

17 JUNE 2024

ASX/MEDIA RELEASE

EXPLORATION AND RESOURCE DRILLING UPDATE

Established Australian copper-gold producer and explorer Aeris Resources Limited (ASX:AIS) (Aeris or the Company) is pleased to announce an exploration update at the Tritton, Cracow and Jaguar tenements.

Tritton Operation

- Significant resource definition drill program underway at Constellation:
 - 15,000m in-fill drill program on the upper 250m of the deposit
 - Targeting conversion of 2Mt 3Mt Inferred to Indicated Mineral Resource
 - Further testing of the "Stand-Up" zone, a sub-vertical zone of mineralisation on the northern margin of the deposit

Cracow Operation

- Exploration drill program at Cracow targeting potential new gold bearing structures beyond the mine footprint:
 - Exploration success at the newly discovered Apollo Lode
 - Drilling to commence at newly identified "Western Frontier" corridor

Jaguar Operation

- Exploration drilling underway testing high-priority Heather Bore gold target
- Five prospective gold corridors identified

Aeris' Executive Chairman, Andre Labuschagne, said, "Whilst FY24 has been a challenging year, we have continued to maintain our exploration momentum by focusing our expenditure on the opportunities that we believe can provide the greatest long-term value to our business."

"We commenced an extensive in-fill drill program at Constellation last month, looking to upgrade a significant portion (2Mt – 3Mt) of the Inferred Mineral Resource to an Indicated classification. The drill program will also target the "Stand-up zone", a sub-vertical zone of mineralisation on the northern margin of the deposit. We expect to deliver an updated Mineral Resource estimate for Constellation in Q3 FY25."

"The Constellation deposit so far has been traced over 1,100m down-plunge. There are modelled EM plates down-plunge that have not been drill tested, indicating there remains significant potential to increase the Mineral Resource. In comparison, the Tritton deposit has been traced over 2,000m down-plunge and remains open."

"At Cracow, our geology team are looking for incremental ounce additions within and proximal to the Western Vein Field and also new vein structures that have the potential to host +100k ounce gold shoots. The recently discovered "Apollo" gold shoot is an example of recent near-mine exploration success within the Western Vein Field.

"The Western Vein Field hosts 16 discrete high-gold deposits along major north-south trending structures and has yielded over 1.5m ounces of gold to date. In the coming months we will commence drill testing the conceptual "Western Frontier" structural corridor, which is approximately 500m west of the Western Vein Field."

"At Jaguar, in addition to our tenement package being fertile ground for base metals discoveries, our exploration team is very excited at the prospectivity for a major gold discovery, with 5 distinct prospective corridors identified to date. This is elephant country for gold, as evidenced by the multi-million ounce Thunderbox and King of the Hills mining complexes to the north and south of our tenements."

"The most advanced gold prospect at Jaguar is "Heather Bore", a 2km long gold anomaly that has previously only been shallow drilled into weathered bedrock. We are currently undertaking an initial two-hole diamond drill program to test for gold mineralisation within fresh rock. This will give us a better understanding of the geology of the host rocks and assist with targeting future drill programs at Heather Bore. The first hole has been completed, and assays are pending."

Constellation Update

Background

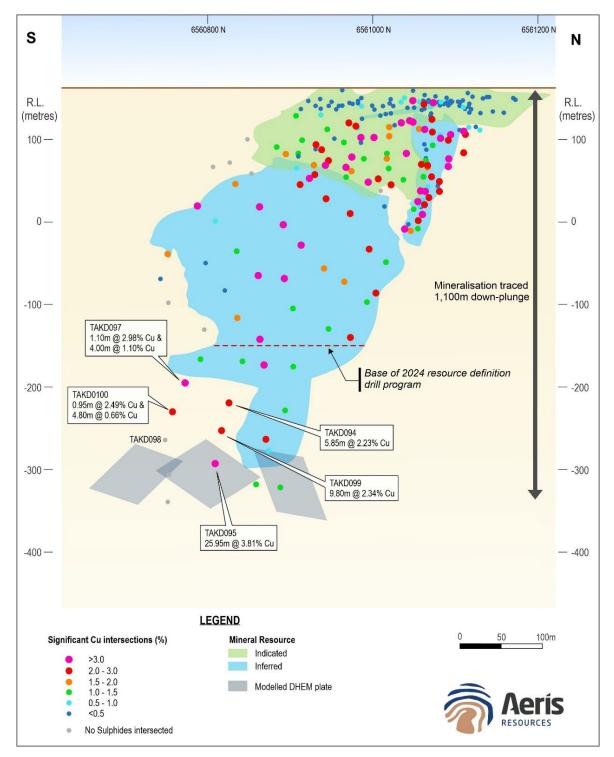
The Constellation deposit, located approximately 45km northeast of the Tritton processing facility, has emerged as a significant copper deposit since its discovery in November 2020. In August 2022, an updated Mineral Resource estimate¹ was reported for the Constellation deposit totalling 6.7Mt at 1.8% copper, 0.6g/t gold and 2.9g/t silver for 123 thousand tonnes contained copper metal, 125 thousand ounces contained gold metal and 620 thousand tonnes contained silver metal.

AUGUST 2022 CONSTELLATION MINERAL RESOURCE													
Mineralisation type	Resource category	Cut-off grade (Cu%)	Tonnage (kt)	Cu (%)	Au (g/t)	Ag (g/t)	Cu metal (kt)	Au metal (koz)	Ag metal (koz)				
Oxide	Indicated	0.2	1,600	0.6	0.1	0.7	10	7	36				
Oxide	Inferred	0.2											
Primary /	Indicated	0.3	510	2.3	1.1	4.4	12	14	69				
Supergene	Inferred	0.3	1,000	3.5	0.6	3.3	29	29	125				
	Indicated		2,110	1.0	0.3	1.5	22	21	104				
SUB TOTAL (O/P)	Inferred	various	1,000	2.8	0.9	3.7	29	29	125				
	Total		3,110	1.6	0.5	2.2	51	50	229				
	•												
Primary /	Indicated	0.9	130	2.1	1.1	4.9	3	5	20				
Supergene	Inferred	0.7	3,300	2.1	0.7	3.5	70	70	371				
	Total		3,500	2.1	0.7	3.5	72	75	392				
	Indicated		2,300	1.1	0.4	1.7	25	26	125				
TOTAL (O/P & U/G)	Inferred	various	4,400	2.2	0.7	3.5	99	99	496				
0,01	Total		6,700	1.8	0.6	2.9	123	125	620				

Table 1: August 2022	Constellation	Mineral	Resource ¹
----------------------	---------------	---------	------------------------------

Since the Mineral Resource was reported in August 2022, a small exploration drill program has been completed, testing for extensions to the known mineralised system at depth outside the reported Mineral Resource^{2,3}. Five of the six holes intersected copper mineralisation, including drill hole TAKD095, which returned one of the most significant intersections at Constellation to date (25.95m @ 3.81% Cu, 1.12g/t Au, 10.3g/t Ag).

¹ Refer to ASX Announcement "Constellation Mineral Resource Update" dated 18th August 2022.


² Refer to ASX Announcement "Constellation Drilling Update" dated 7th November 2023.

³ Refer to ASX Announcement "Quarterly Activities Report - December 2023" dated 30th January 2024.

The TAKD095 intersection is associated with a modelled EM plate located toward the base of the mineralised system ~1,100m down-plunge. There are other modelled EM plates that have not been drill tested, indicating there remains significant potential to increase the Mineral Resource down-plunge. In comparison, the Tritton deposit has been traced over 2,000m down-plunge and remains open.

Figure 1: Long section looking west showing the August 2022 Mineral Resource and the base of drilling from the 2024 resource definition drill program (red dashed line).

Current Activities

A significant resource definition drill program commenced at the Constellation deposit in May with one rig. A second drill rig is forecast to commence in July. The drill program (~15,000m drill metres) is focused on achieving two key objectives:

- 1. Targeting conversion of 2Mt 3Mt Inferred Mineral Resource to an Indicated Mineral Resource within the upper 250m of the deposit (nominal -50mRL); and
- 2. Testing the *Stand-up-zone* mineralisation along the northern margin of the deposit
 - Previous drilling intersected primary sulphide mineralisation, interpreted to be sub-vertical, as opposed to the remaining deposit, which dips ~35°.
 - Drill program designed to confirm geometry/continuity of mineralisation.

The drill program is expected to continue throughout 2024. An updated Mineral Resource is expected to be completed in early Q3 FY25.

Cracow Exploration Update

Western Vein Field

The Cracow goldfield is a highly endowed gold province with more than 2Moz mined via open pit (Golden Plateau) and underground (Western Vein Field (WVF) and Golden Plateau) from the 1930s onwards.

The discovery of a new mineralised trend in the late 1990s led to the recommencement of underground mining at the WVF in 2004. Since then, the WVF gold province has expanded with 16 discrete high-grade gold shoots discovered along two prominent north-south structural trends (Killarney-Kilkenny-Empire and Klondyke-Royal). The potential for further large +100koz shoots along the known WVF structures is limited. Similarly, prospectivity further east is limited by the proximity of the Myles Corridor heat source and erosion of the favourable stratigraphic horizon.

Proximal to the WVF, several near-mine exploration targets (Apollo and Coronation West) were included in a first-pass near-mine exploration drill program completed in early FY24⁴.

⁴ Refer to ASX Announcement "Quarterly Activities Report - December 2023" dated 30th January 2024.

