

4 July 2024

Greater Duchess Regional Exploration Update – Carnaby Resources Limited

- Lat66 is excited by the exploration update provided by Carnaby Resources Limited which highlights the further exploration potential across the Company's Greater Duchess Joint Venutre assets.
- The Company looks forward to the ongoing exploration works Carnaby Resources Limited has planned for the 2nd half of 2024.

Latitude 66 Limited (ASX: LAT) ("**Lat66**" or "the **Company**") is pleased to provide the attached announcement by Carnaby Resources Limited (ASX:CNB) as it relates to the Greater Duchess Project¹.

This announcement has been authorised for release by the Board.

For further information and investor enquiries, please contact:

Grant Coyle Managing Director grant@lat66.com Amalie Schreurs - Investor Relations 0431 636 033 amalie@whitenoisecomms.com

¹ The Greater Duchess Project includes the Southern Hub Tenements, located in the Mt. Isa Region of Queensland where Lat66 holds a 17.5% free-carried interest in EPM 9083, EPM 11013, EPM 14366, EPM 14369, EPM 17637, EPM 18223, EPM 18990, EPM 19008, EPM 25435, EPM 25439, EPM 25853, EPM 25972

GREATER DUCHESS REGIONAL EXPLORATION UPDATE

Carnaby Resources Limited (ASX: CNB) (**Carnaby** or the **Company**) is pleased to announce a regional exploration update at the Greater Duchess Copper Gold Project in Mt Isa, Queensland.

Highlights

Mount Hope Region Delivers Exceptional Targets:

- New undrilled Mohawk Discovery 1.5km SE of Mount Hope;
 - Strong end of line VTEM anomaly
 - Up to 28.3% Cu, 0.94g/t Au outcropping copper gold mineralisation over a 200m x 150m area
 - High priority target for follow up geophysics and first pass drilling is imminent
- New undrilled Deejay Jude Prospect 3km NE of Mount Hope;
 - 400m strike of undrilled historical workings
 - o Up to 11.8% Cu, 0.34g/t Au in outcropping mineralisation
 - Follow up geophysics and first pass drilling imminent
- New undrilled Plus Prospect 2km SW of Mount Hope;
 - Spectacular historical workings with Mount Hope style vuggy quartz-chalcopyrite breccia mineralisation
 - 7.6% Cu, 0.29g/t Au in rock chip
 - First pass drilling is imminent

Nil Desperandum Region Targets:

- New undrilled Nil Secundo Prospect 2.0km SW of Nil Desperandum;
 - Up to 15.4% Cu and 3.79g/t Au in rock chip
 - Large 1km x 1km soil anomaly
 - Coincident with newly mapped outcropping breccia zone
- New undrilled Breccia Hill Prospect 1.4km SE of Nil Desperandum;
 - Rock chip results up to 8.91% Cu
 - Large 1.5km long x 700m wide soil anomaly completely open to the south and east where the strongest soil result of 0.13% Cu is on the end of line
 - o Extensive breccia zone linked to Nil Desperandum

The Company's Managing Director, Rob Watkins commented:

"Carnaby has systematically been advancing and generating numerous new undrilled exceptional targets in the Nil Desperandum to Mount Hope corridor that we are confident will deliver a new growth phase in the mineral resource. We are particularly excited about the Mount Hope Regional targets where we are seeing some incredible outcropping mineralisation which remains completely untested by any drilling. Geophysics and drilling of these targets is imminent with two drill rigs currently in operation."

