Capão do Mel Resource Update Doubles Caldeira Project Measured and Indicated Resources

Underpins Scoping Study economics and the creation of a new, low cost REE supply chain

Highlights

- Measured \& Indicated Resources defined at the Capão do Mel deposit of 85Mt @ 3,034ppm TREO ${ }^{1}$ ($1,000 \mathrm{ppm}$ cut-off) includes high-grade core of 36 Mt at $4,345 \mathrm{ppm}$ TREO (3,000ppm cut-off) including 19Mt at 5,163ppm TREO (4,000ppm cut-off).
- Capão do Mel high-grade core supports the initial production strategy targeting feed grades greater than 4,000ppm TREO for the first five to 10 years.
- Processing facility planned for development adjacent to the Capão do Mel high grade areas to maximise project economics and rapid capital payback for the Project.
- Updated Resource Estimate for the Caldeira Project increases to a globally significant 619Mt @ 2,538ppm TREO ($1,000 \mathrm{ppm}$ cut-off) with $\mathbf{2 3 . 6 \%}$ MREO 2.
- Caldeira Scoping Study on target for imminent release.

Meteoric Resources NL (ASX: MEI) (Meteoric or the Company) is pleased to announce an updated Mineral Resource Estimate for the Capão do Mel licence at its Caldeira Project.

Executive Chairman, Dr Andrew Tunks said:
"Another outstanding result which reflects the Company's rapid progress to be the next rare earth mine developed in Brazil. Importantly, the high-grade core of the updated resource is located within close proximity to our proposed plant site at Capão do Mel and clearly supports our strategy to prioritise the development of this unique, very high-grade zone of approximately 36Mt for the best part of a decade.

With more significant resource updates and the Scoping Study to come, coupled with our extensive ground holdings all within the volcanic crater of Poços de Caldas, it is clear the Caldeira Project stands above all of its peers in the market."

Chief Executive Officer, Nick Holthouse added:
"This is a significant resource upgrade for Capão do Mel and another step toward first production in 2027.
With more than 170Mt of Measured and Indicated resources available from the Capão do Mel and Soberbo licenses alone there are more than enough suitably classified high-grade tonnes to update the financial projections in our Scoping Study and release to market imminently. High grades, high recoveries and easy access to tonnes from surface all contributing to a low operating cost environment."

[^0]
METEORIC

RESOURCES

The 147% increase in the Resource Estimate at the Capão do Mel Mining Licence Application (MLA) includes a high-grade component of 36 Mt of Measured and Indicated at 4,345ppm TREO at a 3,000ppm TREO cut-off. This is Meteoric's second updated Resource Estimate for 2024 from the Caldeira Rare Earth Element (REE) Project in Minas Gerais, Brazil following the updated Resource at the Soberbo Mining Licence released in May 2024. The results continue to highlight that the Caldeira Project is one of the highest-grade lonic Absorption Clay (IAC) REE deposits in the world, positioning Meteoric as a nearterm, low-cost supplier of critical minerals.

The updated Capão do Mel Mineral Resource follows completion of an additional 12,775m of infill Diamond and Aircore drilling on the deposit. Rare earth mineralisation commences from surface and extends down through the clay zones resulting in easily accessible ore and low stripping ratios for surface mining (see Appendix 3).

Figure 1: Grade distribution Plan showing high-grade core >4,000ppm TREO (MAGENTA) in southern central portion of Capão do Mel which defines opportunities for early high-grade production

Table 1: Capão do Mel updated Mineral Resource Estimate at 1,000ppm TREO cut-off.

Licence	JORC	Material	Tonnes	TREO	$\mathrm{Pr}_{6} \mathrm{O}_{11}$	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	$\mathrm{Tb}_{4} \mathrm{O}_{7}$	$\mathrm{Dy}_{2} \mathrm{O}_{3}$	MREO	MREO/TREO
	Category	Type	Mt	ppm	ppm	ppm	ppm	ppm	ppm	\%
Capão do Mel	Measured	Clay	11	3,888	222	586	6	28	842	21.7\%
Capão do Mel	Indicated	Clay	74	2,908	163	449	5	23	640	22.0\%
TOTAL	MEASURED+INDICATED		85	3,034	171	467	5	24	666	22.0\%
Capão do Mel	Inferred	Clay	32	1,791	79	207	2	13	302	16.9\%
Capão do Mel	Inferred	Transition	25	1,752	86	239	3	14	341	19.5\%
TOTAL	INFERRED		58	1,774	82	221	3	14	319	18.0\%
Total	$\begin{gathered} \text { MEASURED + } \\ \text { INDICATED + INFERRED } \end{gathered}$		142	2,523	135	367	4	20	525	20.4\%

METEORIC

RESOURCES

Table 2: Capão do Mel - Resource Classifications reported by cut-off grade.

Cut-off	JORC	Material	Tonnes	TREO	$\mathrm{Pr}_{6} \mathrm{O}_{11}$	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	$\mathrm{Tb}_{4} \mathrm{O}_{7}$	$\mathrm{Dy}_{2} \mathrm{O}_{3}$	MREO	MREO/TREO
ppm TREO	Category	Type	Mt	ppm	ppm	Ppm	ppm	ppm	ppm	\%
1,000	Measured	Clay	11	3,888	222	586	6	28	842	21.7\%
	Indicated	Clay	74	2,908	163	449	5	23	640	22.0\%
	Meas + Ind		85	3,034	171	467	5	24	666	21.9\%
	Inferred	Clay	32	1,791	79	207	2	13	302	16.9\%
	Inferred	Transition	25	1,752	86	239	3	14	341	19.5\%
	Meas + Ind + Inf		142	2,523	135	367	4	20	525	20.8\%
2,000	Measured	Clay	10	4,134	238	630	6	30	905	21.9\%
	Indicated	Clay	51	3,473	205	566	6	28	804	23.2\%
	Meas + Ind		61	3,578	210	576	6	28	820	22.9\%
	Inferred	Clay	9	2,697	146	393	4	21	563	20.9\%
	Inferred	Transition	7	2,644	142	403	4	21	571	21.6\%
	Meas + Ind + Inf		77	3,391	196	539	5	27	768	22.6\%
3,000	Measured	Clay	7	4,832	290	766	7	35	1,098	22.7\%
	Indicated	Clay	29	4,232	260	723	7	34	1,023	24.2\%
	Meas + Ind		36	4,345	266	731	7	34	1,037	23.9\%
	Inferred	Clay	2	3,701	240	660	6	31	937	25.3\%
	Inferred	Transition	1	3,548	212	627	6	30	876	24.7\%
	Meas + Ind + Inf		40	4,282	262	723	7	34	1,026	24.0\%
4000	Measured	Clay	5	5,499	340	900	8	39	1,287	23.4\%
	Indicated	Clay	14	5,080	321	893	8	40	1,262	24.8\%
	Meas + Ind		19	5,183	325	895	8	40	1,269	24.5\%
	Inferred	Clay	0.5	4,773	340	947	8	42	1,338	28.0\%
	Inferred	Transition	0.2	4,395	278	858	8	39	1,184	26.9\%
	Meas + Ind + Inf		19	5,163	325	896	8	40	1,269	24.6\%

Capão do Mel contains a high-grade component of Measured and Indicated Resources totaling 36Mt at 4,345ppm TREO (3,000ppm cut-off), including a highly desirable MREO content of 1,037ppm. Figure 1 clearly shows more than half of this material occurs in a contiguous block in the central southern portion of the license and is available for mining at surface as shown in Figure 2.

This high-grade zone will be a focus for the Project's proposed early, high-grade production feed strategy to the processing plant. High-grade feed coupled with the strong metallurgical response to an Ammonia Sulphate (AMSUL) wash will provide a high recovery of TREO per tonne of ore feed and significantly reduce Project operating costs.

METEORIC
 RESOURCES

Figure 2: Section $7,567,100 \mathrm{mN}$: $E-F$ (location sown in Figure 1) shows the grade distribution through the profile in the southern part of Capão do Mel including: block model grades, aircore drill hole grades, and modelled geologic surfaces (soil, clay, transition) - Vertical Exaggeration $x 5$.

At 1,000 ppm TREO cut-off the Global Mineral Resource increases by 74Mt to 619Mt @ 2,538ppm TREO and contains MREO grades of 600ppm comprising 23.6\% of TREO basket, with Measured and Indicated resources of 171 Mt at $2,880 \mathrm{ppm}$ TREO including 667ppm MREO constituting 23.2\% (Table 3).

Table 3: Caldeira REE Project Global Mineral Resource Estimate - by license at 1,000ppm TREO cut-off

Licence	JORC Category	Material Type	Tonnes	TREO	$\mathrm{Pr}_{6} \mathrm{O}_{11}$	$\mathrm{Nd}_{2} \mathrm{O}_{3}$	$\mathrm{Tb}_{4} \mathrm{O}_{7}$	$\mathrm{Dy}_{2} \mathrm{O}_{3}$	MREO	MREO/TREO
Capão do Mel	Measured	Clay	11	3,888	222	586	6	28	842	21.7\%
TOTAL	MEASURED		11	3,888	222	586	6	28	842	21.7\%
Capão do Mel	Indicated	Clay	74	2,908	163	449	5	23	640	22.0\%
Soberbo	Indicated	Clay	86	2,730	165	476	5	23	669	24.5\%
TOTAL	INDICATED		160	2,812	164	463	5	23	656	23.4\%
TOTAL	MEASURED + INDICATED		171	2,880	168	471	5	24	667	23.2\%
Capão do Mel	Inferred	Clay	32	1,791	79	207	2	13	302	16.9\%
Capão do Mel	Inferred	Transition	25	1,752	86	239	3	14	341	19.5\%
Soberbo	Inferred	Clay	89	2,713	167	478	5	24	675	24.9\%
Soberbo	Inferred	Transition	54	2,207	138	395	4	20	558	25.3\%
Cupim Vermelho Norte ${ }^{3}$	Inferred	Clay	104	2,485	152	472	5	26	655	26.4\%
Dona Maria 1 \& 2^{3}	Inferred	Clay	94	2,320	135	404	5	25	569	24.5\%
Figueira ${ }^{3}$	Inferred	Clay	50	2,811	135	377	5	26	542	19.3\%
TOTAL	INFERRED		448	2,408	139	407	5	23	574	23.7\%
Total	$\begin{aligned} & \text { MEASURED + } \\ & \text { INDICATED + INFERRED } \end{aligned}$		619	2,538	147	425	5	23	600	23.6\%

METEORIC

RESOURCES

Figure 3: Graph of Tonnage (Mt) v TREO Grade (ppm) for reported Measured and Indicated Resources of Brazilian IAC Deposits (MEI peers). The size of the sphere is related to TREO content i.e. tonnes x grade. Full Table of Source data provide as Appendix 1.

Figure 4: Graph of Tonnage (Mt) v TREO Grade (ppm) for Total Resources (M+l+l) of Brazilian IAC Deposits (MEI peers). The size of the sphere is related to TREO content i.e. tonnes x grade. Full Table of Source data provide as Appendix 1.

Figure 5 shows the location of Meteoric's resource infill drilling programs at Capão do Mel, Soberbo, and Figueira in the south of the Caldeira Project which will provide Measured and Indicated Resources for inclusion in the Scoping Study.

METEORIC

Figure 5: Location map of updated resources for the priority development targets at Capão do Mel, Soberbo, and Figueira (resource update due July 2024).

METEORIC

RESOURCES

Project Information provided under ASX Listing Rule 5.8.1

Updated Resource Estimate - Capão do Mel

The updated Measured, Indicated and Inferred Resource estimate for the Capão do Mel MLA is 142Mt @ 2,523ppm (1,000ppm cut-off), with 525ppm MREO (20.4\%) as shown in Table 1. The updated Resource Estimate was completed by BNA Consulting after infill Diamond and Aircore drilling of 504 holes for 12,775m (see Figure 6 and Table 4).

This represents a 147\% increase above the previous Inferred Resources reported in 2023 and reflects the true depth of the clay horizon (see Figures 7 and 8).

Figure 6: Capão do Mel MLA - Updated Resource drill hole location plan by drill type with location of type Cross-Sections shown.

METEORIC

RESOURCES

Drilling Techniques and Hole Spacing

A total of 841 drill holes were used to estimate the resource, comprising: Diamond, Aircore and powered Auger drilling as shown below in Table 4.

Table 4: Capão do Mel Updated Mineral Resource - drill hole statistics.

Hole Type	Number Holes	Number Samples	Total drilled (m)	Maximum depth (\mathbf{m})	Average depth (\mathbf{m})
Diamond	13	416	428.1	57.8	32.9
Aircore	491	6,279	$12,346.5$	50.0	25.1
Auger	337	3,518	$3,461.9$	20.0	10.3
Totals	841	$\mathbf{1 0 , 2 1 3}$	$\mathbf{1 6 , 2 3 6 . 5}$	$\mathbf{5 7 . 8}$	$\mathbf{1 9 . 3}$

Spacing for Auger holes varies across the prospect from a maximum of: 200 m by 200 m , infill drilled to 100 m by 100 m , with tighter spacing of 50 m by 50 m in areas. Aircore drilling was done at nominal 100 m x 100m, infill drilled to $50 \mathrm{~m} \times 50 \mathrm{~m}$ in areas of higher grade within the 2023 Inferred Resource. Diamond holes had no regular spacing but were designed to check specific geologic characteristics (i.e. grade, density). Given the substantial geographic extent and generally shallow, flat lying geometry of the mineralisation, the spacing and orientation are considered sufficient to establish geologic and grade continuity.

Diamond

Diamond drilling employed a conventional wireline diamond drill rig (Mach 1200). All holes were drilled vertical using PQ diameter core to the transition zone (85 mm diameter), reducing to HQ diameter core below this (63.5 mm diameter). The diamond drill holes were drilled to fresh rock with the depth of clay varying between 5.4 m to 53.6 m . with a maximum depth drilled of 57.8 m .

Aircore

Drilling was completed using a HANJIN 8D Multipurpose Track Mounted Drill Rig, configured to drill 3inch Aircore holes. The rig is supported by an Atlas Copco XRHS800 compressor which supplies sufficient air to keep the sample dry to the end of the hole. The maximum depth drilled was 50.0 m and all holes were drilled vertically.
Most drill sites required minimal to no site preparation. On particularly steep sites, the area was levelled with a backhoe loader. The hole generally stopped at 'blade refusal' when the rotating bit was unable to cut the ground any deeper. This generally occurred in the transition zones (below clay zone and above fresh rock). On occasions a face sampling hammer was used to penetrate through the remaining transition zone and into fresh rock.

Powered Auger

Powered auger drilling employed a motorised post hole digger with a 4 inch (102 mm) diameter, and all holes were drilled vertically. The maximum depth achievable was 20 m , providing the hole did not encounter fragments of rocks/boulders within the weathered profile, and/or excessive water. All Auger drilling was completed by previous explorers and has been reported under the JORC code in ASX: MEI 15/12/2022. The auger assay data was used to estimate the maiden resource statement for the Caldeira Project ASX: MEI 30/04/2023.

METEORIC

RESOURCES

Geology and Geological Interpretation

The Cretaceous (80 Ma) Alkaline Complex of Poços de Caldas in Brazil represents an important geological terrain which hosts deposits of REE, bauxite, white clay for ceramics, uranium, zirconium and leucite. The Poços de Caldas Intrusive Complex covers an area of approximately $800 \mathrm{~km}^{2}$. The main rock types found are intrusive and volcanic alkaline rocks of the nepheline syenite system, comprising phonolites and foidolites (syenites). Primary mineralisation includes Uranium, Zirconium and REE that are confined to the intrusives emplaced during the magmatic event. Post intrusion intense weathering of the region has resulted in an extensive clay regolith developed above the syenites.

The dominant REE mineral in the source rock (syenite) beneath the clay zone is Bastnaesite, a major source of REE worldwide. Bastnaesite is a REE carbonate-fluoride mineral (REE) $\mathrm{CO}_{3} \mathrm{~F}$ and has very low levels of Uranium and Thorium in its structure. Due to the chemistry of the underlying intrusives and the intense weathering of the region, a thick profile comprising soil, clay and saprolite (regolith) has formed (Figures $4 \& 5$), and these are the hosts to the ionic clay REE mineralisation.

Figure 7: Section 346,600 mE: A - B (location shown on Figure 4) showing: block model grades, aircore drill hole grades, and modelled geologic surfaces (soil, clay, transition) - Vertical Exaggeration x 5 .

METEORIC
 RESOURCES

Figure 8: Section 347,500 mE: C-D (location shown on Figure 4) showing: block model grades, aircore drill hole grades, and modelled geologic surfaces (soil, clay, transition) - Vertical Exaggeration x 5 .

Sampling and Sub-sampling Techniques

Auger material

Each drill site was cleaned, removing leaves and roots from the surface. Tarps were placed on either side of the hole and samples of soil and saprolite were collected every 1 m , homogenised, and then quartered with one quadrant collected in a plastic bag. Samples are weighed and if the samples are wet, they are dried for several days on rubber mats. After drying the samples are screened (5 mm). Homogenization occurs by agitation in bags, followed by screening to $<3 \mathrm{~mm}$. Fragments of rock or hardened clay that were retained in the sieves were fragmented with a 10 kg manual disintegrator and a 1 kg hammer, until 100% of the sample passed through the screening. The sample was homogenized again by agitation in bags. Finally, the sample was Split in a Jones 12 channel splitter, where 500 g was sent to the lab (SGS_geosol laboratory in Vespasiano - Minas Gerais).

Diamond cores

Sample lengths for diamond drilling were determined by geological boundaries with a maximum sample length of 1 metre applied. In the saprolite zone the core was halved using a metal spatula and placed in plastic bags, and for fresh rock the core was halved using a brick saw then placed into plastic bags. Field duplicates consisted of quarter core, with two (2) quarters sent to the lab.

METEORIC

RESOURCES

Aircore material

Two (2) metre composite samples were collected from the cyclone of the rig in plastic buckets which were weighed. The sample (>6kg) was passed through a single tier riffle splitter generating a 50/50 split, with one half bagged and submitted to the laboratory, and the other half bagged and stored as a duplicate at the core facility in Poços de Caldas. If a sample was <6kg the entire sample was bagged and submitted for assay. Given the grainsize of the mineralisation is extremely fine (clays) and shows little variability, the practice of submitting 50% of original sample for analysis was deemed appropriate. Meteoric QAQC protocols demand a duplicate sample every 20 samples, and a blank and standard sample every 30 samples.

Sample Analysis Method

Auger

Each batch analysed at SGS Geosol Laboratory comprised approximately 43 samples. The sample preparation method employed was PRP102_E: the samples were dried at $100^{\circ} \mathrm{C}$, crushed to 75% less than 3 mm , homogenised and passed through a Jones riffle splitter (250 g to 300 g). This aliquot was then pulverised in a steel mill to the point at which over 95% had a size of 150 microns.
Analysis followed by IMS95A to determine the Rare Earth Elements assays. With this method, samples were fused with lithium metaborate and read using the ICP-MS method, the limits or which are shown below in Table 5.