Drilling at the Apollo and Coronation West targets was successful, intersecting epithermal veining along each structure with gold mineralisation, including:

- IMU148 1.7m @ 2.8g/t Au (Coronation West)
- KLU279 0.8m @ 4.1g/t Au (Apollo)

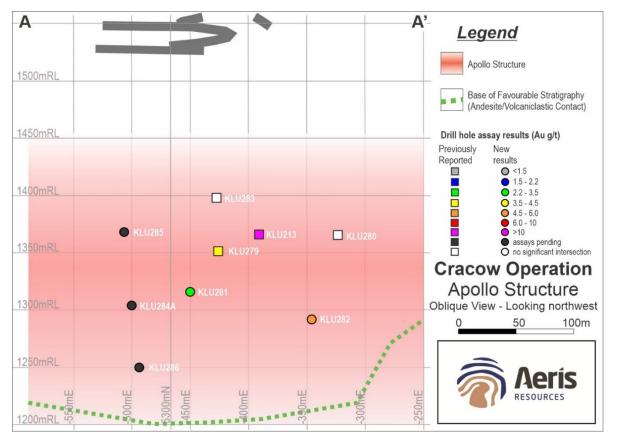
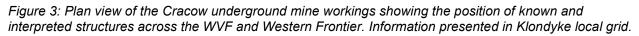

Intersecting gold mineralisation along two new structures proximal to the existing mine footprint at WVF is an excellent outcome. It proves that new gold-bearing structures can occur beyond the known footprint. Exploration drilling has continued to target the Apollo structure (

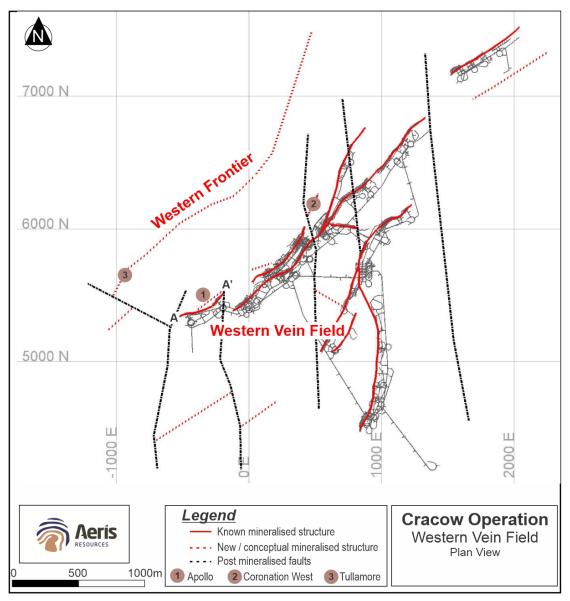
Figure 2). A further three drill holes (nine in total) have been completed. Assay results have returned for a further two drill holes, including:

- KLU281 2.7m @ 2.4g/t Au (Apollo)
- KLU282 1.6m @ 5.8g/t Au (Apollo)

The Apollo structure has been intersected over 180m along strike and 60m downplunge. Drilling at the Apollo structure has paused to enable a follow-up exploration drill program at the Coronation West target, where a three-drill hole program will target gold mineralisation surrounding the promising result reported from drill hole IMU148.

Figure 2: Oblique view looking northwest showing drill hole pierce points through the Apollo structure at the Western Vein Field. Information presented in Klondyke local grid.





Western Frontier

Prospectivity west of the current workings is considered high. Three 2D seismic traverses extending between 2km to 6km west of the mine have provided valuable information to assess the potential prospectivity beyond the known WVF mine footprint.

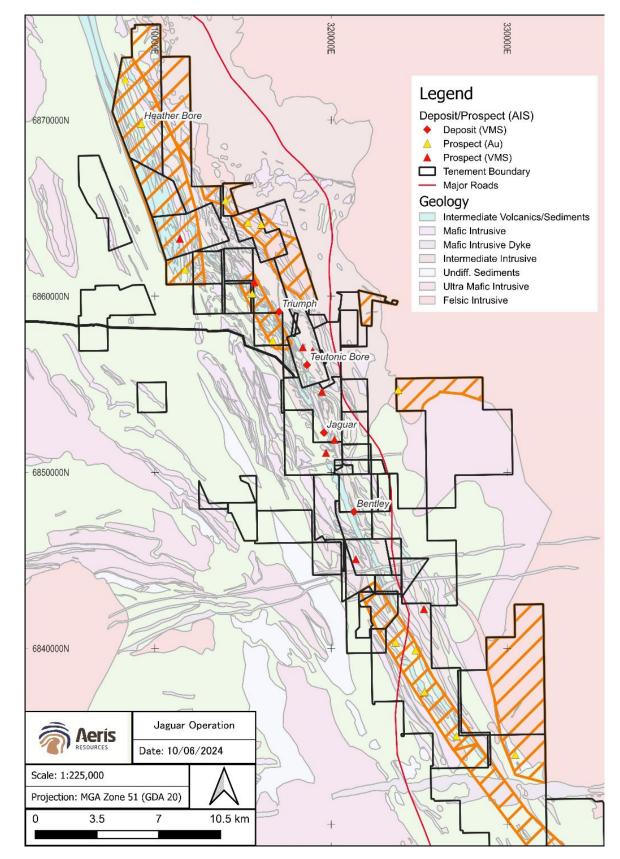
Using the known fault and stratigraphic signatures within the seismic lines, several discontinuities within the seismic data were identified. The discontinuities are interpreted to represent fault structures that could host epithermal mineralisation. The interpreted structures are located between 200m to 500m west of the current mine infrastructure in a new prospective corridor referred to as the Western Frontier (Figure 3).

The Western Frontier is sparsely drill-tested and represents a high-priority exploration space. If gold mineralisation can be proven to occur within the Western Frontier, it could lead to the discovery of a new gold corridor.

The extent of alteration and anomalous geochemistry around high-grade epithermal gold shoots at Cracow is limited. Drill holes can pass within ~100m of a high-grade shoot with little geological evidence to highlight the proximity. If the Western Frontier does prove to host high-grade gold shoots, it is likely to take multiple drill campaigns to vector toward and intersect a high-grade shoot.

The Tullamore conceptual target is positioned ~500m west of current workings and is one of several high-priority conceptual targets along the Western Frontier. An initial exploration drill program testing the Tullamore target has commenced, aiming to validate the geological interpretation, particularly to confirm the presence of a structure at the target position.

Jaguar Exploration Update


The Jaguar tenement package, totalling 400km², covers a highly endowed metal province within the Yandal Greenstone Belt. It is prospective for polymetallic (Cu-Zn-Ag-Au) volcanic-hosted massive sulphide (VMS) deposits and structurally controlled hydrothermal gold mineralisation. The discovery and mining of the Teutonic Bore base metal VMS deposit in the mid-1970s ensured exploration has predominately focused on base metal VMS exploration thereafter. Further exploration success followed with the discovery of three more VMS deposits, including Jaguar (2002), Bentley (2008), and Triumph (2014).

The region immediately surrounding the Jaguar tenement package hosts many gold deposits, including multi-million ounce Thunderbox (8km northeast) and King Of The Hills (10km southwest) mining complexes.

The Jaguar tenement package has had limited gold-focused exploration, predominantly surface geochemical sampling and aircore (AC) programs, along its northern and southern margin. Although the results returned from this work were encouraging, with many gold prospects identified, follow-up work was limited, and the gold prospects remain untested.

Post the Jaguar Operation being placed on care and maintenance in September 2023, a strategic review of the gold prospectivity within the Jaguar tenement package has been undertaken. This review identified five priority corridors considered highly prospective for gold mineralisation (Figure 4). The strategic review was driven by a detailed geological interpretation across the tenement package, incorporating an extensive and ongoing regional mapping campaign supported by detailed magnetic and gravity geophysical datasets, including the regional gravity survey completed in early 2023.

Figure 4: Plan view of the Jaguar Operation tenement package highlighting areas prospective for gold mineralisation denoted by shaded orange corridors.

The five priority corridors considered prospective for gold mineralisation include:

1. Heather Bore Shear

- 12km structure sub-parallel to the terrane bounding Ockerberry fault
- Structural corridor interpreted to occur along strike from the Thunderbox deposit
- Includes the Heather Bore prospect, defined by a ~2km shallow +0.5g/t gold anomaly

2. Aesop – Halloween Trend

- ~6km structural corridor associated with a brecciated magnetitehematite-pyrite altered porphyry intrusion
- Limited historical drilling and surface sampling report numerous +0.5g/t Au intervals

3. Pterodactyl – South Possie Well

 ~10km orogenic structure with a significant Au, As and Sb anomalous geochemical signature

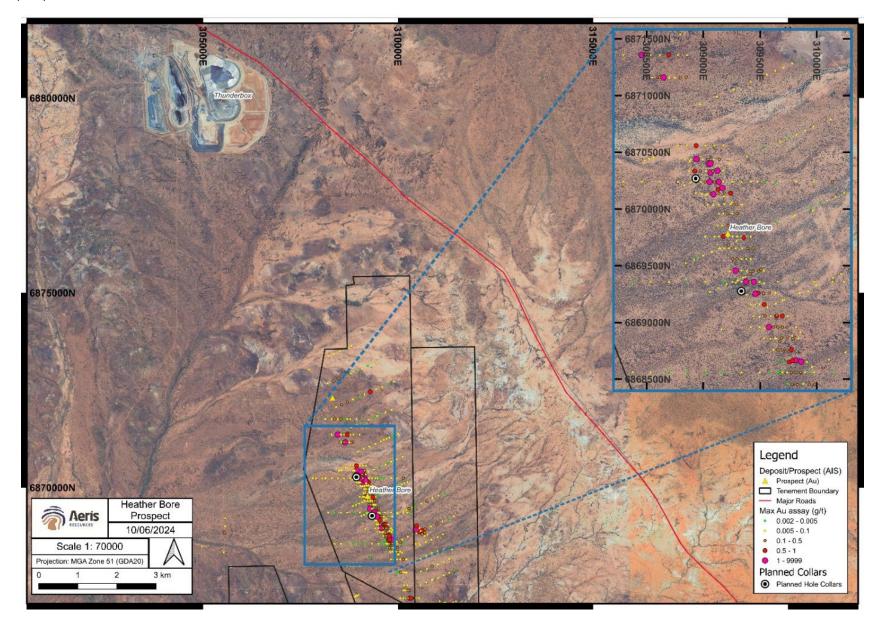
4. Southern Boundary

• Interpreted extension of the Pterodactyl – South Possie Well favourable geological setting to the southern tenement boundary

5. Granite margin domain

• Structural complexity within and along the margin of large granite body(s)

The historical data mentioned above has not been reported in accordance with the JORC Code. The Competent Person has not done sufficient work to verify that the historical data is accurate or reliable. It is uncertain that following further exploration work, the historical data will be able to be reported in accordance with the JORC Code.


Heather Bore Prospect

Work completed by previous companies at the Heather Bore prospect defined a 2km long +0.5g/t Au anomaly based on AC drilling within the weathered rock profile (lower saprolite horizon) (refer to Figure 5). Bottom of hole AC cuttings suggests the Heather Bore prospect is associated with a shear zone hosted in sericite-quartz-carbonate-pyrite altered felsic to intermediate volcaniclastics, adjacent to a magnetite-pyrite-chlorite altered andesite. The target remains untested below the base of complete oxidation.

Recent structural interpretation of the area, based on reprocessed aeromagnetic data and field mapping, indicates that the gold anomaly occurs along a NNW trending, west-dipping shear structure interpreted to be a splay off the terranebounding Ockerberry structure that hosts the Thunder Box gold deposit, 8km NW of Heather Bore.

