

Drilling campaigns completed with encouraging REE and Lithium results

HIGHLIGHTS

- Rare earth elements (REE) drill program at the Poços de Caldas Caldera completed with high-grade shallow auger TREO intercepts up to 5,475ppm TREO including
 - AND-AUG-005 5m @ 4,526 ppm TREO [from surface], including
 - <u>2m @ 5,475ppm TREO [</u>from surface], ending with
 - <u>2m @ 4,325ppm TREO</u>
- Last three of 10 Auger holes inside the Poços de Caldas Caldera completed and continue to return encouraging (TREO) results at surface, including:
 - AND-AUG-008 10m @ 1,549 ppm TREO [from surface], including
 - <u>1m @ 2,323ppm TREO [from surface]</u>, ending with
 - 2m @ 1,742ppm TREO
 - AND-AUG-010 10m @ 1,767ppm TREO [from surface], including
 - 1m @ 4,048ppm TREO [from surface], ending with
 - 0.6m @ 3,750ppm TREO.
- Large 3km x 800m pegmatite corridor discovered at Padre Paraíso target in the Lithium Valley (near Sigma Lithium Corp.) with anomalous lithium auger intercepts up to 401ppm Li
- Follow-up soil grid program over pegmatite corridor complete, results pending at SGS

Si6 Metals Limited (**Si6** or **the Company, ASX:SI6**) is pleased to announce that it has completed the auger drilling programme at the Poços de Caldas Alkaline Complex (Figure 1) and in the Lithium Valley (Figure 4) in Brazil, located respectively in the southern and northeast portions of the Minas Gerais State.

Further assay results received from the auger programme in Poços de Caldas (Figure 2) continued to return encouraging Rare Earth Elements (**REE**) figures in addition to the completed seven auger holes that returned up to 5,475ppm Total Rare Earths Oxides (**TREO**) from surface (refer ASX release on 20 May 2024). These results also revealed that the high-value Magnetic Rare Earths Oxides (**MREO**) represent approximately 25 to 36% of the TREO distribution (Table 1 and Figure 3). Not only were several high-grade intercepts defined, but many auger holes ended in mineralisation, indicating a strong possibility that these mineralised zones extend deeper into the clay-rich saprolite (Figure 4). These results validate our exploration model and confirm a widespread, homogenous REE mineralisation inside the Poços de Caldas Caldera prospect.

In addition, the soil grid programme over a 3km-long NE-trending pegmatite in Padre Paraíso (refer ASX release 30 May 2024) was completed and results are expected in mid-July.

REE Results from the southern portion of the Caldas Project (Figure 5) and the Padre Paraiso Project (Figure 6) are also reported in this announcement (Tables 3 and 4).

Figure 1 - Location Map of the Si6 Metals / Foxfire Metals JV licences in the Poços de Caldas Project.

Figure 2 - Auger hole profiles showing typical enrichment zone with high NdPr grades as a proportion of total MREO.

Figure 3 - Representative cross-section of auger holes drilled inside the Poços de Caldas Caldera, showing highgrade TREO results and that holes end in mineralisation.

ASX:Si6

Figure 4 - Location map of the auger holes on Licence 830.504/2023, Lithium Valley – Padre Paraíso, and soil grid sampling program over 3km x 800m pegmatite corridor.

Chairman, Mr Ian Kiers commented,

ASX:Si6

"We are pleased to inform our shareholders that the auger drill program in Brazil was successfully completed. This final batch of results continues to demonstrate high-grade REE mineralisation at our Caldas joint venture prospect. Not only did all holes drilled inside the Caldera intercept clay-hosted rare earth mineralisation, but the majority of the holes in that target ended in mineralisation, showing there is a great possibility that these mineralised zones may extend at depth.

Our focus now turns to the soil program completed over the extensive 3km pegmatite located at the Padre Paraíso target in the Lithium Valley, which has significant potential in itself, and we will continue to keep our shareholders informed as these results become available.

The Company is now in a position where it has made a promising REE discovery in the highly soughtafter Pocos de Caldas, a potential large-scale lithium-hosting pegmatite corridor in the Lithium Valley and another large 26km anomalous radiometric strike potential REE-prospective project at the recently secured 300km² Pimenta Project in eastern Minas Gerais with exceptional radiometric anomalies¹.

Outside of Brazil we are continuing to evaluate our opportunities with the Monument JORC (2012) Inferred Mineral Resource Estimate of 154koz gold project in Western Australia² and our Botswana portfolio of high-grade copper-silver (up to 13% Cu and 269 g/t Ag³) and nickel package."

Table 1: Mineralised Intercept Table – Scout Auger Drill ProgramInside Caldera (Licence 830.892/2023)4

HoleID	From	То	TREO ppm	TREO Composite	MREO ppm	MREO %	Nd2O3 + Pr6O11 (ppm)	Dy2O3 + Tb4O7 (ppm)
AND-AUG-001	0	4	2,025		421	22.3	421	19
including	0	3	2,162		439	21.7	439	20
AND-AUG-002	0	4.7	1,813		264	13.0	264	15
including	4	4.7	3,165		709	23.0	709	28
AND-AUG-003	0	9	2,579		672	25.6	672	34
including	0	3	3,692		1,128	30.7	1,128	54
with	1	2	4,799		1,635	36	1,635	76
AND-AUG-004	0	16	2,719		640	29.8	640	23
including	11	15	2,984		969	33.5	969	29
AND-AUG-005	0	12	2,818		775	23.8	775	32
including	7	12	4,526		1,527	34.2	1,527	51
with	8	10	5,475		1,931	36	1,931	58
AND-AUG-006	0	14	1,930		291	15.0	291	16
including	6	11	2,454		453	19.0	453	22
with	6	8	3,036		611	21.0	611	25
AND-AUG-007	0	12	1,399		122	10.3	122	14
AND-AUG-008	0	1	2,323		55	2	47	8
AND-AUG-008	1	2	1,590		52	3	42	9
AND-AUG-008	2	3	1,097		62	6	55	7
AND-AUG-008	3	4	346	10m@1,549	10	3	9	1
AND-AUG-008	4	5	1,927	ppin meo	274	14	244	30
AND-AUG-008	5	6	1,931		228	12	197	31
AND-AUG-008	6	7	1,433		329	23	312	17

¹ Refer ASX release 23 May 2024

² Refer ASX release 23 August 2021

³ Refer ASX release 25 March 2024

ASX:Si6

⁴ AND-AUG-001 to AND-AUG-007 intercepts were disclosed in ASX release dated 20 May 2024

HoleID	From	То	TREO ppm	TREO Composite	MREO ppm	MREO %	Nd2O3 + Pr6O11	Dy2O3 + Tb4O7
							(ppm)	(ppm)
AND-AUG-008	7	8	1,355		353	26	336	17
AND-AUG-008	8	9	1,695		433	26	408	25
AND-AUG-008	9	10	1,789		362	20	337	25
AND-AUG-009	0	1	2,406		63	3	52	11
AND-AUG-009	1	2	1,310		136	10	123	13
AND-AUG-009	2	3	2,251		194	9	182	13
AND-AUG-009	3	4	1,825		250	14	234	15
AND-AUG-009	4	5	2,048		151	7	140	12
AND-AUG-009	5	6	1,097	11.80m@1,764	157	14	146	11
AND-AUG-009	6	7	950	ppm TREO	158	17	147	11
AND-AUG-009	7	8	1,691		269	16	255	14
AND-AUG-009	8	9	1,864		291	16	275	16
AND-AUG-009	9	10	1,967		332	17	315	17
AND-AUG-009	10	11	1,938		341	18	326	15
AND-AUG-009	11	11.8	1,819		319	18	305	14
AND-AUG-010	0	1	4,048		37	1	25	12
AND-AUG-010	1	2	2,215		43	2	27	16
AND-AUG-010	2	3	1,677		43	3	26	17
AND-AUG-010	3	4	570		34	6	22	12
AND-AUG-010	4	5	549	9.60m@1,767	51	9	36	15
AND-AUG-010	5	6	1,678	ppm TREO	61	4	46	16
AND-AUG-010	6	7	888		88	10	73	15
AND-AUG-010	7	8	771		104	13	87	17
AND-AUG-010	8	9	1,522		104	7	81	23
AND-AUG-010	9	9.6	3,750		100	3	83	17