Table 5: ICP-MS method results of limits via IMS95A

Determination by fusion with Lithium Metaborate - ICP MS (IMS95A)							
Ce	$0,1-10000$	Co	$0,5-10000$	Cs	$0,05-1000$	Cu	$5-10000$
Dy	$0,05-1000$	Er	$0,05-1000$	Eu	$0,05-1000$	Ga	$0,1-10000$
Gd	$0,05-1000$	Hf	$0,05-500$	Ho	$0,05-1000$	La	$0,1-10000$
Lu	$0,05-1000$	Mo	$2-10000$	Nb	$0,05-1000$	Nd	$0,1-10000$
Ni	$5-10000$	Pr	$0,05-1000$	Rb	$0,2-10000$	Sm	$0,1-1000$
Sn	$0,3-1000$	Ta	$0,05-10000$	Tb	$0,05-1000$	Th	$0,1-10000$
TI	$0,5-1000$	Tm	$0,05-1000$	U	$0,05-10000$	W	$0,1-10000$
Y	$0,05-10000$	Yb	$0,1-1000$				

Diamond and Aircore samples

Samples are analysed by ALS Laboratories in Vespasiano (MG). Upon arriving at ALS samples received the following additional preparation:

- dried at $60^{\circ} \mathrm{C}$
- the fresh rock was crushed to sub 2 mm
- the saprolite was disaggregated with hammers
- Riffle split 800 g sub-sample
- $\quad 800 \mathrm{~g}$ pulverized to 90% passing $75 u m$, monitored by sieving.
- Aliquot selection from pulp packet

The aliquot obtained from the physical preparation process at Vespasiano was sent to ALS Lima for analysis by ME-MS81 - which consisted of analysis of Rare Earth Elements and Trace Elements by ICPMS for 32 elements by fusion with lithium borate as shown below (with detection limits):

METEORIC

RESOURCES

Table 6: ICP-MS method results for Rare Earth Elements and Trace Elements

Code	Analytes \& Ranges (ppm)							
ME-MS81	Ba	0.5-10000	Gd	0.05-1000	Rb	0.2-10000	Ti	0.01-10\%
	Ce	0.1-10000	Hf	0.5-10000	Sc	0.5-500	Tm	0.01-1000
	Cr	5-10000	Ho	0.01-10000	Sm	0.03-1000	U	0.05-1000
	Cs	0.01-10000	La	0.1-10000	Sn	0.5-10000	V	5-10000
	Dy	0.05-1000	Lu	0.01-10000	Sr	0.1-10000	W	0.5-10000
	Er	0.03-1000	Nb	0.05-2500	Ta	0.1-2500	Y	0.1-10000
	Eu	0.02-1000	Nd	0.1-10000	Tb	0.01-1000	Yb	0.03-1000
	Ga	0.1-10000	Pr	0.02-10000	Th	0.05-1000	Zr	1-10000

Estimation Methodology

The resource estimations are based on the block model interpolated by the Ordinary Kriging (OK) method, using Micromine software. Ordinary Kriging was selected as the method for grade interpolation as the sampling data has a log-normal distribution represented by a single generation.
A discretised Block Model was created in the sub-blocking process using wireframes of several surfaces: topography, base of Soil, base of Clay, and base of Transition. Mineralisation begins from near surface ($0.3 \mathrm{~m}-2.0 \mathrm{~m}$ soil coverage). Where there was no information from Diamond or Aircore drill holes (which drill to transition/fresh rock), and mineralisation was present at the end of Auger drill holes (in areas of known deep weathering), the mineralisation was assumed to extend 2 m below the hole.
Initially, the model was filled with blocks measuring $25(\mathrm{X})$ by $25(\mathrm{Y})$ by $5(\mathrm{Z})$ metres, which were divided into subunits of smaller size, with a factor for size subdivision of 10 by 10 by 5 in contact with the surrounding three-dimensional wireframes. The grade estimation was performed in four consecutive passes (rounds) using different criteria for: search radius, number of composite samples allowed, and number of holes the samples must come from. The radii and the orientation of the search ellipses were determined using standard variograms (see JORC Table 1 for additional discussion).
Parameters applied to each sector of a search ellipse were the maximum number of points in the sector and the minimum total number of points in the interpolation that varies depending on the size of the ellipse, from 3 to 1 . Thus, the maximum total number of samples involved in the interpolation was 12 samples.

The block model was validated in several ways: by running an Inverse Distance Weighted interpolation and comparing the results, and by comparing the means and standard deviations of the block grades to the composite data set.

Cut-off grades, including basis for the selected Cut-off Grade

The selection of the TREO cut-off grade ($1,000 \mathrm{ppm}$) used for reporting was based on the experience of the Competent Person (see Table 2 \& Figure 9). Given a combination of Measured, Indicated and Inferred Resources and in the absence of any development studies, this cut-off grade was selected based on a peer review of publicly available information from more advanced projects with comparable mineralisation styles (i.e., clay-hosted rare earth mineralisation) and comparable conceptual processing methods. Material above this cut-off generates a head feed grade of over $2,523 \mathrm{ppm}$, and in the opinion of the Competent Person, meets the conditions for reporting of a Mineral Resource with reasonable prospects of eventual economic extraction.

METEORIC
 RESOURCES

Figure 9: Capão do Mel Updated Resource Estimate - Grade Tonnage Curve

Criteria used for Classification

Mineral Resources for Capão do Mel MLA have been classified as Measured, Indicated and Inferred.
The Competent Persons are satisfied that the classification is appropriate based on the current: level of confidence in the data, drill hole spacing, geological continuity, variography, bulk density, and licensing data available for the project.

METEORIC
 RESOURCES

Figure 10: Section 7,567,100 mN: E-F (location sown in Figure 1) showing the Resource Classification distribution in the southern part of Capão do Mel including: block model classification, aircore drill hole grades, and modelled geologic surfaces (soil, clay, transition) - Vertical Exaggeration x 5 .

Environmental factors

There are two Environmental areas within the municipality of Caldas which encroach upon the current resources at Soberbo and Capão do Mel deposits, being:
(i) Environmental Protection Area ("APA") Ecological Sanctuary of Serra da Pedra Branca (established by Municipal Law of Caldas/MG no 1.973/2006) and
(ii) a three (3) kilometre strip surrounding the APA ("Buffer Zone").

Part of the Soberbo resource is within the APA whilst the remaining (larger) part of Soberbo resource and the entire Capão do Mel resource are within the Buffer Zone.

Article 51 of Law of Caldas/MG no 1.973/2006 stipulates that mining activity is currently not permitted within the APA (other than for existing activity with operating licenses). Importantly, for Meteoric's current program no infill drilling has been performed inside the APA, nor are there current plans to conduct any exploration activities inside the APA. Additionally, the 'Base Case' development scenario contemplated in MEl's current Scoping Study and Preliminary Environmental Permit (LP) application do not propose any activity inside the APA area.
Mining activity within the Buffer Zone is permitted and may be undertaken upon completion of an Environmental Impact Assessment, a proposal of measures necessary to mitigate any possible impact on ecosystems and seeking authorization from the municipality of Caldas and the APA Management Council.

Meteoric has conducted extensive research and consultation from mid-2023 with the object of seeking and obtaining permission to conduct activities in the Buffer Zone and is confident of obtaining favourable consideration from the relevant authorities. That confidence is based upon: Environmental Impact

METEORIC

RESOURCES

Statement (EIS) and relevant flora and fauna and ethnographic studies completed over the area, ongoing dialogue and consultation with multiple stakeholders including favourable feedback from a Social Diagnosis and Stakeholder Survey of the Caldeira REE Project conducted by EcoDue Ambiental in December 2023, and specifically by reason of the terms of a written Protocol of Intent entered into between the Government of Minas Gerais and Meteoric Brazil [See ASX Announcement "Cooperation Agreement Signed with Government of Minas Gerais and Invest Minas" - 11 August 2023].

Mining and metallurgical methods / material modifying factors

No specific mining or metallurgical methods or parameters were incorporated into the modelling process.

Proposed Further Work

Measured and Indicated Resources from Soberbo and Capão do Mel licenses will be used as Base Case scenario in a Scoping Study to be released imminently. An updated resource estimate for Figueira is expected in late July 2024.

Competent Person Statements

Dr Marcelo J De Carvalho

The information in this announcement that relates to exploration results is based on information reviewed, collated and fairly represented by Dr Carvalho a Competent Person and aa Member of the Australasian Institute of Mining and Metallurgy and a consultant to Meteoric Resources NL. Dr. Carvalho has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Carvalho consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Dr. Beck Nader

The information in this report that relates to Mineral Resources is based on information compiled by Dr. Beck Nader, a Competent Person who is a Fellow of Australian Institute of Geoscientists \#4472. Dr. Beck Nader is a consultant for BNA Mining Solutions. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify him as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Beck Nader consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Dr. Volodymyr Myadzel

The information in this report that relates to Mineral Resources is based on information compiled by Dr. Volodymyr Myadzel, a Competent Person who is a Member of Australian Institute of Geoscientists \#3974. Dr. Volodymyr Myadzel is a consultant for BNA Mining Solutions. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Volodymyr Myadzel consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this release that relates to Mineral Resource Estimates at the Cupim Vermelho Norte, Dona Maria 1 \& 2 and Figueira prospects was prepared by BNA Mining Solutions and released on the ASX platform on 1 May 2023. The information in this release that relates to Mineral Resource Estimates at Soberbo deposit was prepared by BNA Mining Solutions and released on the ASX platform on 13 May 2024. The Company confirms that it is not aware of any new information or data that materially affects the Mineral Resources in this publication. The Company confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the BNA Mining Solutions findings are presented have not been materially modified.

METEORIC

RESOURCES

This release has been approved by the Board of Meteoric Resources NL.

For further information, please contact:
Mr Nick Holthouse
Chief Executive Officer
Meteoric Resources NL
E nholthouse@meteoric.com.au
Timogarty
Media Liaison
The Civic Partnership
E tim.fogarty@civicpartners.com.au
T +61428964276
T +61400179075

METEORIC
 RESOURCES

Appendix 1: Reference data.

Table 7: Source data for Figure 3 (Bubble Plot): Brazilian IAC Deposits - Total Resources - Mt ($M+1+1$) x Grade - ppm TREO.

Company (Project)	Tonnes (Mt)	TREO Grade (ppm)	Cut-off (ppm)	$\mathrm{Pr}_{\mathrm{o}} \mathrm{O}_{11}$ (ppm)	$\mathrm{Nd}_{2} \mathrm{O}_{3}$ (ppm)	$\mathrm{Tb}_{4} \mathrm{O}_{7}$ (ppm)	$\begin{aligned} & \mathrm{Dy}_{2} \mathrm{O}_{3} \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & \text { MREO } \\ & \text { (ppm) } \end{aligned}$	Source
Brazil Critical Minerals (Ema)	1,017	793	500	45	154	4	13	216	Ema Link Page 2, Table 1 Inferred
Serra Verde (Pela Ema)	911	1,200	NSR	49	161	4	28	242	Pela Ema Link - Slide 10, 11. Measured+Indicated+Inferred
Meteoric (Caldeira)	619	2,538	1,000	147	425	5	23	600	This Release
Brazilian Rare Earths (Rocha da Rocha)	485	1,071	200			Not A	lable	309	$\frac{\text { Rocha de Rocha Link - Page 71, }}{\text { Table } 8}$
Viridis (Colossus)	201	2,590	1,000	157	480	5	27	668	Colossus Link - Page 4, Table 1
Aclara (Carina)	168	1,510	NSR			7	42	346	Carina module Link - Page 2, Table 1 Inferred
Appia (PCH)	53	2,841	NSR	121	378	5	28	532	Appia Link - Table 1: Indicated + Inferred

Table 8: Source data for Figure 2 (Bubble Plot): Brazilian IAC Deposits with reported Measured + Indicated Resources (Mt) x TREO Grade (ppm).

Company (Project)	Tonnes (Mt)	TREO Grade (ppm)	Cut-off (ppm)	$\mathrm{Pr}_{6} \mathrm{O}_{11}$ (ppm)	$\mathrm{Nd}_{2} \mathrm{O}_{3}$ (ppm)	$\mathrm{Tb}_{4} \mathrm{O}_{7}$ (ppm)	$\begin{aligned} & \mathrm{Dy}_{2} \mathrm{O}_{3} \\ & (\mathrm{ppm}) \end{aligned}$	MREO (ppm)	Source
Serra Verde (Pela Ema)	390	1,500	NSR	61	201	6	35	303	$\frac{\text { Pela Ema Link - Slide 10, } 11 .}{\text { Measured }+ \text { Indicated }}$
Meteoric (Caldeira)	171	2,880	1,000	168	471	5	24	667	This Release
Meteoric (Capão do Mel)	85	3,034	1,000	171	467	5	24	666	This Release
Meteoric (Soberbo)	86	2,730	1,000	165	476	5	23	669	This Release
Viridis (Colossus)	62	2,590	1,000	154	467	5	26	663	Colossus Link - Page 4, Table 1
Appia (PCH)	7	2,513	NSR	109	358	6	31	504	Appia Link - Table 1: Indicated + Inferred

METEORIC

Appendix 2: Capão do Mel - Drill Hole Collar Table.

Hole ID	Hole Type	Easting	Northing	Elevation	Depth (m)
CDMAC0001	AC	346,031.90	7,566,893.59	1,333.81	38.0
CDMAC0002	AC	345,998.95	7,566,897.98	1,332.67	50.0
CDMAC0004	AC	345,945.61	7,566,991.16	1,330.07	30.8
CDMAC0005	AC	345,946.54	7,566,949.64	1,330.47	39.4
CDMAC0006	AC	345,950.18	7,566,898.35	1,331.63	40.2
CDMAC0007	AC	345,900.85	7,566,900.49	1,331.71	29.8
CDMAC0008	AC	345,899.22	7,566,949.59	1,329.50	25.5
CDMAC0009	AC	345,897.98	7,567,005.02	1,329.33	25.5
CDMAC0010	AC	345,896.31	7,567,049.05	1,327.41	22.0
CDMAC0011	AC	345,851.91	7,567,102.32	1,324.47	39.5
CDMAC0012	AC	345,846.47	7,567,041.29	1,328.27	25.5
CDMAC0013	AC	345,847.96	7,567,003.52	1,327.00	20.0
CDMAC0014	AC	345,849.13	7,566,948.99	1,327.70	28.5
CDMAC0015	AC	345,850.93	7,566,900.83	1,329.85	42.5
CDMAC0016	AC	345,848.05	7,566,865.35	1,330.41	50.0
CDMAC0017	AC	345,800.20	7,566,861.33	1,328.39	45.0
CDMAC0018	AC	345,798.83	7,566,895.51	1,327.28	49.0
CDMAC0019	AC	345,799.73	7,566,949.70	1,325.78	30.0
CDMAC0020	AC	345,798.51	7,567,002.33	1,325.14	41.4
CDMAC0021	AC	345,797.82	7,567,050.28	1,324.44	28.0
CDMAC0022	AC	345,799.12	7,567,098.04	1,323.76	32.2
CDMAC0023	AC	345,801.15	7,567,133.14	1,322.59	17.8
CDMAC0024	AC	345,748.16	7,567,001.12	1,323.81	17.0
CDMAC0025	AC	345,750.79	7,566,951.01	1,324.05	23.0
CDMAC0026	AC	345,749.39	7,566,899.75	1,324.82	26.0
CDMAC0027	AC	345,749.89	7,566,856.90	1,327.23	27.0
CDMAC0028	AC	345,699.93	7,566,899.18	1,323.93	24.0
CDMAC0029	AC	345,699.42	7,566,999.94	1,322.85	22.0
CDMAC0030	AC	345,698.76	7,567,099.02	1,321.14	30.5
CDMAC0031	AC	345,902.26	7,566,849.55	1,333.27	26.4
CDMAC0032	AC	345,950.67	7,566,849.44	1,333.69	39.7
CDMAC0033	AC	346,002.28	7,566,852.34	1,335.85	31.6
CDMAC0034	AC	346,050.76	7,566,847.63	1,339.65	30.6
CDMAC0035	AC	346,099.67	7,566,796.76	1,343.20	37.0
CDMAC0036	AC	346,049.70	7,566,799.20	1,341.51	28.0
CDMAC0037	AC	346,000.83	7,566,800.91	1,338.81	25.0
CDMAC0038	AC	345,951.71	7,566,801.04	1,337.79	25.0
CDMAC0039	AC	345,901.39	7,566,801.00	1,336.12	32.0
CDMAC0040	AC	345,850.80	7,566,799.40	1,334.24	34.8
CDMAC0041	AC	345,797.31	7,566,799.52	1,331.75	50.0
CDMAC0042	AC	345,749.98	7,566,799.60	1,329.77	37.0
CDMAC0043	AC	345,702.48	7,566,797.63	1,327.53	40.0
CDMAC0044	AC	345,801.74	7,566,750.50	1,336.04	46.0
CDMAC0045	AC	345,849.53	7,566,750.77	1,337.68	28.0
CDMAC0046	AC	345,901.98	7,566,742.64	1,340.07	27.0
CDMAC0047	AC	345,955.96	7,566,745.16	1,341.83	50.0
CDMAC0048	AC	345,999.85	7,566,746.18	1,342.04	48.2
CDMAC0049	AC	346,049.74	7,566,746.00	1,343.05	36.0
CDMAC0050	AC	346,101.08	7,566,745.65	1,344.78	28.0
CDMAC0051	AC	346,099.86	7,566,698.51	1,346.16	34.0
CDMAC0052	AC	346,051.53	7,566,698.82	1,345.58	40.4
CDMAC0053	AC	345,998.66	7,566,698.82	1,344.08	19.0
CDMAC0054	AC	345,949.50	7,566,699.12	1,343.37	38.0
CDMAC0055	AC	345,901.35	7,566,699.16	1,342.99	24.2
CDMAC0056	AC	345,849.54	7,566,698.40	1,338.83	24.1
CDMAC0057	AC	345,801.83	7,566,698.82	1,337.05	40.0
CDMAC0058	AC	345,698.41	7,566,701.91	1,329.77	47.0
CDMAC0059	AC	345,697.50	7,566,652.60	1,326.99	36.0
CDMAC0060	AC	345,797.96	7,566,653.44	1,333.81	25.0
CDMAC0061	AC	345,850.06	7,566,651.72	1,337.86	34.0
CDMAC0062	AC	345,900.96	7,566,652.87	1,342.20	43.0
CDMAC0063	AC	345,947.83	7,566,651.69	1,344.81	39.6
CDMAC0064	AC	345,999.82	7,566,650.26	1,346.78	44.4
CDMAC0065	AC	346,050.37	7,566,650.71	1,347.33	38.0
CDMAC0066	AC	346,099.67	7,566,651.23	1,344.27	32.0
CDMAC0067	AC	346,350.24	7,566,998.02	1,323.92	30.0
CDMAC0068	AC	346,447.32	7,567,049.25	1,320.52	18.0
CDMAC0069	AC	346,501.09	7,567,100.93	1,321.68	30.0
CDMAC0070	AC	346,548.00	7,567,106.01	1,320.95	33.0
CDMAC0071	AC	346,660.24	7,567,150.36	1,309.09	22.0
CDMAC0072	AC	346,656.80	7,567,197.13	1,305.75	40.0
CDMAC0073	AC	346,649.81	7,567,247.85	1,304.56	36.0

