598	8488198	751.0	20.0		1.5	19.5	18.0	797	143	5	17.8	6.2
AMBX0400	407900	8489401	769.7	8.1		4.0	8.1	4.1	703	116	5	16.5	7.1
AMBX0416	410299	8489000	777.1	16.5		12.0	16.5	4.5	748	141	6	19.0	7.4
AMBX0418	408700	8489002	790.3	16.0	No Sig. Ints.								
AMBX0425	408302	8489003	750.2	16.8		4.0	16.8	12.8	872	174	6	20.1	7.1
AMBX0427	409299	8489000	728.2	9.0	No Sig. Ints.								
AMBX0428	410699	8489001	688.3	11.0		1.5	8.0	6.5	577	92	4	15.9	6.9
AMBX0429	408900	8489001	765.6	8.5	No Sig. Ints.								
AMBX0432	408100	8489003	711.4	6.0	No Sig. Ints.								
AMBX0439	409599	8488600	769.8	19.0		2.0	8.5	6.5	684	124	9	18.2	10.5
AMBX0444	407700	8489004	767.8	10.0	No Sig. Ints.								
AMBX0445	409901	8488600	691.3	14.0		10.0	14.0	4.0	587	107	4	18.2	6.7
AMBX0445	409901	8488600	691.3	14.0	including	13.0	14.0	1.0	1,093	203	9	18.6	7.2
AMBX0446	410199	8487000	619.8	15.0		1.5	15.0	13.5	1,102	161	5	15.7	5.1
AMBX0447	410698	8488599	649.7	14.0		1.5	6.0	4.5	860	148	4	17.0	6.3
AMBX0447	410698	8488599	649.7	14.0	including	4.0	6.0	2.0	1,376	242	6	17.6	4.3
AMBX0455	408400	8488800	769.7	8.5	No Sig. Ints.								
AMBX0456	409599	8487800	678.3	8.5	No Sig. Ints.								
AMBX0460	411000	8487800	658.0	10.0	No Sig. Ints.								
AMBX0462	411000	8487200	615.6	13.0		1.5	13.0	11.5	1,925	331	21	16.6	7.2
AMBX0463	410999	8487000	641.7	16.0		1.5	16.0	14.5	1,064	152	7	14.3	6.5
AMBX0464	409395	8488600	751.1	6.5	No Sig. Ints.								
AMBX0466	408999	8488601	784.7	10.5	No Sig. Ints.							·	
AMBX0468	408000	8488800	707.9	2.5	No Sig. Ints.							·	
AMBX0469	408400	8488601	740.5	13.0	No Sig. Ints.								

Hole ID	East	North	Elev.	Depth	Label	From	То	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
		2 /2= /22	(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX0474	411199	8487400	584.9	4.0		0.0	4.0	4.0	1,657	322	9	18.5	6.2
AMBX0475	410795	8487600	674.8	18.5	No Sig. Ints.								
AMBX0476	408204	8488601	704.4	18.5		3.5	18.5	15.0	587	90	3	16.8	6.9
AMBX0476	408204	8488601	704.4	18.5	including	14.5	16.5	2.0	1,280	117	3	9.2	2.5
AMBX0477	411401	8487000	648.5	18.5		6.5	18.5	12.0	1,011	163	13	15.9	16.1
AMBX0480	410600	8487400	674.9	8.0	No Sig. Ints.								
AMBX0484	407600	8488800	746.5	7.0	No Sig. Ints.								
AMBX0485	407200	8488801	668.4	4.8		0.5	4.8	4.3	530	77	4	14.6	7.1
AMBX0489	410400	8487399	657.0	19.0	No Sig. Ints.								
AMBX0490	410200	8487200	661.2	7.5	No Sig. Ints.								
AMBX0493	407805	8488601	719.3	15.0		2.0	10.0	8.0	492	83	3	16.6	6.0
AMBX0493	407805	8488601	719.3	15.0	and	10.0	12.0	2.0	1,177	57	2	4.9	1.5
AMBX0494	409000	8488199	761.8	19.0		1.5	18.0	16.5	595	136	10	22.4	12.7
AMBX0496	408804	8488199	697.7	10.0	No Sig. Ints.								
AMBX0497	409799	8486999	611.1	8.0		4.5	7.5	3.0	857	117	5	13.9	6.1
AMBX0498	409999	8487399	700.0	14.5		10.0	14.5	4.5	505	97	4	19.3	7.8
AMBX0510	409925	8493427	736.9	25.0		1.5	16.0	14.5	443	108	12	23.8	20.1
AMBX0529	408951	8488370	777.8	4.0	No Sig. Ints.								
AMBX0535	410905	8487088	655.2	13.5		1.5	13.5	12.0	2,712	535	28	19.4	9.1
AMBX0538	410381	8486151	729.2	13.5		1.5	13.5	12.0	870	163	11	18.7	10.5
AMBX0539	410773	8485821	725.9	14.0		1.5	14.0	12.5	1,557	296	13	19.2	6.9
AMBX0541	411383	8485273	744.7	11.5		1.5	11.5	10.0	1,315	301	26	22.9	14.8
AMBX0543	410757	8483910	634.8	14.0		1.5	14.0	12.5	783	169	10	21.7	10.1
AMBX0545	410650	8483559	683.4	16.5		2.0	8.0	6.0	963	235	19	24.7	15.2
AMBX0614	409404	8490377	768.7	23.2	No Sig. Ints.								
AMBX0645	408736	8490823	800.6	48.0		40.0	44.0	4.0	927	232	41	27.7	44.7
AMBX0703	415187	8494997	661.6	16.9		3.5	16.9	13.4	699	135	30	19.4	28.5
AMBX0705	415996	8495517	803.6	20.9	No Sig. Ints.								
AMBX0718	409399	8490100	733.5	30.4	No Sig. Ints.								
AMBX0726	409597	8491299	753.3	14.3		1.5	8.0	6.5	440	98	6	22.2	12.9
AMBX0732	408499	8489400	774.8	20.9		6.0	14.0	8.0	530	103	5	19.5	9.4
AMBX0735	409100	8487779	770.2	16.6		4.0	16.6	12.6	798	132	4	16.3	5.6
AMBX0739	409453	8489998	714.2	23.6		10.0	22.0	12.0	559	130	17	23.0	23.4
AMBX0775	409002	8489799	741.9	24.4		1.5	12.0	10.5	1,001	240	22	22.2	12.1
AMBX0791	408598	8489499	799.0	33.8		2.0	5.0	3.0	221	36	20	16.6	68.0
AMBX0802	408405	8488402	708.5	10.0	No Sig. Ints.								
AMBX0803	407000	8488801	693.1	10.0	No Sig. Ints.								
AMBX0811	407420	8488602	724.7	18.0	-	1.5	18.0	16.5	643	107	3	16.2	5.7
AMBX0812	411399	8487199	616.7	6.0		1.5	6.0	4.5	1,490	284	30	19.0	18.7