Table 2: South Caldera (Licence 831.091/2023)

HoleID	From	То	TREO ppm	TREO Composite	MREO ppm	MREO %	Nd2O3 + Pr6O11 (ppm)	Dy2O3 + Tb4O7 (ppm)
AND-AUG-011	0	1	405		83	20	78	5
AND-AUG-011	1	2	501		103	21	98	5
AND-AUG-011	2	3	500		111	22	106	6
AND-AUG-011	3	4	434		104	24	98	6
AND-AUG-011	4	5	364		91	25	86	6
AND-AUG-011	5	6	396		93	23	88	6
AND-AUG-011	6	7	345		79	23	73	5
AND-AUG-012	0	1	444		88	20	81	7
AND-AUG-012	1	2	615		155	25	143	13
AND-AUG-012	2	3	559		163	29	149	14
AND-AUG-012	3	4	391		107	27	97	11

							Nd2O3	Dy2O3
HoleID	From	То	TREO	TREO	MREO	MREO	+	+
			ppm	Composite	ppm	%	Pr6011	Tb407
	Δ	5	322		81	25	(ppm) 72	(ppm) q
	5	6	342		90	25	83	7
	6	7	<u> </u>		94	20	88	,
	7	, 8	266		59	21	54	6
	, 8	0 0	200		60	22	55	5
	0	1	356		59	17	56	3
	1	2	444		96	22	92	5
AND-AUG-013	2	2	/17		112	22	106	5
	2		270		107	27	100	6
	3	4	373		107	20	101	0
	4 5	5	224		57	23	55	4
	6	7	234		5/	24	52	2
AND-AUG-013	7	, 8	220		61	23	59	2
AND-AUG-013	, 8	9	200		61	24	59	2
AND-AUG-013	9	10	173		38	21	36	2
AND-AUG-013	10	11	195		43	22		2
AND-AUG-013	11	11 5	368		75	22	73	2
AND-AUG-014	0	1	560		113	20	105	8
	1	2	608		103	17	96	8
	2	2	314		59	19	55	4
	2	<u>у</u>	571		92	15	85	7
	<u>у</u>	5	468		71	10	66	, 5
	5	6	549		127	23	119	8
	6	7	622		165	23	155	10
	7	, 8	499		105	27	133	10
	, 8	9	455		145	25	135	91
	9	10	4/1		159	36	150	9
	10	11	656		235	36	222	13
AND-AUG-014	11	12	752		263	35	222	15
AND-AUG-014	12	13	901		311	35	247	24
AND-AUG-014	13	14	616		203	33	185	18
AND-AUG-014	14	15	953		311	33	278	34
AND-AUG-015	0	1	501		107	21	100	7
AND-AUG-015	1	2	632		146	21	139	, 8
AND-AUG-015	2	25	445		101	23	95	6
AND-AUG-016	0	1	516		95	18	90	5
AND-AUG-016	1	2	558		103	18	98	5
AND-AUG-016	2	<u>-</u> २	656		100	10	117	7
AND-AUG-016	2 2	ر 2	404		97 87	22	<u>ب</u> تر ۲۲	, с
AND-AUG-016	ر ۲	5	510		132	22	126	7
AND-AUG-016	5	6	879		218	25	207	, 11
AND-AUG-016	5	6	879		218	25	207	11

							Nd2O3	Dy2O3
HoleID	From	То	TREO	TREO	MREO	MREO	+	+
			ppm	Composite	ppm	%	Pr6011	Tb407
	6	7	885		261	29	(ppm) 2/12	(ppm) 19
	7	, 0	770		201	25	100	10
	, o	0	1 1 / 0		210	20	199	25
	0	9 10	1,140		162	23	202	10
	9	10	542		105	24	145	19
AND AUG 016	10	11	256		124	23	110	
AND AUG 016	11	12	300		67	22	69	о Г
AND-AUG-016	12	13	308		42	22	02	5
AND-AUG-016	13	14	188		42	22	39	4
AND-AUG-016	14	15	277		60	22	56	4
AND-AUG-017	0	1	419		86	21	81	5
AND-AUG-017	1	2	468		104	22	99	5
AND-AUG-017	2	3	298		/9	27	/5	4
AND-AUG-017	3	4	539		150	28	141	9
AND-AUG-017	4	4.7	430		124	29	117	8
AND-AUG-018	0	1	573		136	24	130	7
AND-AUG-018	1	2	759		187	25	177	9
AND-AUG-018	2	2.8	751		172	23	164	8
AND-AUG-019	0	1	452		111	25	98	12
AND-AUG-019	1	2	405		96	24	86	10
AND-AUG-019	2	3	549		152	28	138	15
AND-AUG-019	3	4	636		181	28	152	29
AND-AUG-019	4	5	669		178	27	141	37
AND-AUG-019	5	6	460		111	24	86	24
AND-AUG-019	6	7	366		90	25	73	17
AND-AUG-019	7	8	288		68	24	55	13
AND-AUG-019	8	9	297		68	23	55	13
AND-AUG-019	9	10	372		81	22	68	13
AND-AUG-019	10	11	343		81	24	69	12
AND-AUG-019	11	12	290		71	24	59	12
AND-AUG-019	12	13	764		174	23	155	19
AND-AUG-019	13	14	385		92	24	77	15
AND-AUG-019	14	15	291		66	23	54	12
AND-AUG-020	0	1	704		134	19	128	6
AND-AUG-020	1	2	928		189	20	182	6
AND-AUG-020	2	2.75	724		157	22	150	7
AND-AUG-021	0	1	597		111	19	104	6
AND-AUG-021	1	2	624		134	21	126	8
AND-AUG-021	2	3	514		112	22	105	6
AND-AUG-021	3	4	534		104	19	98	6
AND-AUG-021	4	5	562		111	20	105	7
AND-AUG-021	5	6	661		128	19	121	7