Hole ID	Hole Type	Easting	Northing	Elevation	Depth (m)
CDMAC0074	AC	346,649.46	7,567,297.86	1,305.86	30.0
CDMAC0075	AC	346,600.11	7,567,349.76	1,303.95	25.0
CDMAC0076	AC	346,600.38	7,567,393.72	1,307.82	28.0
CDMAC0077	AC	346,502.12	7,567,402.70	1,305.88	34.0
CDMAC0078	AC	346,515.10	7,567,363.55	1,300.32	29.5
CDMAC0079	AC	346,445.82	7,567,362.91	1,293.21	28.0
CDMAC0080	AC	346,203.95	7,567,405.40	1,269.85	31.0
CDMAC0081	AC	346,302.30	7,567,403.95	1,275.94	20.0
CDMAC0082	AC	346,400.91	7,567,403.16	1,291.21	50.0
CDMAC0083	AC	346,547.76	7,567,349.99	1,297.89	30.0
CDMAC0084	AC	346,548.69	7,567,299.32	1,297.72	33.0
CDMAC0085	AC	346,501.01	7,567,295.32	1,293.52	34.0
CDMAC0086	AC	346,449.15	7,567,299.89	1,284.29	33.0
CDMAC0087	AC	346,447.73	7,567,254.22	1,286.94	13.0
CDMAC0088	AC	346,397.98	7,567,250.21	1,284.40	47.8
CDMAC0089	AC	346,400.59	7,567,198.29	1,290.31	42.3
CDMAC0090	AC	346,343.23	7,567,236.65	1,285.84	36.0
CDMAC0091	AC	346,347.85	7,567,199.09	1,293.89	36.0
CDMAC0092	AC	346,346.60	7,567,149.58	1,301.40	40.0
CDMAC0093	AC	346,298.30	7,567,198.01	1,293.65	28.0
CDMAC0094	AC	346,303.40	7,567,147.30	1,302.42	29.5
CDMAC0095	AC	346,347.56	7,567,100.47	1,310.76	28.5
CDMAC0096	AC	346,352.48	7,567,048.64	1,318.11	34.0
CDMAC0097	AC	346,397.53	7,567,051.27	1,315.50	24.0
CDMAC0098	AC	346,455.45	7,567,091.50	1,319.41	8.0
CDMAC0099	AC	346,402.86	7,567,083.47	1,311.86	30.0
CDMAC0100	AC	346,553.32	7,567,146.78	1,316.83	24.0
CDMAC0101	AC	346,501.22	7,567,146.40	1,312.56	25.0
CDMAC0102	AC	346,498.96	7,567,200.43	1,300.90	30.0
CDMAC0103	AC	346,499.14	7,567,250.61	1,294.20	29.0
CDMAC0104	AC	346,549.28	7,567,252.29	1,299.42	25.5
CDMAC0105A	AC	346,549.70	7,567,203.10	1,303.50	22.0
CDMAC0105B	AC	346,549.65	7,567,204.49	1,303.30	30.0
CDMAC0106	AC	346,600.64	7,567,246.21	1,304.01	20.0
CDMAC0107	AC	346,604.25	7,567,204.08	1,306.81	50.0
CDMAC0108	AC	346,634.71	7,567,193.36	1,308.37	50.0
CDMAC0109	AC	346,602.83	7,567,298.95	1,303.26	23.6
CDMAC0110	AC	346,697.43	7,567,197.29	1,301.52	50.0
CDMAC0111	AC	346,699.99	7,567,157.69	1,305.05	21.0
CDMAC0112	AC	346,737.88	7,567,162.23	1,301.77	23.5
CDMAC0113	AC	346,749.07	7,567,192.90	1,297.15	20.2
CDMAC0114	AC	346,754.12	7,567,242.27	1,290.61	20.6
CDMAC0115	AC	346,804.50	7,567,288.29	1,286.82	35.5
CDMAC0116	AC	346,843.83	7,567,298.91	1,284.83	30.0
CDMAC0117	AC	346,752.88	7,567,306.48	1,290.29	26.0
CDMAC0118	AC	346,785.31	7,567,398.90	1,293.16	24.5
CDMAC0119	AC	346,709.48	7,567,395.69	1,305.93	38.0
CDMAC0120	AC	346,699.80	7,567,295.74	1,300.14	30.0
CDMAC0121	AC	346,695.18	7,567,249.67	1,297.79	13.0
CDMAC0122	AC	346,795.56	7,567,208.23	1,296.58	22.0
CDMAC0123	AC	346,804.49	7,567,238.79	1,292.74	47.0
CDMAC0124	AC	346,854.81	7,567,241.87	1,290.16	32.0
CDMAC0125	AC	346,894.85	7,567,259.36	1,285.87	23.5
CDMAC0126	AC	346,901.18	7,567,298.71	1,278.93	35.0
CDMAC0127	AC	346,945.49	7,567,262.92	1,284.91	25.0
CDMAC0128	AC	346,951.04	7,567,285.14	1,281.25	42.2
CDMAC0129	AC	346,998.36	7,567,293.05	1,278.09	24.4
CDMAC0130	AC	346,945.88	7,567,203.28	1,291.27	22.2
CDMAC0131	AC	346,900.40	7,567,200.86	1,295.86	31.0
CDMAC0132	AC	346,988.14	7,567,209.27	1,284.11	28.0
CDMAC0133	AC	346,923.68	7,567,164.04	1,290.12	16.0
CDMAC0134	AC	346,895.69	7,567,141.09	1,290.90	16.0
CDMAC0135	AC	346,897.27	7,567,096.58	1,287.32	16.0
CDMAC0136	AC	346,915.40	7,566,992.66	1,278.87	23.0
CDMAC0137	AC	346,744.50	7,567,106.70	1,295.69	20.0
CDMAC0138	AC	346,781.15	7,567,132.15	1,300.40	15.0
CDMAC0139	AC	346,847.67	7,567,104.39	1,288.68	21.0
CDMAC0140	AC	346,805.55	7,567,104.09	1,292.96	16.0
CDMAC0141	AC	346,837.99	7,567,154.44	1,294.89	14.0
CDMAC0142	AC	346,844.17	7,567,206.72	1,298.60	44.0
CDMAC0143	AC	346,693.08	7,567,085.23	1,300.23	24.4
CDMAC0144	AC	346,644.75	7,567,057.58	1,307.54	14.0
CDMAC0145	AC	346,601.19	7,567,048.18	1,313.83	14.0
CDMAC0146	AC	346,639.42	7,567,103.65	1,315.06	13.0
CDMAC0147	AC	346,602.76	7,567,140.06	1,321.64	7.0

Hole ID	Hole Type	Easting	Northing	Elevation	Depth (m)
CDMAC0148	AC	346,597.74	7,567,100.91	1,318.29	11.4
CDMAC0149	AC	346,501.12	7,567,050.34	1,326.91	21.0
CDMAC0150	AC	346,492.74	7,567,009.63	1,326.43	41.2
CDMAC0151	AC	346,550.57	7,566,950.13	1,320.68	21.4
CDMAC0152	AC	346,592.78	7,566,938.77	1,329.41	42.0
CDMAC0153	AC	346,624.51	7,566,944.44	1,325.88	19.0
CDMAC0154	AC	346,587.80	7,566,902.50	1,322.05	26.0
CDMAC0155	AC	346,550.98	7,566,901.74	1,317.94	22.0
CDMAC0156	AC	346,558.14	7,566,985.53	1,316.99	19.0
CDMAC0157	AC	346,590.22	7,567,007.47	1,310.23	16.0
CDMAC0158	AC	346,610.51	7,567,021.13	1,305.68	7.0
CDMAC0159	AC	346,645.71	7,567,002.93	1,303.95	10.0
CDMAC0160	AC	346,707.07	7,566,938.47	1,294.39	18.0
CDMAC0161	AC	346,694.98	7,566,898.30	1,294.32	22.0
CDMAC0162	AC	346,675.83	7,566,902.72	1,296.50	16.0
CDMAC0163	AC	346,641.63	7,566,853.22	1,300.06	20.0
CDMAC0164	AC	346,699.63	7,566,847.44	1,299.80	25.0
CDMAC0165	AC	346,600.27	7,566,852.45	1,303.59	29.0
CDMAC0166	AC	346,549.14	7,566,851.42	1,307.49	13.0
CDMAC0167	AC	346,501.58	7,566,851.92	1,310.46	14.0
CDMAC0168	AC	346,450.88	7,566,899.42	1,309.86	37.0
CDMAC0169	AC	346,497.58	7,566,950.36	1,319.82	28.0
CDMAC0170	AC	346,450.36	7,566,947.19	1,316.91	18.0
CDMAC0171	AC	346,405.42	7,566,948.51	1,316.76	34.0
CDMAC0172	AC	346,351.23	7,566,952.18	1,321.51	28.0
CDMAC0173	AC	346,397.35	7,567,008.16	1,321.90	23.2
CDMAC0174	AC	346,444.60	7,566,998.82	1,322.73	27.0
CDMAC0175	AC	346,496.58	7,566,895.88	1,312.20	16.0
CDMAC0176	AC	346,299.47	7,566,994.96	1,324.88	24.0
CDMAC0177	AC	346,299.89	7,567,046.45	1,317.43	40.0
CDMAC0178	AC	346,300.49	7,567,096.19	1,310.60	28.0
CDMAC0179	AC	346,393.11	7,567,149.41	1,296.98	34.8
CDMAC0180	AC	346,446.77	7,567,196.79	1,297.38	20.0
CDMAC0181	AC	346,456.58	7,567,155.92	1,303.08	18.0
CDMAC0182	AC	346,250.19	7,567,097.95	1,308.37	32.5
CDMAC0183	AC	346,250.79	7,567,053.30	1,313.52	25.0
CDMAC0184	AC	346,199.85	7,567,050.89	1,307.92	23.0
CDMAC0185	AC	346,202.27	7,567,089.50	1,300.67	14.0
CDMAC0186	AC	346,250.73	7,567,001.41	1,317.43	24.5
CDMAC0187	AC	346,300.23	7,566,949.76	1,328.34	16.0
CDMAC0188	AC	346,148.61	7,567,054.27	1,295.32	12.0
CDMAC0189	AC	346,156.50	7,567,100.66	1,289.32	23.0
CDMAC0190	AC	346,163.75	7,567,148.57	1,287.94	24.2
CDMAC0191	AC	346,198.62	7,567,145.74	1,294.09	27.5
CDMAC0192	AC	346,197.02	7,567,196.44	1,290.74	22.0
CDMAC0193	AC	346,203.19	7,567,245.28	1,281.67	27.5
CDMAC0194	AC	346,243.84	7,567,246.82	1,282.07	26.0
CDMAC0195	AC	346,246.33	7,567,199.06	1,292.53	7.5
CDMAC0196	AC	346,249.02	7,567,148.43	1,299.36	50.0
CDMAC0197	AC	346,297.46	7,567,248.42	1,284.64	41.0
CDMAC0198	AC	346,143.55	7,567,302.82	1,265.07	18.5
CDMAC0199	AC	346,147.54	7,567,251.19	1,271.80	27.5
CDMAC0200	AC	346,148.95	7,567,201.26	1,276.16	21.5
CDMAC0201	AC	346,550.97	7,567,045.44	1,322.61	27.5
CDMAC0202	AC	346,555.37	7,566,796.01	1,293.16	10.0
CDMAC0203	AC	346,606.60	7,566,756.16	1,283.92	22.0
CDMAC0204	AC	346,652.63	7,566,743.71	1,280.45	19.2
CDMAC0205	AC	346,701.70	7,566,751.86	1,278.61	4.2
CDMAC0206	AC	346,701.20	7,566,789.31	1,287.17	12.0
CDMAC0207	AC	346,744.46	7,566,785.17	1,280.35	13.0
CDMAC0208	AC	346,797.38	7,566,810.44	1,271.38	25.0
CDMAC0209	AC	346,797.69	7,566,898.79	1,280.80	17.0
CDMAC0210	AC	346,750.98	7,566,852.50	1,287.71	16.0
CDMAC0211	AC	346,750.08	7,566,901.32	1,287.50	30.0
CDMAC0212	AC	346,651.20	7,566,816.40	1,294.49	10.0
CDMAC0213	AC	346,608.43	7,566,813.10	1,294.98	22.5
CDMAC0214	AC	346,256.24	7,566,904.19	1,332.19	15.4
CDMAC0215	AC	346,297.11	7,566,902.27	1,325.98	21.0
CDMAC0216	AC	346,341.73	7,566,900.64	1,320.13	21.0
CDMAC0217	AC	346,204.01	7,566,900.52	1,336.67	29.0
CDMAC0218	AC	346,253.60	7,566,941.69	1,332.64	22.0
CDMAC0219	AC	346,153.95	7,566,851.45	1,339.27	50.0
CDMAC0220	AC	346,202.70	7,566,852.33	1,336.35	20.0
CDMAC0221	AC	346,249.07	7,566,848.06	1,331.07	16.5
CDMAC0222	AC	346,296.37	7,566,846.92	1,327.02	36.0

Hole ID	Hole Type	Easting	Northing	Elevation	Depth (m)
CDMAC0223	AC	346,342.07	7,566,849.13	1,321.02	29.0
CDMAC0224	AC	346,384.55	7,566,765.78	1,307.23	25.0
CDMAC0225	AC	346,347.10	7,566,753.67	1,309.97	31.0
CDMAC0226	AC	346,338.81	7,566,803.35	1,318.78	11.8
CDMAC0227	AC	346,299.75	7,566,800.39	1,321.28	34.2
CDMAC0228	AC	346,251.34	7,566,798.08	1,325.37	24.6
CDMAC0229	AC	346,197.55	7,566,794.08	1,331.67	35.0
CDMAC0230	AC	346,140.67	7,566,786.96	1,340.42	36.0
CDMAC0231	AC	346,141.23	7,566,737.48	1,341.05	31.0
CDMAC0232	AC	346,200.92	7,566,744.04	1,332.34	34.0
CDMAC0233	AC	346,239.30	7,566,747.72	1,327.12	28.5
CDMAC0234	AC	346,283.51	7,566,750.97	1,321.00	32.0
CDMAC0235	AC	346,151.61	7,566,701.32	1,340.89	42.0
CDMAC0236	AC	346,207.82	7,566,694.92	1,330.38	22.0
CDMAC0237	AC	346,254.70	7,566,698.69	1,326.20	12.0
CDMAC0238	AC	346,292.29	7,566,698.10	1,321.83	7.0
CDMAC0239	AC	346,244.80	7,566,654.41	1,323.43	19.0
CDMAC0240	AC	346,152.00	7,566,646.44	1,337.41	30.0
CDMAC0241	AC	346,197.66	7,566,650.92	1,330.76	29.6
CDMAC0242	AC	346,295.95	7,566,638.91	1,316.64	16.0
CDMAC0243	AC	346,356.02	7,566,630.77	1,311.14	18.2
CDMAC0244	AC	346,397.05	7,566,654.32	1,305.08	34.0
CDMAC0245	AC	346,448.85	7,566,653.64	1,299.44	31.5
CDMAC0246	AC	346,503.41	7,566,693.49	1,290.67	24.0
CDMAC0247	AC	346,495.63	7,566,660.82	1,296.32	34.0
CDMAC0248	AC	346,533.82	7,566,698.03	1,289.51	31.0
CDMAC0249	AC	346,549.02	7,566,651.47	1,294.88	25.0
CDMAC0250	AC	346,565.07	7,566,704.43	1,283.70	28.0
CDMAC0251	AC	346,612.11	7,566,700.76	1,282.24	25.6
CDMAC0252	AC	346,659.49	7,566,701.66	1,278.84	23.0
CDMAC0253	AC	346,694.11	7,566,704.12	1,278.21	20.0
CDMAC0254	AC	346,756.57	7,566,740.34	1,270.71	13.0
CDMAC0255	AC	346,809.22	7,566,705.56	1,273.60	13.0
CDMAC0256	AC	346,816.95	7,566,641.13	1,269.32	10.0
CDMAC0257	AC	346,806.35	7,566,607.51	1,271.50	21.0
CDMAC0258	AC	346,749.39	7,566,606.21	1,284.26	10.0
CDMAC0259	AC	346,747.64	7,566,656.08	1,283.44	13.0
CDMAC0260	AC	346,749.30	7,566,702.08	1,279.91	22.0
CDMAC0261	AC	346,700.71	7,566,599.37	1,293.25	18.0
CDMAC0262	AC	346,698.47	7,566,638.69	1,291.26	15.0
CDMAC0263	AC	346,649.00	7,566,637.19	1,297.72	25.0
CDMAC0264	AC	346,650.84	7,566,606.85	1,302.37	20.0
CDMAC0265	AC	346,601.31	7,566,636.34	1,300.79	36.0
CDMAC0266	AC	346,602.29	7,566,604.92	1,306.48	28.0
CDMAC0267	AC	346,545.69	7,566,602.54	1,308.96	23.2
CDMAC0268	AC	346,371.44	7,566,560.33	1,316.32	34.0
CDMAC0269	AC	346,101.58	7,566,843.93	1,342.20	40.0
CDMAC0270	AC	346,046.75	7,566,953.07	1,323.24	30.0
CDMAC0271	AC	346,106.08	7,566,984.70	1,315.22	22.0
CDMAC0272	AC	346,100.96	7,566,945.99	1,323.13	37.0
CDMAC0273	AC	346,147.36	7,566,947.63	1,319.35	22.0
CDMAC0274	AC	346,152.99	7,566,996.39	1,309.65	31.0
CDMAC0275	AC	346,201.56	7,566,988.93	1,315.75	20.4
CDMAC0276	AC	346,197.37	7,566,958.49	1,321.99	50.0
CDMAC0277	AC	346,100.32	7,566,898.92	1,333.58	39.0
CDMAC0278	AC	346,144.55	7,566,921.10	1,325.64	29.0
CDMAC0279	AC	346,039.21	7,567,003.56	1,322.19	34.0
CDMAC0280	AC	346,042.14	7,567,049.11	1,319.53	34.0
CDMAC0281	AC	345,998.19	7,567,047.80	1,324.06	34.0
CDMAC0282	AC	345,950.08	7,567,049.59	1,325.70	40.5
CDMAC0283	AC	345,939.53	7,567,099.84	1,317.74	42.0
CDMAC0284	AC	345,902.75	7,567,100.95	1,320.47	43.0
CDMAC0285	AC	345,899.16	7,567,145.64	1,313.37	26.0
CDMAC0286	AC	345,992.95	7,566,995.42	1,330.30	23.0
CDMAC0287	AC	345,997.38	7,567,145.84	1,303.74	38.0
CDMAC0288	AC	346,017.31	7,567,190.08	1,293.15	24.0
CDMAC0289	AC	346,092.39	7,567,195.92	1,281.16	18.0
CDMAC0290	AC	346,049.81	7,567,200.04	1,288.05	31.0
CDMAC0291	AC	346,051.74	7,567,234.65	1,280.70	19.0
CDMAC0292	AC	346,001.14	7,567,101.92	1,312.94	32.6
CDMAC0293	AC	346,050.26	7,567,150.16	1,298.51	29.6
CDMAC0294	AC	346,082.85	7,567,139.65	1,295.74	26.0
CDMAC0295	AC	346,084.73	7,567,112.60	1,297.33	38.2
CDMAC0296	AC	346,046.85	7,567,098.37	1,308.14	50.0
CDMAC0297	AC	346,097.70	7,567,275.79	1,267.50	24.0