A two-hole diamond drill program is underway testing for the presence of primary gold mineralisation in fresh rock. The diamond holes will also assist with understanding the structural setting and confirm controls on mineralisation to aid and refine future drill programs at the prospect.

The historical data mentioned at the Heather Bore prospect has not been reported in accordance with the JORC Code. The Competent Person has not done sufficient work to verify that the historical data is accurate or reliable. It is uncertain that following further exploration work, the historical data will be able to be reported in accordance with the JORC Code. The current gold exploration program at the Heather Bore prospect is designed to verify the historical drill and surface geochemistry results. Figure 5: Plan view along the northern margin of the Jaguar Operation exploration tenements showing maximum Au assay results from historical aircore holes along the Heather Bore prospect.

This announcement is authorised for lodgement by:

Andre Labuschagne Executive Chairman

ends

For further information, please contact:

Andre Labuschagne Executive Chairman Tel: +61 7 3034 6200 Stefan Edelman General Manager – Corporate Development investorrelations@aerisresources.com.au

or visit our website at <u>www.aerisresources.com.au</u>

About Aeris

Aeris Resources is a mid-tier base and precious metals producer. Its copper dominant portfolio comprises three operating assets, a mine on care and maintenance, a long-life development project and a highly prospective exploration portfolio.

Aeris has a strong pipeline of organic growth projects, an aggressive exploration program and continues to investigate strategic merger and acquisition opportunities. The Company's experienced board and management team bring significant corporate and technical expertise to a lean operating model. Aeris is committed to building strong partnerships with its key community, investment and workforce stakeholders.

Competent Persons Statement

Mr Chris Raymond confirms that he is the Competent Person for all Exploration Results at the Tritton Operation, and he has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Raymond is a Competent Person as defined by the JORC Code, 2012 Edition, having relevant experience to the style of mineralisation and type of deposit described in the Report and to the activity for which he is accepting responsibility. Mr Raymond is a Member of the Australian Institute of Geoscience (MAIG No. 6045). Mr Raymond has reviewed the Report to which this Consent Statement applies and consents to the inclusion in the Report of the matters based on his information in the form and context in which it appears. Mr Raymond is a full-time employee of Aeris Resources Limited.

The information in this report that relates to Exploration Targets or Exploration Results at the Cracow Operation is based on information compiled by Craig Judson. Mr Judson confirms that he is the Competent Person for all Exploration Results, summarised in this Report and he has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Targets, Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Judson is a Competent Person as defined by the JORC Code, 2012 Edition, having relevant experience to the style of mineralisation and type of deposit described in the Report and to the activity for which he is accepting responsibility. Mr Judson has reviewed the Report to which this Consent Statement applies and consents to the inclusion in the Report of the matters based on his information in the form and context in which it appears. Mr Judson is a full-time employee of Aeris Resources Limited.

The information in this report that relates to Exploration Targets or Exploration Results at the Jaguar Operation is based on information compiled by Alain Cotnoir. Mr Cotnoir confirms that he is the Competent Person for all Exploration Results, summarised in this Report and he has read and understood the requirements of the 2012 Edition of the Australasian Code for Reporting of Exploration Targets, Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012 Edition). Mr Cotnoir is a Competent Person as defined by the JORC Code, 2012 Edition, having relevant experience to the style of mineralisation and type of deposit described in the Report and to the activity for which he is accepting responsibility. Mr Cotnoir is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM No. 315017). Mr Cotnoir has reviewed the Report to which this Consent Statement applies and consents to the inclusion in the Report of the matters based on his information in the form and context in which it appears. Mr Cotnoir is a full-time employee of Aeris Resources Limited.

APPENDIX A: Summary of Western Vein Field Near-Mine Exploration and Resource Definition drill holes

Hole ID	Easting ¹ (m)	Northing ¹ (m)	RL (m)	Total Depth (m)	Azimuth ¹	Dip	Comments	Deposit
BZU187	687.6	5,609.7	1,789.1	198.1	217.5	12	Complete	WVF
BZU188	688.0	5,609.6	1,788.6	183.0	205.0 0.9		Complete	WVF
BZU189	687.7	5,609.7	1,789.4	237.0	206.0	19.5	Complete	WVF
BZU190	688.3	5,609.5	1,789.0	222.0	192.9	8	Complete	WVF
BZU191	686.5	5,610.2	1,789.0	207.0	239.4	7.5	Complete	WVF
KLU283	-445.3	5,324.2	1,523.5	392.8	17.5	-36.5	Complete	WVF
KLU284	-447.4	5,325.0	1,523.4	13.0	346.0	-55	Abandoned	WVF
KLU284A	-447.4	5,325.0	1,523.4	314.6	345.3	-55	Complete	WVF
KLU285	-447.4	5,325.3	1,523.4	347.1	344.3	-46.7	Complete	WVF
KLU286	-447.2	5,325.1	1,523.4	338.7	350.2	-62.9	Complete	WVF

¹ Easting and northing coordinates and bearings are reported in Klondyke Local grid.

² All down hole surveys are reported in Klondyke local grid.

APPENDIX B: Summary of Western Vein Field Near-Mine Exploration and Resource Definition drill intercepts

Hole ID	From (m)	To (m)	Interval (m)	Est. true Width (m)	Domain	Au g/t ¹	Ag g/t¹	Comment
BZU190	199.3	200.5	1.3	0.9	ΒZ	9.4	6.5	
KLU281	83.1	85.3	2.2	2.1	KL	1.6	2.7	
KLU281	255.1	258	2.9	2.7	AP	2.4	25	
KLU282	122	125	3.0	2.8	KL	4.1	1.7	
KLU282	141	143.6	2.6	2.4	KL	3.9	2.3	
KLU282	180	182	2.0	1.8	New	4.1	2	
KLU282	257.1	258.9	1.8	1.6	AP	5.8	5.5	
KLU282	261.1	262.4	1.3	1.2	AP	2.4	2.5	
KLU282	377.4	388	10.6	1	KL	2.4	3.8	
KLU283	64.9	67.6	2.7	2	KL	4.4	5.0	

¹ Reported significant intervals are based on a minimum width of 0.4m, minimum Au grade 1g/t Au and a maximum of 1m of below cut-off material (<1g/t Au).

AP Apollo, BZ Bazsickle, KL Killarney

APPENDIX C: Summary of historical shallow exploration drill holes over the Heather Bore prospect

Hole ID	Easting (m)	Northing (m)	Grid	RL (m)	Total Depth (m)	Hole Type	Azimuth ¹	Dip	From (m)	To (m)	Au (g/t)
17TRAC001	309,744.3	6,869,057.9	MGA94	482.1	107	AC	0	-90	40	44	0.043
17TRAC002	309,694.9	6,869,057.3	MGA94	482.0	111	AC	0	-90	88	92	0.634
17TRAC003	309,644.2	6,869,055.4	MGA94	481.8	99	AC	0	-90	52	56	0.919
17TRAC004	309,444.3	6,869,056.7	MGA94	480.8	67	AC	0	-90	64	67	0.008
17TRAC005	309,494.8	6,869,053.2	MGA94	480.9	102	AC	0	-90	84	88	0.015
17TRAC006	309,543.1	6,869,056.4	MGA94	481.2	97	AC	0	-90	68	72	0.388
17TRAC007	309,331.8	6,869,243.5	MGA94	479.4	120	AC	0	-90	16	20	0.005
17TRAC008	309,381.5	6,869,244.4	MGA94	480.3	94	AC	0	-90	24	28	0.007
17TRAC009	309,432.9	6,869,260.9	MGA94	480.5	110	AC	0	-90	36	40	0.075
17TRAC010	309,482.0	6,869,260.3	MGA94	480.8	109	AC	0	-90	80	84	0.974
17TRAC011	309,233.2	6,869,451.9	MGA94	480.4	120	AC	0	-90	48	52	0.054
17TRAC012	309,283.7	6,869,455.7	MGA94	480.7	105	AC	0	-90	60	64	1.334
17TRAC013	309,334.2	6,869,458.4	MGA94	480.9	103	AC	0	-90	76	80	0.026
17TRAC014	309,384.5	6,869,454.8	MGA94	481.2	105	AC	0	-90	56	60	0.027
17TRAC015	309,139.6	6,869,651.4	MGA94	480.4	108	AC	0	-90	24	28	0.006
17TRAC016	308,874.7	6,870,335.1	MGA94	481.4	111	AC	0	-90	12	16	0.024
17TRAC017	308,924.3	6,870,336.8	MGA94	481.7	91	AC	0	-90	52	56	0.606
17TRAC018	308,973.4	6,870,336.8	MGA94	482.0	87	AC	0	-90	48	52	0.215
17TRAC019	309,022.0	6,870,333.1	MGA94	482.4	94	AC	0	-90	60	64	0.089
17TRAC020		6,870,338.1	MGA94	483.3	65	AC	0	-90	60	64	0.042
17TRAC021		6,870,337.4	MGA94	483.0	93	AC	0	-90	64	68	1.464
17TRAC022		6,870,436.8	MGA94	482.0	93	AC	0	-90	60	64	0.06
17TRAC023	1	6,870,436.1	MGA94	482.4	95	AC	0	-90	12	16	0.108
17TRAC024	1	6,869,057.9	MGA94	481.5	121	AC	0	-90	40	44	0.07
17TRAC025	1	6,869,063.3	MGA94	481.8	110	AC	0	-90	92	96	0.231
17TRAC026	309,634.1	6,869,257.9	MGA94	481.6	111	AC	0	-90	108	111	0.04
17TRAC027		6,869,259.6	MGA94	481.4	100	AC	0	-90	48	52	0.129
17TRAC028	309,529.7	6,869,256.1	MGA94	481.1	103	AC	0	-90	48	52	0.37
17TRAC029	1	6,869,456.0	MGA94	481.8	82	AC	0	-90	44	48	0.065
17TRAC030	î.	6,869,452.6	MGA94	481.6	94	AC	0	-90	92	94	0.248
17TRAC031		6,869,451.9	MGA94	481.3	104	AC	0	-90	52	56	0.256
17TRAC032		6,870,435.7	MGA94	482.7	96	AC	0	-90	12	16	0.054
17TRAC033		6,870,437.8		483.0	65	AC	0	-90	60	65	0.156
17TRAC034		6,870,439.3		481.6	88	AC	0	-90	60	64	1.359
17TRAC035	308,889.3	6,870,438.5	MGA94	481.3	80	AC	0	-90	68	72	0.02
17TRAC036		6,870,437.7	MGA94	481.0	99	AC	0	-90	8	12	0.009
17TRAC037	309,239.0	6,870,138.0	MGA94	483.0	77	AC	0	-90	44	48	0.719
17TRAC038	309,185.5	6,870,141.4	MGA94	482.8	86	AC	0	-90	84	86	0.138
17TRAC039	309,137.2	6,870,136.9	MGA94	482.5	90	AC	0	-90	24	28	0.166
17TRAC040	309,089.3	6,870,130.5	MGA94	482.2	86	AC	0	-90	60	64	1.378
17TRAC041		6,870,135.1	MGA94	481.9	109	AC	0	-90	60	64	0.094
17TRAC042		6,870,137.1	MGA94	481.8	99	AC	0	-90	16	20	0.01
17TRAC043		6,870,139.4	MGA94	481.6	106	AC	0	-90	12	16	0.008
17TRAC044		6,870,038.8	MGA94	483.1	87	AC	0	-90	76	80	0.013
17TRAC045	î.	6,870,040.6	MGA94	482.8	74	AC	0	-90	64	68	0.244
17TRAC046	1	6,870,042.3		482.5	88	AC	0	-90	84	88	0.056
17TRAC047	Î	6,870,044.1	MGA94	482.2	81	AC	0	-90	79	81	0.061
17TRAC048	Î	6,870,039.6	MGA94	482.0	100	AC	0	-90	52	56	0.052