							Nd2O3	Dy2O3
HoleID	From	То	TREO	TREO	MREO	MREO	+	+
			ppm	Composite	ppm	%	Pr6011 (ppm)	(ppm)
AND-AUG-021	6	7	594		119	20	112	7
AND-AUG-021	7	8	529		104	20	98	6
AND-AUG-022	0	1	420		90	21	84	7
AND-AUG-022	1	2	464		103	22	95	8
AND-AUG-022	2	3	597		153	26	141	12
AND-AUG-022	3	4	627		162	26	148	14
AND-AUG-022	4	5	490		118	24	107	11
AND-AUG-022	5	6	360		89	25	80	8
AND-AUG-022	6	7	352		86	24	76	10
AND-AUG-022	7	8	309		73	24	65	8
AND-AUG-022	8	9	257		60	23	53	7
AND-AUG-022	9	10	362		81	22	73	8
AND-AUG-022	10	11	325		78	24	70	8
AND-AUG-023	0	1	371		87	23	82	5
AND-AUG-023	1	2	277		70	25	65	5
AND-AUG-023	2	3	323		72	22	68	4
AND-AUG-023	3	4	388		83	21	80	3
AND-AUG-023	4	5	366		78	21	76	2
AND-AUG-023	5	6	394		82	21	80	3
AND-AUG-023	6	7	504		104	21	101	2
AND-AUG-023	7	8.4	354		77	22	74	3
AND-AUG-024	0	1	494		114	23	106	8
AND-AUG-024	1	2	461		117	25	105	11
AND-AUG-024	2	3	402		95	24	84	11
AND-AUG-024	3	4	339		76	22	68	8
AND-AUG-024	4	5	345		81	23	74	7
AND-AUG-024	5	6	325		75	23	68	7
AND-AUG-025	0	1	323		61	19	57	4
AND-AUG-025	1	2	466		121	26	116	6
AND-AUG-025	2	3	594		166	28	157	9
AND-AUG-025	3	4	662		170	26	162	8
AND-AUG-026	0	1	479		104	22	98	6
AND-AUG-026	1	2	506		109	22	103	6
AND-AUG-026	2	3.5	594		159	27	148	11
AND-AUG-027	0	1	369		93	25	87	6
AND-AUG-027	1	2	407		100	25	94	6
AND-AUG-027	2	3	377		85	23	80	5
AND-AUG-027	3	4	452		97	21	92	6
AND-AUG-027	4	5.3	429		93	22	87	5
AND-AUG-028	0	1	502		110	22	104	6
AND-AUG-028	1	2.5	505		125	25	119	7

							Nd2O3	Dy2O3
HoleID	From	То	TREO	TREO	MREO	MREO	+	+
			ppm	Composite	ppm	%	Pr6011	Tb407
AND-AUG-029	0	1	680		157	23	(ppm) 148	(ppm) 10
AND-AUG-029	1	2	723		181	25	171	11
AND-AUG-030	0	1	690		174	25	164	10
	1	22	664		174	25	161	91
	0	1	483		95	20	201	6
	1	2	590		125	20	118	8
	2	2	409		91	21	86	5
	2	<u>л</u>	661		177	22	166	11
AND-AUG-031	<u>з</u>	- 5	710		213	27	197	16
AND-AUG-031	5	6	660		190	29	172	10
AND-AUG-031	6	7	581		152	25	135	16
AND-AUG-031	7	, 8	501		115	28	103	10
AND-AUG-031	8	9	390		88	23	80	8
AND-AUG-031	9	10	390		84	22	76	7
AND-AUG-031	10	11	424		97	23	88	9
AND-AUG-031	11	12	424		95	22	88	7
AND-AUG-031	12	13	402		91	23	84	7
AND-AUG-031	13	13.7	400		95	24	86	9
AND-AUG-032	0	1	433		87	20	82	5
AND-AUG-032	1	2	756		199	26	188	11
AND-AUG-032	2	3	517		118	23	112	7
AND-AUG-032	3	4	475		116	24	109	6
AND-AUG-032	4	5	540		121	22	114	7
AND-AUG-032	5	6	558		118	21	113	6
AND-AUG-032	6	7	619		131	21	125	6
AND-AUG-032	7	8	536		113	21	107	5
AND-AUG-032	8	9	550		115	21	108	7
AND-AUG-032	9	10	583		131	22	121	9
AND-AUG-032	10	11	510		111	22	103	7
AND-AUG-032	11	12	471		101	21	94	8
AND-AUG-033	0	1	913		239	26	228	11
AND-AUG-033	1	2	935		243	26	232	11
AND-AUG-033	2	3	735		200	27	189	11
AND-AUG-033	3	4	816		226	28	215	10
AND-AUG-033	4	5	812		227	28	218	9
AND-AUG-033	5	6	800		216	27	204	12
AND-AUG-033	6	7	803		227	28	216	11
AND-AUG-033	7	8	748		202	27	193	9
AND-AUG-033	8	9	780		210	27	200	10
AND-AUG-033	9	10	754		197	26	187	11
AND-AUG-033	10	11	664		174	26	162	12

HoleID	From	То	TREO ppm	TREO Composite	MREO ppm	MREO %	Nd2O3 + Pr6O11 (ppm)	Dy2O3 + Tb4O7 (ppm)
AND-AUG-033	11	12	445		109	24	102	7
AND-AUG-033	12	13	744		201	27	191	10
AND-AUG-033	13	14	704		190	27	181	9
AND-AUG-034	0	1	1,025		274	27	262	12
AND-AUG-034	1	2	1,163		307	26	295	13
AND-AUG-034	2	3	947		254	27	244	11
AND-AUG-034	3	4	877		231	26	221	10
AND-AUG-034	4	5.4	807		216	27	207	9

Table 3: Padre Paraíso Project (Licence 830.504/2023)

							Nd2O3	Dy2O3
HoleID	From	То	TREO	TREO	MREO	MREO	+	+
			ppm	Composite	ppm	%	Pr6O11 (ppm)	Tb4O7 (ppm)
CJV-AUG-020	0	1	178		34	19	31	3
CJV-AUG-020	1	2	210		39	19	36	3
CJV-AUG-020	2	3	200		35	18	32	3
CJV-AUG-020	3	4	224		38	17	35	3
CJV-AUG-020	4	5	222		44	20	40	4
CJV-AUG-020	5	6	252		51	20	47	4
CJV-AUG-020	6	7	229		46	20	43	4
CJV-AUG-020	7	8	249		49	20	45	3
CJV-AUG-020	8	9	200		36	18	34	3
CJV-AUG-020	9	10	204		39	19	36	3
CJV-AUG-020	10	11	208		40	19	37	3
CJV-AUG-020	11	12	291		53	18	50	3
CJV-AUG-020	12	13	299		57	19	53	4
CJV-AUG-020	13	14	255		49	19	46	4
CJV-AUG-021	0	1	254		46	18	42	4
CJV-AUG-021	1	2	276		51	18	47	4
CJV-AUG-021	2	3	186		32	17	29	3
CJV-AUG-021	3	4	157		27	17	25	3
CJV-AUG-021	4	5	223		40	18	36	4
CJV-AUG-021	5	6	212		41	19	37	3
CJV-AUG-021	6	7	272		50	18	47	3
CJV-AUG-021	7	8	285		52	18	48	4
CJV-AUG-021	8	9	207		43	21	40	3
CJV-AUG-021	9	10	295		54	18	50	4
CJV-AUG-021	10	11	271		49	18	45	4
CJV-AUG-021	11	12	293		56	19	52	4
CJV-AUG-021	12	13	459		82	18	77	5
CJV-AUG-021	13	14	1,051		197	19	190	7

HoleID	From	То	TREO ppm	TREO Composite	MREO ppm	MREO %	Nd2O3 + Pr6O11 (ppm)	Dy2O3 + Tb4O7 (ppm)
CJV-AUG-021	14	15	974		203	21	196	6
CJV-AUG-022	0	1	714		140	20	132	8
CJV-AUG-022	1	2	653		127	19	119	9
CJV-AUG-022	2	3	845		168	20	158	10
CJV-AUG-022	3	4	748		148	20	140	8
CJV-AUG-022	4	5	803		163	20	153	10
CJV-AUG-022	5	6	962		161	17	150	11
CJV-AUG-022	6	7	644		138	21	128	10