Hole ID	East	North	Elev.	Depth	Label	From	To	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX0813	408205	8488198	674.5	10.0		5.0	8.0	3.0	489	76	4	15.6	7.0
AMBX0815	409400	8486600	647.3	3.5	No Sig. Ints.								
AMBX0817	409223	8488000	722.1	14.5		1.0	5.5	4.5	689	118	4	17.0	6.7
AMBX0818	410199	8486800	590.7	5.5		1.5	5.5	4.0	1,046	242	14	23.1	11.0
AMBX0819	408005	8488198	664.4	10.0		2.0	6.0	4.0	961	88	4	9.2	5.3
AMBX0825	409999	8486799	627.1	12.0	No Sig. Ints.								
AMBX0826	408999	8486599	695.4	6.5	No Sig. Ints.								
AMBX0827	407606	8488406	743.4	15.0		10.5	15.0	4.5	530	93	4	17.7	7.4
AMBX0829	409400	8488400	765.7	14.5	No Sig. Ints.								
AMBX0830	407805	8488197	655.0	6.5	No Sig. Ints.								
AMBX0834	409800	8486600	656.1	11.0	No Sig. Ints.								
AMBX0835	407199	8486600	681.6	16.0		10.0	16.0	6.0	530	91	5	17.2	8.6
AMBX0839	407000	8488004	623.4	11.0		2.5	11.0	8.5	1,422	141	4	10.0	3.3
AMBX0841	409599	8486800	643.4	8.0		2.5	8.0	5.5	678	103	4	14.8	6.5
AMBX0842	409799	8488400	712.1	11.5		1.5	8.0	6.5	874	160	5	18.4	5.9
AMBX0843	407012	8488602	696.1	14.0	No Sig. Ints.								
AMBX0844	407206	8488409	648.8	6.8		3.5	6.8	3.3	673	127	9	18.8	12.6
AMBX0848	406999	8486400	585.2	9.5	No Sig. Ints.								
AMBX0851	406999	8487200	651.4	15.5	No Sig. Ints.								
AMBX0852	407600	8487200	752.1	7.5		2.0	7.5	5.5	590	91	3	15.3	5.4
AMBX0853	409399	8486400	632.4	4.5	No Sig. Ints.								
AMBX0854	407000	8487606	648.2	4.0	No Sig. Ints.								
AMBX0855	408599	8486400	680.5	15.0	No Sig. Ints.								
AMBX0862	407399	8486400	697.0	19.5		1.5	19.5	18.0	532	95	4	17.8	7.7
AMBX0864	409999	8488200	702.5	21.5		2.0	21.5	19.5	504	86	3	17.1	7.0
AMBX0865	408399	8486799	739.6	18.5		6.0	12.0	6.0	550	80	4	14.5	7.7
AMBX0866	409799	8488200	724.2	25.0		10.0	25.0	15.0	564	97	3	17.1	5.7
AMBX0869	407000	8487400	683.2	17.4		6.0	15.5	9.5	483	73	2	15.2	5.2
AMBX0870	411799	8487599	562.5	22.5		2.0	22.5	20.5	1,413	232	28	16.7	17.7
AMBX0871	408999	8486400	663.3	6.0	No Sig. Ints.								
AMBX0875	408400	8488001	702.8	9.0	No Sig. Ints.								
AMBX0876	408999	8486999	698.0	10.0		4.0	7.5	3.5	658	141	5	21.4	8.5
AMBX0878	411198	8487599	639.2	7.5		1.5	6.0	4.5	2,448	427	14	17.4	5.4
AMBX0882	411401	8487599	609.2	20.0		2.0	20.0	18.0	929	150	8	15.6	7.3
AMBX0884	409413	8488199	721.5	7.5		1.5	7.5	6.0	583	101	4	17.3	7.8
AMBX0889	407200	8487000	677.8	10.0		1.5	10.0	8.5	1,303	200	10	15.2	6.5
AMBX0893	407599	8486799	735.6	4.5	No Sig. Ints.								
AMBX0894	408599	8486999	724.9	20.0		13.0	18.5	5.5	1,238	256	10	20.5	7.8
AMBX0895	410999	8488200	661.4	13.5		1.5	13.5	12.0	2,023	381	19	17.4	8.1

Hole ID	East	North	Elev.	Depth	Label	From	То	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX0896	407199	8487799	638.2	9.0		1.5	8.5	7.0	620	87	5	14.0	7.2
AMBX0897	407801	8486997	748.9	4.0	No Sig. Ints.								
AMBX0900	408199	8486998	712.1	11.0		4.0	11.0	7.0	634	117	6	18.4	9.0
AMBX0901	409199	8486000	665.8	14.5		1.5	10.5	9.0	533	84	2	15.5	5.1
AMBX0903	408799	8486800	737.0	15.0		4.0	10.0	6.0	481	84	3	17.5	6.5
AMBX0904	411599	8488199	570.4	12.5		2.5	12.5	10.0	923	148	7	16.9	7.5
AMBX0905	407400	8487800	639.3	9.5		3.0	8.0	5.0	850	135	6	15.7	6.5
AMBX0909	408599	8485999	693.2	10.0	No Sig. Ints.								
AMBX0911	407800	8487800	675.6	21.0	No Sig. Ints.								
AMBX0913	411799	8488199	605.6	7.0		1.5	7.0	5.5	1,463	240	10	16.5	6.5
AMBX0917	409175	8486799	655.2	9.0	No Sig. Ints.								
AMBX0918	409600	8485800	668.9	12.0		4.0	8.5	4.5	1,523	319	8	20.4	5.9
AMBX0920	410169	8488201	664.3	10.0	No Sig. Ints.								
AMBX0921	409199	8486200	650.6	15.0	No Sig. Ints.								
AMBX0922	411999	8488199	649.0	7.0		1.5	7.0	5.5	1,779	140	7	9.5	4.2
AMBX0923	407199	8487400	681.4	8.0	No Sig. Ints.								
AMBX0925	412399	8487598	624.0	9.0		2.0	9.0	7.0	1,727	351	25	20.3	13.6
AMBX0928	410598	8486799	610.5	22.0		8.0	20.0	12.0	521	92	4	17.7	7.4
AMBX0929	411399	8488199	602.6	10.0		1.5	10.0	8.5	556	79	2	14.0	4.8
AMBX0931	407400	8487399	688.0	10.0	No Sig. Ints.								
AMBX0932	410629	8488202	660.5	9.5		6.0	9.5	3.5	581	90	2	18.8	6.3
AMBX0933	408399	8486200	671.7	7.0	No Sig. Ints.								
AMBX0934	408201	8487800	693.4	13.0		3.0	10.0	7.0	702	123	5	17.8	8.0
AMBX0935	408599	8487801	702.9	8.0	No Sig. Ints.								
AMBX0939	407999	8485999	676.6	10.0	No Sig. Ints.								
AMBX0943	412599	8487800	625.4	16.0		3.5	15.5	12.0	665	132	9	19.6	12.5
AMBX0944	412399	8487800	607.3	10.5		4.0	10.5	6.5	875	158	12	17.8	13.8
AMBX0945	412199	8487800	605.4	2.5	No Sig. Ints.								
AMBX0948	410399	8486400	645.0	10.5	- C	2.0	10.5	8.5	1,520	249	11	16.0	6.5
AMBX0949	410024	8486000	663.4	16.0		1.5	14.0	12.5	977	172	8	16.7	8.7
AMBX0952	411201	8486799	623.5	16.5		1.5	16.5	15.0	701	137	7	19.8	9.8
AMBX0952	411201	8486799	623.5	16.5	including	14.0	16.5	2.5	1,097	199	8	18.2	6.9
AMBX0954	411599	8486799	603.0	10.0	Ü	2.5	8.0	5.5	672	89	4	12.6	7.2
AMBX0957	406999	8485599	523.2	11.5	No Sig. Ints.								
AMBX0958	408599	8485800	704.0	18.5	<u> </u>	1.5	18.5	17.0	1,609	297	18	18.6	9.8
AMBX0959	408200	8485800	709.7	18.0		10.0	16.0	6.0	862	164	6	18.9	6.4
AMBX0960	407800	8485800	721.7	14.0	No Sig. Ints.								
AMBX0962	407999	8486200	678.2	10.0	No Sig. Ints.								
AMBX0966	411799	8487800	534.7	6.5	No Sig. Ints.								