Hole ID	Hole Type	Easting	Northing	Elevation	Depth (m)
CDMAC0298	AC	346,093.23	7,567,245.27	1,273.74	17.0
CDMAC0299	AC	345,948.44	7,567,125.16	1,311.35	36.0
CDMAC0300	AC	345,804.44	7,567,148.61	1,322.57	33.0
CDMAC0301	AC	345,799.59	7,567,196.56	1,319.04	32.0
CDMAC0302	AC	345,849.09	7,567,203.23	1,318.19	32.0
CDMAC0303	AC	345,899.13	7,567,201.60	1,306.02	15.7
CDMAC0304	AC	345,896.58	7,567,249.51	1,311.31	37.0
CDMAC0305	AC	345,808.23	7,567,247.69	1,310.27	26.0
CDMAC0306	AC	345,848.86	7,567,249.11	1,315.11	30.4
CDMAC0307	AC	345,818.07	7,567,295.41	1,304.01	18.0
CDMAC0308	AC	345,853.81	7,567,298.71	1,309.83	28.0
CDMAC0309	AC	345,895.00	7,567,301.43	1,312.78	34.0
CDMAC0310	AC	345,900.47	7,567,346.82	1,302.52	22.0
CDMAC0311	AC	345,901.46	7,567,393.25	1,293.89	25.0
CDMAC0312	AC	345,997.81	7,567,382.74	1,280.60	15.0
CDMAC0313	AC	345,992.43	7,567,349.58	1,286.12	34.0
CDMAC0314	AC	345,948.75	7,567,348.07	1,291.59	20.6
CDMAC0315	AC	345,945.91	7,567,301.41	1,298.01	27.4
CDMAC0316	AC	345,992.36	7,567,294.68	1,290.16	22.0
CDMAC0317	AC	346,093.20	7,567,395.01	1,262.42	24.0
CDMAC0318	AC	346,051.18	7,567,348.17	1,277.13	30.0
CDMAC0319	AC	346,021.78	7,567,297.18	1,283.48	22.0
CDMAC0320	AC	345,987.54	7,567,266.81	1,290.19	15.0
CDMAC0321	AC	345,949.36	7,567,249.76	1,298.63	22.0
CDMAC0322	AC	345,930.11	7,567,192.85	1,302.33	31.0
CDMAC0323	AC	345,849.02	7,567,146.53	1,319.18	50.0
CDMAC0324	AC	345,749.39	7,567,189.68	1,315.85	35.5
CDMAC0325	AC	345,690.95	7,567,197.72	1,325.75	30.0
CDMAC0326	AC	345,706.40	7,567,289.10	1,312.43	25.0
CDMAC0327	AC	345,698.43	7,567,247.80	1,321.63	26.0
CDMAC0328	AC	345,747.40	7,567,289.61	1,308.15	30.0
CDMAC0329	AC	345,745.38	7,567,248.28	1,311.26	22.0
CDMAC0330	AC	347,797.39	7,567,698.17	1,310.22	19.0
CDMAC0331	AC	347,847.75	7,567,653.20	1,298.61	15.0
CDMAC0332	AC	347,848.42	7,567,702.09	1,298.44	13.0
CDMAC0333	AC	347,847.26	7,567,750.60	1,298.85	13.0
CDMAC0334	AC	347,996.19	7,567,725.21	1,296.04	24.0
CDMAC0335	AC	347,992.13	7,567,800.80	1,308.95	14.2
CDMAC0336	AC	347,889.24	7,567,807.98	1,300.48	22.0
CDMAC0337	AC	347,793.94	7,567,790.76	1,307.52	11.0
CDMAC0338	AC	347,704.17	7,567,802.82	1,302.24	11.0
CDMAC0339	AC	347,749.43	7,567,653.35	1,321.31	29.0
CDMAC0340	AC	347,750.48	7,567,751.08	1,310.95	14.6
CDMAC0341	AC	347,651.50	7,567,748.04	1,299.43	19.0
CDMAC0342	AC	347,599.68	7,567,701.91	1,300.55	17.4
CDMAC0343	AC	347,497.37	7,567,704.18	1,285.60	15.6
CDMAC0344	AC	347,499.50	7,567,597.94	1,305.23	17.8
CDMAC0345	AC	347,439.78	7,567,608.60	1,293.90	12.0
CDMAC0346	AC	347,700.79	7,567,700.01	1,313.79	19.2
CDMAC0347	AC	347,348.36	7,567,747.75	1,267.60	16.0
CDMAC0348	AC	347,301.02	7,567,699.30	1,261.03	11.0
CDMAC0349	AC	347,397.36	7,567,701.18	1,278.30	28.0
CDMAC0350	AC	347,301.81	7,567,504.22	1,270.28	10.0
CDMAC0351	AC	347,304.73	7,567,599.57	1,267.19	16.0
CDMAC0352	AC	347,204.42	7,567,500.93	1,251.71	11.0
CDMAC0353	AC	347,195.54	7,567,599.98	1,250.75	20.0
CDMAC0354	AC	347,401.51	7,567,415.73	1,290.15	14.0
CDMAC0355	AC	347,498.45	7,567,407.48	1,301.22	14.0
CDMAC0356	AC	347,566.76	7,567,497.83	1,328.07	32.0
CDMAC0357	AC	347,397.21	7,567,504.21	1,308.96	20.0
CDMAC0358	AC	347,505.19	7,567,517.37	1,319.43	24.0
CDMAC0359	AC	347,620.18	7,567,603.45	1,329.87	22.0
CDMAC0360	AC	347,696.47	7,567,600.32	1,330.66	31.0
CDMAC0361	AC	347,596.97	7,567,419.69	1,319.73	29.0
CDMAC0362	AC	347,701.40	7,567,498.89	1,331.65	21.8
CDMAC0363	AC	347,652.21	7,567,401.99	1,310.87	12.0
CDMAC0364	AC	347,712.32	7,567,315.32	1,307.47	12.6
CDMAC0365	AC	347,804.53	7,567,398.91	1,323.70	34.0
CDMAC0366	AC	347,801.87	7,567,496.85	1,320.21	21.0
CDMAC0367	AC	347,986.10	7,567,605.46	1,276.34	16.0
CDMAC0368	AC	347,900.05	7,567,609.84	1,292.03	24.0
CDMAC0369	AC	347,797.53	7,567,601.75	1,312.97	25.0
CDMAC0370	AC	347,937.69	7,567,485.88	1,295.79	20.4
CDMAC0371	AC	347,900.23	7,567,400.00	1,309.75	27.0
CDMAC0372	AC	347,965.75	7,567,394.41	1,295.72	16.0

Hole ID	Hole Type	Easting	Northing	Elevation	Depth (m)
CDMAC0373	AC	347,992.73	7,567,301.40	1,301.34	20.0
CDMAC0374	AC	348,000.33	7,567,193.52	1,322.13	33.0
CDMAC0375	AC	347,988.24	7,567,121.58	1,328.01	20.0
CDMAC0376	AC	347,898.90	7,567,102.56	1,330.06	40.0
CDMAC0377	AC	347,894.35	7,567,198.40	1,331.33	26.0
CDMAC0378	AC	347,898.51	7,567,289.25	1,323.97	25.0
CDMAC0379	AC	347,805.26	7,567,294.85	1,326.58	22.0
CDMAC0380	AC	347,797.03	7,567,201.30	1,316.63	22.0
CDMAC0381	AC	347,706.56	7,567,200.48	1,316.35	24.0
CDMAC0382	AC	347,606.62	7,567,253.43	1,302.46	21.0
CDMAC0383	AC	347,612.69	7,567,191.93	1,309.31	17.0
CDMAC0384	AC	347,652.05	7,567,150.39	1,322.19	18.5
CDMAC0385	AC	347,798.19	7,567,099.42	1,330.22	34.0
CDMAC0386	AC	347,695.98	7,567,112.37	1,330.66	31.0
CDMAC0387	AC	347,600.17	7,567,090.98	1,327.32	31.0
CDMAC0388	AC	347,551.50	7,567,152.94	1,323.35	35.0
CDMAC0389	AC	347,498.22	7,567,197.10	1,319.86	31.0
CDMAC0390	AC	347,396.20	7,567,295.54	1,301.70	24.0
CDMAC0391	AC	347,501.60	7,567,295.79	1,295.59	22.0
CDMAC0392	AC	347,300.80	7,567,400.42	1,279.13	13.0
CDMAC0393	AC	347,201.23	7,567,392.36	1,257.42	12.0
CDMAC0394	AC	347,298.00	7,567,290.14	1,286.03	15.0
CDMAC0395	AC	347,310.14	7,567,207.94	1,290.00	19.0
CDMAC0396	AC	347,398.70	7,567,201.69	1,294.74	13.0
CDMAC0397	AC	347,339.80	7,567,140.26	1,281.16	13.5
CDMAC0398	AC	347,392.96	7,567,096.29	1,286.00	10.0
CDMAC0399	AC	347,344.75	7,567,020.00	1,293.15	11.0
CDMAC0400	AC	347,404.03	7,567,013.30	1,304.21	10.0
CDMAC0401	AC	347,505.65	7,567,001.93	1,316.18	16.0
CDMAC0402	AC	347,502.20	7,567,073.89	1,307.31	14.5
CDMAC0403	AC	347,479.82	7,567,049.39	1,303.61	13.2
CDMAC0404	AC	347,590.43	7,567,000.83	1,315.74	16.0
CDMAC0405	AC	347,685.37	7,567,000.00	1,325.06	24.0
CDMAC0406	AC	347,801.31	7,567,004.36	1,334.69	27.0
CDMAC0407	AC	347,878.90	7,567,014.85	1,317.14	19.0
CDMAC0408	AC	347,996.19	7,566,912.86	1,298.38	28.0
CDMAC0409	AC	347,916.54	7,566,936.61	1,310.10	21.8
CDMAC0410	AC	347,824.50	7,566,803.47	1,314.44	38.0
CDMAC0411	AC	347,696.80	7,566,798.83	1,303.97	15.0
CDMAC0412	AC	347,791.22	7,566,907.71	1,330.65	21.0
CDMAC0413	AC	347,698.83	7,566,915.11	1,332.49	26.0
CDMAC0414	AC	347,598.42	7,566,891.42	1,301.73	10.0
CDMAC0415	AC	347,506.93	7,566,915.56	1,289.64	9.5
CDMAC0416	AC	347,439.43	7,566,904.80	1,281.72	9.5
CDMAC0417	AC	347,498.37	7,566,797.03	1,278.76	15.0
CDMAC0418	AC	347,603.34	7,566,795.61	1,292.75	21.0
CDMAC0419	AC	348,016.87	7,566,999.98	1,300.70	19.0
CDMAC0420	AC	345,602.21	7,567,195.50	1,318.52	34.0
CDMAC0421	AC	345,495.30	7,567,194.80	1,316.15	38.8
CDMAC0422	AC	345,498.57	7,567,297.50	1,314.32	26.6
CDMAC0423	AC	345,600.18	7,567,299.25	1,316.40	26.0
CDMAC0424	AC	345,602.95	7,567,394.88	1,308.56	22.0
CDMAC0425	AC	345,499.43	7,567,400.48	1,312.31	25.0
CDMAC0426	AC	345,398.95	7,567,407.95	1,309.97	25.0
CDMAC0427	AC	345,397.62	7,567,501.81	1,310.13	22.0
CDMAC0428	AC	345,494.99	7,567,493.83	1,313.09	24.0
CDMAC0429	AC	345,596.37	7,567,487.92	1,306.82	13.0
CDMAC0430	AC	345,480.59	7,567,595.85	1,320.76	25.0
CDMAC0431	AC	345,593.48	7,567,615.70	1,312.00	22.0
CDMAC0432	AC	345,397.37	7,567,602.32	1,315.46	30.0
CDMAC0433	AC	345,417.67	7,567,294.29	1,311.17	22.0
CDMAC0434	AC	345,402.24	7,567,704.76	1,312.16	44.0
CDMAC0435	AC	345,500.53	7,567,697.29	1,318.24	40.0
CDMAC0436	AC	345,594.39	7,567,809.74	1,327.73	46.0
CDMAC0437	AC	345,606.03	7,567,882.16	1,320.86	44.0
CDMAC0438	AC	345,642.73	7,567,898.00	1,315.51	36.0
CDMAC0439	AC	345,489.70	7,567,806.11	1,319.04	45.0
CDMAC0440	AC	345,404.35	7,567,812.17	1,312.60	34.0
CDMAC0441	AC	345,493.54	7,567,901.78	1,314.52	27.8
CDMAC0442	AC	345,397.22	7,567,899.47	1,308.94	40.0
CDMAC0443	AC	345,807.32	7,567,781.04	1,281.48	18.0
CDMAC0444	AC	345,766.58	7,567,687.06	1,281.72	8.8
CDMAC0445	AC	345,713.51	7,567,777.72	1,293.61	10.5
CDMAC0446	AC	345,676.69	7,567,701.14	1,295.92	16.0
CDMAC0447	AC	345,591.00	7,567,705.39	1,312.76	50.0

METEORIC

RESOURCES

Hole ID	Hole Type	Easting	Northing	Elevation	Depth (m)
CDMAC0448	AC	345,617.37	7,567,615.90	1,309.16	20.8
CDMAC0449	AC	345,698.19	7,567,603.80	1,297.05	12.5
CDMAC0450	AC	345,777.44	7,567,600.88	1,289.95	9.5
CDMAC0451	AC	345,720.63	7,567,496.05	1,287.88	16.0
CDMAC0452	AC	345,788.63	7,567,499.61	1,276.90	13.0
CDMAC0453	AC	345,697.42	7,567,396.92	1,301.64	11.0
CDMAC0454	AC	345,814.39	7,567,425.35	1,277.00	12.0
CDMAC0455	AC	345,974.01	7,567,805.31	1,246.87	12.5
CDMAC0456	AC	345,962.86	7,567,876.02	1,245.05	7.0
CDMAC0457	AC	345,903.57	7,567,908.47	1,253.86	19.0
CDMAC0458	AC	345,792.24	7,567,914.53	1,269.01	19.0
CDMAC0459	AC	346,986.67	7,567,114.27	1,281.61	11.0
CDMAC0460	AC	347,105.57	7,567,186.52	1,253.95	8.0
CDMAC0461	AC	347,190.64	7,567,248.55	1,246.50	7.0
CDMAC0462	AC	347,203.23	7,567,206.31	1,252.46	7.0
CDMAC0463	AC	347,209.54	7,567,145.73	1,260.04	14.5
CDMAC0464	AC	347,293.46	7,566,910.78	1,267.60	10.0
CDMAC0465	AC	347,306.52	7,566,802.52	1,283.27	13.0
CDMAC0466	AC	347,197.54	7,567,104.50	1,266.66	15.0
CDMAC0467	AC	347,205.41	7,567,008.91	1,270.88	13.0
CDMAC0468	AC	347,218.59	7,566,924.14	1,280.86	13.0
CDMAC0469	AC	347,388.73	7,566,801.69	1,274.35	20.0
CDMAC0470	AC	347,397.88	7,566,715.80	1,276.66	22.0
CDMAC0471	AC	347,302.43	7,566,684.45	1,288.49	18.6
CDMAC0472	AC	347,380.81	7,566,669.73	1,280.60	22.0
CDMAC0473	AC	347,298.62	7,566,653.71	1,292.20	24.0
CDMAC0474	AC	347,201.85	7,566,651.10	1,307.84	20.0
CDMAC0475	AC	347,198.87	7,566,795.98	1,297.33	16.0
CDMAC0476	AC	347,190.00	7,566,720.58	1,313.89	25.0
CDMAC0477	AC	347,118.98	7,566,658.22	1,328.36	22.0
CDMAC0478	AC	347,092.97	7,566,687.66	1,323.32	16.4
CDMAC0479	AC	347,008.74	7,566,714.17	1,308.15	18.5
CDMAC0480	AC	346,984.74	7,566,650.94	1,296.44	15.5
CDMAC0481	AC	346,874.43	7,566,647.02	1,271.37	19.0
CDMAC0482	AC	346,853.51	7,566,714.48	1,264.71	10.0
CDMAC0483	AC	346,885.73	7,566,797.62	1,266.83	10.0
CDMAC0484	AC	347,000.98	7,566,798.65	1,280.62	20.0
CDMAC0485	AC	347,104.21	7,566,797.56	1,291.46	25.0
CDMAC0486	AC	347,093.31	7,566,884.82	1,281.30	19.0
CDMAC0487	AC	346,927.43	7,566,886.22	1,260.43	7.5
CDMAC0488	AC	346,998.18	7,566,898.30	1,265.55	8.0
CDMAC0489	AC	347,002.08	7,567,006.40	1,256.06	6.0
CDMAC0490	AC	347,072.67	7,567,024.72	1,263.34	16.0
CDMAC0491	AC	347,102.01	7,567,102.11	1,262.22	6.2
CDMDD0001	DD	346,437.03	7,566,998.34	1,322.14	31.2
CDMDD0002	DD	345,620.44	7,567,610.45	1,308.85	20.4
CDMDD0004	DD	347,477.47	7,567,044.29	1,303.97	18.9
CDMDD0005	DD	346,610.61	7,567,018.52	1,305.72	9.8
CDMDD0006	DD	345,992.55	7,566,805.63	1,338.55	46.4
CDMDD0007	DD	346,893.20	7,567,308.53	1,278.13	39.4
CDMDD0008	DD	347,081.44	7,567,705.85	1,263.69	40.6
CDMDD0009	DD	346,569.40	7,566,704.23	1,283.93	29.6
CDMDD0010	DD	346,631.96	7,567,196.21	1,308.46	57.8
CDMDD0011	DD	346,621.47	7,566,802.47	1,290.87	26.0
CDMDD0012	DD	345,109.21	7,566,810.87	1,304.75	41.1
CDMDD0013	DD	344,997.52	7,567,683.84	1,299.24	45.9
CDMDD0014	DD	347,495.29	7,567,289.27	1,296.34	21.2

*all holes drilled vertical

Appendix 3: Capão do Mel - Mineralised Intercept Table.