ASX Announcement 4 July 2024

Fast Facts

Shares on Issue 171.9M

Market Cap (@ 49 cents) \$84.2M

Cash \$16.6M¹

¹As at 31 March 2024

Director:

Peter Bowler, Non-Exec Chairman

Rob Watkins, Managing Director

Greg Barrett, Non-Exec Director

Paul Payne, Non-Exec Director

Company Highlights

- Proven and highly credentialed management team.
- Tight capital structure and strong cash position.
- Greater Duchess Copper Gold Project numerous camp scale IOCG deposits over 1,921 km² of tenure.
- Maiden interim Mineral Resource
 Estimate at Greater Duchess: 21.8Mt @
 1.4% CuEq for 315kt CuEq.¹
- Mount Hope, Nil Desperandum and Lady Fanny Iron Oxide Copper Gold discoveries within the Greater Duchess Copper Gold Project, Mt Isa inlier, Queensland.
- Projects near to De Grey's Hemi gold discovery on 442 km² of highly prospective tenure.

1Refer to ASY release dated 27 October 2023

Registered Office

78 Churchill Avenue Subiaco Western Australia 6008

T: +61 8 6500 3236

www.carnabyresources.com.au

GREATER DUCHESS COPPER GOLD PROJECT

Targeted reconnaissance mapping, rock chip and soil sampling has been in progress at Greater Duchess for several months and results from that work have highlighted numerous new highly significant targets which are outlined below. The new targets will form the basis of first pass geophysical and aggressive exploration drilling programs in the second half of 2024 with great anticipation of delivering additional mineral resource growth.

Complete details of all rock chip and soil sampling results are presented in Appendix 1 & 3.

MOUNT HOPE REGIONAL (CNB 51% to 100%)

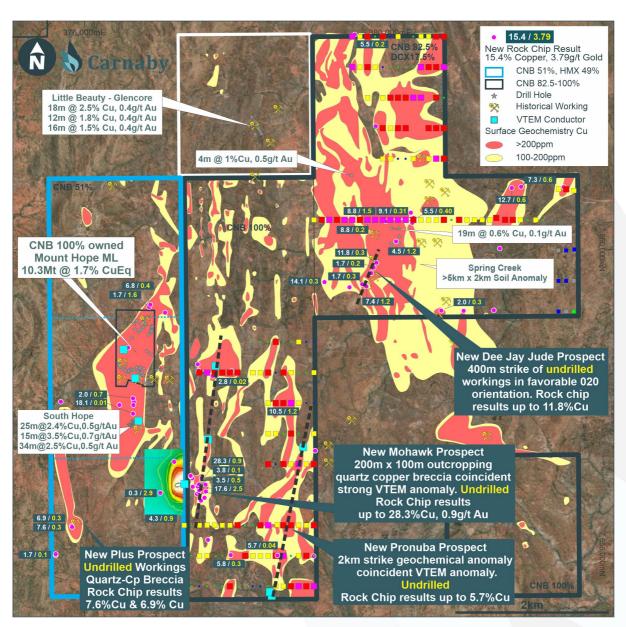


Figure 1. Mount Hope Regional Plan Showing exceptional new and undrilled targets at Mohawk, Deejay Jude, Plus and Pronuba Prospects.

The consolidated Mount Hope Region is a key focus area of exploration where a large IOCG surface geochemical footprint in excess of 5km² is characterised by numerous historical workings and outcropping copper mineralisation, most of which to date have not been tested by a single drill hole. Carnaby has recently completed reconnaissance rock chip and soil sampling and mapping and has defined several new undrilled high priority targets which are discussed below and shown in Figure 1. Numerous new rock chip results of > 1% Cu and up to 34% Cu are reported below (Table 1). New high priority targets identified and discussed below include the new Mohawk, Deejay Jude, Pronuba and Plus Prospects, all of which are undrilled.