Hole ID	Easting (m)	Northing (m)	Grid	RL (m)	Total Depth (m)	Hole Type	Azimuth ¹	Dip	From (m)	To (m)	Au (g/t)
17TRAC049	309,089.0	6,870,035.4	MGA94	481.7	90	AC	0	-90	12	16	0.015
17TRAC050	309,037.9	6,870,039.4	MGA94	481.5	87	AC	0	-90	44	48	0.038
17TRAC051	309,418.9	6,869,858.8	MGA94	482.4	63	AC	0	-90	48	52	0.007
17TRAC052	309,371.2	6,869,856.9	MGA94	482.1	66	AC	0	-90	56	60	0.22
17TRAC053	309,317.3	6,869,851.6	MGA94	481.8	85	AC	0	-90	48	52	0.444
17TRAC054	309,269.7	6,869,856.8	MGA94	481.5	83	AC	0	-90	36	40	0.081
17TRAC055	309,218.0	6,869,854.1	MGA94	481.2	93	AC	0	-90	44	48	0.407
17TRAC056	309,167.5	6,869,856.7	MGA94	480.9	67	AC	0	-90	40	44	0.007
17TRAC057	309,121.9	6,869,855.0	MGA94	480.6	90	AC	0	-90	72	76	0.035
17TRAC058	309,187.5	6,869,653.9	MGA94	480.7	110	AC	0	-90	60	64	0.033
17TRAC059	309,225.4	6,869,655.3	MGA94	480.9	96	AC	0	-90	36	40	0.095
17TRAC060	309,285.9	6,869,654.2	MGA94	481.2	72	AC	0	-90	32	36	0.028
17TRAC061	309,342.7	6,869,654.0	MGA94	481.9	100	AC	0	-90	68	72	0.045
17TRAC062	309,392.8	6,869,654.1	MGA94	481.8	89	AC	0	-90	40	44	0.195
17TRAC063	309,440.0	6,869,655.6	MGA94	482.1	79	AC	0	-90	44	48	0.288
17TRAC064	309,838.1	6,868,857.9	MGA94	481.8	113	AC	0	-90	100	104	0.013
17TRAC065	309,788.5	6,868,857.8	MGA94	481.7	108	AC	0	-90	40	44	0.131
17TRAC066	309,738.3	6,868,855.6	MGA94	481.5	129	AC	0	-90	112	116	0.116
17TRAC067	309,689.4	6,868,864.1	MGA94	481.2	105	AC	0	-90	52	56	0.497
17TRAC068	309,637.1	6,868,858.4	MGA94	480.9	114	AC	0	-90	48	52	0.017
17TRAC069	309,589.4	6,868,854.3	MGA94	480.7	72	AC	0	-90	48	52	0.015
17TRAC070	309,537.0	6,868,861.0	MGA94	480.6	102	AC	0	-90	40	44	0.01
17TRAC071	309,913.8	6,868,651.8	MGA94	481.2	96	AC	0	-90	84	88	0.009
17TRAC072	309,861.8	6,868,655.2	MGA94	481.1	90	AC	0	-90	60	64	1.194
17TRAC073		6,868,666.3	MGA94	481.0	93	AC	0	-90	44	48	2.235
17TRAC074	309,760.7	6,868,659.5	MGA94	480.8	87	AC	0	-90	52	56	0.086
17TRAC075	309,711.2	6,868,651.6	MGA94	480.5	86	AC	0	-90	0	4	0.003
17TRAC076	309,664.7	6,868,657.0	MGA94	480.4	96	AC	0	-90	8	12	0.005
17TRAC077		6,868,460.4	MGA94	480.1	105	AC	0	-90	4	8	0.004
17TRAC078		6,868,456.3	MGA94	480.3	105	AC	0	-90	40	44	0.136
17TRAC079	309,830.0	6,868,452.0	MGA94	480.5	89	AC	0	-90	68	72	0.31
17TRAC080		6,868,458.0	MGA94	480.7	84	AC	0	-90	64	68	0.008
17TRAC081		6,868,454.6		481.1	96	AC	0	-90	80	84	0.105
17TRAC082		6,868,457.0	MGA94	481.3	93	AC	0	-90	60	64	0.103
17TRAC083		6,868,354.0	MGA94	481.9	89	AC	0	-90	87	89	0.042
17TRAC084		6,868,351.9	MGA94	481.7	80	AC	0	-90	44	48	0.453
17TRAC085		6,868,352.5	MGA94	481.3	94	AC	0	-90	64	68	0.071
17TRAC086		6,868,352.1	MGA94	481.0	80	AC	0	-90	52	56	0.078
17TRAC087		6,868,357.8	MGA94	480.7	108	AC	0	-90	20	24	0.063
17TRAC088		6,868,346.0	MGA94	480.4	92	AC	0	-90	52	56	0.018
17TRAC089		6,867,815.7	MGA94	482.8	79	AC	0	-90	56	60	0.044
17TRAC090		6,867,824.5	MGA94	482.6	62	AC	0	-90	56	60	0.069
17TRAC091		6,867,821.7	MGA94	482.4	68	AC	0	-90	44	48	0.081
17TRAC092		6,867,824.8	MGA94	482.2	54	AC	0	-90	48	52	0.103
17TRAC093		6,867,826.0	MGA94	481.9	69	AC	0	-90	0	4	0.005
17TRAC094		6,867,823.3	MGA94	481.6	76	AC	0	-90	60	64	0.004
17TRAC095		6,871,157.4	MGA94	481.4	81	AC	0	-90	8	12	0.157
17TRAC096		6,871,157.2	MGA94	481.1	79	AC	0	-90	8	12	0.094
17TRAC097		6,871,158.3	MGA94	480.6	92	AC	0	-90	52	56	0.062
17TRAC098		6,871,159.6	MGA94	480.1	69	AC	0	-90	48	52	1.019

Hole ID	Easting (m)	Northing (m)	Grid	RL (m)	Total Depth (m)	Hole Type	Azimuth ¹	Dip	From (m)	To (m)	Au (g/t)
17TRAC099	308,599.2	6,871,160.9	MGA94	479.6	80	AC	0	-90	48	52	0.466
17TRAC100	308,548.4	6,871,159.3	MGA94	479.3	87	AC	0	-90	40	44	0.053
17TRAC101	308,500.3	6,871,156.6	MGA94	479.0	93	AC	0	-90	0	4	0.002
17TRAC102	308,849.0	6,871,162.1	MGA94	481.7	72	AC	0	-90	40	44	0.17
19TRAC103	309,183.1	6,870,110.5	MGA94	480.8	93	AC	0	-90	52	56	0.099
19TRRC003	308,880.0	6,870,420.0	MGA94	477.6	120	RC	65	-60	12	16	0.074
19TRRC004	309,063.0	6,870,320.0	MGA94	478.9	97	RC	65	-60	84	85	18.5
19TRRC005	309,090.0	6,870,239.0	MGA94	484.8	99	AC	0	-90	98	99	0.469
CHVOWR1000	310,237.7	6,868,031.7	AMG84	489.5	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR1001	310,162.7	6,867,996.7	AMG84	487.8	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR1002	310,127.7	6,867,984.7	AMG84	487.8	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR1003	310,095.7	6,867,967.7	AMG84	486.7	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR1004	310,058.7	6,867,952.7	AMG84	487.3	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR1005	310,018.7	6,867,938.7	AMG84	487.8	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR1006	309,982.7	6,867,919.7	AMG84	487.8	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR1007	309,943.7	6,867,903.7	AMG84	487.8	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR1008	309,878.7	6,867,872.7	AMG84	487.5	20	RAB	0	-90	N/A	N/A	-0.01
CHVOWR22	309,727.7	6,868,159.7	AMG84	486.6	41	RAB	0	-90	N/A	N/A	-0.01
CHVOWR23	309,799.7	6,868,192.7	AMG84	486.6	48	RAB	0	-90	N/A	N/A	-0.01
CHVOWR24	309,836.7	6,868,209.7	AMG84	486.4	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR25	309,875.7	6,868,225.7	AMG84	486.4	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR26	309,910.7	6,868,239.7	AMG84	488.2	46	RAB	0	-90	N/A	N/A	-0.01
CHVOWR27	309,956.7	6,868,261.7	AMG84	488.2	46	RAB	0	-90	N/A	N/A	-0.01
CHVOWR28	309,992.7	6,868,276.7	AMG84	488.6	46	RAB	0	-90	44	46	0.03
CHVOWR29	310,017.7	6,868,289.7	AMG84	487.5	44	RAB	0	-90	36	40	0.04
CHVOWR30	310,107.7	6,868,328.7	AMG84	488.0	50	RAB	0	-90	8	12	0.03
CHVOWR31	309,595.7	6,868,450.7	AMG84	485.2	30	RAB	0	-90	N/A	N/A	-0.01
CHVOWR32	309,669.7	6,868,482.7	AMG84	486.9	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR33	309,703.7	6,868,497.7	AMG84	486.9	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR34	309,748.7	6,868,513.7	AMG84	487.6	39	RAB	0	-90	N/A	N/A	-0.01
CHVOWR35	309,788.6	6,868,529.6	AMG84	487.4	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR36	309,823.7	6,868,547.7	AMG84	488.1	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR37	309,860.7	6,868,562.7	AMG84	488.1	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR38	309,900.7	6,868,581.7	AMG84	487.0	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR39	309,977.7	6,868,613.7	AMG84	487.3	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR40		6,868,749.7	AMG84	485.8	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR41		6,868,783.7	AMG84	486.4	36	RAB	0	-90	N/A	N/A	-0.01
CHVOWR42	309,600.7	6,868,799.7	AMG84	486.4	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR43		6,868,814.7	AMG84	486.4	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR44	309,671.7	6,868,831.7	AMG84	486.7	60	RAB	0	-90	52	56	0.41
CHVOWR45	309,710.7	6,868,847.7	AMG84	487.0	68	RAB	0	-90	N/A	N/A	-0.01
CHVOWR46		6,868,863.7	AMG84	487.7	56	RAB	0	-90	N/A	N/A	-0.01
CHVOWR47		6,868,881.7	AMG84	487.7	30	RAB	0	-90	28	30	0.07
CHVOWR48		6,868,913.7	AMG84	488.8	50	RAB	0	-90	0	4	0.06
CHVOWR49		6,868,961.7	AMG84	483.8	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR50		6,868,993.7	AMG84	484.8	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR51	309,330.7	6,869,031.7	AMG84	486.2	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR52	309,413.7	6,869,067.7	AMG84	486.2	62	RAB	0	-90	N/A	N/A	-0.01
CHVOWR53	309,487.7	6,869,100.7	AMG84	486.0	72	RAB	0	-90	N/A	N/A	-0.01
CHVOWR54	309,566.7	6,869,133.7	AMG84	486.6	50	RAB	0	-90	40	44	0.08