Target	Hole ID	From	To	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO
Capão do Mel	CDMAC0001	0.0	38.0	38.0	4,187	714	17.0\%
Capão do Mel	CDMAC0002	0,0	50,0	50,0	3,972	629	16.0\%
Capão do Mel	CDMAC0003	0.0	50.0	50.0	4,430	752	17.0\%
Capão do Mel	CDMAC0004	0.0	30.8	30.8	3,951	641	16.2\%
Capão do Mel	CDMAC0005	0.0	36.0	36.0	2,796	451	16.1\%
Capão do Mel	CDMAC0006	0.0	40.2	40.2	2,494	425	17.0\%
Capão do Mel	CDMAC0007	0.0	29.8	29.8	3,218	435	13.5\%
Capão do Mel	CDMAC0008	0.0	25.5	25.5	2,988	435	14.6\%
Capão do Mel	CDMAC0009	0.0	25.5	25.5	3,267	607	18.6\%
Capão do Mel	CDMAC0010	0.0	20.0	20.0	4,967	1,133	22.8\%
Capão do Mel	CDMAC0011	0.0	36.0	36.0	3,011	631	21.0\%
Capão do Mel	CDMAC0012	0.0	25.5	25.5	3,257	713	21.9\%
Capão do Mel	CDMAC0013	0.0	20.0	20.0	4,137	773	18.7\%
Capão do Mel	CDMAC0014	0.0	28.5	28.5	2,536	434	17.1\%
Capão do Mel	CDMAC0015	0.0	42.5	42.5	2,864	438	15.3\%
Capão do Mel	CDMAC0016	0.0	50.0	50.0	3,572	580	16.2\%
Capão do Mel	CDMAC0017	0.0	50.0	50.0	3,572	580	16.2\%
Capão do Mel	CDMAC0018	0.0	30.0	30.0	4,724	1,140	24.1\%
Capão do Mel	CDMAC0019	0.0	30.0	30.0	3,158	452	14.3\%
Capão do Mel	CDMAC0020	0.0	41.4	41.4	3,109	587	18.9\%
Capão do Mel	CDMAC0021	0.0	28.0	28.0	3,300	716	21.7\%
Capão do Mel	CDMAC0022	0.0	32.2	32.2	2,453	494	20.2\%
Capão do Mel	CDMAC0023	0.0	17.8	17.8	1,928	341	17.7\%
Capão do Mel	CDMAC0024	0.0	17.0	17.0	3,282	541	16.5\%
Capão do Mel	CDMAC0025	0.0	23.0	23.0	3,363	559	16.6\%
Capão do Mel	CDMAC0026	0.0	26.0	26.0	3,530	509	14.4\%
Capão do Mel	CDMAC0027	0.0	27.0	27.0	3,695	658	17.8\%
Capão do Mel	CDMAC0028	3.0	24.0	21.0	2,070	398	19.2\%
Capão do Mel	CDMAC0029	0.0	22.0	22.0	2,278	295	13.0\%
Capão do Mel	CDMAC0030	0.0	28.0	28.0	1,936	329	17.0\%
Capão do Mel	CDMAC0031	0.0	26.4	26.4	3,613	650	18.0\%
Capão do Mel	CDMAC0032	0.0	36.0	36.0	4,465	838	18.8\%
Capão do Mel	CDMAC0033	0.0	31.6	31.6	3,936	769	19.5\%
Capão do Mel	CDMAC0034	2.0	28.0	30.6	3,943	667	16.9\%
Capão do Mel	CDMAC0035	0.0	37.0	37.0	4,436	751	16.9\%
Capão do Mel	CDMAC0036	0.0	28.0	28.0	5,997	1,220	20.3\%
Capão do Mel	CDMAC0037	0.0	25.0	25.0	2,945	518	17.6\%
Capão do Mel	CDMAC0038	0.0	16.0	16.0	4,537	833	18.4\%
Capão do Mel	CDMAC0039	0.0	32.0	32.0	5,170	896	17.3\%
Capão do Mel	CDMAC0040	0.0	34.8	34.8	4,364	932	21.4\%
Capão do Mel	CDMAC0041	0.0	50.0	50.0	3,441	611	17.7\%
Capão do Mel	CDMAC0042	0.0	37.0	37.0	3,946	740	18.8\%
Capão do Mel	CDMAC0043	0.0	40.0	40.0	4,789	787	16.4\%
Capão do Mel	CDMAC0044	0.0	40.0	40.0	2,637	482	18.3\%
Capão do Mel	CDMAC0045	0.0	28.0	28.0	5,256	964	18.3\%
Capão do Mel	CDMAC0046	0.0	27.0	27.0	3,761	606	16.1\%
Capão do Mel	CDMAC0047	0.0	50.0	50.0	3,014	445	14.8\%
Capão do Mel	CDMAC0048	0.0	48.2	48.2	3,561	517	14.5\%
Capão do Mel	CDMAC0049	0.0	36.0	36.0	5,094	904	17.7\%
Capão do Mel	CDMAC0050	0.0	28.0	28.0	4,081	758	18.6\%
Capão do Mel	CDMAC0051	0.0	34.0	34.0	5,591	1,032	18.5\%
Capão do Mel	CDMAC0052	0.0	40.4	40.4	4,890	897	18.4\%
Capão do Mel	CDMAC0053	0.0	19.0	19.0	4,224	633	15.0\%
Capão do Mel	CDMAC0054	0.0	38.0	38.0	4,228	708	16.7\%
Capão do Mel	CDMAC0055	0.0	24.2	24.2	3,280	628	19.1\%
Capão do Mel	CDMAC0056	0.0	24.0	24.0	5,313	1,104	20.8\%
Capão do Mel	CDMAC0057	0.0	40.0	40.0	5,874	1,232	21.0\%
Capão do Mel	CDMAC0058	0.0	47.0	47.0	3,637	748	20.6\%
Capão do Mel	CDMAC0059	0.0	36.0	36.0	2,674	526	19.7\%
Capão do Mel	CDMAC0060	0.0	25.0	25.0	4,609	1,066	23.1\%
Capão do Mel	CDMAC0061	0.0	24.0	24.0	3,191	701	22.0\%
Capão do Mel	CDMAC0062	0.0	43.0	43.0	4,071	706	17.3\%
Capão do Mel	CDMAC0063	0.0	39.6	39.6	4,703	819	17.4\%
Capão do Mel	CDMAC0064	0.0	44.4	44.4	4,825	857	17.8\%
Capão do Mel	CDMAC0065	0.0	38.0	38.0	3,781	524	13.9\%
Capão do Mel	CDMAC0066	0.0	32.0	32.0	5,730	1,138	19.9\%
Capão do Mel	CDMAC0067	0.0	30.0	30.0	2,678	518	19.3\%
Capão do Mel	CDMAC0067	2.0	22.0	20.0	3,202	659	20.6\%
Capão do Mel	CDMAC0068	0.0	18.0	18.0	7,969	1,790	22.5\%
Capão do Mel	CDMAC0069	0.0	30.0	30.0	3,331	735	22.1\%
Capão do Mel	CDMAC0070	0.0	32.0	32.0	2,423	507	20.9\%
Capão do Mel	CDMAC0071	0.0	22.0	22.0	3,705	768	20.7\%

Target	Hole ID	From	To	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO
Capão do Mel	CDMAC0072	0.0	40.0	40.0	3,052	605	19.8\%
Capão do Mel	CDMAC0073	0.0	30.0	30.0	2,398	397	16.5\%
Capão do Mel	CDMAC0074	0.0	30.0	30.0	2,602	431	16.6\%
Capão do Mel	CDMAC0075	0.0	25.0	25.0	2,087	357	17.1\%
Capão do Mel	CDMAC0076	0.0	28.0	28.0	1,896	285	15.0\%
Capão do Mel	CDMAC0077	0.0	34.0	34.0	1,803	271	15.0\%
Capão do Mel	CDMAC0078	0.0	29.2	29.2	2,483	380	15.3\%
Capão do Mel	CDMAC0079	0.0	28.0	28.0	1,237	196	15.8\%
Capão do Mel	CDMAC0080	0.0	22.0	22.0	1,590	372	23.4\%
Capão do Mel	CDMAC0082	0.0	50.0	50.0	2,155	306	14.2\%
Capão do Mel	CDMAC0083	0.0	30.0	30.0	2,439	189	7.7\%
Capão do Mel	CDMAC0084	0.0	33.0	33.0	2,224	338	15.2\%
Capão do Mel	CDMAC0085	0.0	34.0	34.0	1,436	228	15.9\%
Capão do Mel	CDMAC0086	0.0	33.0	33.0	1,439	211	14.6\%
Capão do Mel	CDMAC0087	0.0	13.0	13.0	2,814	524	18.6\%
Capão do Mel	CDMAC0088	0.0	42.0	42.0	1,978	356	18.0\%
Capão do Mel	CDMAC0089	0.0	42.3	42.3	2,082	54	2.6\%
Capão do Mel	CDMAC0090	0.0	36.0	36.0	2,539	408	16.1\%
Capão do Mel	CDMAC0091	0.0	36.0	36.0	2,796	446	15.9\%
Capão do Mel	CDMAC0092	0.0	40.0	40.0	2,970	50	1.7\%
Capão do Mel	CDMAC0093	0.0	28.0	28.0	2,935	399	13.6\%
Capão do Mel	CDMAC0094	0.0	29.5	29.5	2,854	484	17.0\%
Capão do Mel	CDMAC0095	0.0	28.5	28.5	1,752	64	3.7\%
Capão do Mel	CDMAC0096	0.0	34.0	34.0	3,725	724	19.4\%
Capão do Mel	CDMAC0097	0.0	24.0	24.0	4,878	1,014	20.8\%
Capão do Mel	CDMAC0098	0.0	8.0	8.0	2,679	464	17.3\%
Capão do Mel	CDMAC0099	0.0	30.0	30.0	3,393	703	20.7\%
Capão do Mel	CDMAC0100	0.0	24.0	24.0	4,397	975	22.2\%
Capão do Mel	CDMAC0101	0.0	25.0	25.0	2,621	524	20.0\%
Capão do Mel	CDMAC0102	0.0	20.0	20.0	2,452	414	16.9\%
Capão do Mel	CDMAC0103	0.0	18.0	18.0	3,235	545	16.8\%
Capão do Mel	CDMAC0103	0.0	29.0	29.0	2,753	459	16.7\%
Capão do Mel	CDMAC0104	0.0	25.5	25.5	2,848	483	17.0\%
Capão do Mel	CDMAC0105A	0.0	22.0	22.0	3,378	613	18.2\%
Capão do Mel	CDMAC0105B	0.0	30.0	30.0	3,283	584	17.8\%
Capão do Mel	CDMAC0106	0.0	20.0	20.0	4,086	861	21.1\%
Capão do Mel	CDMAC0107	0.0	50.0	50.0	2,378	420	17.7\%
Capão do Mel	CDMAC0108	0.0	50.0	50.0	2,418	403	16.7\%
Capão do Mel	CDMAC0109	0.0	10.0	10.0	3,317	610	18.4\%
Capão do Mel	CDMAC0110	0.0	50.0	50.0	2,145	376	17.5\%
Capão do Mel	CDMAC0111	0.0	21.0	21.0	3,516	813	23.1\%
Capão do Mel	CDMAC0112	0.0	23.5	23.5	2,296	451	19.7\%
Capão do Mel	CDMAC0113	0.0	20.2	20.2	3,898	682	17.5\%
Capão do Mel	CDMAC0114	0.0	20.0	20.0	2,238	477	21.3\%
Capão do Mel	CDMAC0115	0.0	16.0	16.0	1,693	344	20.3\%
Capão do Mel	CDMAC0116	0.0	26.0	26.0	2,438	463	19.0\%
Capão do Mel	CDMAC0117	0.0	24.0	24.0	1,960	291	14.8\%
Capão do Mel	CDMAC0118	0.0	6.0	6.0	1,418	242	17.1\%
Capão do Mel	CDMAC0119	0.0	8.0	8.0	3,780	867	22.9\%
Capão do Mel	CDMAC0120	0.0	30.0	30.0	1,807	342	18.9\%
Capão do Mel	CDMAC0121	0.0	13.0	13.0	2,195	480	21.9\%
Capão do Mel	CDMAC0122	0.0	22.0	22.0	4,356	965	22.1\%
Capão do Mel	CDMAC0123	0.0	28.0	28.0	2,607	375	14.4\%
Capão do Mel	CDMAC0124	0.0	32.0	32.0	4,474	1,028	23.0\%
Capão do Mel	CDMAC0125	0.0	23.5	23.5	5,238	1,047	20.0\%
Capão do Mel	CDMAC0126	0.0	35.0	35.0	2,991	550	18.4\%
Capão do Mel	CDMAC0127	0.0	25.0	25.0	3,742	807	21.6\%
Capão do Mel	CDMAC0128	0.0	42.2	42.2	3,561	612	17.2\%
Capão do Mel	CDMAC0129	0.0	24.4	24.4	4,308	831	19.3\%
Capão do Mel	CDMAC0130	0.0	22.2	22.2	3,564	785	22.0\%
Capão do Mel	CDMAC0131	0.0	31.0	31.0	3,070	555	18.1\%
Capão do Mel	CDMAC0132	0.0	28.0	28.0	2,265	422	18.6\%
Capão do Mel	CDMAC0133	0.0	16.0	16.0	4,048	908	22.4\%
Capão do Mel	CDMAC0134	0.0	16.0	16.0	3,297	782	23.7\%
Capão do Mel	CDMAC0135	0.0	16.0	16.0	1,837	368	20.1\%
Capão do Mel	CDMAC0136	0.0	23.0	23.0	4,822	1,135	23.5\%
Capão do Mel	CDMAC0137	0.0	20.0	20.0	2,080	415	20.0\%
Capão do Mel	CDMAC0138	0.0	15.0	15.0	2,347	471	20.1\%
Capão do Mel	CDMAC0139	0.0	18.0	18.0	2,174	409	18.8\%
Capão do Mel	CDMAC0140	0.0	16.0	16.0	2,827	585	20.7\%
Capão do Mel	CDMAC0141	0.0	14.0	14.0	2,979	607	20.4\%
Capão do Mel	CDMAC0142	0.0	44.0	44.0	2,922	589	20.2\%
Capão do Mel	CDMAC0143	0.0	16.0	16.0	2,373	454	19.1\%
Capão do Mel	CDMAC0144	0.0	14.0	14.0	4,934	1,121	22.7\%
Capão do Mel	CDMAC0145	0.0	14.0	14.0	3,271	848	25.9\%

Target	Hole ID	From	To	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO
Capão do Mel	CDMAC0146	0.0	13.0	13.0	5,552	1,427	25.7\%
Capão do Mel	CDMAC0147	0.0	7.0	7.0	2,391	515	21.6\%
Capão do Mel	CDMAC0148	0.0	11.4	11.4	3,297	764	23.2\%
Capão do Mel	CDMAC0149	0.0	21.0	21.0	8,247	2,061	25.0\%
Capão do Mel	CDMAC0150	0.0	41.2	41.2	4,610	956	20.7\%
Capão do Mel	CDMAC0151	0.0	21.4	21.4	7,355	1,369	18.6\%
Capão do Mel	CDMAC0152	0.0	42.0	42.0	3,480	486	14.0\%
Capão do Mel	CDMAC0153	0.0	19.0	19.0	2,378	464	19.5\%
Capão do Mel	CDMAC0154	0.0	26.0	26.0	3,370	816	24.2\%
Capão do Mel	CDMAC0155	0.0	22.0	22.0	3,274	781	23.9\%
Capão do Mel	CDMAC0156	0.0	19.0	19.0	6,182	1,513	24.5\%
Capão do Mel	CDMAC0157	0.0	16.0	16.0	5,050	996	19.7\%
Capão do Mel	CDMAC0158	0.0	7.0	7.0	5,435	1,266	23.3\%
Capão do Mel	CDMAC0159	0.0	10.0	10.0	4,727	1,024	21.7\%
Capão do Mel	CDMAC0160	0.0	18.0	18.0	1,786	341	19.1\%
Capão do Mel	CDMAC0161	0.0	22.0	22.0	3,141	682	21.7\%
Capão do Mel	CDMAC0162	0.0	16.0	16.0	3,909	1,016	26.0\%
Capão do Mel	CDMAC0163	0.0	20.0	20.0	3,705	735	19.8\%
Capão do Mel	CDMAC0164	0.0	25.0	25.0	2,547	575	22.6\%
Capão do Mel	CDMAC0165	0.0	29.0	29.0	2,032	437	21.5\%
Capão do Mel	CDMAC0166	0.0	13.0	13.0	3,216	826	25.7\%
Capão do Mel	CDMAC0167	0.0	14.0	14.0	2,802	618	22.1\%
Capão do Mel	CDMAC0168	0.0	37.0	37.0	3,823	319	8.3\%
Capão do Mel	CDMAC0169	0.0	28.0	28.0	4,611	1,157	25.1\%
Capão do Mel	CDMAC0170	0.0	18.0	18.0	5,127	1,290	25.2\%
Capão do Mel	CDMAC0171	0.0	34.0	34.0	3,171	587	18.5\%
Capão do Mel	CDMAC0172	0.0	28.0	28.0	4,865	872	17.9\%
Capão do Mel	CDMAC0173	0.0	23.2	23.2	4,009	881	22.0\%
Capão do Mel	CDMAC0174	0.0	27.0	27.0	3,472	705	20.3\%
Capão do Mel	CDMAC0175	0.0	16.0	16.0	3,658	744	20.3\%
Capão do Mel	CDMAC0176	0.0	24.0	24.0	5,406	1,177	21.8\%
Capão do Mel	CDMAC0177	0.0	40.0	40.0	3,666	709	19.3\%
Capão do Mel	CDMAC0178	0.0	28.0	28.0	2,451	465	19.0\%
Capão do Mel	CDMAC0179	0.0	34.8	34.8	3,622	635	17.5\%
Capão do Mel	CDMAC0180	0.0	20.0	20.0	3,372	581	17.2\%
Capão do Mel	CDMAC0181	0.0	18.0	18.0	3,609	694	19.2\%
Capão do Mel	CDMAC0182	0.0	32.5	32.5	2,215	422	19.1\%
Capão do Mel	CDMAC0183	0.0	25.0	25.0	3,521	614	17.4\%
Capão do Mel	CDMAC0184	0.0	23.0	23.0	2,904	643	22.1\%
Capão do Mel	CDMAC0185	0.0	14.0	14.0	2,847	506	17.8\%
Capão do Mel	CDMAC0186	0.0	24.5	24.5	4,040	814	20.1\%
Capão do Mel	CDMAC0187	0.0	16.0	16.0	4,817	1,151	23.9\%
Capão do Mel	CDMAC0188	0.0	12.0	12.0	2,585	534	20.6\%
Capão do Mel	CDMAC0189	0.0	20.0	20.0	2,519	426	16.9\%
Capão do Mel	CDMAC0190	0.0	24.2	24.2	2,305	405	17.5\%
Capão do Mel	CDMAC0191	0.0	27.5	27.5	3,821	687	18.0\%
Capão do Mel	CDMAC0192	0.0	22.0	22.0	1,926	385	20.0\%
Capão do Mel	CDMAC0193	0.0	27.5	27.5	2,823	404	14.3\%
Capão do Mel	CDMAC0194	2.0	26.0	24.0	2,493	351	14.1\%
Capão do Mel	CDMAC0195	0.0	7.5	7.5	2,141	396	18.5\%
Capão do Mel	CDMAC0196	0.0	48.0	48.0	2,934	474	16.2\%
Capão do Mel	CDMAC0197	6.0	41.0	35.0	2,186	319	14.6\%
Capão do Mel	CDMAC0198	0.0	18.5	18.5	2,927	543	18.5\%
Capão do Mel	CDMAC0199	0.0	27.5	27.5	2,386	345	14.5\%
Capão do Mel	CDMAC0200	0.0	21.5	21.5	2,115	318	15.0\%
Capão do Mel	CDMAC0201	0.0	27.5	27.5	4,135	822	19.9\%
Capão do Mel	CDMAC0202	0.0	10.0	10.0	2,039	369	18.1\%
Capão do Mel	CDMACO203	0.0	22.0	22.0	2,980	622	20.9\%
Capão do Mel	CDMAC0204	0.0	19.2	19.2	1,799	368	20.5\%
Capão do Mel	CDMAC0205	0.0	4.2	4.2	1,361	259	19.0\%
Capão do Mel	CDMAC0206	0.0	12.0	12.0	5,112	1,381	27.0\%
Capão do Mel	CDMAC0207	0.0	13.0	13.0	3,219	735	22.8\%
Capão do Mel	CDMAC0208	0.0	4.0	4.0	1,484	367	24.7\%
Capão do Mel	CDMAC0209	0.0	17.0	17.0	2,117	437	20.7\%
Capão do Mel	CDMAC0210	0.0	16.0	16.0	3,015	726	24.1\%
Capão do Mel	CDMAC0211	0.0	30.0	30.0	2,781	580	20.8\%
Capão do Mel	CDMAC0212	0.0	10.0	10.0	3,034	686	22.6\%
Capão do Mel	CDMAC0213	0.0	22.5	22.5	3,612	684	18.9\%
Capão do Mel	CDMAC0214	0.0	15.4	15.4	2,683	512	19.1\%
Capão do Mel	CDMAC0215	0.0	21.0	21.0	4,949	1,072	21.7\%
Capão do Mel	CDMAC0216	0.0	21.0	21.0	3,834	707	18.4\%
Capão do Mel	CDMAC0217	0.0	29.0	29.0	4,039	871	21.6\%
Capão do Mel	CDMAC0218	0.0	22.0	22.0	5,985	1,384	23.1\%
Capão do Mel	CDMAC0219	0.0	50.0	50.0	3,725	696	18.7\%
Capão do Mel	CDMACO220	0.0	20.0	20.0	4,526	937	20.7\%