Hole ID	East	North	Elev.	Depth	Label	From	То	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX0969	408399	8487399	695.4	10.0		2.0	10.0	8.0	520	85	4	16.6	7.6
AMBX0970	411999	8488003	629.3	19.5		2.0	14.0	12.0	569	100	8	17.3	13.1
AMBX0970	411999	8488003	629.3	19.5	including	10.5	12.0	1.5	1,191	224	18	18.8	12.8
AMBX0971	412197	8488003	626.2	16.8	No Sig. Ints.								
AMBX0974	412199	8487400	542.1	22.0		1.5	22.0	20.5	2,035	423	27	19.8	15.4
AMBX0976	407599	8486200	687.1	10.5	No Sig. Ints.								
AMBX0977	407201	8486199	599.2	16.0	No Sig. Ints.								
AMBX0979	411599	8487200	588.7	13.0		2.0	12.0	10.0	1,676	260	26	16.0	15.4
AMBX0980	411800	8487200	557.6	8.5		4.0	7.5	3.5	728	137	10	18.8	11.2
AMBX0981	411999	8487199	548.8	13.5		1.5	13.5	12.0	1,362	262	23	19.1	15.4
AMBX0983	409199	8487399	677.7	12.5	No Sig. Ints.								
AMBX0984	409399	8487400	701.3	15.0	No Sig. Ints.								
AMBX0985	411999	8487800	558.4	7.0		2.0	7.0	5.0	903	191	12	21.7	13.3
AMBX0986	410600	8486999	609.0	7.0		1.5	7.0	5.5	649	98	4	15.1	6.2
AMBX0989	407400	8485600	561.0	11.5	No Sig. Ints.								
AMBX0990	410599	8486000	686.4	13.0		1.5	12.0	10.5	1,633	279	26	17.8	12.5
AMBX0992	410800	8485600	744.4	15.5		4.0	12.0	8.0	453	110	8	24.0	13.5
AMBX0994	410400	8485600	649.3	14.0	No Sig. Ints.								
AMBX0996	412399	8487198	572.0	14.5	-	1.5	14.5	13.0	948	212	14	20.9	11.4
AMBX0997	412599	8487198	679.6	15.5		1.5	14.5	13.0	707	141	11	19.9	11.8
AMBX0999	408199	8487202	701.0	13.0	No Sig. Ints.								
AMBX1003	409799	8486200	645.9	10.0	-	2.5	10.0	7.5	581	102	5	17.8	9.0
AMBX1004	410199	8486200	708.4	26.5		1.5	24.0	22.5	1,290	245	15	17.7	12.2
AMBX1004	410199	8486200	708.4	26.5	including	1.5	4.0	2.5	5,320	1,088	55	19.8	10.5
AMBX1005	411199	8486000	679.7	17.0		3.5	16.5	13.0	711	165	12	23.2	12.6
AMBX1007	410599	8485200	652.6	12.0		5.0	12.0	7.0	602	135	9	22.5	11.8
AMBX1007	410599	8485200	652.6	12.0	including	5.0	6.0	1.0	1,617	367	27	22.7	12.7
AMBX1008	407999	8485600	733.7	11.0		1.5	11.0	9.5	607	101	3	16.7	6.0
AMBX1012	412400	8486599	497.8	18.0		2.0	17.5	15.5	1,064	161	10	15.4	10.2
AMBX1023	409000	8485600	728.9	13.0		2.5	13.0	10.5	874	140	5	15.8	5.7
AMBX1024	408600	8487200	693.5	16.0	No Sig. Ints.								
AMBX1028	412799	8488007	623.9	17.0	Ŭ	4.5	17.0	12.5	2,378	496	34	20.9	13.8
AMBX1029	412600	8486800	602.3	2.5	No Sig. Ints.								
AMBX1032	412599	8486400	521.6	16.0	Ü	10.0	16.0	6.0	1,064	309	12	25.2	9.1
AMBX1034	410000	8485800	637.8	15.5		1.5	15.5	14.0	1,092	215	13	19.6	9.5
AMBX1035	409800	8485600	687.6	3.5	No Sig. Ints.								
AMBX1037	410999	8485600	734.8	10.0	<u> </u>	1.5	6.0	4.5	2,058	498	45	23.8	15.7
AMBX1038	412600	8485600	429.9	5.9		1.0	5.9	4.9	1,198	309	24	25.2	14.7
AMBX1039	412599	8487401	680.4	12.0	No Sig. Ints.								

Hole ID	East	North	Elev.	Depth	Label	From	То	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX1047	408399	8486599	746.2	6.1		2.0	6.1	4.1	600	115	4	19.2	6.9
AMBX1049	411399	8486400	614.4	11.5		2.0	11.5	9.5	618	128	8	21.2	11.3
AMBX1049	411399	8486400	614.4	11.5	including	4.5	6.5	2.0	1,179	234	13	19.9	10.4
AMBX1056	410399	8485800	628.9	3.0		0.0	3.0	3.0	1,061	226	34	21.3	20.4
AMBX1065	412005	8486400	502.9	8.0		1.0	8.0	7.0	742	154	14	20.3	16.3
AMBX1067	411800	8483400	540.6	10.0		3.0	6.5	3.5	790	136	6	17.5	7.5
AMBX1070	410399	8485200	611.3	7.5	No Sig. Ints.								
AMBX1073	410999	8483399	619.8	8.0	No Sig. Ints.								
AMBX1074	410000	8483400	503.6	8.0		1.5	8.0	6.5	580	137	11	24.0	14.8
AMBX1075	410001	8485000	682.0	16.0		4.5	8.5	4.0	393	103	8	26.2	15.7
AMBX1075	410001	8485000	682.0	16.0	and	12.5	15.5	3.0	434	111	10	25.6	17.1
AMBX1076	410200	8484999	665.8	9.0		2.0	8.0	6.0	595	124	7	20.6	8.9
AMBX1077	411374	8483799	619.0	17.0		3.5	6.5	3.0	383	62	6	16.4	13.5
AMBX1077	411374	8483799	619.0	17.0	and	12.0	16.5	4.5	612	125	11	20.8	14.5
AMBX1079	412000	8483600	568.1	2.0	No Sig. Ints.								
AMBX1080	411599	8483600	582.3	10.5		1.5	10.5	9.0	1,137	139	9	12.9	6.4
AMBX1082	410399	8485000	613.5	9.0	No Sig. Ints.								
AMBX1083	410799	8485000	677.4	12.5		2.0	12.5	10.5	1,787	381	22	21.4	9.5
AMBX1087	410399	8484599	647.1	14.5		1.5	14.5	13.0	556	122	9	21.5	12.5
AMBX1088	410800	8484600	621.7	12.5		1.5	12.5	11.0	623	146	9	23.1	11.7
AMBX1090	411199	8483400	573.8	12.0		8.0	12.0	4.0	1,387	353	19	25.4	10.9
AMBX1093	411800	8483800	548.0	13.5		1.5	13.5	12.0	2,344	577	35	21.8	14.1
AMBX1094	412000	8483800	558.9	11.0		2.0	11.0	9.0	1,268	200	15	17.4	9.8
AMBX1098	411375	8484000	553.5	6.0	No Sig. Ints.								
AMBX1100	411000	8485200	729.6	8.0		1.5	8.0	6.5	833	175	13	21.1	11.7
AMBX1101	411600	8484000	545.6	10.0		2.5	10.0	7.5	908	92	12	14.1	12.2
AMBX1101	411600	8484000	545.6	10.0	including	6.5	10.0	3.5	1,513	114	19	8.5	13.6
AMBX1104	410600	8484400	615.5	8.5		2.0	6.0	4.0	546	120	10	22.0	14.9
AMBX1108	411804	8484801	631.7	9.0	No Sig. Ints.								
AMBX1109	410026	8484199	619.8	9.8		1.5	8.0	6.5	863	203	13	23.7	12.8
AMBX1111	411209	8483799	654.7	18.9		6.0	12.0	6.0	731	169	12	23.1	11.2
AMBX1116	410200	8483400	552.2	3.5	No Sig. Ints.								
AMBX1118	410799	8483800	591.3	13.0		5.5	12.0	6.5	1,672	431	33	25.5	14.4
AMBX1120	410200	8484199	606.0	9.0		0.0	9.0	9.0	761	180	10	22.9	11.6
AMBX1121	411199	8485000	688.2	4.5		1.5	4.5	3.0	1,543	324	23	21.1	11.4
AMBX1122	410200	8484398	638.0	7.0		1.5	7.0	5.5	465	98	8	21.1	16.7
AMBX1124	410999	8484600	670.0	19.0		2.0	18.5	16.5	619	139	9	22.4	11.1
AMBX1127	411200	8483599	648.9	11.4	No Sig. Ints.								
AMBX1129	411799	8484399	624.7	13.5	No Sig. Ints.								