Drospost	Sample	Easting	Northing	C., (9/)	A (m/t)
Prospect	ID	Easting	Northing	Cu (%)	Au (g/t)
Big	QL027965	377912	7656006	5.8	0.3
Beauty	QL027972	377677	7658344	2.8	0.0
Breccia	QL06816	373658	7644958	8.9	0.0
Hill	QL06817	373650	7644955	3.1	0.0
Butru	QL24868	366341	7625644	7.0	0.1
	QL024875	379811	7659819	11.8	0.3
Desien	QL024877	379773	7659755	1.7	0.2
Deejay Jude	QL024895	379459	7659500	14.1	0.3
Jude	QL024896	379624	7659540	1.7	0.3
	QL027948	379679	7659511	7.4	1.2
	QL027978	377489	7656904	28.3	0.9
	QL034993	377470	7656806	4.3	0.9
Mohawk	QL034996	377482	7656902	17.6	2.5
	QL034997	377498	7656930	3.8	0.1
	QL034998	377583	7656924	3.5	0.5
Mount	QL06848	376849	7659241	1.7	1.6
Hope	QL06849	376865	7659272	6.8	0.4
Mass	QL24864	371667	7608146	10.0	0.0
New	QL24884	371666	7608147	2.0	0.0
Prospect	QL27961	370646	7608114	8.8	0.1
	QL034990	372442	7645011	1.5	1.0
Nil	QL034991	372381	7644835	15.4	3.8
Secundo	QL06824	372370	7644834	12.4	0.0
	QL06825	372395	7644823	9.3	0.0
Pronuba	QL027968	378520	7656003	5.7	0.0
Pronuba	QL027969	378691	7657987	10.5	1.2
South	QL024900	376638	7657852	18.1	0.0
Hope	QI06834	376640	7658052	2.0	0.7
	QL027950	380655	7659196	2.0	0.3
	QL027951	381694	7660811	7.3	0.6
	QL027952	381573	7660796	12.7	0.6
Spring	QL027954	379932	7660361	34.4	1.5
Creek	QL027957	379527	7662798	5.5	0.2
Cieek	QL027958	380282	7660381	5.5	0.0
	QL027959	380255	7660392	9.1	0.3
	QL027977	379700	7660369	8.8	0.2
	QL027984	380066	7660099	4.5	0.4
The Plus	QL024874	375838	7656390	6.9	0.3
THE PIUS	QL06843	375839	7656391	7.6	0.3

Table 1. Regional Rock Chip Assay Results > 1% Copper.

MOHAWK (CNB 100%)

The Mohawk discovery is located 1km southeast of Mount Hope and is characterised by a 2km long strike of anomalous surface geochemistry and coincident VTEM conductor anomalies (Figure 1). In 2023 Hammer Metals Limited (**HMX**) defined a late time VTEM conductor anomaly on the boundary of Carnaby's tenure with the source of the conductor interpreted to be located approximately 300m east and within Carnaby's 100% owned tenure (see HMX ASX release dated 28 November 2023). The end of line VTEM anomaly was recorded over three successive lines.

Follow up reconnaissance mapping and rock chip sampling has discovered widespread outcropping copper mineralisation (malachite & azurite), with rock chip results including 28.3% Cu & 0.94g/t Au, 4.3% Cu & 0.87g/t Au, 3.8% Cu & 0.11g/t Au and 3.5% Cu & 0.51g/t Au over an area in excess of 200m strike by 100m wide and hosted by gossan breccia style mineralisation. Figure 2 below shows some of the outcropping copper mineralisation in green (malachite).

No historical exploration has been recorded in this area and it represents an outstanding target for follow up exploration which will include electromagnetic surveys and first pass drilling.

Figure 2. Mohawk Prospect outcropping copper mineralisation (green = malachite).

The Mohawk discovery appears to follow a 2km long zone orientated at a 010 degree strike. This 010 degree strike is a very favourable structural orientation in the Greater Duchess region for hosting significant IOCG deposits including Tick Hill, Duchess, Burke & Wills and Trekelano.

The 2 km Mohawk zone is characterised by anomalous surface geochemistry and outcropping Mount Hope style quartz lode host rock. The northern end of Mohawk is characterised by a 010 degree striking quartz lode and yielded 2.78%Cu & 0.02g/t Au in a single outcropping rock chip sample.