Target	Hole ID	From	To	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO
Capão do Mel	CDMAC0221	0.0	16.5	16.5	4,906	934	19.0\%
Capão do Mel	CDMAC0222	0.0	36.0	36.0	3,320	641	19.3\%
Capão do Mel	CDMAC0223	0.0	29.0	29.0	4,031	836	20.7\%
Capão do Mel	CDMAC0224	0.0	25.0	25.0	2,104	433	20.6\%
Capão do Mel	CDMAC0225	0.0	31.0	31.0	3,878	916	23.6\%
Capão do Mel	CDMAC0226	0.0	11.8	11.8	4,656	1,116	24.0\%
Capão do Mel	CDMAC0227	0.0	34.2	34.2	4,210	936	22.2\%
Capão do Mel	CDMAC0228	0.0	24.6	24.6	6,037	1,151	19.1\%
Capão do Mel	CDMAC0229	0.0	35.0	35.0	5,152	1,021	19.8\%
Capão do Mel	CDMAC0230	0.0	36.0	36.0	7,479	1,608	21.5\%
Capão do Mel	CDMAC0231	0.0	31.0	31.0	5,309	1,095	20.6\%
Capão do Mel	CDMAC0232	0.0	34.0	34.0	8,850	1,782	20.1\%
Capão do Mel	CDMAC0233	0.0	28.5	28.5	4,843	971	20.1\%
Capão do Mel	CDMAC0234	0.0	32.0	32.0	3,850	791	20.5\%
Capão do Mel	CDMAC0235	0.0	42.0	42.0	5,214	1,028	19.7\%
Capão do Mel	CDMAC0236	0.0	22.0	22.0	9,333	1,984	21.3\%
Capão do Mel	CDMAC0237	0.0	12.0	12.0	3,052	629	20.6\%
Capão do Mel	CDMAC0238	0.0	7.0	7.0	1,879	240	12.8\%
Capão do Mel	CDMAC0239	0.0	19.0	19.0	4,459	830	18.6\%
Capão do Mel	CDMAC0240	0.0	30.0	30.0	4,900	831	17.0\%
Capão do Mel	CDMAC0241	0.0	29.6	29.6	5,344	1,003	18.8\%
Capão do Mel	CDMAC0242	0.0	16.0	16.0	4,112	886	21.6\%
Capão do Mel	CDMAC0243	0.0	18.2	18.2	5,291	1,280	24.2\%
Capão do Mel	CDMAC0244	0.0	34.0	34.0	2,459	473	19.3\%
Capão do Mel	CDMAC0245	0.0	31.5	31.5	5,912	1,136	19.2\%
Capão do Mel	CDMAC0246	0.0	24.0	24.0	4,252	782	18.4\%
Capão do Mel	CDMAC0247	0.0	34.0	34.0	3,415	565	16.5\%
Capão do Mel	CDMAC0248	0.0	31.0	31.0	4,683	964	20.6\%
Capão do Mel	CDMAC0249	0.0	25.0	25.0	2,881	580	20.1\%
Capão do Mel	CDMAC0250	0.0	28.0	28.0	3,675	667	18.1\%
Capão do Mel	CDMAC0251	0.0	25.6	25.6	2,949	529	17.9\%
Capão do Mel	CDMAC0252	0.0	23.0	23.0	5,807	1,041	17.9\%
Capão do Mel	CDMAC0253	0.0	20.0	20.0	5,896	1,251	21.2\%
Capão do Mel	CDMAC0254	0.0	10.0	10.0	1,572	281	17.9\%
Capão do Mel	CDMAC0255	0.0	13.0	13.0	1,947	428	22.0\%
Capão do Mel	CDMAC0256	0.0	10.0	10.0	1,484	290	19.5\%
Capão do Mel	CDMAC0257	0.0	21.0	21.0	2,690	580	21.6\%
Capão do Mel	CDMAC0258	0.0	10.0	10.0	1,237	182	14.7\%
Capão do Mel	CDMAC0259	0.0	13.0	13.0	3,389	789	23.3\%
Capão do Mel	CDMAC0260	0.0	16.0	16.0	2,506	559	22.3\%
Capão do Mel	CDMAC0261	0.0	18.0	18.0	3,564	728	20.4\%
Capão do Mel	CDMAC0262	0.0	15.0	15.0	2,446	566	23.1\%
Capão do Mel	CDMAC0263	0.0	25.0	25.0	3,181	754	23.7\%
Capão do Mel	CDMAC0264	0.0	20.0	20.0	2,110	388	18.4\%
Capão do Mel	CDMAC0265	0.0	36.0	36.0	2,117	409	19.3\%
Capão do Mel	CDMAC0266	0.0	28.0	28.0	2,634	563	21.4\%
Capão do Mel	CDMAC0267	0.0	23.2	23.2	2,836	639	22.5\%
Capão do Mel	CDMAC0268	0.0	34.0	34.0	7,178	1,592	22.2\%
Capão do Mel	CDMAC0269	0.0	40.0	40.0	6,263	1,418	22.6\%
Capão do Mel	CDMAC0270	0.0	30.0	30.0	2,876	611	21.2\%
Capão do Mel	CDMAC0271	0.0	22.0	22.0	2,764	550	19.9\%
Capão do Mel	CDMAC0272	0.0	37.0	37.0	2,894	563	19.4\%
Capão do Mel	CDMAC0273	0.0	22.0	22.0	3,816	854	22.4\%
Capão do Mel	CDMAC0274	0.0	20.0	20.0	3,843	820	21.3\%
Capão do Mel	CDMAC0275	0.0	20.4	20.4	3,378	689	20.4\%
Capão do Mel	CDMAC0276	0.0	50.0	50.0	3,345	631	18.9\%
Capão do Mel	CDMAC0277	0.0	39.0	39.0	3,034	440	14.5\%
Capão do Mel	CDMAC0278	0.0	29.0	29.0	3,448	682	19.8\%
Capão do Mel	CDMAC0279	0.0	34.0	34.0	4,821	1,092	22.6\%
Capão do Mel	CDMAC0280	0.0	34.0	34.0	4,704	931	19.8\%
Capão do Mel	CDMAC0281	0.0	34.0	34.0	4,606	884	19.2\%
Capão do Mel	CDMAC0282	0.0	40.5	40.5	2,441	452	18.5\%
Capão do Mel	CDMAC0283	0.0	42.0	42.0	3,440	665	19.3\%
Capão do Mel	CDMAC0284	0.0	43.0	43.0	2,417	436	18.1\%
Capão do Mel	CDMAC0285	0.0	26.0	26.0	5,507	1,202	21.8\%
Capão do Mel	CDMAC0286	0.0	23.0	23.0	3,098	431	13.9\%
Capão do Mel	CDMAC0287	0.0	34.0	34.0	3,472	590	17.0\%
Capão do Mel	CDMAC0288	0.0	24.0	24.0	3,386	586	17.3\%
Capão do Mel	CDMAC0289	0.0	18.0	18.0	2,083	330	15.8\%
Capão do Mel	CDMAC0290	0.0	31.0	31.0	2,563	388	15.1\%
Capão do Mel	CDMAC0291	0.0	19.0	19.0	2,394	325	13.6\%
Capão do Mel	CDMAC0292	0.0	32.6	32.6	3,195	569	17.8\%
Capão do Mel	CDMAC0293	0.0	29.6	29.6	3,245	597	18.4\%
Capão do Mel	CDMAC0294	0.0	26.0	26.0	1,622	198	12.2\%
Capão do Mel	CDMAC0295	0.0	32.0	32.0	1,834	282	15.4\%

Target	Hole ID	From	To	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO
Capão do Mel	CDMAC0296	0.0	50.0	50.0	2,249	375	16.7\%
Capão do Mel	CDMAC0297	0.0	24.0	24.0	2,678	454	17.0\%
Capão do Mel	CDMAC0298	0.0	17.0	17.0	2,880	460	16.0\%
Capão do Mel	CDMAC0299	0.0	36.0	36.0	3,908	671	17.2\%
Capão do Mel	CDMAC0300	0.0	33.0	33.0	3,009	554	18.4\%
Capão do Mel	CDMAC0301	0.0	32.0	32.0	2,675	506	18.9\%
Capão do Mel	CDMAC0302	0.0	32.0	32.0	5,054	1,168	23.1\%
Capão do Mel	CDMAC0303	0.0	15.7	15.7	5,227	1,181	22.6\%
Capão do Mel	CDMAC0304	0.0	37.0	37.0	3,068	568	18.5\%
Capão do Mel	CDMAC0305	0.0	24.0	24.0	2,016	386	19.2\%
Capão do Mel	CDMAC0306	0.0	30.4	30.4	2,309	467	20.2\%
Capão do Mel	CDMAC0307	0.0	18.0	18.0	4,191	1,001	23.9\%
Capão do Mel	CDMAC0308	0.0	28.0	28.0	1,791	317	17.7\%
Capão do Mel	CDMAC0309	0.0	34.0	34.0	2,123	346	16.3\%
Capão do Mel	CDMAC0310	0.0	22.0	22.0	2,134	422	19.8\%
Capão do Mel	CDMAC0311	0.0	25.0	25.0	2,385	501	21.0\%
Capão do Mel	CDMAC0312	0.0	15.0	15.0	3,333	623	18.7\%
Capão do Mel	CDMAC0313	0.0	34.0	34.0	2,465	447	18.1\%
Capão do Mel	CDMAC0314	0.0	20.6	20.6	2,595	515	19.9\%
Capão do Mel	CDMAC0315	0.0	27.4	27.4	3,427	745	21.7\%
Capão do Mel	CDMAC0316	0.0	22.0	22.0	6,032	1,261	20.9\%
Capão do Mel	CDMAC0317	0.0	8.0	8.0	2,057	319	15.5\%
Capão do Mel	CDMAC0318	0.0	28.0	28.0	2,492	445	17.8\%
Capão do Mel	CDMAC0319	0.0	22.0	22.0	2,366	419	17.7\%
Capão do Mel	CDMAC0320	0.0	15.0	15.0	4,478	953	21.3\%
Capão do Mel	CDMAC0321	0.0	22.0	22.0	5,280	1,107	21.0\%
Capão do Mel	CDMAC0322	0.0	31.0	31.0	2,746	535	19.5\%
Capão do Mel	CDMAC0323	0.0	50.0	50.0	3,045	556	18.2\%
Capão do Mel	CDMAC0324	0.0	35.5	35.5	2,210	399	18.0\%
Capão do Mel	CDMAC0325	0.0	28.0	28.0	4,763	878	18.4\%
Capão do Mel	CDMAC0326	0.0	25.0	25.0	2,407	511	21.2\%
Capão do Mel	CDMAC0327	0.0	26.0	26.0	2,178	431	19.8\%
Capão do Mel	CDMAC0328	0.0	30.0	30.0	2,435	498	20.5\%
Capão do Mel	CDMAC0329	0.0	22.0	22.0	3,447	825	23.9\%
Capão do Mel	CDMAC0330	0.0	19.0	19.0	3,654	704	19.3\%
Capão do Mel	CDMAC0331	0.0	15.0	15.0	3,105	717	23.1\%
Capão do Mel	CDMAC0332	0.0	13.0	13.0	2,611	564	21.6\%
Capão do Mel	CDMAC0333	0.0	13.0	13.0	2,992	659	22.0\%
Capão do Mel	CDMAC0334	0.0	24.0	24.0	3,545	817	23.0\%
Capão do Mel	CDMAC0335	0.0	14.2	14.2	3,222	607	18.8\%
Capão do Mel	CDMAC0336	0.0	22.0	22.0	2,794	640	22.9\%
Capão do Mel	CDMAC0337	0.0	11.0	11.0	5,362	1,460	27.2\%
Capão do Mel	CDMAC0338	0.0	11.0	11.0	2,055	431	21.0\%
Capão do Mel	CDMAC0339	0.0	29.0	29.0	2,633	571	21.7\%
Capão do Mel	CDMAC0340	0.0	14.6	14.6	1,955	330	16.9\%
Capão do Mel	CDMAC0341	0.0	18.0	18.0	2,262	509	22.5\%
Capão do Mel	CDMAC0342	0.0	17.4	17.4	3,085	770	24.9\%
Capão do Mel	CDMAC0343	0.0	14.0	14.0	3,473	833	24.0\%
Capão do Mel	CDMAC0344	0.0	17.8	17.8	4,178	1,117	26.7\%
Capão do Mel	CDMAC0345	0.0	12.0	12.0	4,257	1,226	28.8\%
Capão do Mel	CDMAC0346	0.0	19.2	19.2	2,934	756	25.8\%
Capão do Mel	CDMAC0347	0.0	16.0	16.0	3,268	843	25.8\%
Capão do Mel	CDMAC0348	0.0	11.0	11.0	1,607	317	19.8\%
Capão do Mel	CDMAC0349	0.0	28.0	28.0	3,014	718	23.8\%
Capão do Mel	CDMAC0350	0.0	8.0	8.0	4,658	1,271	27.3\%
Capão do Mel	CDMAC0351	0.0	16.0	16.0	1,749	370	21.2\%
Capão do Mel	CDMAC0352	0.0	4.0	4.0	1,556	196	12.6\%
Capão do Mel	CDMAC0353	0.0	14.0	14.0	2,105	412	19.6\%
Capão do Mel	CDMAC0354	0.0	14.0	14.0	2,105	412	19.6\%
Capão do Mel	CDMAC0355	0.0	14.0	14.0	3,780	812	21.5\%
Capão do Mel	CDMAC0356	0.0	32.0	32.0	2,112	272	12.9\%
Capão do Mel	CDMAC0357	0.0	20.0	20.0	2,435	380	15.6\%
Capão do Mel	CDMAC0358	0.0	24.0	24.0	1,520	316	20.8\%
Capão do Mel	CDMAC0359	0.0	22.0	22.0	1,840	250	13.6\%
Capão do Mel	CDMAC0360	0.0	31.0	31.0	2,527	495	19.6\%
Capão do Mel	CDMAC0361	0.0	29.0	29.0	2,652	565	21.3\%
Capão do Mel	CDMAC0362	0.0	21.8	21.8	1,708	202	11.8\%
Capão do Mel	CDMAC0363	0.0	12.0	12.0	3,106	669	21.5\%
Capão do Mel	CDMAC0364	0.0	12.6	12.6	2,578	588	22.8\%
Capão do Mel	CDMAC0365	0.0	34.0	34.0	4,053	494	12.2\%
Capão do Mel	CDMAC0366	0.0	21.0	21.0	3,739	860	23.0\%
Capão do Mel	CDMAC0367	0.0	16.0	16.0	1,438	303	21.1\%
Capão do Mel	CDMAC0368	0.0	24.0	24.0	2,412	584	24.2\%
Capão do Mel	CDMAC0369	0.0	25.0	25.0	1,702	289	17.0\%
Capão do Mel	CDMAC0370	0.0	20.4	20.4	1,804	316	17.5\%