Table 4: Auger Drill Hole Location

Inside Caldeira Licence 830.892/2023

HOLE ID	Depth (m)	Easting	Northing	Elevation	Azimuth	Dip
AND-AUG-001	4	340526.23	7566426.67	1281.9	0	-90
AND-AUG-002	4.7	340662.58	7566442.77	1257.46	0	-90
AND-AUG-003	9	340371.16	7566475.37	1314.56	0	-90
AND-AUG-004	16	340226.31	7566473.46	1315.08	0	-90
AND-AUG-005	12	340231.89	7566625.48	1369.04	0	-90
AND-AUG-006	14	340375.14	7566623.45	1320.88	0	-90
AND-AUG-007	12	340375.14	7566623.45	1320.88	0	-90
AND-AUG-008	10	340374.84	7566773.14	1365.26	0	-90
AND-AUG-009	11.8	340372.99	7566922.18	1362.52	0	-90
AND-AUG-010	9.6	340225.56	7566926.83	1397.65	0	-90

Caldeira South Licence 831.091/2023

HOLE ID	Depth (m)	Easting	Northing	Elevation	Azimuth	Dip
AND-AUG-011	7	343703.96	7557869.47	936.57	0	-90
AND-AUG-012	9	344125.38	7557480.06	882.63	0	-90
AND-AUG-013	11.5	343690.17	7557465.86	916.13	0	-90
AND-AUG-014	15	343691.37	7557094.78	887.16	0	-90
AND-AUG-015	2.5	343303.29	7557069.45	913.28	0	-90
AND-AUG-016	15	344917.93	7558684.86	918.19	0	-90
AND-AUG-017	4.7	344504.73	7558670.69	953.25	0	-90
AND-AUG-018	2.8	344898.96	7559114.99	878.88	0	-90
AND-AUG-019	15	345285.2	7559078.2	899.19	0	-90
AND-AUG-020	2.75	342534.91	7560365.33	1099.44	0	-90
AND-AUG-021	8	342566.63	7559972.01	1091	0	-90
AND-AUG-022	11	342951.16	7559971.2	1099.37	0	-90
AND-AUG-023	8.4	343683.68	7558692.75	983.18	0	-90
AND-AUG-024	6	344493.91	7559135.38	912.78	0	-90

HOLE ID	Depth (m)	Easting	Northing	Elevation	Azimuth	Dip
AND-AUG-025	4	344470.46	7558313.12	927	0	-90
AND-AUG-026	3.5	344103.44	7558294.98	1010.39	0	-90
AND-AUG-027	5.3	344130.3	7558707.62	920.6	0	-90
AND-AUG-028	2.5	343429.28	7557042.26	904.63	0	-90
AND-AUG-029	2	343491.48	7557039.84	905.69	0	-90
AND-AUG-030	2.2	343161.32	7556762.86	907.85	0	-90
AND-AUG-031	13.7	343075.98	7556513.62	883.09	0	-90
AND-AUG-032	12	343154.22	7558881.05	1022.01	0	-90
AND-AUG-033	14	343570.38	7558999.33	978.28	0	-90
AND-AUG-034	5.4	344066.77	7559066	934	0	-90

Padre Paraíso Licence 830.504/2023

HOLE ID	Depth (m)	Easting	Northing	Elevation	Azimuth	Dip
CJV-AUG-001	8	230258.22	8116026.56	823.12	0	-90
CJV-AUG-002	10	229838.23	8116217.78	733.08	0	-90
CJV-AUG-003	10	229844.3	8115684.45	751.1	0	-90
CJV-AUG-004	10	229406.901	8116018.17	763.68	0	-90
CJV-AUG-005	5	229548.42	8116884.85	763.68	0	-90
CJV-AUG-006	7	229975.49	8116937.45	689.94	0	-90
CJV-AUG-007	5	231050.24	8119060.38	650.92	0	-90
CJV-AUG-008	5	229018.77	8117305.96	816.17	0	-90
CJV-AUG-009	4	230322.54	8119272	709	0	-90
CJV-AUG-010	7	231209.03	8119984.5	626.57	0	-90
CJV-AUG-011	2	231300.06	8119659.23	655.74	0	-90
CJV-AUG-012	6	231231.05	8120417.64	636.78	0	-90
CJV-AUG-013	5	231355.92	8120832.61	634.38	0	-90
CJV-AUG-014	4	231691.51	8121186.07	638.52	0	-90
CJV-AUG-015	3.4	231810.5	8120931.47	717.24	0	-90
CJV-AUG-016	4	231846.9	8121308.54	628.06	0	-90
CJV-AUG-017	2	231844.01	8121434.07	627.59	0	-90
CJV-AUG-018	6	232710.69	8122047.79	537.19	0	-90
CJV-AUG-019	2	232379.24	8122275.19	646.88	0	-90
CJV-AUG-020	14	229154.71	8113450.82	939.47	0	-90
CJV-AUG-021	15	229156.78	8113945.94	909.2	0	-90
CJV-AUG-022	7	229034.95	8114924.25	755.4	0	-90

This announcement has been made with the approval of the Si6 Board of Directors.

Contacts

For further information, please contact

Mr Ian Kiers

ASX:Si6

Chairman info@si6metals.com

About Si6

Si6 is a supply-critical metals and minerals explorer with base and precious metals project in the Limpopo Mobile Belt in Botswana, a district known for hosting major nickel and copper producing operations. The Company's portfolio contains an advanced Ni-Cu-Co-PGE resource at Maibele North and drilled high-grade Cu-Ag discoveries at Airstrip and Dibete. It currently hosts a resource of 2.4Mt @ 0.72% Ni and 0.21% Cu + PGMs + Co + Au.

Si6 has a joint venture to acquire 70% of all future exploration projects in Brazil and 50% of 10 rare earth elements, lithium, gold, base and precious metals in Brazil, including licences in the "Lithium Valley" and Poços de Caldas in the state of Minas Gerais, globally known as prolific lithium and rare earth elements districts respectively. The Company also owns 70% of the Pimenta Project, a potential large-scale REE project in eastern Minas Gerais.

Si6 owns 100% of the Monument Au-Ni project located near Laverton in Western Australia. This project currently has a JORC-compliant (2012) Inferred resource of 3.257 Mt @ 1.4 g/t for 154,000 ounces Au. (inferred resources calculated by CSA Global in 2021 to JORC 2012 compliance using a 0.5 g/t cut-off grade; see 2 August 2021 ASX announcement "Mineral Resources Estimate declared for Monument Gold Project "for further information).

Competent Persons Statement

The information in this report that relates to Exploration Targets and Exploration Results is based on recent and historical exploration information compiled by Dr Paul Woolrich, who is a Competent Person and a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Dr Woolrich has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Woolrich consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Disclaimer

In relying on the above mentioned ASX announcement and pursuant to ASX Listing Rule 5.23.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above announcement. No exploration data or results are included in this document that have not previously been released publicly. The source of all data or results have been referenced.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Si6's mineral properties, planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