Hole ID	East	North	Elev.	Depth	Label	From	To	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX1130	411399	8484999	699.2	10.0		1.5	10.0	8.5	901	193	14	21.3	12.9
AMBX1131	411003	8483600	635.2	12.0		2.5	12.0	9.5	1,170	288	20	23.2	14.9
AMBX1132	411600	8484600	655.5	9.5		1.5	8.5	7.0	1,028	199	13	19.4	9.6
AMBX1134	410199	8484000	658.3	17.0		0.0	13.5	13.5	452	99	6	22.1	11.4
AMBX1136	410599	8483799	646.8	7.0		1.5	7.0	5.5	945	238	25	24.8	20.0
AMBX1140	410400	8483600	697.3	13.0		2.0	13.0	11.0	674	168	12	24.8	13.8
AMBX1142	412000	8484999	710.8	18.0		4.0	8.0	4.0	571	119	8	20.8	10.9
AMBX1144	411799	8485400	778.4	4.5	No Sig. Ints.								
AMBX1149	409400	8493200	711.1	8.5	No Sig. Ints.								
AMBX1152	409599	8493199	741.5	13.0	No Sig. Ints.								
AMBX1157	411199	8484200	572.8	9.0		3.0	8.5	5.5	837	111	8	13.2	7.7
AMBX1158	410004	8483798	655.1	4.7	No Sig. Ints.								
AMBX1159	410200	8483799	700.6	14.0		4.0	14.0	10.0	616	149	9	24.1	11.2
AMBX1160	411397	8484200	597.4	12.5		1.5	12.0	10.5	2,025	488	40	23.8	14.0
AMBX1161	411799	8484199	635.0	11.0	No Sig. Ints.								
AMBX1163	411999	8484599	626.6	13.5		1.5	13.5	12.0	836	191	16	22.4	14.0
AMBX1164	412400	8486000	416.9	10.0	No Sig. Ints.								
AMBX1169	408599	8492600	714.5	14.0		2.0	11.5	9.5	654	98	4	15.3	6.4
AMBX1177	412400	8485799	439.2	9.0		1.5	9.0	7.5	1,464	307	29	22.6	15.7
AMBX1179	411399	8485800	699.6	7.0		1.5	7.0	5.5	939	197	13	21.0	10.1
AMBX1181	412602	8485800	393.7	10.0		2.5	10.0	7.5	599	97	10	17.1	14.4
AMBX1185	412201	8483600	566.7	13.0		2.5	12.0	9.5	747	151	9	20.1	9.4
AMBX1186	412199	8483400	516.0	2.5	No Sig. Ints.								
AMBX1190	412424	8483600	529.1	9.0	No Sig. Ints.								
AMBX1191	412598	8483400	603.2	14.0	No Sig. Ints.								
AMBX1195	412399	8483400	556.9	11.0		2.0	10.0	8.0	732	137	6	18.8	12.2
AMBX1195	412399	8483400	556.9	11.0	including	8.0	10.0	2.0	1,890	340	12	18.0	5.3
AMBX1198	412799	8483400	585.5	11.0		1.5	6.5	5.0	628	127	8	20.5	11.6
AMBX1200	412597	8483600	553.2	7.0		4.0	7.0	3.0	725	141	8	19.5	10.5
AMBX1201	412797	8483600	585.6	17.5		3.5	17.0	13.5	1,402	275	12	19.6	7.6
AMBX1203	413200	8483400	531.3	14.5		2.0	14.5	12.5	888	176	9	20.1	8.6
AMBX1213	408400	8492400	698.8	12.0		6.0	12.0	6.0	839	155	6	19.9	7.5
AMBX1214	408599	8492400	700.2	16.0		9.5	16.0	6.5	902	160	7	18.2	8.0
AMBX1239	408803	8492804	682.6	13.5		3.0	12.0	9.0	813	139	5	17.0	5.8
AMBX1255	410399	8491799	652.5	16.5	No Sig. Ints.								
AMBX1257	411799	8493600	565.5	17.0	No Sig. Ints.								
AMBX1260	412400	8493000	553.6	10.0	No Sig. Ints.								
AMBX1261	412599	8483999	605.8	15.0	No Sig. Ints.								
AMBX1262	412394	8484001	599.1	8.0		1.5	8.0	6.5	1,333	215	16	15.9	8.3

Hole ID	East	North	Elev.	Depth	Label	From	То	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX1266	412599	8484800	459.8	13.5		4.0	13.0	9.0	696	93	8	14.3	9.7
AMBX1266	412599	8484800	459.8	13.5	including	9.5	13.0	3.5	1,047	125	10	12.0	9.6
AMBX1281	413199	8483800	492.7	11.0	No Sig. Ints.								
AMBX1285	413001	8483600	579.4	18.5		1.0	18.0	17.0	631	131	7	20.7	9.6
AMBX1286	413397	8483599	422.7	7.5		1.5	7.5	6.0	520	97	5	18.8	8.7
AMBX1288	412804	8483800	591.4	18.0		6.5	14.0	7.5	1,379	318	17	19.2	14.7
AMBX1288	412804	8483800	591.4	18.0	including	12.0	14.0	2.0	4,154	1,009	50	24.3	9.1
AMBX1290	408050	8491999	730.2	8.5		2.0	8.5	6.5	713	93	3	13.9	5.0
AMBX1293	410790	8493600	618.1	13.0	No Sig. Ints.								
AMBX1295	413800	8493599	527.5	18.5		2.0	12.5	10.5	773	72	6	9.5	8.7
AMBX1295	413800	8493599	527.5	18.5	including	10.0	12.5	2.5	1,502	176	11	11.7	5.9
AMBX1299	412599	8484200	551.5	3.0	No Sig. Ints.								
AMBX1302	411849	8485000	651.3	11.0		2.0	11.0	9.0	1,139	242	21	21.4	15.0
AMBX1307	412199	8484800	660.3	13.0		1.5	13.0	11.5	1,149	247	18	21.6	13.5
AMBX1316	412199	8484199	561.6	10.0		1.5	10.0	8.5	885	144	22	14.7	20.0
AMBX1330	412199	8485000	691.1	5.0		1.0	4.0	3.0	633	139	11	22.0	12.1
AMBX1341	412599	8485400	474.7	10.0		0.5	9.5	9.0	527	127	10	24.3	15.5
AMBX1347	412400	8485400	576.4	4.0		1.0	4.0	3.0	750	161	16	21.5	16.6
AMBX1379	407600	8491599	707.2	13.0		6.0	13.0	7.0	629	109	4	17.4	6.1
AMBX1405	412599	8492399	607.8	8.0	No Sig. Ints.								
AMBX1418	413004	8492599	491.6	12.0		2.0	11.5	9.5	926	151	17	16.9	18.1
AMBX1425	410399	8488749	709.4	16.5		0.0	16.5	16.5	903	160	5	17.9	5.9
AMBX1438	413199	8492399	558.9	8.0		1.5	7.5	6.0	655	97	4	14.7	6.6
AMBX1450	412799	8492800	494.8	7.0		1.5	6.5	5.0	819	127	8	15.3	9.4
AMBX1463	412201	8493399	580.0	15.0		2.0	8.0	6.0	1,101	20	3	2.1	2.7
AMBX1463	412201	8493399	580.0	15.0	and	12.0	15.0	3.0	906	184	16	21.4	16.0
AMBX1463	412201	8493399	580.0	15.0	including	14.0	15.0	1.0	1,441	255	22	17.7	13.2
AMBX1466	413202	8491800	671.3	12.0		1.5	12.0	10.5	695	126	5	18.0	7.4
AMBX1474	413606	8491800	521.0	15.0	No Sig. Ints.								
AMBX1476	413799	8492200	435.6	6.5		2.5	6.5	4.0	618	85	3	14.0	5.4
AMBX1489	412600	8488599	657.8	12.5	No Sig. Ints.								
AMBX1491	412802	8488800	648.6	7.5		1.5	7.5	6.0	1,622	280	14	17.2	7.5
AMBX1507	412000	8488800	634.8	9.0		4.0	9.0	5.0	1,363	132	6	9.7	4.0
AMBX1508	412600	8488799	700.4	10.0		1.5	10.0	8.5	1,090	207	6	19.1	5.7
AMBX1512	412599	8490199	580.8	14.0		3.0	14.0	11.0	546	100	4	18.4	7.2
AMBX1515	412397	8491200	616.5	8.0		0.5	7.5	7.0	531	86	2	16.2	5.5
AMBX1519	412200	8488800	623.7	10.0		1.5	10.0	8.5	963	153	5	13.8	5.4
AMBX1519	412200	8488800	623.7	10.0	including	6.0	10.0	4.0	1,464	248	9	16.0	7.1
AMBX1523	410399	8488600	692.2	17.5		10.5	17.5	7.0	762	141	5	18.6	6.6