Target	Hole ID	From	To	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO
Capão do Mel	CDMAC0371	0.0	27.0	27.0	2,669	622	23.3\%
Capão do Mel	CDMAC0372	0.0	16.0	16.0	2,385	463	19.4\%
Capão do Mel	CDMAC0373	0.0	20.0	20.0	2,704	646	23.9\%
Capão do Mel	CDMAC0374	0.0	32.0	32.0	2,722	540	19.9\%
Capão do Mel	CDMAC0375	0.0	20.0	20.0	2,253	234	10.4\%
Capão do Mel	CDMAC0376	0.0	40.0	40.0	2,395	432	18.0\%
Capão do Mel	CDMAC0377	0.0	26.0	26.0	2,199	288	13.1\%
Capão do Mel	CDMAC0378	0.0	25.0	25.0	1,780	252	14.2\%
Capão do Mel	CDMAC0379	0.0	22.0	22.0	1,772	217	12.3\%
Capão do Mel	CDMAC0380	0.0	22.0	22.0	3,134	739	23.6\%
Capão do Mel	CDMAC0381	0.0	24.0	24.0	1,809	343	19.0\%
Capão do Mel	CDMAC0382	0.0	21.0	21.0	3,031	750	24.7\%
Capão do Mel	CDMAC0383	0.0	17.0	17.0	4,787	1,194	24.9\%
Capão do Mel	CDMAC0384	0.0	18.5	18.5	2,191	463	21.2\%
Capão do Mel	CDMAC0385	0.0	32.0	32.0	3,670	810	22.1\%
Capão do Mel	CDMAC0386	0.0	31.0	31.0	1,710	339	19.8\%
Capão do Mel	CDMAC0387	0.0	31.0	31.0	2,293	418	18.2\%
Capão do Mel	CDMAC0387	22.0	31.0	9.0	3,836	1,191	31.0\%
Capão do Mel	CDMAC0388	2.0	35.0	33.0	1,911	358	18.7\%
Capão do Mel	CDMAC0389	0.0	24.0	24.0	2,071	329	15.9\%
Capão do Mel	CDMAC0390	0.0	24.0	24.0	964	216	22.4\%
Capão do Mel	CDMAC0391	0.0	10.0	10.0	2,467	479	19.4\%
Capão do Mel	CDMAC0392	0.0	12.0	12.0	1,811	404	22.3\%
Capão do Mel	CDMAC0393	0.0	4.0	4.0	1,678	419	25.0\%
Capão do Mel	CDMAC0394	10.0	15.0	5.0	1,980	449	22.7\%
Capão do Mel	CDMAC0395	0.0	19.0	19.0	1,562	302	19.3\%
Capão do Mel	CDMAC0396	0.0	13.0	13.0	5,800	302	5.2\%
Capão do Mel	CDMAC0397	0.0	13.5	13.5	1,445	298	20.6\%
Capão do Mel	CDMAC0398	0.0	10.0	10.0	3,126	777	24.9\%
Capão do Mel	CDMAC0399	0.0	11.0	11.0	2,823	630	22.3\%
Capão do Mel	CDMAC0400	0.0	8.0	8.0	2,739	544	19.9\%
Capão do Mel	CDMAC0401	0.0	16.0	16.0	2,067	460	22.3\%
Capão do Mel	CDMAC0402	0.0	14.5	14.5	3,993	839	21.0\%
Capão do Mel	CDMAC0403	0.0	13.2	13.2	3,838	1,003	26.1\%
Capão do Mel	CDMAC0404	2.0	16.0	14.0	2,492	338	13.6\%
Capão do Mel	CDMAC0405	0.0	24.0	24.0	4,002	1,086	27.1\%
Capão do Mel	CDMAC0406	0.0	27.0	27.0	3,566	737	20.7\%
Capão do Mel	CDMAC0407	0.0	19.0	19.0	3,306	844	25.5\%
Capão do Mel	CDMAC0408	0.0	28.0	28.0	3,156	778	24.7\%
Capão do Mel	CDMAC0409	0.0	21.8	21.8	2,594	596	23.0\%
Capão do Mel	CDMAC0410	0.0	30.0	30.0	4,288	1,118	26.1\%
Capão do Mel	CDMAC0411	0.0	15.0	15.0	3,046	671	22.0\%
Capão do Mel	CDMAC0412	0.0	21.0	21.0	4,990	1,129	22.6\%
Capão do Mel	CDMAC0413	0.0	26.0	26.0	2,358	347	14.7\%
Capão do Mel	CDMAC0414	0.0	8.0	8.0	5,851	1,689	28.9\%
Capão do Mel	CDMAC0415	0.0	9.5	9.5	7,867	2,405	30.6\%
Capão do Mel	CDMAC0416	0.0	9.5	9.5	2,411	578	24.0\%
Capão do Mel	CDMAC0417	0.0	15.0	15.0	2,276	500	22.0\%
Capão do Mel	CDMAC0418	0.0	21.0	21.0	3,436	767	22.3\%
Capão do Mel	CDMAC0419	0.0	19.0	19.0	3,023	643	21.3\%
Capão do Mel	CDMAC0420	0.0	32.0	32.0	2,565	551	21.5\%
Capão do Mel	CDMAC0421	0.0	32.0	32.0	2,186	307	14.0\%
Capão do Mel	CDMAC0422	0.0	26.0	26.0	1,572	226	14.4\%
Capão do Mel	CDMAC0423	6.0	26.0	20.0	4,810	1,448	30.1\%
Capão do Mel	CDMAC0424	0.0	22.0	22.0	1,789	335	18.7\%
Capão do Mel	CDMAC0425	0.0	25.0	25.0	2,370	464	19.6\%
Capão do Mel	CDMAC0426	0.0	18.0	18.0	1,742	306	17.6\%
Capão do Mel	CDMAC0427	0.0	22.0	22.0	2,663	597	22.4\%
Capão do Mel	CDMAC0428	0.0	24.0	24.0	2,329	429	18.4\%
Capão do Mel	CDMAC0429	0.0	12.0	12.0	3,587	953	26.6\%
Capão do Mel	CDMAC0430	0.0	25.0	25.0	2,083	348	16.7\%
Capão do Mel	CDMAC0431	0.0	22.0	22.0	3,698	775	21.0\%
Capão do Mel	CDMAC0432	0.0	30.0	30.0	3,202	709	22.1\%
Capão do Mel	CDMAC0433	0.0	22.0	22.0	2,132	368	17.3\%
Capão do Mel	CDMAC0434	0.0	44.0	44.0	2,119	391	18.4\%
Capão do Mel	CDMAC0435	0.0	38.0	38.0	2,020	401	19.9\%
Capão do Mel	CDMAC0436	0.0	12.0	12.0	1,871	159	8.5\%
Capão do Mel	CDMAC0436	22.0	46.0	24.0	2,010	375	18.6\%
Capão do Mel	CDMAC0437	0.0	44.0	44.0	2,128	410	19.3\%
Capão do Mel	CDMAC0438	0.0	36.0	36.0	2,693	535	19.9\%
Capão do Mel	CDMAC0439	0.0	38.0	38.0	2,535	408	16.1\%
Capão do Mel	CDMAC0440	0.0	34.0	34.0	2,410	369	15.3\%
Capão do Mel	CDMAC0441	10.0	27.8	17.8	1,995	315	15.8\%
Capão do Mel	CDMAC0442	10.0	36.0	26.0	1,631	281	17.2\%
Capão do Mel	CDMAC0443	0.0	18.0	18.0	2,000	375	18.7\%

METEORIC

RESOURCES

Target	Hole ID	From	To	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO
Capão do Mel	CDMAC0444	0.0	4.0	4.0	2,209	477	21.6\%
Capão do Mel	CDMAC0445	0.0	10.5	10.5	6,514	1,942	29.8\%
Capão do Mel	CDMAC0446	0.0	16.0	16.0	2,339	614	26.3\%
Capão do Mel	CDMAC0447	0.0	50.0	50.0	1,890	370	19.6\%
Capão do Mel	CDMAC0448	0.0	20.8	20.8	3,753	786	21.0\%
Capão do Mel	CDMAC0449	0.0	12.5	12.5	4,236	1,190	28.1\%
Capão do Mel	CDMAC0450	0.0	9.5	9.5	3,009	715	23.8\%
Capão do Mel	CDMAC0451	0.0	10.0	10.0	2,760	668	24.2\%
Capão do Mel	CDMAC0452	0.0	13.0	13.0	1,445	243	16.8\%
Capão do Mel	CDMAC0453	0.0	11.0	11.0	3,140	680	21.6\%
Capão do Mel	CDMAC0454	0.0	12.0	12.0	1,568	312	19.9\%
Capão do Mel	CDMAC0455	0.0	2.0	2.0	1,202	183	15.2\%
Capão do Mel	CDMAC0456	0.0	6.0	6.0	1,219	165	13.5\%
Capão do Mel	CDMAC0457	0.0	19.0	19.0	2,117	269	12.7\%
Capão do Mel	CDMAC0458	0.0	19.0	19.0	1,495	284	19.0\%
Capão do Mel	CDMAC0459	0.0	11.0	11.0	3,647	848	23.3\%
Capão do Mel	CDMAC0460	0.0	4.0	4.0	1,984	513	25.9\%
Capão do Mel	CDMAC0461	0.0	7.0	7.0	1,158	228	19.7\%
Capão do Mel	CDMAC0462	0.0	7.0	7.0	1,354	273	20.2\%
Capão do Mel	CDMAC0463	0.0	14.5	14.5	1,151	188	16.3\%
Capão do Mel	CDMAC0464	0.0	10.0	10.0	1,265	226	17.9\%
Capão do Mel	CDMAC0465	0.0	13.0	13.0	3,207	838	26.1\%
Capão do Mel	CDMAC0466	0.0	15.0	15.0	1,955	411	21.0\%
Capão do Mel	CDMAC0467	0.0	8.0	8.0	2,709	782	28.9\%
Capão do Mel	CDMAC0468	0.0	13.0	13.0	4,111	1,075	26.1\%
Capão do Mel	CDMAC0469	0.0	20.0	20.0	1,660	360	21.7\%
Capão do Mel	CDMAC0470	0.0	22.0	22.0	1,385	241	17.4\%
Capão do Mel	CDMAC0471	0.0	18.6	18.6	3,154	750	23.8\%
Capão do Mel	CDMAC0472	0.0	22.0	22.0	1,970	315	16.0\%
Capão do Mel	CDMAC0473	0.0	24.0	24.0	2,239	486	21.7\%
Capão do Mel	CDMAC0474	0.0	20.0	20.0	1,568	315	20.1\%
Capão do Mel	CDMAC0475	0.0	16.0	16.0	3,392	855	25.2\%
Capão do Mel	CDMAC0476	0.0	25.0	25.0	1,661	336	20.3\%
Capão do Mel	CDMAC0477	0.0	22.0	22.0	1,553	204	13.1\%
Capão do Mel	CDMAC0478	0.0	16.4	16.4	2,692	410	15.3\%
Capão do Mel	CDMAC0479	0.0	18.5	18.5	2,794	599	21.4\%
Capão do Mel	CDMAC0480	0.0	15.5	15.5	2,400	535	22.3\%
Capão do Mel	CDMAC0481	0.0	19.0	19.0	1,612	323	20.0\%
Capão do Mel	CDMAC0482	0.0	10.0	10.0	2,831	601	21.2\%
Capão do Mel	CDMAC0483	0.0	10.0	10.0	4,229	1,101	26.0\%
Capão do Mel	CDMAC0484	0.0	20.0	20.0	2,294	499	21.7\%
Capão do Mel	CDMAC0485	0.0	25.0	25.0	2,935	640	21.8\%
Capão do Mel	CDMAC0486	0.0	19.0	19.0	1,844	389	21.1\%
Capão do Mel	CDMAC0487	0.0	4.0	4.0	1,798	430	23.9\%
Capão do Mel	CDMAC0488	0.0	6.0	6.0	1,918	395	20.6\%
Capão do Mel	CDMAC0489	0.0	4.0	4.0	1,619	329	20.3\%
Capão do Mel	CDMAC0490	0.0	16.0	16.0	2,986	575	19.2\%
				Weighted Ave.	3,251	632	19.0\%

*min 4m width, bottom cut-off 1000ppm TREO, max $2 m$ internal dilution

Appendix 4: Caldeira REE Project - Licence details

License	Status	License Holder	Area (Ha)
808027/1975	MINING CONCESSION	COMPANHIA GERAL DE MINAS	600.76
809358/1975	MINING CONCESSION	COMPANHIA GERAL DE MINAS	617.23
809359/1975	MINING CONCESSION	COMPANHIA GERAL DE MINAS	317.36
815645/1971	MINING CONCESSION	COMPANHIA GERAL DE MINAS	366.02
815682/1971	MINING CONCESSION	COMPANHIA GERAL DE MINAS	575.26
817223/1971	MINING CONCESSION	MINERAÇÃO DANIEL TOGNI LOUREIRO LTDA	772.72
803459/1975	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	24.02
808556/1974	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	204.09
811232/1974	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	524.40
814251/1971	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	124.35
815006/1971	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	717.52
816211/1971	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	796.55
835022/1993	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	73.50
835025/1993	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	100.47
814860/1971	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	341.73
815681/1971	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	766.54
820352/1972	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	26.40
820353/1972	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	529.70
820354/1972	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	216.49
2757/1967	MINING CONCESSION	RAJ MINERIOS LTDA	20.10
5649/1963	MINING CONCESSION	RAJ MINERIOS LTDA	12.41
803457/1975	MINING CONCESSION	RAJ MINERIOS LTDA	60.64
825972/1972	MINING CONCESSION	RAJ MINERIOS LTDA	377.42
833914/2007	MINING CONCESSION	RAJ MINERIOS LTDA	6.99
002.349/1967	MINING CONCESSION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	74.01
830443/2018	EXPLORATION LICENSE	FERTIMAX FERTILIZANTES ORGANICOS LTDA	79.24
830444/2018	EXPLORATION LICENSE	FERTIMAX FERTILIZANTES ORGANICOS LTDA	248.34
830824/2006	EXPLORATION LICENSE	RAJ MINERIOS LTDA	13.24
832350/2006	EXPLORATION LICENSE	RAJ MINERIOS LTDA	27.14
832351/2006	EXPLORATION LICENSE	RAJ MINERIOS LTDA	16.77
832671/2005	EXPLORATION LICENSE	RAJ MINERIOS LTDA	16.91
832714/2016	EXPLORATION LICENSE	RAJ MINERIOS LTDA	13.61
832800/2002	EXPLORATION LICENSE	RAJ MINERIOS LTDA	6.94
831686/2012	EXPLORATION LICENSE	VARGINHA MINERACAO E LOTEAMENTOS LTDA	6.50
832193/2012	EXPLORATION LICENSE	VARGINHA MINERACAO E LOTEAMENTOS LTDA	12.46
807899/1975	MINING APPLICATION	COMPANHIA GERAL DE MINAS	948.92
815274/1971	MINING APPLICATION	COMPANHIA GERAL DE MINAS	739.73
833486/1996	MINING APPLICATION	MINAS RIO MINERADORA LTDA	79.38
833655/1996	MINING APPLICATION	MINAS RIO MINERADORA LTDA	249.11
833656/1996	MINING APPLICATION	MINAS RIO MINERADORA LTDA	82.77
833657/1996	MINING APPLICATION	MINAS RIO MINERADORA LTDA	68.25
834743/1995	MINING APPLICATION	MINAS RIO MINERADORA LTDA	283.19
830513/1979	MINING APPLICATION	MINERAÇÃO MONTE CARMELO LTDA	457.77
804222/1975	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA	403.65
813025/1973	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA	943.74
830000/1980	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA	203.85
831092/1983	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA	171.39
830391/1979	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA.	7.30
830633/1980	MINING APPLICATION	MINERAÇÃO ZELÂNDIA LTDA	35.25
831880/1991	MINING APPLICATION	MINERAÇÃO ZELÂNDIA LTDA	84.75
815237/1971	MINING APPLICATION	RAJ MINERIOS LTDA	131.98
830722/2002	MINING APPLICATION	RAJ MINERIOS LTDA	5.60
831250/2008	MINING APPLICATION	RAJ MINERIOS LTDA	2.48
831598/1988	MINING APPLICATION	RAJ MINERIOS LTDA	930.90
832889/2005	MINING APPLICATION	RAJ MINERIOS LTDA	27.82
837368/1993	MINING APPLICATION	RAJ MINERIOS LTDA	340.04
830551/1979	MINING APPLICATION	TOGNI S/A MATERIAIS REFRATÃ®RIOS	528.88
830416/2001	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	166.22
831269/1992	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	442.16
832146/2002	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	18.95

METEORIC

RESOURCES

License	Status	License Holder	Area (Ha)
$832252 / 2001$	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	51.96
$832572 / 2003$	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	204.49
$833551 / 1993$	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	98.87
$833553 / 1993$	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	98.13
$830.697 / 2003$	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	5.38
$830.461 / 2018$	EXPLORATION APPLICATION	FERTIMAX FERTILIZANTES ORGANICOS LTDA	50.88
$832799 / 2002$	EXPLORATION APPLICATION	RAJ MINERIOS LTDA	38.35
$830955 / 2006$	EXPLORATION APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	1993.50
$833176 / 2008$	EXPLORATION APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	634.00

Appendix 5: JORC Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	- The resource was sampled using: a powered auger drill machine (open hole), a diamond drill machine and an Aircore drill machine. - Auger drill holes - Each drill site was cleaned, removing leaves and roots from the surface. Tarps were placed on either side of the hole and samples of soil and saprolite where collected every 1 m of advance, logged, photographed with subsequent bagging of the sample in plastic bags. - Diamond drill holes - The intact drill cores are collected in plastic core trays with depth markers recording the depth at the end of each drill run (blocks). Samples were collected at 1 m intervals. In the saprolite zone the core is halved with a metal spatula and bagged in plastic bags, the fresh rock was halved by a powered saw and bagged. - Aircore drill holes - Two (2) metre composite samples are collected from the cyclone of the rig in plastic buckets. The material from the plastic buckets is passed through a single tier, riffle splitter which generates a $50 / 50$ split. One half is bagged and numbered for submission to the laboratory, and the other half bagged and given the same number, then stored as a duplicate at the core facility in Pocos de Caldas.
Drilling techniques	- Powered Auger - Powered auger drilling employed a motorised post hole digger with a 4 inch diameter. All holes were drilled vertical. The maximum depth achievable was 20 m , providing the hole did not encounter fragments of rocks/boulders within the weathered profile and/or excessive water. Final depths were recorded according to the length of rods in the hole. - Diamond Core - Diamond drilling employed a conventional wireline diamond drill rig (Mach 1200). All holes were drilled vertical using PQ diameter core through soils and clays (85 mm core diameter), reducing to HQ through transition material and fresh rock (63.5 mm core diameter). The maximum depth drilled was 48.1 m . The final depth was recorded using the length of the rods in the hole. - Aircore - Drilling was completed using a HANJIN 8D Multipurpose Track Mounted Drill Rig, configured to drill 3 -inch Aircore holes. The rig is supported by an Atlas Copco XRHS800 compressor which supplies sufficient air to keep the sample dry down to the current deepest depth of 73 m . All holes are drilled vertical. - Most drill sites require minimal to no site preparation. On particularly steep sites, the area is levelled with a backhoe loader. - Drilling is stopped at 'blade refusal' when the rotating bit is unable to cut the ground any further. This generally occurs in the transition zones (below clay zone and above fresh rock). On occasions a face sampling hammer is used once 'blade refusal' is reached to penetrate through the remaining transition zone and into the fresh rock.
Drill sample recovery	- Auger sample recovery - Estimated visually based on the amount of sample recovered per 1 m interval drilled. Recoveries were generally in a range from $75 \%-100 \%$. If estimates dropped below 75% recovery in a 1 m interval, the field crew aborted the drill hole and redrilled the hole. - Diamond drill hole recovery - Calculated after each run, comparing length of core recovery vs. drill depth. Overall core recoveries are 92.5%, achieving 95% in the saprolite target horizon, 89% in the transition zone and 92.5% in fresh rock. - Aircore recovery - Every $2 m$ composite sample is collected in plastic buckets and weighed. Each sample averages approximately 12 kg . This is considered acceptable given the hole diameter and specific density of the material.
Logging	- Auger drilling, - Material is described in a drilling bulletin every 1 m and photographed. The description is made according to the tactile-visual characteristics, such as material (soil, colluvium, saprolite, rock fragments); material color; predominant particle size; presence of moisture; indicator minerals; extra observations.