Appendix 1 - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Critorio	IOPC Code Explanation	Commontory
		Commentary
Sampling	- ivature and quality of sampling (eg	Auger sampling was carried out at 1m intervals down to the
techniques	cnannels, random chips, or specific	top of fresh rock and samples were logged and bagged to
	specialised industry standard	send to SGS for sample preparation and assaving.
	measurement tools appropriate to the	
	minerals under investigation, such as down	
	hole gamma sondes, or handheld XRF	
	instruments, etc). These examples should	
	not be taken as limiting the broad meaning	
	of sampling.	
	- Include reference to measures taken to	
	ensure sample representativity and the	
	appropriate calibration of any	
	measurement tools or systems used.	
	- Aspects of the determination of	
	mineralisation that are Material to the	
	Public Report	
	- In cases where 'industrv standard' work	
	has been done, this would be relatively	
	simple (e.g. 'reverse circulation drilling was	
	used to obtain 1 m samples from which 3	
	kg was pulverised to produce a 30 g	
	charge for fire assay'). In other cases,	
	more explanation may be required, such as	
	where there is coarse gold that has	
	inherent sampling problems. Unusual	
	commodities or mineralisation types (e.g.	
	submarine nodules) may warrant the	
	disclosure of detailed information.	
Drilling	- Drill type (e.g. core, reverse circulation,	• A motorised 2.5HP soil auger with a 3" bit was used to
techniques	open-hole hammer, rotary air blast, auger,	drill The drilling is an open hole meaning there is a
-	Bangka, sonic, etc) and details (e.g. core	significant chance of contamination from the surface and
	diameter, triple or standard tube, depth of	significant chance of containination from the surface and
	diamond tails, face sampling bit or other	other parts of the auger hole. Holes are vertical and not
	types, whether the core is oriented and if	oriented.
	so, by what method, etc).	
Drill	- Method of recording and assessing	No recoveries are recorded.
sample	core and chip sample recoveries and	 No relationship is believed to exist between recovery
recovery	results assessed.	and grade
		ana grado.
	 Measures taken to maximise sample 	
	recovery and ensure representative nature	
	of the samples.	
	- whether a relationship exists between	
	sample recovery and grade and whether	
	sample bias may have occurred due to	
	preterential loss/gain offline/coarse	
	material.	

Logging Sub- sampling techniques and sample preparation	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise the representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including, for instance, results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being 	 Holes were logged by assigned geologist, detailing colour, weathering, alteration, texture and any geological observations. Qualitative logging with systematic photography of intervals drilled. The entire auger hole is logged. Auger samples were submitted to the SGS-GEO laboratory located in Poços de Caldas, Minas Gerais stat Brazil. Samples preparation comprises: Drying at 105° C Crushing 90% < 2mm Homogenization and splitting with Jones splitter. Pulverization: The 250 to 300g sub-sample was pulverised using a steel mill until 90% of the sample parachieved a fineness below 200 mesh. This pulverized sub-sample was used to assay the sam SGS-GEOSOL laboratory. The remaining sample is kep additional work potentially including metallurgical testing. 	ng the al of the SOL ate, ticles ple at of for g.
	sampled.		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	1 blank sample, 1 certified reference material (standard) sample and 1 field duplicate sample were inserted by company into each 25 sample sequence. Standard laboratory QA/QC procedures were followed, including inclusion of standard, duplicate and blank sam The assay technique used was Sodium Peroxide Fusion OES / ICP MS (SGS code ICM90A). Elements analyzed ppm levels: Ce 0.1 – Dy 0.05 – 1,000 10,000) n ICP d at
	- Nature of quality control procedures	Er 0.05 – 1,000 Eu 0.05 – 1,000	
	adopted (eg standards, blanks, duplicates,	Gd 0.05 – Ho 0.05 – 1,000	
	external laboratory checks) and whether	1,000	
	bias) and precision have been established.	La 0.1 – 10,000 Li 10 – 15,000	
		10,000	
		Sm 0.1 – 1,000 Tb 0.05 – 1,000	
		Th 0.1 – 1,000 Tm 0.05 –	
		10,000	