Hole ID	East	North	Elev.	Depth	Label	From	То	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX1530	413799	8489999	527.4	14.0		1.5	14.0	12.5	3,256	622	42	18.8	10.2
AMBX1543	412164	8488600	665.5	11.0		0.0	11.0	11.0	1,455	212	7	14.9	5.0
AMBX1544	411000	8488799	668.3	10.5	No Sig. Ints.								
AMBX1578	413647	8492400	468.6	6.0		1.5	6.0	4.5	738	95	3	13.0	4.7
AMBX1582	413753	8491199	646.6	8.0		1.5	8.0	6.5	990	182	9	18.3	8.5
AMBX1585	411049	8491599	596.4	8.5		4.0	8.0	4.0	386	81	11	21.0	28.1
AMBX1594	409750	8493200	715.1	12.0	No Sig. Ints.								
AMBX1597	413650	8489799	566.3	15.0		1.5	14.5	13.0	548	103	10	17.9	15.4
AMBX1597	413650	8489799	566.3	15.0	including	10.0	12.0	2.0	1,019	203	21	19.9	16.5
AMBX1604	411620	8493800	520.6	6.5		1.5	6.0	4.5	1,347	235	10	17.5	7.4
AMBX1619	410400	8493799	679.2	18.0		1.5	15.0	13.5	510	95	5	18.5	9.0
AMBX1621	410200	8494200	620.0	8.0		5.0	8.0	3.0	2,100	400	58	17.1	19.5
AMBX1622	413200	8493799	568.8	14.0		1.0	13.5	12.5	968	180	11	18.9	9.3
AMBX1626	411200	8493799	566.7	13.5	No Sig. Ints.								
AMBX1633	408800	8488049	717.9	16.0		10.0	16.0	6.0	730	99	4	13.3	6.3
AMBX1637	411849	8494000	570.0	10.0	No Sig. Ints.								
AMBX1640	409999	8493999	630.6	16.5		4.5	15.5	11.0	479	84	3	17.3	8.4
AMBX1640	409999	8493999	630.6	16.5	including	14.0	15.5	1.5	1,717	331	8	19.3	5.0
AMBX1642	412599	8493800	524.5	12.5		4.0	9.5	5.5	615	124	9	20.1	12.3
AMBX1643	413599	8490799	571.7	13.0		4.0	13.0	9.0	835	85	3	10.6	3.8
AMBX1649	413010	8494399	531.1	16.5	No Sig. Ints.								
AMBX1654	412199	8493824	520.5	11.5		6.0	10.5	4.5	701	129	11	17.7	13.8
AMBX1654	412199	8493824	520.5	11.5	including	9.5	10.5	1.0	1,586	313	26	19.7	13.2
AMBX1655	412441	8494600	541.9	8.0		2.0	8.0	6.0	1,190	271	14	23.2	12.2
AMBX1688	410850	8486600	578.5	6.0		1.0	6.0	5.0	1,246	205	13	17.4	9.4
AMBX1700	411801	8494599	593.8	20.0	No Sig. Ints.								
AMBX1709	411850	8494401	539.5	10.0	No Sig. Ints.								
AMBX1710	412024	8494200	553.2	12.0	No Sig. Ints.								
AMBX1713	414200	8490199	476.0	9.5	No Sig. Ints.								
AMBX1719	410799	8494200	689.9	17.0	No Sig. Ints.								
AMBX1720	410199	8487649	671.7	12.0		0.5	10.5	10.0	931	167	5	17.4	5.9
AMBX1721	411250	8487199	603.2	15.5		1.5	15.5	14.0	2,676	164	5	9.5	2.9
AMBX1721	411250	8487199	603.2	15.5	including	8.5	12.5	4.0	5,412	326	6	9.7	1.4
AMBX1730	412049	8487599	539.7	8.5		1.5	8.5	7.0	1,531	148	13	11.5	9.9
AMBX1742	411650	8487400	561.5	3.8	No Sig. Ints.								
AMBX1743	412249	8494599	564.6	11.5	No Sig. Ints.								
AMBX1747	408849	8486200	642.7	9.5		6.0	9.5	3.5	464	89	3	19.3	6.4
AMBX1751	414450	8491600	469.9	15.0		1.0	8.0	7.0	808	134	5	16.6	6.4
AMBX1755	412949	8494599	516.2	10.0		6.0	10.0	4.0	1,251	295	9	23.5	7.7

Hole ID	East	North	Elev.	Depth	Label	From	То	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX1762	410374	8486600	603.4	10.0		2.0	6.5	4.5	627	82	5	13.1	7.6
AMBX1764	412005	8489401	642.1	20.0		3.0	20.0	17.0	602	96	3	15.8	5.7
AMBX1768	414199	8491400	620.9	17.0		1.5	17.0	15.5	1,278	123	4	12.4	4.3
AMBX1776	408149	8487400	691.4	13.0		4.0	12.0	8.0	496	100	4	20.0	9.9
AMBX1780	414649	8490799	500.8	10.0		2.0	5.5	3.5	862	181	18	18.5	12.7
AMBX1780	414649	8490799	500.8	10.0	including	4.0	5.5	1.5	1,483	342	35	23.1	16.9
AMBX1782	414996	8490600	459.2	12.0		2.0	11.5	9.5	1,121	132	10	12.9	8.4
AMBX1783	414599	8491400	464.5	13.0		4.0	10.5	6.5	947	158	7	16.8	6.4
AMBX1784	414948	8491400	458.1	3.3	No Sig. Ints.								
AMBX1785	407956	8488404	679.5	9.4		1.5	9.4	7.9	635	111	2	16.0	4.7
AMBX1785	407956	8488404	679.5	9.4	including	4.0	6.0	2.0	1,319	244	3	18.5	2.7
AMBX1786	414398	8491199	566.1	14.8		2.0	14.8	12.8	1,219	165	6	15.3	5.8
AMBX1792	414425	8491799	445.0	10.0	No Sig. Ints.								
AMBX1807	413799	8489399	569.6	16.5	No Sig. Ints.								
AMBX1815	414400	8490600	547.2	13.0	No Sig. Ints.								
AMBX1822	407988	8488002	670.7	14.5		6.0	13.5	7.5	605	83	3	13.9	5.1
AMBX1832	415000	8490999	413.6	10.5	No Sig. Ints.								
AMBX1833	414797	8491599	412.8	11.0		1.5	10.5	9.0	1,428	196	9	13.3	5.2
AMBX1834	414200	8494600	651.4	3.0	No Sig. Ints.								
AMBX1837	415800	8496200	767.1	5.5	No Sig. Ints.								
AMBX1841	414200	8489799	493.9	28.0	No Sig. Ints.								
AMBX1842	407400	8489399	680.2	14.0		2.5	12.0	9.5	904	155	6	17.2	6.3
AMBX1851	418999	8489000	257.0	7.0		1.0	6.0	5.0	845	191	10	22.8	10.7
AMBX1851	418999	8489000	257.0	7.0	including	1.5	3.0	1.5	1,399	298	13	21.3	7.9
AMBX1853	418149	8490599	271.4	12.0	No Sig. Ints.								
AMBX1854	419029	8491399	290.0	10.0	No Sig. Ints.								
AMBX1858	419805	8488999	276.6	11.0	No Sig. Ints.								
AMBX1859	419002	8487402	258.5	9.5		2.0	6.0	4.0	396	76	4	19.2	9.3
AMBX1861	418199	8493799	622.8	16.0	No Sig. Ints.								
AMBX1862	414235	8496199	693.6	3.5	No Sig. Ints.								
AMBX1872	414202	8493003	577.1	15.0	-	0.0	15.0	15.0	869	138	5	15.8	6.1
AMBX1918	419799	8494599	540.1	13.0		8.0	12.5	4.5	1,049	180	11	17.2	9.9
AMBX1955	411998	8486999	592.9	8.0	No Sig. Ints.								
AMBX1998	414224	8493799	514.5	7.0	-	2.5	7.0	4.5	413	66	12	17.1	35.0
AMBX2001	418200	8489800	290.6	11.0	No Sig. Ints.								
AMBX2021	414249	8495399	676.4	7.3	No Sig. Ints.								
AMBX2026	408200	8490899	720.1	6.5	No Sig. Ints.								
AMBX2027	409400	8490899	723.4	7.7	No Sig. Ints.								
AMBX2464	417700	8495000	726.2	13.0		2.0	13.0	11.0	5,289	1,058	45	17.6	6.9