Hole ID	Easting (m)	Northing (m)	Grid	RL (m)	Total Depth (m)	Hole Type	Azimuth ¹	Dip	From (m)	To (m)	Au (g/t)
CHVOWR55	309,639.7	6,869,166.7	AMG84	487.0	50	RAB	0	-90	40	44	0.04
CHVOWR56	309,713.7	6,869,200.7	AMG84	487.5	50	RAB	0	-90	8	12	0.02
CHVOWR57	308,984.7	6,869,238.7	AMG84	484.7	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR58	309,058.7	6,869,268.7	AMG84	484.9	50	RAB	0	-90	28	32	0.02
CHVOWR59	309,133.7	6,869,303.7	AMG84	485.3	50	RAB	0	-90	48	50	0.02
CHVOWR60	309,203.7	6,869,337.7	AMG84	485.8	50	RAB	0	-90	4	8	0.02
CHVOWR61	309,280.7	6,869,366.7	AMG84	486.1	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR62	309,347.7	6,869,396.7	AMG84	486.0	74	RAB	0	-90	48	52	0.08
CHVOWR63	309,411.7	6,869,428.7	AMG84	487.4	50	RAB	0	-90	36	40	0.14
CHVOWR64	309,507.7	6,869,467.7	AMG84	488.0	50	RAB	0	-90	44	48	0.14
CHVOWR65	308,846.7	6,869,523.7	AMG84	484.1	50	RAB	0	-90	28	32	0.1
CHVOWR66	308,920.7	6,869,552.7	AMG84	484.4	50	RAB	0	-90	0	4	0.03
CHVOWR67	308,998.7	6,869,588.7	AMG84	484.7	50	RAB	0	-90	16	20	0.03
CHVOWR68	309,074.7	6,869,621.7	AMG84	485.5	59	RAB	0	-90	4	8	0.03
CHVOWR69	309,147.7	6,869,654.7	AMG84	486.2	50	RAB	0	-90	12	16	0.03
CHVOWR70	309,221.9	6,869,680.8	AMG84	487.1	50	RAB	0	-90	48	50	0.16
CHVOWR71	309,295.7	6,869,719.7	AMG84	487.7	50	RAB	0	-90	48	50	0.02
CHVOWR72	309,372.7	6,869,754.7	AMG84	488.0	50	RAB	0	-90	40	44	0.03
CHVOWR73	308,730.7	6,869,824.7	AMG84	484.3	53	RAB	0	-90	N/A	N/A	-0.01
CHVOWR74	308,801.7	6,869,858.7	AMG84	484.5	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR75	308,879.7	6,869,893.7	AMG84	486.0	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR76		6,869,925.7	AMG84	487.1	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR77	309,014.7	6,869,953.7	AMG84	487.7	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR78		6,869,992.7	AMG84	487.2	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR79	309,181.7	6,870,026.7	AMG84	486.9	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR80	309,249.7	6,870,057.7	AMG84	486.9	50	RAB	0	-90	12	16	0.02
CHVOWR81	308,602.7	6,870,106.7	AMG84	484.9	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR82	308,641.7	6,870,125.7	AMG84	484.4	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR83	308,681.7	6,870,141.7	AMG84	484.8	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR84	308,747.7	6,870,171.7	AMG84	484.8	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR85	308,829.7	6,870,207.7	AMG84	486.0	50	RAB	0	-90	48	50	0.05
CHVOWR86	308,825.7	6,870,207.7	AMG84	486.0	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR87			AMG84	486.5	50	RAB	0	-90	48	50	0.03
CHVOWR88	1	6,870,427.7	AMG84	484.7	56	RAB	0	-90	48	52	0.07
CHVOWR89		6,870,443.7	AMG84	484.7	56	RAB	0	-90	16	20	0.03
CHVOWR90		6,870,453.7	AMG84	484.7	68	RAB	0	-90	28	32	0.03
CHVOWR91		6,870,475.7	AMG84	484.7	50	RAB	0	-90	N/A	N/A	-0.01
CHVOWR92		6,870,497.7	AMG84	484.4	83	RAB	0	-90	32	36	0.03
CHVOWR93		6,870,520.7	AMG84	485.5	50	RAB	0	-90	20	24	0.03
CHVOWR94		6,870,551.7	AMG84	486.0	53	RAB	0	-90	44	48	0.03
GCMHEBB30	î.	6,870,847.2	AMG84	481.0	70	RAB	0	-90	60	64	0.05
GCMHEBB34		6,870,894.7	AMG84	485.9	123	RAB	0	-90	72	76	0.02
GCMHEBB35		6,870,889.7	AMG84	485.9	70	RAB	0	-90	8	12	0.02
GCMHEBB36		6,870,922.7	AMG84	487.3	67	RAB	0	-90	8	12	0.03
GCMHEBB40	Î	6,871,065.7	AMG84	491.5	74	RAB	0	-90	32	36	0.05
GCMHEBB42	1	6,871,052.7	AMG84	492.5	57	RAB	0	-90	0	4	0.03
GCMHEBB45	1	6,871,148.7	AMG84	496.3	50	RAB	0	-90	4	8	0.05
GCMHEBB46	1	6,871,171.7	AMG84	497.5	102	RAB	0	-90	92	96	0.03
GCMHEBB48		6,871,281.7	AMG84	502.6	57	RAB	0	-90	36	40	0.04
GCMHEBB58	310,551.7	6,867,503.7	AMG84	488.7	61	RAB	0	-90	12	16	0.02

Hole ID	Easting (m)	Northing (m)	Grid	RL (m)	Total Depth (m)	Hole Type	Azimuth ¹	Dip	From (m)	To (m)	Au (g/t)
GCMHEBB60	310,199.7	6,867,495.7	AMG84	485.8	62	RAB	0	-90	44	48	0.31
GCMHEBB65	309,318.7	6,867,638.7	AMG84	480.0	74	RAB	0	-90	40	44	1.11
GCMHEBB66	306,918.7	6,867,596.7	AMG84	477.4	56	RAB	0	-90	48	52	0.08
NDYHEBA01	309,416.7	6,870,238.7	AMG84	490.1	86	AC	0	-90	64	68	0.031
NDYHEBA02	309,336.7	6,870,238.7	AMG84	489.1	92	AC	0	-90	52	56	0.044
NDYHEBA03	309,256.7	6,870,238.7	AMG84	487.6	104	AC	0	-90	88	92	0.022
NDYHEBA04	309,176.7	6,870,238.7	AMG84	487.8	67	AC	0	-90	40	44	0.027
NDYHEBA05	309,096.7	6,870,238.7	AMG84	487.7	96	AC	0	-90	64	68	0.459
NDYHEBA06	308,936.7	6,870,238.7	AMG84	486.5	93	AC	0	-90	88	92	0.197
NDYHEBA07	308,776.7	6,870,238.7	AMG84	486.0	128	AC	0	-90	12	16	0.009
NDYHEBA08	309,016.7	6,870,238.7	AMG84	487.2	104	AC	0	-90	52	56	0.21
NDYHEBA09	308,616.7	6,870,238.7	AMG84	485.0	116	AC	0	-90	60	64	0.02
NDYHEBA10	308,456.7	6,870,238.7	AMG84	485.4	119	AC	0	-90	12	16	0.01
NDYHEBA100	308,536.7	6,867,998.7	AMG84	481.5	51	AC	0	-90	12	16	0.02
NDYHEBA101	310,216.7	6,868,158.7	AMG84	489.6	62	AC	0	-90	48	52	0.04
NDYHEBA102	310,136.7	6,868,158.7	AMG84	489.1	77	AC	0	-90	60	61	0.42
NDYHEBA103	310,056.7	6,868,158.7	AMG84	487.6	57	AC	0	-90	44	48	0.02
NDYHEBA104	309,976.7	6,868,158.7	AMG84	488.0	65	AC	0	-90	52	56	0.05
NDYHEBA105	309,896.7	6,868,158.7	AMG84	488.2	74	AC	0	-90	52	56	0.07
NDYHEBA106	309,816.7	6,868,158.7	AMG84	486.8	71	AC	0	-90	40	44	0.02
NDYHEBA108	1	6,868,558.7	AMG84	488.1	90	AC	0	-90	65	66	0.34
NDYHEBA109	309,776.7	6,868,558.7	AMG84	487.4	85	AC	0	-90	59	60	0.17
NDYHEBA11	308,296.7	6,870,238.7	AMG84	482.8	89	AC	0	-90	4	8	0.02
NDYHEBA110	309,696.7	6,868,558.7	AMG84	486.7	101	AC	0	-90	68	72	0.02
NDYHEBA111	309,816.7	6,868,958.7	AMG84	488.1	47	AC	0	-90	4	8	0.01
NDYHEBA112	309,736.7	6,868,958.7	AMG84	487.1	107	AC	0	-90	37	38	0.15
NDYHEBA113	309,656.7	6,868,958.7	AMG84	486.5	108	AC	0	-90	98	99	0.34
NDYHEBA114	309,576.7	6,868,958.7	AMG84	486.3	126	AC	0	-90	75	76	5.22
NDYHEBA115	309,496.7	6,868,958.7	AMG84	486.0	83	AC	0	-90	0	4	0.01
NDYHEBA116	1	6,868,958.7	AMG84	485.8	69	AC	0	-90	8	12	0.02
NDYHEBA12	1	6,870,238.7	AMG84	482.0	101	AC	0	-90	76	80	0.02
NDYHEBA13	308,056.7	6,870,238.7	AMG84	481.5	101	AC	0	-90	4	8	0.01
NDYHEBA14	307,896.7	6,870,238.7		481.1	88	AC	0	-90	24	28	0.02
NDYHEBA15	1	6,870,238.7	AMG84	480.8	85	AC	0	-90	4	8	0.02
NDYHEBA16	310,242.7	6,869,358.7	AMG84	490.7	117	AC	0	-90	96	100	0.082
NDYHEBA17	1	6,869,358.7	AMG84	489.9	78	AC	0	-90	56	60	0.017
NDYHEBA18		6,869,358.7	AMG84	489.0	83	AC	0	-90	76	80	0.009
NDYHEBA19	1	6,869,358.7	AMG84	487.7	78	AC	0	-90	76	77	0.03
NDYHEBA20	1	6,869,358.7	AMG84	487.2	78	AC	0	-90	52	56	0.022
NDYHEBA21	1	6,869,358.7	AMG84	487.6	92	AC	0	-90	32	36	0.016
NDYHEBA22		6,869,358.7	AMG84	486.8	122	AC	0	-90	108	112	0.049
NDYHEBA23	1	6,869,358.7	AMG84	486.0	98	AC	0	-90	72	76	0.098
NDYHEBA24		6,869,358.7	AMG84	486.1	98	AC	0	-90	32	36	0.007
NDYHEBA25		6,869,358.7	AMG84	485.8	86	AC	0	-90	4	8	0.003
NDYHEBA26	Î	6,869,358.7	AMG84	485.1	98	AC	0	-90	56	60	0.011
NDYHEBA27	1	6,869,358.7	AMG84	484.0	107	AC	0	-90	4	8	0.004
NDYHEBA28	1	6,869,358.7	AMG84	483.6	125	AC	0	-90	104	108	0.012
NDYHEBA29	1	6,869,358.7	AMG84	482.0	81	AC	0	-90	76	80	0.012
NDYHEBA30		6,869,358.7	AMG84	481.5	60	AC	0	-90	4	8	0.004
NDYHEBA31	1	6,869,358.7	AMG84	480.4	80	AC	0	-90	76	79	0.007