Verification of sampling add assaying • The verification of significant intersections of sampling addition of significant intersections of sampling additional independent or alternative company personnel. • The verification of significant intersections of sampling addition of primary data. • The verification of significant intersections of sampling additional independent or alternative originary personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. • Sandard the device of the data were are included in the table below. No twinned holes. • Discuss any adjustment to assay data. • Discuss any adjustment to assay data. • Discuss any adjustment to assay data. • The adjustments to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. Sources: The adjustment to stable holes. • Conversion factors used are included in the table below. Sources: The adjustment to stable holes. • Discuss any adjustment to assay data. • Element Conversion factors used are included in the table below. • Sources: the method values. The conversion factors used are included in the table below. Sources: the factor form method Ce 1: 2284 CeO20 <u>P</u> 1: 2082 Prefoil 1 • 11:1728 Le203			I				
Verification of sampling and assaying The verification of significant intersections organ personnel. The use of twinned holes. Documentation of primary data. data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Element Conversion Landon to exist the conversion factors used assay into a structure protocol, with standardized data entry procedures ensure that any issues are identified and rectified. All data is stored both in physical strandardized data entry procedures. The conversion factors used are included in the table below. Discuss any adjustment to assay data. Element Conversion factors used are included in the table below. Sub as hara collection fallows a structure protocol, with strandardized data entry procedures. The conversion factors used are included in the table below. Conversion factors used are included in the table below. Conversion factors used are included in the table below. Conversion factors used for analytical control of the factor oriversion factors. Event 11,435 Ha203 (d) 11,526 Ha203				Yb 0,1 –	1,000		
Verification of sampling and assaying The verification of significant intersections and 17028 accredited. The use of twinned holes. Documentation of primary data, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Discuss any adjustment to assay data. The value of twinned holes. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Rear earth oxide is the industry accepted from the colument to conversion factors used are included in the table below. (Source-thips://www.jcu.edu.au/advanaed. anal/tcaleademt freesources/element/to-stoliometric-oxide- conversion/factors). Rear earth oxide is the industry accepted from for reporting rare earths. The following acclustions are used for compiling REO into the industry accepted from for reporting rare earths. The following acclustions are used for compiling REO into the industry accepted from for reporting rare earth. The following acclustions are used for compiling REO into the industry accepted from for reporting rare earth. The following acclustions are used for compiling REO into their reporting and evaluation mouses reports - Thory - Dy203 + Co22 + Pr6011 + N4203 + Er203 + LE03 + Ce02 + Pr6011 + N4203 + Er203 + LE03 + Ce02 + Pr6011 + N4203 + Er203 + LE03 + Ce02 + Pr6011 + N4203 + Thory - Vp203 + Hory - Dy203 + Hory - Dy203 + Hory + N4203 + Thory - Dy203 + Hory - Dy203 + Hory + N4203 + Thory - Dy203 + Hory - Dy203 + Hory + N4203 + Thory - Dy203 + Hory - Dy203 + Hory + N4203 + Thory - Dy203 + Hory + N4203 + Thory + N4203 + Thory + N4203 + Thory + N			The sam	ple preparation	on and assay te	chniques used	d are
Verification of sampling and assaying - The verification of significant intersections by either independent or alternative company personnel. - The verification of significant intersections by either independent or alternative company personnel. - Apart from the routine QAOCC procedures by the Company and the laboratory, there was no other independent or alternative verification of sampling and assaying procedures. - Documentation of primary data, data entry procedures, data verification, data entry adata collection follows a structured protocol, with the adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any adjustment to assay data. - Discuss any ad			industry				
Verification of sampling and assaying The verification of significant intersections and 17025 accredited. The use of twinned holes. Documentation of primary data, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Element Conversion Table of the storage (physical and electronic) protocols. Discuss any adjustment to assay data. Read to the storage of the storage of the storage of the storage (physical and electronic) protocols. Discuss any adjustment to assay data. Element Conversion Tactors used are included in the table below. (Source:https://www.icu.edu.au/advanced: analytica/entre/esources/element-to-storal/ionentic-oxide- conversionfactors). Element Conversion Doide Dy 1.1477 Dy203 Et 1.1526 Gd203 Ho 1.1485 Ho203 Lu 1.1371 Lu203 Nd 1.1664 Nt203 Pr 1.2082 Pr6011 Sm 1.1566 Sm203 Tb 1.1762 Tb407 Tm 1.1421 Tm203 Y 1.1387 Yt203 Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling RED into their reporting and evaluation groups. TRED (Total Rare Earth Oxide) = La203 + Ce02 + Pr6011 + N4203 + Er203 + Er203 + Er203 + Er203 + Er203 + Ce02 + Pr6011 + N4203 + Fi203 + Tm203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = N4203 + Er203 + Tm203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = N4203 + Er203 + Tm203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = N4203 + Er203 + Tm203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = N4203 + Er203 + Tm203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = N4203 + Er203 + Tm203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = N4203 + Er203 + Tm203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = N4			standard	and provide	total analysis.		
Verification of samping and and assaying The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. Discuss a			The SGS	laboratory u	sed for assays	is ISO 9001 ai	nd 14001
 The vesting and assaying procedures by the Company between the independent or alternative verification of sampling and assaying procedures. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data collection follows a structured protocol, with standardized data entry procedures that vesting and delectronic) protocols. Discuss any adjustment to assay data. The use of twinned holes. Discuss any adjustment to assay data. 	Varification	The verification of cignificant interpotions	and 1702	5 accredited			
and ansay company personnel. • The use of twinned holes. • Documentation of primary data, data entry procedures, data varification, data collection follows a structured protocol, with standardized data entry procedures ensure that any issues are identified and acollection follows a structured protocol, with standardized data entry procedures ensure that any issues are identified and acollection follows a structured protocol, with standardized data entry procedures ensure that any issues are identified and acollection follows a structured protocol, with standardized data entry procedures ensure that any issues are identified and take were made transforming the element values into the oxide values. The conversion factors used are included in the table below. • Discuss any adjustment to assay data. The adjustments to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. (Source-tittps://www.jcu.edu.au/advanced: analytical.contre/resources/elementt-c-scide-conversion_form Element Conversion Toim Element 1.1526 Gd203 Int 1.1526 Gd203 Int 1.1526 The 203 Int 1.1527 The 203 <	of sampling	by either independent or alternative	Apart from	m the routine	QA/QC proced	ures by the Co	ompany
assaying The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocol. Discuss any adjustment to assay data. Discuss any adjustment to assay data data data data data data data da	and	company personnel.	and the la	aboratory, the	ere was no othe	r independent	Or
 The use of twinned holes. Documentation of primary data, data entry procedures assure that any issues are identified and rectified. All data is stored both in physical and electronic) protocols. Discuss any adjustment to assay data. Discuss adjustment to assay data adjustment to astore data. Discuss adjustment t	assaying		Alternativ	e vernication	or sampling an	u assaying pro	ocedures.
 Documentation of primary data, data entry procedures data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. The adjustments to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. (Sources into stikes) with regular backups. The adjustments to the data were made transforming the element values into the value into the values into the values into the value into value is the value into value is the value into the values into value is the value into value is the value is values. The following calculations are used for compling REO into their reporting and evaluation groups:		- The use of twinned holes.	Drimory (tata collectio	e useu. n followe a stru	ctured protoco	l with
$\frac{1}{2} \frac{1}{2} \frac{1}$		- Documentation of primany data, data	standardi	ized data ent	ry procedures e	onsure that any	, with Vissues
storage (physical and electronic) protocols. Torms, such as hard copies and electronically, in secure databases with regular backups. The adjustments to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. (Source:https://www.jcu.edu.au/advanced-analyticalcontre/resources/element-to-stoichiometric-oxide-conversionfactors). The adjustments to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. (Source:https://www.jcu.edu.au/advanced-analyticalcontre/resources/element-to-stoichiometric-oxide-conversionfactors). Element Conversion Oxide Coordinators in the conversion of the		entry procedures, data verification, data	are identi	fied and rect	ified All data is	stored both in	physical
- Discuss any adjustment to assay data databases with regular backups. The adjustments to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. (Source:https://www.icu.edu.au/advanced: analyticalcentre/resources/alement-to-stoichiometric-oxide- conversionfactors). $\frac{1}{2} \begin{bmatrix} lement \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		storage (physical and electronic) protocols.	forms, su	ch as hard c	opies and elect	ronically, in se	cure
- Discuss any adjustment to assay data. The adjustment to the data were made transforming the element values into the oxide values. The conversion factors used are included in the table below. (Source:https://www.jcu.edu.au/advanced: analyticalcentre/resources/element-to-stoichiometric-oxide: conversion[actors]). Element Conversion Qcd 1.12284 CeO 1.2284 CeO 2.03 Eu 1.1477 Dy203 Er Fr 1.1435 Eu 1.1579 Eu 1.1526 Gd 1.1526 Gd 1.1526 Gd 1.1526 Gd 1.1526 Sm 1.1596 Sm 1.1596 Sm 1.1596 Sm 1.1596 Sm 1.1596 Sm 1.1287 Yb 1.1387			database	s with regula	r backups.	,, ,	
element values into the oxide values. The conversion factors used are included in the table below. (Source:https://www.jcu.edu.au/advanced: analyticalcentro?resources/element-to-stoichiometric-oxide- conversionfactors). $ \frac{1}{200} = \frac{12284}{2602} = \frac{112284}{2602} = \frac{112284}{2602}$		- Discuss any adjustment to assay data.	The adju	stments to th	e data were ma	de transformir	ng the
used are included in the table below. (Source:https://www.jcu.edu.au/advanced: analyticalcentre/resources/element-to-stoichiometric-oxide- conversionfactors).Image: Terment Conversion Doxide pressures/element-to-stoichiometric-oxide- conversionfactors).Image: Terment Conversion Doxide pressures/element-to-stoichiometric-oxide- terment-to-stoichiometric-oxide- Dy 1.1477 Dy203 Element-to-stoichiometric-oxide- terment-to-stoichiometric-o			element	alues into th	e oxide values.	The conversion	on factors
$ \left(\begin{array}{c} \text{Source:https://www.jcu.edu.au/advanced:} \\ \text{analyticalcentre/resources/element-to-stoichiometric-oxide:} \\ \text{conversion} \left(\begin{array}{c} \text{Conversion} \\ \text{Conversion} \\$			used are	included in t	he table below.		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(Source:	https://www.j	<u>cu.edu.au/adva</u>	nced-	
$\begin{array}{c} \mbox{conversionfactors}). \\ \hline $ Partial Partia$			analytica	Icentre/resou	irces/element-to	o-stoichiometri	<u>c-oxide-</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			conversio	onfactors).			7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Element	Conversion	Oxide	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				ppm	Factor	Form	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Ce	1.2284	CeO2	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Dy	1.1477	Dy203	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1.1433	E1203	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Eu	1.1579	Ed203	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Ho	1.1320	Ho2O3	-
$\frac{Lu}{Lu} \frac{1.17L0}{L1203} \frac{Lu203}{L4203}$ $\frac{Lu}{Nd} \frac{1.1664}{1.1664} \frac{Nd203}{Nd203}$ $\frac{Pr}{1.2082} \frac{Pr6011}{Sm} \frac{Sm203}{Tb} \frac{1.1762}{Tb407} \frac{Tb407}{Tm} \frac{1.1421}{Tm203} \frac{Tm}{Y} \frac{1.2699}{Y203} \frac{Y203}{Yb} \frac{Yb}{1.1387} \frac{Yb203}{Yb203}$ Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La203 + CeO2 + Pr6011 + Nd203 + Sm203 + Eu203 + Gd203 + Tb407 + Dy203 + Ho203 + Er203 + Tm203 + Yb203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = La203 + CeO2 + Pr6011 + Nd203 + Er203 + Tm203 + Yb203 + Y203 + Lu203 LREO (Heavy Rare Earth Oxide) = Sm203 + Eu203 + Gd203 + Tb407 + Dy203 + Ho203 + Fr203 + Ho203 + Er203 + Tm203 + Yb203 + Y203 + Lu203 CREO (Critical Rare Earth Oxide) = Nd203 + Eu203 + Tb407 + Dy203 + Y203 + Lu203 (CREO (Critical Rare Earth Oxide) = Nd203 + Eu203 + Tb407 + Dy203 + Y203 + Lu203 (CREO (Critical Rare Earth Oxide) = Nd203 + Eu203 + Tb407 + Dy203 + Fu203 + Tb407 + Dy203 + Eu203 + CREO (Critical Rare Earth Oxide) = Nd203 + Eu203 + Tb407 + Dy203 + Eu203 + Tb407 + Dy203 + Eu203 + Tb407 + Dy203 + Fu203 + CREO (Critical Rare Earth Oxide) = Nd203 + Eu203 + Tb407 + Dy203 + Tb407 + Dy203 + Tb407 + Dy203 + Fu203 + Fu203 + Tb407 + Dy203 + Fu203 +				la	1.1433	1 a2O3	
Nd1.1664Nd203Pr1.2082Pr6011Sm1.1596Sm203Tb1.1762Tb407Tm1.1421Tm203Y1.2699Y203Yb1.1387Yb203Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La203 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)				Lu	1.1371	Lu203	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Nd	1.1664	Nd2O3	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Pr	1.2082	Pr6011	
Tb1.1762Tb407Tm1.1421Tm203Y1.2699Y203Yb1.1387Yb203Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La203 + Ce02 + Pr6011 + Nd203 + Sm203 + Eu203 + Gd203 + Tb407 + Dy203 + Ho203 + Er203 + Tm203 + Yb203 + Y0203 + Lu203 LREO (Light Rare Earth Oxide) = La203 + Ce02 + Pr6011 + Nd203 HREO (Heavy Rare Earth Oxide) = Sm203 + Eu203 + Gd203 + Tb407 + Dy203 + Ho203 + Er203 + Tm203 + Yb203 + Y203 + Lu203 CREO (Critical Rare Earth Oxide) = Nd203 + Eu203 + Tb407 + Dy203 + Y203 (From U.S. Department of Energy, Critical Material Strategy, December 2011)				Sm	1.1596	Sm2O3	
Tm1.1421Tm203Y1.2699Y203Yb1.1387Yb203Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La203 + CeO2 + Pr6O11 + Nd203 + Sm2O3 + Eu203 + Gd203 + Tb407 + Dy203 + Ho203 + Er203 + Tm203 + Yb203 + Y203 + Lu203 LREO (Light Rare Earth Oxide) = La203 + CeO2 + Pr6O11 + Nd203 HREO (Heavy Rare Earth Oxide) = La203 + CeO2 + Pr6O11 + Nd203 HREO (Cight Rare Earth Oxide) = La203 + CeO2 + Pr6O11 + Nd203 HREO (Cight Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd203 + Tb407 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb407 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)				Tb	1.1762	Tb4O7	1
Y1.2699Y2O3Yb1.1387Yb2O3Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)				Tm	1.1421	Tm2O3	1
Yb1.1387Yb2O3Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)				Υ	1.2699	Y2O3]
Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)				Yb	1.1387	Yb2O3	
rare earths. The following calculations are used for compiling REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)			Rare ear	th oxide is th	e industry accer	ted form for r	_ eporting
REO into their reporting and evaluation groups: TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)			rare earth	ns. The follow	ving calculations	s are used for	compiling
TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Yb2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 + Ua2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)			REO into	their reportin	ng and evaluation	on groups:	
 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011) 			TREO (T	otal Rare Ea	rth Oxide) = La2	2O3 + CeO2 +	Pr6O11
$\begin{array}{l} \mbox{Ho2O3} + \mbox{Er2O3} + \mbox{Tm2O3} + \mbox{Yb2O3} + \mbox{Y2O3} + \mbox{Lu2O3} \\ \mbox{LREO} (\mbox{Light Rare Earth Oxide}) = \mbox{La2O3} + \mbox{CeO2} + \mbox{Pr6O11} \\ \mbox{+} \mbox{Nd2O3} \\ \mbox{HREO} (\mbox{Heavy Rare Earth Oxide}) = \mbox{Sm2O3} + \mbox{Eu2O3} + \\ \mbox{Gd2O3} + \mbox{Tb4O7} + \mbox{Dy2O3} + \mbox{Ho2O3} + \mbox{Er2O3} + \mbox{Tm2O3} + \\ \mbox{Yb2O3} + \mbox{Y2O3} + \mbox{Lu2O3} \\ \mbox{CREO} (\mbox{Critical Rare Earth Oxide}) = \mbox{Nd2O3} + \mbox{Eu2O3} + \\ \mbox{Tb4O7} + \mbox{Dy2O3} + \mbox{Y2O3} \\ \mbox{Ho2O3} + \mbox{Tb4O7} + \mbox{Dy2O3} + \mbox{Y2O3} + \mbox{Eu2O3} + \\ \mbox{Tb4O7} + \mbox{Dy2O3} + \mbox{Y2O3} \\ \mbox{(From U.S. Department of Energy, Critical Material Strategy, December 2011)} \end{array}$			+ Nd2O3	+ Sm2O3 +	Eu2O3 + Gd2C	3 + Tb4O7 +	Dy2O3 +
LREO (Light Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)			Ho2O3 +	Er2O3 + Tm	2O3 + Yb2O3 -	+ Y2O3 + Lu2	03
+ Nd2O3 HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)			LREO (Li	ght Rare Ea	rth Oxide) = La2	2O3 + CeO2 +	Pr6011
HREO (Heavy Rare Earth Oxide) = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3 CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)			+ Nd2O3				
Gd2O3 + 10407 + Dy2O3 + H02O3 + Er2O3 + Tm2O3 + Yb2O3 + Y2O3 + Lu2O3Yb2O3 + Y2O3 + Lu2O3CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3(From U.S. Department of Energy, Critical Material Strategy, December 2011)				Thaoz · D	artn Uxide) = S	m2O3 + Eu2C	13 + 202 ·
CREO (Critical Rare Earth Oxide) = Nd2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Y2O3 (From U.S. Department of Energy, Critical Material Strategy, December 2011)				V2O3 1 102	12U3 + ∏02U3 - ∩3	+ E1203 + 1M	203 +
Tb407 + Dy203 + Y203 (From U.S. Department of Energy, Critical Material Strategy, December 2011)			CREO (C	ritical Rare F	⊖o Farth Ovide) – N)3 +
(From U.S. Department of Energy, Critical Material Strategy, December 2011)					-arr (Oxide) = r O3		<i>у</i> ј т
December 2011)			(From U	S. Denartme	nt of Energy Cr	itical Material	Strategy
			Decembe	er 2011)			