Hole ID	East	North	Elev.	Depth	Label	From	То	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX2464	417700	8495000	726.2	13.0	including	4.0	8.0	4.0	13,015	2,661	113	20.1	7.1
AMBX2465	417007	8495000	649.7	17.0		1.5	17.0	15.5	839	150	6	18.0	7.2
AMBX2466	412548	8495400	550.0	10.0	No Sig. Ints.								
AMBX2469	417846	8495800	688.8	12.0		2.5	12.0	9.5	932	173	7	18.6	7.1
AMBX2470	415400	8494599	739.9	16.0		2.5	15.5	13.0	796	150	9	18.8	9.9
AMBX2482	416800	8493800	466.8	12.0		1.0	10.0	9.0	674	116	5	17.2	7.0
AMBX2487	413589	8495400	705.3	18.3	No Sig. Ints.								
AMBX2489	415996	8495000	637.0	17.0		1.5	17.0	15.5	890	158	7	17.4	7.8
AMBX2490	412449	8496199	760.4	9.5		2.0	9.5	7.5	983	151	7	14.8	7.0
AMBX2498	415050	8493799	615.4	10.8		1.0	7.5	6.5	853	135	5	15.4	6.0
AMBX2499	418400	8495400	685.4	16.0		2.0	16.0	14.0	793	128	5	16.4	5.8
AMBX2518	418800	8495400	595.0	8.5		1.5	8.5	7.0	829	140	7	16.9	7.0
AMBX2539	417797	8496200	747.8	10.5		1.5	10.5	9.0	871	136	6	15.8	6.6
AMBX2625	418396	8495000	598.6	11.5		1.5	10.5	9.0	1,471	177	7	12.6	4.7
AMBX2679	414946	8484200	291.2	15.0	No Sig. Ints.								
AMBX2685	414099	8483400	295.9	12.5	No Sig. Ints.								
AMBX2739	419825	8488199	296.1	20.5	-	11.5	14.5	3.0	470	91	3	19.5	5.7
AMBX2755	414250	8484199	279.2	13.5		1.5	13.5	12.0	691	138	12	19.8	15.7
AMBX2761	417575	8495800	692.7	15.2		1.5	15.2	13.7	652	125	4	19.1	6.5
AMBX2765	417600	8496000	699.3	17.0		2.0	12.0	10.0	779	144	7	18.4	8.4
AMBX2765	417600	8496000	699.3	17.0	and	14.0	17.0	3.0	478	97	4	20.5	8.9
AMBX2766	419300	8495000	543.3	10.0		2.0	10.0	8.0	616	107	8	17.7	12.2
AMBX2769	418050	8495400	676.1	15.0		1.5	14.5	13.0	693	114	4	16.2	5.8
AMBX2770	417972	8495199	655.6	4.0		0.0	4.0	4.0	701	120	3	17.2	4.9
AMBX2780	414050	8488200	453.2	1.5	No Sig. Ints.								
AMBX2784	413599	8488199	542.8	12.0		1.5	12.0	10.5	896	127	9	14.0	7.5
AMBX2785	414475	8488999	746.5	12.0	No Sig. Ints.								
AMBX2786	406550	8487999	599.5	15.3		8.0	15.0	7.0	946	149	8	15.8	7.8
AMBX2793	418204	8496000	627.4	12.0		2.5	12.0	9.5	642	95	4	15.4	6.4
AMBX2798	406402	8489599	595.0	12.0	No Sig. Ints.								
AMBX2799	407000	8489599	633.4	12.0		2.0	12.0	10.0	1,026	70	3	7.5	3.0
AMBX2800	414975	8489399	590.1	13.0	No Sig. Ints.								
AMBX2801	418200	8495800	663.9	5.3	No Sig. Ints.								
AMBX2802	407000	8492799	709.4	7.0		2.0	6.5	4.5	707	118	8	14.1	12.2
AMBX2802	407000	8492799	709.4	7.0	including	5.5	6.5	1.0	1,747	326	15	18.7	8.0
AMBX2803	407800	8492798	675.6	12.0		2.0	11.5	9.5	467	82	3	17.7	7.0
AMBX2805	415000	8492199	452.2	9.5		2.0	9.5	7.5	881	125	6	14.3	6.0
AMBX2806	415799	8492194	515.4	14.0		3.5	10.5	7.0	988	199	7	20.3	7.3
AMBX2810	415050	8488199	729.1	7.9	No Sig. Ints.								

Hole ID	East	North	Elev.	Depth	Label	From	To	Interval	TREO	NdPr	DyTb	NdPr:	HREO:
			(m)	(m)		(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	TREO (%)	TREO (%)
AMBX2842	418251	8492999	446.7	11.0		1.5	10.5	9.0	470	95	5	20.5	12.5
AMBX2845	419800	8489799	277.1	12.0	No Sig. Ints.								
AMBX2879	419000	8488200	238.6	12.0	No Sig. Ints.								
AMBX2904	419150	8492200	424.0	2.3	No Sig. Ints.								
AMBX2908	417620	8487399	346.4	15.0		2.0	13.5	11.5	415	97	5	23.9	12.0
AMBX2910	418204	8492208	611.9	10.0	No Sig. Ints.								
AMBX3054	407967	8486589	759.6	8.0	No Sig. Ints.								
AMBX3199	418601	8493800	604.0	19.5		1.5	19.5	18.0	1,166	208	19	18.5	14.5
AMBX3202	418003	8494801	619.7	14.0		2.0	14.0	12.0	796	119	4	14.9	4.9
AMBX3203	417804	8494203	615.8	13.0		1.5	13.0	11.5	973	190	10	16.3	8.1
AMBX3205	418399	8492797	413.6	3.3	No Sig. Ints.								
AMBX3207	417805	8494602	642.0	3.3	No Sig. Ints.								
AMBX3208	419402	8493797	622.4	10.5		1.5	10.5	9.0	1,029	195	31	19.6	27.7
AMBX4386	408803	8490699	812.5	18.0	No Sig. Ints.								
AMBX4389	409299	8490700	747.5	10.0	No Sig. Ints.								
AMBX4477	408200	8490498	769.4	24.0		8.5	21.5	13.0	587	102	5	17.3	7.8
AMBX4586	409799	8490299	681.7	7.0		2.0	7.0	5.0	571	125	11	20.6	15.7
AMBX4586	409799	8490299	681.7	7.0	including	6.0	7.0	1.0	1,181	276	15	23.0	9.6
AMBX4710	408304	8489996	746.4	14.0		1.5	14.0	12.5	870	155	5	17.8	6.4
AMBX4754	408873	8489900	720.7	14.5	No Sig. Ints.								
AMBX4760	409699	8489900	687.1	4.0	No Sig. Ints.								
AMBX4800	408600	8489798	768.2	26.5		6.5	22.5	16.0	426	91	6	21.2	11.4
AMBX4844	409399	8489699	696.7	8.5	No Sig. Ints.								
AMBX4892	409100	8489600	730.0	11.5		4.0	11.5	7.5	1,250	228	2	18.2	2.9
AMBX7063	409602	8489599	719.0	15.4	No Sig. Ints.								
AMBX7091	410500	8492599	698.7	31.1	No Sig. Ints.								
AMBX7198	409001	8487199	721.8	18.7	No Sig. Ints.								
AMBX9066	411393	8491568	693.7	22.4	No Sig. Ints.								