- Diamond drilling

- Geology description is made in a core facility, focused on the soil (humic) horizon, saprolite, transition zone and fresh rock boundaries. The geology depth is honored and described with downhole depth (not metre by metre). Parameters logged include: grainsize, texture and colour, which can help to identify the parent rock before weathering.
- All drill holes are photographed and stored at Core facility in Pocos de Caldas.
- Aircore drilling
- The material is logged at the drill rig by a geologist. Logging focused on soil (humic) horizon, saprolite/clay zones and transition boundaries. Other parameters recorded includes: grainsize, texture and colour, which can help to identify the parent rock before weathering.
- Logging is done on $2 m$ intervals due to the nature of the drilling with $2 m$ composite samples collected in a bucket and presented for sampling and logging.
- The chip trays of all drilled holes have a digital photographic record and are retained at a Core facility in Pocos de Caldas.

Sub-sampling

techniques
and sample
preparation

Auger material

- Samples are weighed and if the samples are wet, they are dried for several days on rubber mats. After drying the samples are screened (5 mm). Homogenization occurs by agitation in bags, followed by screening to $<3 \mathrm{~mm}$. Fragments of rock or hardened clay that are retained in the sieves are fragmented with a 10 kg manual disintegrator and a 1 kg hammer, until 100% of the sample passes through the screening. The sample is homogenized again by agitation in bags. Finally, the sample is Split in a Jones 12 channel splitter, where 500 g is sent to the lab (SGS_geosol laboratory in Vespasiano - Minas Gerais).
- Remaining samples are placed in 20-liter plastic buckets, clearly labelled by Hole ID and depth, and stored in shed facility in Pocos de Caldas.
- Diamond cores
- In the saprolite zone the core is halved with a metal spatula and bagged in plastic bags
- The fresh rock was halved by a powered saw and bagged into a plastic bag with a unique sequential number of samples and sent to ALS laboratory in Vespasiano - Minas Gerais.
- Field duplicates consist of quarter core, with both quarters sent to the lab.
- Aircore material
- Samples are weighed at the Rig. When the sample $>6 \mathrm{~kg}$ it passes through a single tier Riffle splitter generating a $50 / 50$ split, one for ALS Laboratory and a duplicate which is retained in core facility. Samples are bagged in plastic bags with unique tag for the interval.
- Given the grainsize if the mineralisation is extremely fine (clays) and shows little variability, the practice of submitting 50% of original sample for analysis is deemed appropriate.
- Field Duplicates are routinely submitted and results analysed by examining the correlation between original and duplicate samples. More than 90% of duplicates show $<20 \%$ variance.

Quality of
assay data
and
laboratory
tests

- Auger samples were analysed at SGS Geosol laboratory in batches of 43 samples, 37 of which belong to exploration intervals and 6 are QA/QC samples (duplicate, blank and standards).
- The sample preparation method employed was PRP102_E: the samples are dried at $100^{\circ} \mathrm{C}$, crushed to 75% less than 3 mm , homogenized and passed through a Jones riffle splitter (250 g to 300 g). This aliquot was then pulverized in a steel mill to the point at which over 95% had a size of 150 microns.

Determination by fusion with Lithium Metaborate - ICP MS (IMS95A)							
Ce	0,1-10000	Co	0,5-10000	Cs	0,05-1000	Cu	5-10000
Dy	0,05-1000	Er	0,05-1000	Eu	0,05-1000	Ga	0,1-10000
Gd	0,05-1000	Hf	0,05-500	Ho	0,05-1000	La	0,1-10000
Lu	0,05-1000	Mo	2-10000	Nb	0,05-1000	Nd	0,1-10000
Ni	5-10000	Pr	0,05-1000	Rb	0,2-10000	Sm	0,1-1000
Sn	0,3-1000	Ta	0,05-10000	Tb	0,05-1000	Th	0,1-10000
TI	0,5-1000	Tm	0,05-1000	U	0,05-10000	W	0,1-10000
Y	0,05-10000	Yb	0,1-1000				

- Analysis followed by IMS95A to determine the Rare Earth Elements. With this method, samples are melted with lithium metaborate and read using the ICP-MS method, the limits or which are shown below.
- Diamond and Aircore samples are analysed by ALS Laboratories (accredited) in Batches up to 72 samples. Upon arriving at ALS Vespasiano samples receive additional preparation (drying, crushing, splitting, and pulverising):

and

distribution

Data spacing

- Hole spacing for Auger holes varies across the prospect scale from a maximum of: 200 m by 200 m , infill drilled to 100 m by 100 m , with tighter spacing of 50 m by 50 m in the closest space areas. Aircore drilling was done at a nominal $100 \mathrm{~m} \times 100 \mathrm{~m}$, infill drilled to $50 \mathrm{~m} \times 50 \mathrm{~m}$ in areas of high grade in the 2023 Inferred Resource. Diamond holes had no regular spacing but were designed to target specific geologic characteristics (i.e. grade, density).
- Given the substantial geographic extent and generally shallow, flat lying geometry of the mineralisation, the spacing and orientation are considered sufficient to establish geologic and grade continuity.
- Sample compositing:
- Auger samples were collected at 1.0 m composites.
- Diamond samples were collected at 1.00 m composites, respecting the geological contacts.
- Aircore samples were collected at 2.00 m composites.

Orientation of data in
relation to geological
structure

- The mineralisation is flat lying and occurs within the saprolite/clay zone of a deeply developed regolith (reflecting topography and weathering). Vertical sampling from all sampling methods is considered most appropriate.
- georeferenced to spindle 23 S .
a BASE and a ROVER. Th
O The coordinates were provi
- georeferenced to spindle
- Diamond and Aircore collars
- The survey was made by MEI personal using a GPS CHCNAV i73 RTK GNSS capable of carrying out data surveys and kinematic locations in real time (RTK-Real Time Kinematic), consisting of two GNSS receivers, a BASE and a ROVER. The horizontal accuracy, in RTK, is $8 \mathrm{~mm}+/-1 \mathrm{~mm}$, and vertical $15 \mathrm{~mm}+/-1 \mathrm{~mm}$.
- Topography imaging survey
- A detailed imaging and topographic survey was done by GeoSense Engenharia e Geotecnologia Ltda. The survey was done using a DJI Matrice 300 RTK drone with vertical accuracy with 0.1 metre and horizontal accuracy of 0.3 metre using visual system. Using the GPS system the vertical accuracy is 0.5 metre and horizontal accuracy is 1.5 metre. Using the RTK system the vertical accuracy is 0.1 metre and horizontal accuracy is 0.1 metre.
- A on board LiDAR Alpha Air 450 sensor was used which has a range of 450 metres, accuracy of A on board LiDAR Alpha Air 450 sensor was used which has a range of 450 metres, accuracy of
15 mm , acquisition tax of 240,000 points per second (first pass), 480,000 points per second (second pass) and 720,000 points per second (third pass), equipped with a Sony A5100 camera with 26 Mega Pixels and an integrated GNSS receptor (L1L2).
- For the base points it was used a GPS CHCNAV i73 RTK GNSS capable of carrying out data surveys and kinematic locations in real time (RTK-Real Time Kinematic), consisting of two GNSS receivers, a BASE and a ROVER. The horizontal accuracy, in RTK, is $8 \mathrm{~mm}+/-1 \mathrm{~mm}$, and vertical $15 \mathrm{~mm}+/-$ 1 mm .
a BASE and a ROVER. The horizontal accuracy, in RTK, is $8 \mathrm{~mm}+1 \mathrm{ppm}$, and vertical $15 \mathrm{~mm}+1 \mathrm{ppm}$. ,

METEORIC
 RESOURCES

Criteria	Commentary
Audits or reviews	MEI conducted a review of assay results as part of its Due Diligence prior to acquiring the project. Approximately 5% of all stored coarse rejects from auger drilling were resampled and submitted to two (2) labs: SGS Geosol and ALS Laboratories. Results verified the existing assay results, returning values +/10% of the original grades, well within margins of error for the grade of mineralisation reported. (see ASX:MEI 13/03/23 for a more detailed discussion) A site visit was carried out by Volodymyr Myadzel from BNA Mining Solutions on 19-20 February 2024 to: inspect drilling and sampling procedures, verify survey methods, inspect the storage shed, verification of geological records, review of QAQC procedures and review of geologic model.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Mineral tenement and land tenure status	- Listed in Appendix 4. - Given the rich history of mining and current mining activity in the Poços de Caldas there appears to be no impediments to obtaining a license to operate in the area.
Exploration done by other parties	- The Caldeira Project has had significant exploration in the form of surface geochem across 30 granted mining concessions, plus: geologic mapping, topographic surveys, and powered auger (1,396 holes for 12,963 samples). - MEI performed Due Diligence on historic exploration and are satisfied the data is accurate and correct (refer ASX Release 13 March 2023 for a discussion).
Geology	- The Alkaline Complex of Poços de Caldas represents in Brazil one of the most important geological terrains which hosts deposits of bauxite, clay, uranium, zirconium, rare earths and leucite. The different types of minerailization are products of a history of post-magmatic alteration and weathering, in the last stages of its evolution (Schorscher \& Shea, 1992; Ulbrich et al., 2005). - The dominant REE mineral in the source rock (syenite) beneath the clay zone is Bastneesite, a major source of REE worldwide. Bastnaesite is a REE carbonate-fluoride mineral (REEECO3F and has very low levels of Uand Th in its structure. Due to the chemistry of the underling intrusives and the intense weathering of the region, a thick profie comprising soil, clay and saproilite (regolith) has formed (Figures 3-5), and these are the hosts to the ionic clay REE mineralization.
Drill hole Information	- Information for all Auger holes was reported in a previous ASX Release on 01 May 2023 "Caldeira REE Project Maiden Mineral Resource". Drill hole information for all Aircore \& Diamond Core holes is presented in Appendix 2.
Data aggregation methods	- Mineralised Intercepts are reported with a minimum of 4 m width, lower cut-off $1,000 \mathrm{ppm}$ TREO, with a maximum of 2 m internal dilution. - High-Grade Intercepts reported as "including" are reported with a minimum of 2 m width, lower cut-off $3,000 \mathrm{ppm}$ TREO, with a maximum of 1 m internal dilution. - Extreme High-Grade Intercepts reported as "with" are reported with a minimum of 2 m width, lower cut-off $10,000 \mathrm{ppm}$ TREO, with a maximum of 1 m internal dilution. - No Metal Equivalents are used.
Mineralisation widths and intercept lengths	- All holes are vertical and mineralisation is developed in a flat lying clay and transition zone within the regolith. As such, reported widths are considered to equal true widths.
Diagrams	- Reported in the body of the text.
Balanced reporting	- Significant Intercepts for all Auger drill holes were reported in a previous ASX Release on 01 May 2023 "Caldeira REE Project Maiden Mineral Resource". - Significant Intercepts for Aircore drill holes SBBAC0001-SBBAC0277 were reported in a previous ASX Release on 14 December 2023 "High-Grade REEs Extend Beneath Soberbo Resource, Caldeira Project".
Other substantive exploration data	- Metallurgical work was carried out on samples split from a 200 kg composite sample, which in turn was composed of a selection of 184 samples from 41 holes ($100 \times 100 \mathrm{~m}$ grid) across the Capo do Mel Target. Head grade of the composite sample was 4,917ppm TREO. Results

Criteria	Commentary
	showed excellent recoveries by desorption of Rare Earth Elements (REE) using ammonium sulphate solution [(NH4)2SO4)] in weakly acidic conditions [pH 4]. Average recovery of the low temperature magnet REE Pr + Nd was 58\%. desorption was achieved using a standard ammonium sulphate solution at pH 4 and confirms the Caldeira Project is an lonic (Adsorption) Clay REE deposit (for further discussion refer ASX Release 20 December 2023).
A maiden Inferred resource was published to the ASX on May 1st 2023.	

Section 3 Estimation \& Reporting of Mineral Resources (Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Database integrity	- All data was imported into Micromine Software. The database was validated using specific processes to verify the existence of the errors listed below: - The drill hole's name is present in the collar file but is missing from the analytical database; - The drill hole's name is present in the analytical database, but is absent in the collar file; - The drill hole's name appears repeated in the analytical database and in the collar file; - The drill hole's name does not appear in the collar file and in the analytical database; - One or more coordinate notes are absent from the collar file; - FROM or TO are not present in the analytical database; - FROM > TO in the analytical database; - Sampling intervals are not continuous in the analytical database (there are gaps between the logs); - Sampling intervals overlap in the analytical database; - The first sample does not correspond to 0 m in the analytical database; - The hole total depth is shallower than the depth of the last sample. - Random checks of the original data as received from SGS-Geosol and ALS laboratories was compared with the provided database and no errors were found.
Site visits	- A site visit was carried out by Volodymyr Myadzel from BNA Mining Solutions on 19-20 February 2024 to: inspect drilling and sampling procedures, verify survey methods, inspect the storage shed, verification of geological records, review of QAQC procedures and review of geologic model.
Geological interpretation	- The resource estimation is based on historical Auger data an additional 3,133m of infill Diamond and Aircore drilling. Confidence in the geological interpretation of the rare earth mineralization in clay and saprolite is very high as drilling activities used a regular and relatively close-spaced drill spacing. - Where there is no information from Diamond or Aircore drill holes (which drill to transition/fresh rock), and mineralisation was present at the end of Auger drill holes (in areas of known deep weathering), the mineralisation was assumed to extend 2 m below the hole. This is prevalent in the APA area. - Factors affecting rare earth mineralisation in saprolite rocks include the degree of weathering of primary rocks and variations in mineralization. These were detailed in Diamond, Aircore, and Auger drilling from surface and into the fresh rock.
Dimensions	- The Mineral Resource is spread across $2,600 \mathrm{~m} \times 3,800 \mathrm{~m}$ in NE-SW direction. - The top of the rare earth element mineralization is the topographic surface.
Estimation and modelling techniques	- The results are based on a block model interpolated by Ordinary Kriging (OK) method, using Micromine software. Ordinary Kriging was selected as the method for grade interpolation as the sample data has a log-normal distribution represented by a single generation. - All analyzed elements were interpolated to the empty block model using Ordinary Kriging (OK) and IDW3 (Inverse Distance Weighting with inverse power 3) methods. The IDW3 method was used for control and comparison. - The grade estimation was performed in four consecutive passes (rounds) using different sizes of search radius, criteria of number of composite samples, and number of holes.

Search Ellipse parameters by Pass.

Pass	Search Ellipse (size factor)	Min. No. Composites	Max. No. Composites	Min. No. Drill Holes
01	0.667	4	3	2
02	1	2	3	2
03	2	2	3	1
04	100	1	3	1

- Column 'Min No. Composites' is the minimum number of composites required for each of the estimation passes. Column 'Max No. Composites' is the maximum number of samples allowed for each of the four sectors of the ellipsoid used for the elements' estimation process.
- The Block Model created in the process of discretization of the wireframes using the subblocking process. Initially, the model was filled with blocks measuring $25(\mathrm{X})$ by $25(\mathrm{Y})$ by $5(\mathrm{Z})$ meters, which were divided into subunits of smaller size, with a factor for size subdivision of 10 by 10 by 5 in contact with the surrounding three-dimensional wireframes.
- The radii and the orientation of search ellipse were determined using standard variograms. The limitations presented by each sector of a search ellipse were: the maximum number of points in the sector and the minimum total number of points in the interpolation that varies depending on the size of the ellipse, from 3 to 1 . Thus, the maximum total number of samples involved in the interpolation was 12 samples.

Radii of Search Ellipsoid by element.

Element	Soberbo		
	X	Y	Z
La (ppm)	130	90	15
Ce (ppm)	130	90	15
Pr (ppm)	130	90	15
Nd (ppm)	130	90	15
Sm (ppm)	130	90	15
Eu (ppm)	130	90	15
Gd (ppm)	130	90	15
Tb (ppm)	130	90	15
Dy (ppm)	130	90	15
Ho (ppm)	130	90	15
Er (ppm)	130	90	15
Tm (ppm)	130	90	15
Yb (ppm)	130	90	15
Lu (ppm)	130	90	15
Y (ppm)	130	90	15
Th (ppm)	125	85	10
U (ppm)	125	85	10

Orientation of Azimuth of the search ellipsoid for every element (Dip $=0$, Plunge $=0$ for all elements in all Deposits).

Element (ppm)	Soberbo
La	42
Ce	42
Pr	42
Nd	42
Sm	42
Eu	42
Gd	42
Tb	42
Dy	42
Ho	42
Er	42
Tm	42
Yb	42
Lu	42
Y	42
Th	144
U	144

- The block model was validated in several ways: by running and Inverse Distance Weighted interpolation and comparing the results, and by comparing the means and standard deviations of the block grades to the composite data set.

| Criteria | |
| :--- | :--- | :--- |
| Moisture | Commentary |
| Cut-off parameters | All estimations are reported as a dry tonnage. |
| | Cut-off grades for TREO were used to prepare the reported resource estimates. The selection
 of the cut-off was based on the experience of the Competent Person, plus a peer review of
 publicly available information from more advanced projects with comparable mineralisation

 styles (i.e clay and transition zone hosted rare earth mineralisation) and comparable
 conceptual processing methods. |
| | - The chosen cut-off grade of 1,000 ppm TREO is consistent with this. |

METEORIC

RESOURCES

Criteria

Commentary

hole spacing, geological continuity, variography, and bulk density data available for the project.
Audits or reviews - As yet there have been no third-party audits or reviews of the mineral resource estimates.

Discussion of relative accuracy/ confidence

- The block model with interpolated grades was subject to visual and statistical verification. Histograms and probability graphs of the interpolated grades were built. Then, the interpolated grades of the block model were compared with the same histograms and probability graphs of the composite samples. The histograms and graphs of the interpolated grades and composite samples were similar, and the block model histograms were smoother than the composite histograms. The comparisons confirmed the validity and consistency of the built block model.
- The mineral resource is a global resource estimate and locally resource estimates may vary in a negative or positive manner.

[^0]: ${ }^{1}$ Total Rare Earth Oxides (TREO) $=\mathrm{La}_{2} \mathrm{O}_{3}+\mathrm{CeO}_{2}+\mathrm{Pr}_{6} \mathrm{O}_{11}+\mathrm{Nd}_{2} \mathrm{O}_{3}+\mathrm{Sm}_{2} \mathrm{O}_{3}+\mathrm{Eu}_{2} \mathrm{O}_{3}+\mathrm{Gd}_{2} \mathrm{O}_{3}+\mathrm{Tb}_{4} \mathrm{O}_{7}+\mathrm{Dy}_{2} \mathrm{O}_{3}+\mathrm{Ho}_{2} \mathrm{O}_{3}+\mathrm{Er}_{2} \mathrm{O}_{3}+\mathrm{Tm}_{2} \mathrm{O}_{3}+\mathrm{Yb}_{2} \mathrm{O}_{3}+\mathrm{Lu}_{2} \mathrm{O}_{3}+\mathrm{Y}_{2} \mathrm{O}_{3}$
 ${ }^{2}$ Magnetic Rare Earth Oxides (MREO) $=\mathrm{Pr}_{6} \mathrm{O}_{11}+\mathrm{Nd}_{2} \mathrm{O}_{3}+\mathrm{Tb}_{4} \mathrm{O}_{7}+\mathrm{Dy}_{2} \mathrm{O}_{3}$