Location	- Accuracy and quality of surveys used to	MREO (Magnetic Rare Earth Oxide) = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3 NdPr = Nd2O3 + Pr6O11 DyTb = Dy2O3 + Tb4O7 In elemental from the classifications are: TREE: La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Tb+Lu+Y HREE: Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Tb+Lu+Y CREE: Nd+Eu+Tb+Dy+Y LREE: La+Ce+Pr+Nd The UTM SIRGAS2000 zone 23S grid datum is used for
of data points	 locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Licences areas at Poços de Caldas and UTM SIRGAS2000 zone 24S at Padre Paraíso Licence on current reporting. The auger hole collar and soil samples coordinates reported are currently controlled by hand-held GPS.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Auger holes concluded at licence 830.892/2023 were drilled with a spacing of 150 metres, at licence 831.091/2023 with a spacing of 400 metres and licence 830.504/2023 (Padre Paraíso) with spacing varying according to regolith profile and along 3 km pegmatite trend, designed for reconnaissance testing. The data spacing and distribution are sufficient to establish the level of REE and lithium elements present in the target area and its continuity along the regolith profile. No sample composition was applied. Soil grid lines at Padre Paraíso licence were projected along 3 Km pegmatite trend with line spacing 200 metres and samples spacing 50 metres oriented N57°49'02"W
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The location and depth of the sampling are appropriate for the deposit type. Relevant REE values are compatible with the exploration model for IAC REE deposits. No relationship between mineralisation and drilling orientation is known at this stage.
Sample security	- The measures taken to ensure sample security.	Samples were collected by a field person and carefully packed in labelled raffia bags. Once packaged, the samples were transported by a contracted freight company directly to the SGS-GEOSOL facility in Vespasiano, Minas Gerais state. The samples were secured during transportation to ensure no tampering, contamination, or loss. Chain of custody was maintained from the field to the laboratory, with proper documentation accompanying each batch of samples to ensure transparency and traceability of the entire sampling process.