APPENDIX D: JORC Table

Section 1: Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information. 	The reported results are obtained from grab samples and re-assaying of historical auger samples. Grab samples were collected from REE-Nb-Sc-U boulders, subcrop and outcrop using a rock hammer to obtain representative rock fragments with an average weight of 0.6kg. Rock fragments were placed in pre-numbered sample bags in the field and then transported to the Company's exploration facility for shipment to the laboratory for ICPMS analysis. All mineralisation that is material to this report has been directly determined through quantitative laboratory analytical techniques that are detailed in the sections below.
Drilling techniques	 Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	No drilling completed by the Company is detailed in this report.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling completed by the Company is detailed in this report.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Data was collected in sufficient detail to support exploration targeting studies. Grab sample locations were logged in the field by BRE geologists in the field. Logging included qualitive determinations of primary and secondary lithology units, weathering profile unit (mottled zone, lateritic zone, saprock, saprolite, etc.) as well as

	•	The total length and percentage of the relevant intersections logged.	colour ar				of the ro	ck. Quar	ntitative m	easurem	ent of ge	ophysical
											vere capt XDeposit.	ured in a
									ed entirely			
Sub-sampling techniques	•	If core, whether cut or sawn and whether quarter, half or all core taken.	Grab san Grab san						r analysis	without	sub samp	ling.
and sample	•	If non-core, whether riffled, tube sampled, rotary split, etc and		•		•	•					
preparation		whether sampled wet or dry.										ator were anged to
	•	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	include d	oarse re	eject mat	terial only	y and su	b sampli	ng using	every for		sample
	•	Quality control procedures adopted for all sub-sampling stages to	starting a	t the bot	tom of th	ne hole up	pward (e.	g. 12m, 1	0m, 8m,	etc.).		
	•	maximise representivity of samples. Measures taken to ensure that the sampling is representative of the										e sample
		in-situ material collected, including for instance results for field							ss and I were pro		od repro	ducibility.
	•	duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the	·	-					•	•		
		material being sampled.	Submitte	d sample cludes	es of all i	types hav	ve approp	oriate ma zite cum	ss to repr	esent the	material	collected ralisation,
			micropar	ticle to s	and size	d monazi	te grains,	and ioni	c clay RE	E mineral	lisation.	
Quality of assay data and laboratory	•	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	This repo					n BRE ex	ploration a	and from	re-assayir	ng of pulp
tests	•	For geophysical tools, spectrometers, handheld XRF instruments,	BRE Exp					_				
		etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.		Grab sa Vespasia	amples o ano, Min	collected as Gerais	by the (s, Brazil, v	Company which is o	were as considere	ssayed b d the Prin	y SGS G nary labor	Geosol in ratory.
	•	Nature of quality control procedures adopted (eg. standards, blanks,										oles were
		duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been										ded. The mple was
		established.		pulverize	ed to 95	% passin	ng 75 μm					nalysis or
				further e	xploratio	n purpos	es.					
												MS (SGS
						395A). Th as follow		tal analys	sis of the	REE. Ele	ments an	alysed at
								_	_	1	_	,
				Ce Gd	Co Hf	Cs Ho	Cu La	Dy	Er	Eu Nb	Ga Nd	-
				Ni	Pr	Rb	Sm	Lu Sn	Mo Ta	Tb	Th	-
				TI	Tm	U	W	Υ Υ	Yb	1.0	1	J

Overlimit samples were analysed at percentage levels using SGS Geosol analysis code IMS95RS

The assay technique used for major oxides and components was Lithium Borate Fusion ICP-OES (SGS Geosol code ICP95A). This is a total analysis for the elements analysed % and ppm (Ba, V, Sr, Zn, Zr) levels as listed below:

Al ₂ O ₃	Ва	CaO	Cr ₂ O ₃
Fe ₂ O ₃	K ₂ O	MgO	MnO
Na₂O	P ₂ O ₅	SiO ₂	Sr
TiO ₂	V	Zn	Zr

Analysis for Scandium (Sc) was made by 4-Acid ICP-AES Analysis (SGS Geosol code ICM40-FR).

Re-assay Program

Initially archived pulp and coarse reject samples obtained by the previous operator were submitted for preparation at ALS Belo Horizonte, Brazil and assayed by ALS Lima, Peru. This was later changed to include only coarse reject material being submitted for every fourth 0.5m sample starting at the bottom of the hole upward (e.g. 12m, 10m, 8m, etc.).

Samples were prepared in the same manner as at SGS with the exception that 250g to 300g of the sample was pulverized to 85% passing 75 $\mu m.$ Residues were stored for check analysis or further exploration purposes.

The assay technique used for REE was Lithium Borate Fusion ICP-MS (ALS code ME-MS81) with appropriate overlimit analyses. This is a total analysis of the REE. Elements analysed at ppm levels were as at SGS.

At both laboratories, accuracy was monitored through submission of certified reference materials (CRMs) supplied by OREAS North America Inc. CRM materials (25a, 106, 147, 460 and 465) cover a range of REE grades encountered on the project. CRM 465 has an equivalent grade of approximately 10% TREO and supports reliable analysis of high grade REEE-Nb-Sc mineralization detailed in this report. CRM were inserted within batches of core, sonic and auger drill samples, and grab samples, at a frequency of 1:20 samples.

CRMs were submitted as "blind" control samples not identifiable by the laboratory and were alternated to span the range of expected grades within a group of 100 samples.

Contamination was monitored by insertion of blank samples of coarse quartz fragments. Blanks were inserted within batches of sonic and auger drill samples, and grab samples, at

		a frequency of 1:40 samples. Blanks pass through the entire sample preparation stream to test for cross contamination at each stage. No laboratory contamination or bias were noticed.
		Precision and sampling variance was monitored by the collection 'Field duplicate' samples, predominantly from mineralised intervals, at the rate of 1:20 samples. Half core was split into two ½ core samples to make field duplicate pairs that are analysed sequentially.
		The adopted QA/QC protocols are acceptable for this stage of exploration. Examination of the QA/QC sample data indicates satisfactory performance of field sampling protocols and assay laboratory procedures. Levels of precision and accuracy are sufficient to allow disclosure of analysis results and their use for Mineral Resource estimation.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	No independent verification of significant intersections was undertaken.
assaying	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	At Monte Alto, nineteen closely spaced twin holes were drilled using a sonic drill rig to verify the auger drilling and sampling methods. There does not appear to be a systematic bias associated with auger drill method that generated the samples analysed as through the reassay program presented in the report. Mean assay values obtained by augering are not likely to be higher or lower than values obtained by sonic drilling.
		All assay results are checked by the company's Principal Geologist. Logging for drillholes was directly uploaded to the project database hosed in the MXDeposit system. Assay data and certificates in digital format from the laboratory are directly uploaded to the project database.
		Rare earth oxide is the industry-accepted form for reporting rare earth elements. The following calculations are used for compiling REO into their reporting and evaluation groups:
		Note that Y ₂ O ₃ is included in the TREO, HREO and MREO calculations.
		TREO (Total Rare Earth Oxide) = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3 + Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3 + Y_2O_3 + Lu_2O_3$.
		HREO (Heavy Rare Earth Oxide) = $Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 + Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 + Yb_2O_3$, + $Y_2O_3 + Lu_2O_3$.
		MREO (Magnet Rare Earth Oxide) = $Nd_2O_3 + Pr_6O_{11}Pr_6O_{11} + Tb_4O_7 + Dy_2O_3 + Gd_2O_3 + Ho_2O_3 + Sm_2O_3 + Y_2O_3$.
		LREO (Light Rare Earth Oxide) = La ₂ O ₃ + CeO ₂ + Pr ₆ O ₁₁ + Nd ₂ O ₃ .
		$NdPr = Nd_2O_3 + Pr_6O_{11}$.

		NdPr% of TREO = Nd	₂ O ₃ + Pr ₆ O ₁₁ /TR	EO x 100.			
		HREO% of TREO = H	REO/TREO x 10	00.			
		Conversion of elemen spreadsheet using def			netric oxide (RI	EO) was undertaken b	y
			Element	Factor	Oxide		
			La	1.1728	La ₂ O ₃		
			Се	1.2284	Ce ₂ O ₃		
			Pr	1.2082	Pr ₆ O ₁₁		
			Nd	1.1664	Nd ₂ O ₃		
			Sm	1.1596	Sm ₂ O ₃		
			Eu	1.1579	Eu ₂ O ₃		
			Gd	1.1526	Gd ₂ O ₃		
			Tb	1.1762	Tb ₄ O ₇		
			Dy	1.1477	Dy_2O_3		
			Но	1.1455	Ho ₂ O ₃		
			Er	1.1435	Er ₂ O ₃		
			Tm	1.1421	Tm ₂ O ₃		
			Yb	1.1387	Yb₂O₃		
			Lu	1.1372	Lu ₂ O ₃		
			Υ	1.2699	Y ₂ O ₃		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	The process of conver oxide (REO) was ca (Source: resources/resources-a Grab sample sites were to support minera The gird datum used is obtained from SRTM of the extraction of the support mineral to supp	rried out using https://www.j and-extras/eleme re located by a h cted exploration of I resource estimates s SIRGAS 2000	predefined concurrence of the co	onversion fact vanced-analytic metric-oxide-co with accuracie is sufficient for ographic contr	ors on a spreadshee cal-centre/services-and onversion-factors) es <5m. this stage of exploration	et. d-
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	obtained from SRTM data at a lateral resolution of 30m². At all target areas laterally extensive REE enriched horizons are present in the regolith. For all regolith mineralisation styles, the spacing of historical auger drill holes is not sufficient to establish geology and grade continuity in accordance with resource classification criteria.					