Hole ID	Easting (m)	Northing (m)	Grid	RL (m)	Total Depth (m)	Hole Type	Azimuth ¹	Dip	From (m)	To (m)	Au (g/t)
NDYHEBA32	310,544.7	6,868,558.7	AMG84	490.4	86	AC	0	-90	8	12	0.033
NDYHEBA33	310,456.7	6,868,558.7	AMG84	489.6	86	AC	0	-90	0	4	0.006
NDYHEBA34	310,296.7	6,868,558.7	AMG84	488.9	33	AC	0	-90	4	8	0.002
NDYHEBA35	310,136.7	6,868,558.7	AMG84	488.3	44	AC	0	-90	4	8	0.005
NDYHEBA36	309,976.7	6,868,558.7	AMG84	487.1	52	AC	0	-90	4	8	0.012
NDYHEBA37	309,896.7	6,868,558.7	AMG84	487.0	54	AC	0	-90	4	8	0.006
NDYHEBA38	309,816.7	6,868,558.7	AMG84	488.1	94	AC	0	-90	76	80	0.149
NDYHEBA39	309,736.7	6,868,558.7	AMG84	487.4	76	AC	0	-90	8	12	0.012
NDYHEBA40	309,656.7	6,868,558.7	AMG84	486.7	45	AC	0	-90	0	4	0.003
NDYHEBA41	309,576.7	6,868,558.7	AMG84	485.4	125	AC	0	-90	120	124	0.005
NDYHEBA42	309,496.7	6,868,558.7	AMG84	484.8	105	AC	0	-90	4	8	0.006
NDYHEBA43	309,336.7	6,868,558.7	AMG84	483.2	28	AC	0	-90	20	24	0.009
NDYHEBA44	309,176.7	6,868,558.7	AMG84	483.8	91	AC	0	-90	20	24	0.003
NDYHEBA45	309,016.7	6,868,558.7	AMG84	482.9	95	AC	0	-90	4	8	0.003
NDYHEBA46	308,856.7	6,868,558.7	AMG84	483.0	71	AC	0	-90	16	20	0.004
NDYHEBA47	308,696.7	6,868,558.7	AMG84	482.1	65	AC	0	-90	0	4	0.003
NDYHEBA48	308,536.7	6,868,558.7	AMG84	481.9	91	AC	0	-90	64	68	0.059
NDYHEBA49	308,376.7	6,868,558.7	AMG84	480.4	86	AC	0	-90	80	84	0.069
NDYHEBA50	309,676.7	6,868,568.7	AMG84	486.7	92	AC	0	-90	8	12	0.005
NDYHEBA51	309,536.7	6,869,348.7	AMG84	487.6	85	AC	0	-90	24	28	0.04
NDYHEBA52	309,444.7	6,869,358.7	AMG84	486.8	122	AC	0	-90	87	88	5.06
NDYHEBA53	309,376.7	6,869,358.7	AMG84	486.0	129	AC	0	-90	60	61	1.4
NDYHEBA54	309,286.7	6,869,348.7	AMG84	486.1	86	AC	0	-90	28	32	0.02
NDYHEBA55		6,869,758.7	AMG84	489.0	84	AC	0	-90	52	56	0.01
NDYHEBA56	309,336.7	6,869,758.7	AMG84	488.0	87	AC	0	-90	8	12	0.01
NDYHEBA57	309,256.7	6,869,758.7	AMG84	487.7	94	AC	0	-90	20	24	0.01
NDYHEBA58	309,176.7	6,869,758.7	AMG84	487.5	89	AC	0	-90	81	82	0.81
NDYHEBA59		6,869,758.7	AMG84	486.6	84	AC	0	-90	72	76	0.04
NDYHEBA60	309,016.7	6,869,758.7	AMG84	486.6	95	AC	0	-90	40	44	0.01
NDYHEBA61	309,136.7	6,870,238.7	AMG84	487.7	89	AC	0	-90	68	69	11.4
NDYHEBA62		6,870,238.7	AMG84	487.2	106	AC	0	-90	58	59	1.33
NDYHEBA63		6,870,238.7	AMG84	486.5	86	AC	0	-90	8	12	0.01
NDYHEBA64		6,870,238.7		486.5	94	AC	0	-90	12	16	0.03
NDYHEBA65		6,870,558.7	AMG84	488.9	73	AC	0	-90	64	68	0.04
NDYHEBA66		6,870,558.7	AMG84	488.9	63	AC	0	-90	8	12	0.04
NDYHEBA67		6,870,558.7	AMG84	488.5	88	AC	0	-90	8	12	0.03
NDYHEBA68		6,870,558.7	AMG84	487.0	108	AC	0	-90	93	94	0.67
NDYHEBA69		6,870,558.7	AMG84	486.2	77	AC	0	-90	12	16	0.03
NDYHEBA70		6,870,558.7	AMG84	486.0	90	AC	0	-90	56	60	0.02
NDYHEBA71		6,871,358.7	AMG84	486.2	56	AC	0	-90	4	8	0.01
NDYHEBA72		6,871,358.7	AMG84	485.4	116	AC	0	-90	76	80	0.05
NDYHEBA73		6,871,358.7	AMG84	485.2	83	AC	0	-90	80	82	0.08
NDYHEBA74		6,871,358.7	AMG84	485.1	79	AC	0	-90	60	61	0.93
NDYHEBA75		6,871,358.7	AMG84	484.7	70	AC	0	-90	44	48	0.04
NDYHEBA76		6,871,358.7	AMG84	484.1	68	AC	0	-90	44	45	0.04
NDYHEBA77		6,871,358.7	AMG84	484.5	70	AC	0	-90	57	58	1.35
NDYHEBA78		6,871,358.7	AMG84	482.6	50	AC	0	-90	47	49	0.01
NDYHEBA79		6,871,758.7	AMG84	486.9	65	AC	0	-90	16	20	0.01
NDYHEBA80		6,871,758.7	AMG84	485.8	58	AC	0	-90	4	8	0.01
		6,871,758.7	AMG84 AMG84	485.8	98	AC	0	-90	4	8	0.01