Audits or reviews	- The results of any audits or reviews of sampling techniques and data.	As of the current reporting date, no external audits or reviews have been conducted on the sampling techniques, assay data, or results obtained from this work. However, internal processes and checks were carried out consistently to
		ensure the quality and reliability of the data.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.)

CRITERIA	JORC Code Explanation	Commentary
Mineral	- Type, reference name/number, location,	All samples were acquired on the following tenements, which
tenement and	and ownership, including agreements or	Si6 Metals owns 50% through a joint venture agreement with
land tenure	material issues with third parties such as	Foxfire Metals Ptv Ltd.
status	joint ventures, partnerships, overriding	Pocos de Caldas
	royalties, native title interests, historical	ANM 830 892/2023
	sites, wilderness of national parks, and	Area: 21 51 bectares
	environmental settings.	Status: Exploration Licence
	- The security of the tenure held at the	
	time of reporting, along with any known	ANIM: 824 004/2022
	impediments to obtaining a licence to	AINIVI. 631.091/2023
	operate in the area.	Area. 1,021.7 nectares
		Status: Exploration Licence
		Padre Paraíso
		ANM: 830.504/2023
		Area: 1.647.08 hectares
		Status: Exploration Licence
Exploration	- Acknowledgment and appraisal of	No known exploration for REE and lithium has been carried
done by other	exploration by other parties.	out on the exploration licence areas. No known exploration
parties		for other minerals is known over the licence areas.
Goology	Doposit type, geological setting and	Desse de Caldes Lisenes (020.002/0022)
Geology	style of mineralisation	Poços de Caldas Licence (830.892/2023)
		The Mesozoic Poços de Caldas alkaline complex, the largest
		known in South America, is circular shaped with a mean
		diameter of about 33 km and developed during continental
		break-up and drift. It comprises a suite of alkaline volcanic and
		plutonic rocks (mainly phonolites and nepheline syenites) with
		average amounts of U, Th and rare-earth elements (REEs).
		The evolutionary history began with major early volcanism
		involving ankaratrites, phonolite lavas and volcaniclastics,
		followed by caldera subsidence and nepheline syenite
		intrusions forming minor ring dykes, various intrusive bodies
		and circular structures. Finally, the addition or concentration of
		strongly incompatible elements led to the formation of
		eudialyte nepheline syenites and phonolites.
		Poços de Caldas Licence (831.091/2023)
		the project area is composed by two main lithologies of
		Neoproterozoic age, the Serra Agua Limpa alkaline granite
		and the São João da Mata granitic orthogneiss, and is sitting
		at the very edge of the Cretacic Poços de Caldas Alkaline
		Intrusion.
		Padre Paraíso Licence (830.504/2023)
		Dominated by late tectonic Neoproterozic granites, with
		a pegmatite zone of about 3 km strike in the NE
		direction. Weathering has developed a regolith.

		There are two potential deposit types in the area: (a) lithium related to pegmatites and (b) ionic absorption clay-hosted REE deposit. The deposit type sought off is described as an lonic Adsorption Clay Rare Earth Element (REE). The REE mineralisation is in clays located in the saprolite/clay zone of the weathering profile derived from the subjacent rocks
Drill bolo	- A summary of all information material to	Auger leastions and discrements are presented in this
Drill noie Information	- A summary of all information material to the understanding of the exploration results, including a tabulation of the following information for all material drill holes:	Auger locations and diagrams are presented in this announcement. Details are tabulated in the announcement.
	\circ easting and northing of the drill	
	hole collar	
	 elevation or RL (Reduced Level 	
	- elevation above sea level in metres) of the drill hole collar	
	 Dip and azimuth of the hole 	
	 Downhole length and 	
	interception depth	
	\circ hole length.	
	If the evolution of this information is	
	iustified on the basis that the information	
	is not Material and this exclusion does	
	not detract from the understanding of the	
	report, the Competent Person should	
.	clearly explain why this is the case.	
Data	- In reporting Exploration Results,	High-Grade Intercepts reported as "including" are reported
methods	maximum and/or minimum grade	with a minimum of 0.7m width
	truncations (eg cutting of high grades)	High-Grade Intercepts reported as "with" are reported with a
	and cut-off grades are usually Material	minimum of 1m width
	and should be stated.	
	Where aggregate intercents incorporate	
	short lengths of high-grade results and	
	longer lengths of low-grade results, the	
	procedure used for such aggregation	
	should be stated, and some typical	
	examples of such aggregations should be	
	Shown in detail.	
	- The assumptions used for any reporting	
	of metal equivalent values should be	
	clearly stated.	
Relationshin	- These relationships are particularly	Minorplination orientation is not known at this store, although
between	important in the reporting of Exploration	initialisation orientation is not known at this stage, although
mineralisation	Results.	assumed to be lidt. The downhole depths are reported, but true widths are not
widths and		the downhole deputs are reported, but true widths are not known at this stage
intercept	- If the geometry of the mineralisation	niuwii al lilis slaye.
lengths	with respect to the drill hole angle is	
	known, its nature snould be reported.	
	- If it is not known and only the down	
	hole lengths are reported, there should	
	be a clear statement to this effect (eg	
	'down hole length, true width not known').	

Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	Maps and tables of the auger hole location and target location are inserted.
Balanced	- Where comprehensive reporting of all	Highlights of the mineralised Intercepts are reported in the
reporting	Exploration Results is not practicable,	body of the text, with available results from every drill hole
	high grades and/or widths should be	drilled in the period reported in Table 1 for balanced
	practised to avoid misleading reporting of	reporting.
	Exploration Results.	
Other	- Other exploration data, if meaningful	No other significant exploration data has been acquired by
substantive	and material, should be reported,	the Company.
exploration	including (but not limited to) geological	
data	observations; geophysical survey results;	
	 – size and method of treatment: 	
	metallurgical test	
	results; bulk density, groundwater,	
	geotechnical and rock characteristics;	
	potential deleterious or contaminating	
Eurthor work	SUBSIGNEES.	On completion of the owner drill pregnam, the Original structure in th
	work (eq tests for lateral extensions or	On completion of the auger drill program, the Company will
	depth extensions or large-scale step-out	then review the data to determine the best targets for reverse
	drilling).	circulation (RC) infill drilling at greater depths, subject to
		runaing.
	- Diagrams clearly highlighting the areas	
	or possible extensions, including the main	
	drilling areas, provided this information is	
	not commercially sensitive.	
	-	

ASX:Si6