	Whether sample compositing has been applied.	Samples are not composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The distribution of REE in the regolith horizons is largely controlled by vertical changes within the profile. Vertical auger holes completed by the previous operator intersect these horizons perpendicularly and obtain representative samples that reflect the true width of horizontal mineralization. In regolith, auger drill hole orientations do not result in geometrically biased interval thickness. Grab samples are collected from single location points on outcropping material, or boulders/corestones, and do not represent a continuous sample along any length of the mineralised system.
Sample security	The measures taken to ensure sample security.	After collection in the field, grab samples were placed in sealed plastic bags that were then placed into larger polyweave bags labelled with the sample IDs inside and transported to the Company's secure warehouse. A local courier transported the samples submitted for analysis to the laboratory. A copy of all waybills related to the sample forwarding was secured from the expediter. An electronic copy of each submission was forwarded to the laboratory to inform them of the incoming sample shipment. Once the samples arrived at the laboratory, the Company was notified by the laboratory manager and any non-compliance is reported. The laboratory did not report any issues related to the samples received.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The Company engaged the services of Telemark Geosciences to review the sampling and analysis techniques used at the Project, and to establish a "Standard Operating Procedures" manual to guide exploration. CSA Global Associate Principal Consultant, Peter Siegfried has toured the Company's exploration sites and facilities and conducted reviews of sampling techniques and data. The Company has addressed recommendations and feedback provided by CSA Global.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	As at 31 March 2024, the Rocha da Rocha Project comprised 261 granted exploration permits registered with Brazil's National Mining Agency and covering an area of approximately 434,835 hectares. All exploration permits are located in Bahia, Brazil and are held by the BRE's Brazilian subsidiaries directly or are to be acquired through legally binding agreements with third parties. All mining permits in Brazil are subject to state and landowner royalties, pursuant to article 20, § 1, of the Constitution and article 11, "b", of the Mining Code. In Brazil, the Financial Compensation for the Exploration of Mineral Resources (Compensação Financeira por Exploração Mineral - CFEM) is a royalty to be paid to the Federal Government at rates that can vary from 1% up to 3.5%, depending on the substance. It is worth noting that CFEM rates for mining rare earth elements are 2%. CFEM shall be paid (i) on the first sale of the mineral product; or (ii) when there is mineralogical mischaracterization or in the industrialization of the substance, which is which is considered "consume" of the product by the holder of the mining tenement; or (iii) when the products are exported, whichever occurs first. The basis for calculating the CFEM will vary depending on the event that causes the payment of the royalty. The landowners royalties could be subject of a transaction, however, if there's no agreement to access the land or the contract does not specify the royalties, article 11, §1, of the Mining Code sets forth that the royalties will correspond to half of the amounts paid as CFEM. The exploration tenement (870.685/2021) that host the Monte Alto project that is the subject of this report is subject to an additional 2.5% royalty agreement in favour of Brazil Royalty Corp. Participações e Investimentos Ltda (BRRCP).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	licence to operate in the area. Between 2007 and 2011 other parties conducted exploration on the tenements that are the subject of this report. This exploration is detailed in in the company's prospectus and included exploratory drilling amounting to 56,919 m in 4,257 drill holes. The previous operator collected auger drill samples using a comparable method to the Company but using 0.5 m intervals. Auger holes were 12 m deep on average with a maximum depth of approximately 30 m. Auger drilling was completed by the previous operator at 200 to 800m spacings in areas prospective for REE mineralization, decreasing to 100m in areas prospective for bauxite mineralization. The location of drill holes competed by the previous operator were surveyed by professional surveyors using high precision geodetic GNSS or electronic total station equipment with centimetric accuracy. Samples obtained by the

		previous operator have been stored in a secure facility. The drilling conducted by the previous operator has been appraised as suitable to support the findings in this report.
Geology	Deposit type, geological setting and style of mineralisation.	The Company's tenements contain REE deposits interpreted as analogies to Ion Adsorption ionic Clay ("IAC") deposits, and regolith hosted deposits of monazite mineral grains, and primary in-situ REEE-Nb-Sc mineralisation.
		The Project is hosted by the Jequié Complex, a terrain of the north-eastern São Francisco Craton, that includes the Volta do Rio Plutonic Suite of high-K ferroan ("A-type") granitoids, subordinate mafic to intermediate rocks; and thorium rich monazitic granite gneiss with associated REE. The region is affected by intense NE-SW regional shearing which may be associated with a REE enriched hydrothermal system.
		Exploration completed by the Company has focused on the bedrock and regolith profile.
		Bedrock mineralization is characterized by steeply dipping to sub vertical mega-enclaves of REE-Nb-Sc monazite cumulate mineralization. Local bedrock controls to mineralisation, such as faults or dykes, are not well understood. The company has initiated mapping of the limited bedrock exposures at property and proposes to undertake deeper drilling to create a model of the local geological setting.
		The regolith mineralization is characterised by a REE enriched lateritic zone at surface underlain by a depleted mottled zone grading into a zone of REE-accumulation in the saprolite part of the profile.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	The details related to all the auger drill holes presented in this Report are detailed in Appendix B and C.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values 	Downhole length weighted averaging is used to aggregate assay data from multiple samples within a reported intercept. Where coarse reject material from historical auger holes is sub sampled at regular intervals, i.e. every fourth 0.5m sample starting at the bottom of the hole upward (e.g. 12m, 10m, 8m, etc.) results have been composited to generate significant intercepts, whereby the unsampled intervals are assigned a null grade, as opposed to zero grade. No grade truncations or cut-off grades were applied. No metal equivalents values are used.

		should be clearly stated.	
Relationship between mineralisation widths and intercept lengths		These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known').	In the weathered profile all intercepts reported are down hole lengths. The geometry of mineralisation is interpreted to be flat. The drilling is vertical and perpendicular to mineralisation. In the weathered profile down hole lengths correspond to true widths. Significant results in Appendix B and C are reported using both down hole values.
Diagrams	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams, tables, and any graphic visualization are presented in the body of the report.
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	The report presents all drilling results that are material to the project and are consistent with the JORC guidelines. Where data may have been excluded, it is considered not material.
Other substantive exploration data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Detailed walking radiometer surveys have been completed on the target areas using a RS-230 Portable Gamma Spectrometer. In survey mode, the total Count of gamma particles Per Second ("CPS") is recorded in real time. In survey mode, the total count of radioactive elements is recorded in real time. Readings are taken at waist height (approximately 1 m from the surface), the sensor can capture values in a radius of up to 1 m². High CPS occur in the presence of gamma releasing minerals. Throughout the Rocha da Rocha Critical Mineral Province, BRE has observed a positive correlation between CPS and thorium and REE bearing monazite. BRE has determined that gamma spectrometry is an effective method for determining the presence of REE mineralization that is material to this report
Further work	•	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	To further develop the Company will complete the following: Mobilise auger teams to drill the saprolite zone across the Northern gamma anomaly zone and undertaken initial vehicle based gamma surveys Elsewhere on the project BRE intends to test the Regolith Exploration Target (effective date of July 1, 2023) which is based on the results of BRE's previous drill programs and will be tested by ongoing infill and step out auger drilling in high priority areas. Upcoming works aim to validate the historic drilling and assess whether or not the project may become economically feasible including metallurgical recovery, process flowsheet and optimisation. Further resource definition through additional drilling and sampling, geological mapping, and regional exploration through additional land acquisition are also planned. No forecast is made of such matters.