Hole ID	Easting (m)	Northing (m)	Grid	RL (m)	Total Depth (m)	Hole Type	Azimuth ¹	Dip	From (m)	To (m)	Au (g/t)
NDYHEBA83	308,536.7	6,871,758.7	AMG84	485.9	84	AC	0	-90	82	83	0.12
NDYHEBA84	308,456.7	6,871,758.7	AMG84	485.5	91	AC	0	-90	56	60	0.03
NDYHEBA85	308,376.7	6,871,758.7	AMG84	484.9	76	AC	0	-90	70	71	0.24
NDYHEBA86	308,296.7	6,871,758.7	AMG84	484.9	85	AC	0	-90	8	12	0.01
NDYHEBA87	308,136.7	6,871,758.7	AMG84	484.7	130	AC	0	-90	24	28	0.02
NDYHEBA88	310,536.7	6,867,158.7	AMG84	489.6	71	AC	0	-90	20	24	0.01
NDYHEBA89	310,456.7	6,867,158.7	AMG84	489.0	33	AC	0	-90	4	8	0.02
NDYHEBA90	310,376.7	6,867,158.7	AMG84	489.5	65	AC	0	-90	24	28	0.41
NDYHEBA91	310,296.7	6,867,158.7	AMG84	490.2	69	AC	0	-90	36	40	0.6
NDYHEBA92	310,216.7	6,867,158.7	AMG84	489.8	99	AC	0	-90	48	52	0.03
NDYHEBA93	310,136.7	6,867,158.7	AMG84	488.4	68	AC	0	-90	36	40	0.02
NDYHEBA94	310,056.7	6,867,158.7	AMG84	487.7	73	AC	0	-90	20	24	0.01
NDYHEBA95	310,236.7	6,867,488.7	AMG84	485.6	70	AC	0	-90	67	69	0.06
NDYHEBA96	310,151.7	6,867,488.7	AMG84	485.8	73	AC	0	-90	56	60	0.08
NDYHEBA97	309,016.7	6,867,998.7	AMG84	482.6	74	AC	0	-90	28	32	0.02
NDYHEBA98	308,856.7	6,867,998.7	AMG84	482.0	79	AC	0	-90	40	44	0.02
NDYHEBA99	308,696.7	6,867,998.7	AMG84	481.3	59	AC	0	-90	52	56	0.05
NDYHEBB74	310,136.7	6,870,238.7	AMG84	493.6	61	RAB	0	-90	60	61	0.151
NDYHEBB75	310,056.7	6,870,238.7	AMG84	492.4	75	RAB	0	-90	4	8	0.002
NDYHEBB76	309,976.7	6,870,238.7	AMG84	491.9	71	RAB	0	-90	8	12	0.007
NDYHEBB77	309,816.7	6,870,238.7	AMG84	491.8	68	RAB	0	-90	60	64	0.013
NDYHEBB78	309,636.7	6,870,238.7	AMG84	489.7	94	RAB	0	-90	8	12	0.005
NDYHEBB79	309,538.7	6,870,238.7	AMG84	490.1	79	RAB	0	-90	8	12	0.005
NDYHEBB80	309,476.7	6,870,238.7	AMG84	490.1	72	RAB	0	-90	71	72	0.038
NEWHEBA117	310,296.7	6,866,958.7	AMG84	489.5	76	AC	0	-90	4	8	0.01
NEWHEBA118	310,331.7	6,866,958.7	AMG84	489.5	101	AC	0	-90	92	96	0.02
NEWHEBA119	310,376.7	6,866,958.7	AMG84	488.7	93	AC	0	-90	40	44	0.05
NEWHEBA120	310,416.7	6,866,958.7	AMG84	488.7	76	AC	0	-90	52	56	0.37
NEWHEBA121	310,353.7	6,866,958.7	AMG84	489.5	97	AC	0	-90	0	4	0.02
NEWHEBA122		6,866,958.7	AMG84	489.5	88	AC	0	-90	52	56	0.02
NEWHEBA123	310,336.7	6,867,158.7	AMG84	490.2	76	AC	0	-90	24	28	0.84
NEWHEBA124	310,256.7	6,867,158.7	AMG84	489.8	91	AC	0	-90	56	60	0.11
NEWHEBA125		6,867,358.7	AMG84	488.1	72	AC	0	-90	48	52	0.29
NEWHEBA126		6,867,358.7	AMG84	488.4	75	AC	0	-90	36	40	0.36
NEWHEBA127		6,867,358.7	AMG84	488.4	75	AC	0	-90	28	32	0.02
NEWHEBA128		6,867,358.7	AMG84	487.5	78	AC	0	-90	4	8	0.01
NEWHEBA129		6,867,358.7	AMG84	487.5	68	AC	0	-90	36	40	0.01
NEWHEBA130		6,868,758.7	AMG84	486.4	112	AC	0	-90	76	80	0.59
NEWHEBA131		6,868,758.7	AMG84	486.4	113	AC	0	-90	80	84	0.18
NEWHEBA132		6,868,758.7	AMG84	486.0	115	AC	0	-90	76	80	0.23
NEWHEBA133		6,868,758.7	AMG84	486.0	109	AC	0	-90	68	72	0.23
NEWHEBA134		6,868,758.7	AMG84	486.6	104	AC	0	-90	16	20	0.02
NEWHEBA135		6,868,958.7	AMG84	486.3	74	AC	0	-90	52	56	0.27
NEWHEBA136		6,868,958.7	AMG84	486.3	114	AC	0	-90	64	68	0.45
NEWHEBA137		6,868,958.7	AMG84	486.5	125	AC	0	-90	32	36	0.15
NEWHEBA138		6,869,158.7	AMG84	486.1	58	AC	0	-90	40	44	0.01
NEWHEBA139		6,869,158.7	AMG84	486.1	125	AC	0	-90	8	12	0.01
NEWHEBA140		6,869,158.7	AMG84	486.0	117	AC	0	-90	112	116	0.53
NEWHEBA141		6,869,158.7	AMG84 AMG84	486.0	122	AC	0	-90	104	108	0.06
NEWHEBA142		6,869,158.7	AMG84 AMG84	486.1	97	AC	0	-90	92	96	0.08

Hole ID	Easting (m)	Northing (m)	Grid	RL (m)	Total Depth (m)	Hole Type	Azimuth ¹	Dip	From (m)	To (m)	Au (g/t)
NEWHEBA143	309,256.7	6,869,558.7	AMG84	487.0	94	AC	0	-90	60	64	0.21
NEWHEBA144	309,296.7	6,869,558.7	AMG84	487.0	88	AC	0	-90	40	44	0.13
NEWHEBA145	309,336.7	6,869,558.7	AMG84	487.8	103	AC	0	-90	20	24	0.01
NEWHEBA146	309,376.7	6,869,558.7	AMG84	487.8	107	AC	0	-90	96	100	0.02
NEWHEBA147	309,416.7	6,869,558.7	AMG84	488.5	118	AC	0	-90	60	64	0.07

¹ Azimuth is reported in MGA94.

APPENDIX D

JORC Code, 2012 Edition – Western Vein Field Near-Mine Exploration Resource Definition Drill Programs

Table 1 Section 1 - Sampling Techniques and Data

Criteria	Commentary
Sampling techniques	 Drilling All samples have been collected via diamond drilling. Most of the samples are collected at 1 metre intervals. Samples taken are half core or full core, dependent on the program requirements for core retention and further test work. Sample weights range from 2 kg to 4kg depending on sample length and half or whole core. Samples are sent to an independent and accredited laboratory (ALS Brisbane). Samples less than 3kg are pulverised to a nominal 85% passing 75 microns. If sample weights exceed 3kg they are split via a rotary splitter and an approximate 3kg sub sample is retained and pulverised. After pulverisation a 50g sample is collected for fire assay. The sample size and sample preparation techniques are considered appropriate for the style of mineralisation. Industry prepared standards are inserted in approximately 1 in 20 samples. The samples are considered representative and appropriate for this type of drilling.
Drilling techniques	 Drill holes are completed via diamond drilling NQ diameter. Occasional drill holes are started with HQ diameter and reduced to NQ diameter once competent ground is achieved.
Drill sample recovery	 The drillers record core recoveries on site at the drill rig. An Aeris Resources field technician and/or geologist then checks and verifies them. Diamond drill core is pieced together as part of the core orientation process. During this process, depth intervals are recorded on the core and checked against downhole depths recorded by drillers on core blocks within the core trays. Historically, core recoveries have been very high within and outside zones of mineralisation. Diamond core drilled to date from the current drill program has recorded very high recoveries, which are in line with historical observations.
Logging	 All diamond core is logged by an Aeris employee or a fully trained contract geologist. All diamond core is geologically logged, recording lithology, vein

Criteria	Commentary
	 quantity/texture/mineralogy, alteration, and weathering. 3. All geological and sample data is captured electronically within LogChief Software and uploaded to Aeris Resources licenced Datashed database. 4. All diamond drill core is photographed and digitally stored on the Company network. 5. Core is stored in core trays and labelled with downhole meterage intervals and drill hole ID.
Sub-sampling techniques and sample preparation	 All samples collected from diamond drill core are collected in a consistent manner. Half core samples are cut via an automatic core saw, and half core samples are collected on average at 1 metre intervals, with a minimum sample length of 0.4 metre and a maximum length of 1.2 metre. For whole core samples the entire sample interval is collected. Industry prepared independent standards are inserted approximately 1 in 20 samples. The sample size is considered appropriate for the style of mineralisation and grain size of the material being sampled.
Quality of assay data and laboratory tests	 All samples are sent to ALS Laboratory Services at their Brisbane facility for sample preparation. Samples under 3 kg are pulverised to 85%, passing 75 microns. If samples are greater than 3kg, they are split prior to pulverising. Samples are assayed via ME-MS61, a low-detection multi-element analytical method. Au assaying is via a 50g fire assay charge (Au-AA26) using an AAS finish. Au assaying is completed at the ALS Townsville laboratory. Ag assaying is completed at the Brisbane laboratory. A sample of 0.5g is collected and assayed using an aqua regia digest. QA/QC protocols include the use of blanks, duplicates, and standards (commercial certified reference materials used). The frequency rate for each QA/QC sample type is 5%.
Verification of sampling and assaying	 Logged drill holes are reviewed by the logging geologist and a senior geologist. All geological data is logged directly into Logchief software at the drill rig. The Logchief software is installed with Cracow specific logging codes. The data is systematically transferred to the Datashed database. Validation of the data is completed within Logchief and Datashed. Upon receipt of the assay data no adjustments are made to the assay values.
Location of data points	 Drill hole collar locations are surveyed via a qualified surveyor. Collar positions were surveyed using a differential GPS (DGPS). Drill hole locations are referenced in Klondyke local grid for Western Vein Field. Quality and accuracy of the drill collars are suitable for exploration results. The drill contractor completes downhole surveys taken during drilling. Surveys are taken at approximately 15 metres down hole and at 30-metre intervals thereafter.
Data spacing and distribution	 The drill holes are exploratory in nature and testing conceptual geological targets.

Criteria	Commentary
Orientation of data in relation to geological structure	 All drill holes are designed to intersect the target at a high angle to the interpreted structure. Each drill hole completed has not deviated significantly from the planned drill hole path. Drill hole intersections through the target zones are not biased.
Sample security	 Samples were collected by company personnel and delivered to the laboratory via a transport contractor.
Audits or reviews	 Data is validated when uploaded into the company's Datasheet database. No formal audit has been conducted.

Western Vein Field Near-Mine Exploration Resource Definition Drill Programs

Table 1 Section 2 - Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	 The Cracow Operation is located immediately west of the Cracow township in central Queensland. The Cracow Operation Exploration and Mining Tenement package comprises 3 EPMs and 18 MLs covering an area of approximately 889km². The Cracow Operation Exploration and Mining tenements are wholly owned by Lion Mining Pty Ltd, a wholly-owned subsidiary of Aeris Resources Limited. The drill program reported in this announcement at the Western Vein Field is located within ML80089 and ML80144. All tenements are in good standing, and no known impediments exist.
Exploration done by other parties	 The Cracow Goldfields were discovered in 1932, with the identification of mineralisation at Dawn, then Golden Plateau in the eastern portion of the field. From 1932 to 1994, mining of Golden Plateau and associated trends produced approximately 850koz of Au metal. Exploration across the fields and nearby regions was completed by several identities including BP Minerals Australia, Australian Gold Resources Ltd, ACM Operations Pty Ltd, Sedimentary Holdings NL and Zapopan NL. In 1995, Newcrest Mining Ltd (NML) entered in to a 70 % share of the Cracow Joint Venture. Initially exploration was targeting porphyry type mineralisation, focusing on the large areas of alteration at Fernyside and Myles Corridor. This focus shifted to epithermal exploration of the western portion of the field, after the discovery of the Vera mineralisation at Pajingo, which shared similarities with Cracow. The Royal epithermal mineralisation was discovered in 1998, with further discoveries of Crown, Sovereign, Empire, Phoenix, Kilkenny, and Tipperary made from 1998 up to 2008. Evolution was formed from the divestment of Newcrest assets (including Cracow) and the merging of Conquest and Catalpa in 2012. Evolution continued exploration at Cracow from 2012 to early 2020. Aeris Resources purchased the Cracow Operation (including the exploration and mining tenements) in July 2020.

Criteria	Commentary
Geology	 The Cracow project area gold deposits are in the Lower Permian Camboon Andesite on the south-eastern flank of the Bowen Basin. The regional strike is north-northwest and the dip 20° west-southwest. The Camboon Andesite consists of andesitic and basaltic lava, with agglomerate, tuff and some inter-bedded trachytic volcanics. The andesitic lavas are typically porphyritic, with phenocrysts of plagioclase feldspar (oligoclase or andesine) and less commonly augite. To the west, the Camboon Andesite is overlain with an interpreted disconformity by fossiliferous limestone of the Buffel Formation. It is unconformably underlain to the east by the Torsdale Beds, which consist of rhyolitic and dactitic lavas and pyroclastics with inter-bedded trachytic and andesitic volcanics, sandstone, siltstone, and conglomerate. Mineralisation is hosted in steeply dipping low sulphidation epithermal veins. These veins found as discrete and as stockwork and are composed of quartz, carbonate and adularia, with varying percentages of each mineral. Vein textures include banding (colloform, crustiform, cockade, moss), breccia channels and massive quartz, and indicate depth within the epithermal system. Sulphide percentage in the veins are generally low (<3%) primarily composed of pyrite, with minor occurrences of hessite, sphalerite and galena. Rare chalcopyrite, arsenopyrite and bornite can also be found. Alteration of the country rock can be extensive and zone from the central veined structure. This alteration consists of silicification, phylic alteration (silica, sericite and other clay minerals) and argillic alteration in the inner zone, grading outwards to potassic (adularia) then an outer propylitic zone. Gold is very fined grained and found predominantly as electrum but less common within clots of pyrite.
Drill hole information	1. All relevant information pertaining to each drill hole has been provided.
Data aggregation methods	 Reported significant intervals are based on a minimum width of 0.4m, minimum Au grade 1g/t Au, maximum of 1m of below cut-off material (<1g/t Au).
Relationship between mineralisation widths and intercept lengths	 Drill holes have been designed to intersect the mineralised structure at a high angle. As a generalisation, drill hole intersections through the mineralised structure at an acute angle (~30-60°). Reported significant intervals are based on a minimum downhole width of 1.0m, minimum Au grade of 1g/t Au, and maximum of 2m of below cut-off material (<1g/t Au).
Diagrams	1. Relevant diagrams are included in the body of the report.
Balanced reporting	 The reporting is considered balanced, and all material information associated with the drill results has been disclosed.
Other substantive exploration data	1. There is no other relevant substantive exploration data to report.
Further work	 Further drilling is planned to target the Apollo and Coronation West structures in the current quarter and into the 2025 financial year. Drill testing further west within prospective stratigraphy is also planned.

APPENDIX E

The below appendices relate to Exploration Activities at the Jaguar Operation. Within the body of the report there is reference to shallow gold anomalism at the Heather Bore prospect. The gold anomalism is associated with historical aircore data dating back to the late 1980s. A thorough review of the inputs required to populate JORC Table 1 Section 1 has not been completed (refer below). The Company does not consider this material for the project. The historical aircore data is only used as a guide to focus follow-up early stage exploration activities.

The historical data mentioned above has not been reported in accordance with the JORC Code. The Competent Person has not done sufficient work to verify that the historical data is accurate or reliable. It is uncertain that following further exploration work, the historical data will be able to be reported in accordance with the JORC Code. The current, fully-funded, gold exploration program proposed for the Jaguar Operation is aimed at verifying the historical drill and surface geochemistry results.

JORC Code, 2012 Edition – Jaguar Operations Historical Exploration Drill Programs Over The Heather Bore Prospect

Criteria	Commentary
Sampling techniques	 Historic drilling Drilling across the Heather Bore prospect consists of 374 AC/RAB holes and 2 RC holes. Historical AC drill sampling was done by several exploration companies
	 between 1987 and 2019. Based on the historical information reviewed sample collection was predominately via the collection of composite chip samples with a scoop from sample piles. 3. Historical RC drill sampling done by Round Oak in 2019 was done as per industry standards using a static cone splitter to create 2 – 3 kg sample for assay. Samples were collected as individual metre samples. 4. No information pertaining the QA/QC protocols or results have been viewed.
Drilling techniques	Historic drilling
	 Information relating to the AC drill program is limited. It is not clear what hole diameter was used. RC drilling utilised a 5¹/₂ inch hammer.
Drill sample recovery	Historic drilling
	 Information regarding drill sample recovery. No information regarding sample recovery for the AC and RC programs has been viewed. That is not considered a problem. The assay data is only being used as a tool to highlight zones that are worthy of further early stage exploration.

Table 1 Section 1 - Sampling Techniques and Data

Criteria	Commentary
Logging	Historic drilling
	 Historical logging of AC and RC holes recorded lithology, mineralogy, mineralisation, weathering, colour, and other features of each sample with all samples wet-sieved and store in a chip trays. All holes were logged in full.
Sub-sampling	Historic drilling
techniques and sample preparation	 Historical AC drilling: 4m composite collected at the rig from 1m sample piles. Historical RC drilling: Collected as individual metre samples via static
	cone splitter to create 2 – 3 kg sample for assay.
	 The quality of the AC and RC samples is uncertain. Information, including sample weight, sub-sampling results, etc., has not been viewed.
Quality of assay data	Historic drilling
and laboratory tests	 Between 1987 and 2019, several Laboratories were used, and the quality of assaying and laboratory procedures was difficult to assess. Laboratory audits or results from any reference material are not mentioned.
Verification of	Historic drilling
sampling and assaying	 There is no mention from the information referenced the procedures/protocols used for verifying sampling and assay data.
Location of data points	Historic drilling
	 Historical AC collar positions have not been field validated, given the age of the programs and lack of collar preservation. Site inspections have been made but have failed to identify collar locations. Collar coordinates were stored in either MGA81 or AGD84. Historical RC drill hole collar positions have been pickup using handheld GPS; GDA94, MGA Zone 51.
Data spacing and	Historic drilling
distribution	 AC holes drilled on ± 100m line spacing with 50m spaced holes. RC holes targeting AC gold anomalism with no specific spacing between them.
Orientation of data in	Historic drilling
relation to geological structure	 AC drill holes have been drilled vertically. RC drill holes have been drilled at -60° toward the east. The geology (stratigraphy) trends north-south dipping moderately steep (70°) west.
Sample security	Historic drilling
	 It is uncertain what sample security measures were taken for the historical drill data.
Audits or reviews	Historic drilling
	1. Aeris understands that IGO and Round Oak maintained the database

Criteria	Commentary
	with historical drilling data prior to Jaguar's acquisition, maintaining it to industry standards. 3. No known formal audit has been conducted.

Jaguar Operations Historical Shallow Drill Programs Across The Heather Bore

Table 1 Section 2 - Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	 The Jaguar Operation tenement package is 60 km north of Leonora in Western Australia. The Jaguar Operations tenure comprises 40 licences covering an area of approximately 400.95 km². Round Oak Pty Ltd, a wholly owned subsidiary of Aeris Resources Limited, holds the Jaquar Operation tenement package. The planned drill program reported in this announcement is located within tenement E37/01162. This tenement is in good standing, with no known impediments.
Exploration done by other parties	 Several identities, including Chevron, Normandy, Newmont, IGO, and Round Oak, carried out multiple exploration campaigns at the Heather Bore prospect between 1987 and 2019. These campaigns consisted mainly of AC drilling, completed on ± 100m line spacing and limited to a depth ± 100m. The results from the AC programs highlight a significant (0.2 g/t) gold anomaly in weathered rock that extends over 2km of strike.
Geology	 The Heather Bore target lies within Archaean rocks of the Gindalbie domain of the Yilgarn craton. The metamorphic grade is generally within the prehnite-pumpellyite range but can locally increase to lower- greenstone facies. Geology surrounding Heather Bore is consistent with a regional north- northwest strike with a westward dipping succession of basaltic to andesitic volcanics, lava intercalated with mafic to dacitic volcaniclastics and narrow black shale units. Late dolerite sills inflating the stratigraphy are also present. The Heather Bore prospect is considered prospective for shear-hosted orogenic style gold mineralisation along rheological contacts between mafic volcanics and felsic to intermediate volcaniclastic units. Historical drilling suggests gold mineralisation could be associated with quartz-sericite-pyrite altered felsic to intermediate volcanics.
Drill hole information	1. Refer to tabulations in the body of this announcement.
Data aggregation methods	 No assay data aggregation methods have been applied to the reporting of the historical results.
Relationship between mineralisation widths and intercept lengths	 Based on geological mapping across the Heather Bore prospect the current interpretation is historical AC drilling has intersected the geology at an acute angle.

Criteria	Commentary
Diagrams	1. Please refer to the main body of text.
Balanced reporting	 The report is transparent, highlighting historical drilling data that currently cannot be reported in accordance with ASX Listing Rules. The historical data is used only as a proxy for identifying early-stage exploration targets. Further exploration work is required to validate the presence of gold mineralisation at the Heather Bore prospect.
Other substantive exploration data	1. There is no other relevant substantive exploration data to report.
Further work	 A two-hole diamond drill program is underway at the Heather Bore prospect to test for gold mineralisation in fresh rock beneath the historical gold anomaly defined from AC drilling. The results from the diamond drill program will be used to guide further exploration activities at the Heather Bore prospect.