In addition to the strong VTEM anomaly at the southern end of Mohawk, a further two VTEM conductor anomalies are present along single VTEM lines in the central and northern end of the 2 km zone (Figure 1).

DEEJAY JUDE PROSPECT (CNB 82.5%)

The Deejay Jude Prospect is characterised by 400m strike of historical workings in a favourable 020 striking orientation. The Deejay Jude Prospect is located within the highly prospective Spring Creek copper gold soil anomaly which is an enormous area of surface copper anomalism covering approximately 5km long by 2 km wide (Figure 1). Remarkably no historical drilling has been completed at Deejay Jude and it represents an analogous opportunity for an additional discovery given the previous successes Carnaby has had at Mount Hope and Lady Fanny where no previous drilling had been recorded prior to Carnaby. Rock Chip results from several workings and outcrop yielded results up to 11.8% Cu & 0.34g/t Au, 14.1% Cu & 0.3g/t Au and 7.4% Cu & 1.18g/t Au.

Follow up work will include electromagnetic surveys and first pass drilling.

Figure 3. Deejay Jude Prospect showing shallow workings in the foreground with outcropping copper mineralisation (green = malachite) and outcropping quartz goethite malachite mineralisation in the background.

Figure 4. Deejay Jude Prospect showing shallow workings in the foreground and background over a line of lode in excess of 400m strike and undrilled.

PRONUBA (CNB 100%)

The new Pronuba Prospect is located 2.5km southeast of Mount Hope and is characterised by a 2km north-south striking zone approximately 500m wide of anomalous copper gold geochemistry coincident with two VTEM conductor anomalies (Figure 1). Rock chip results up to **10.5% Cu & 1.18g/t Au and 5.71% Cu** & 0.04g/t Au were recorded.

No historical drilling has been completed at the Pronuba prospect and follow up exploration by Carnaby will include electromagnetic surveys and first pass drilling.

THE PLUS (CNB 51%)

The Plus prospect is located 2km southwest of Mount Hope and consists of shallow historical workings in a north-south orientation. Spectacular Mount Hope style quartz sulphide lode breccia mineralisation is present and dominated by chalcopyrite (Figure 5). Rock chip results from the Plus assayed at **6.91% Cu & 0.33g/t Au** from chalcopyrite mineralisation and **7.6% Cu & 0.29g/t Au** from chalcocite mineralisation.

Carnaby has just completed systematic soil sampling across the Plus and over the entire 3 subblock interest recently acquired from Hammer Metals and is awaiting results.

No historical drilling has been completed at the Plus prospect and Carnaby will shortly complete first pass RC drill testing.

Figure 5. Hand Rock Chip Specimen from the Plus Prospect showing Mount Hope style quartz-chalcopyrite breccia mineralisation.

NIL DESPERANDUM REGIONAL (CNB 82.5%)

Carnaby recently commenced exploring south of Nil Desperandum in an area where no systematic historical exploration appears to have been completed. Exploration by Carnaby has included detailed aeromagnetic and radiometric surveys flown in 2023. The aeromagnetic data clearly defines a strong southwest striking fault which is considered to be a major control on the location of the Nil Desperandum breccia pipe mineralisation which plunges to the southwest. Radiometrics have also been an important data set that appears to map the surface location of the Nil Desperandum breccia pipe, however validation of this finding is required.

Carnaby completed first pass field mapping, rock chip sampling and gridded soil sampling of the target areas south of Nil Desperandum and has discovered two significant new prospects named Nil Secunda and Breccia Hill (Figure 6) which are discussed below.

NIL SECUNDO (CNB 82.5%)

The new Nil Secundo prospect is located 2 km southwest of Nil Desperandum along the same interpreted southwest striking fault zone that hosts the Nil Desperandum deposit which is evident in aeromagnetic imagery (Figure 6). Radiometrics in the Nil Secundo area has a similar Rupert's drop shape and analogous signature to the Nil Desperandum breccia pipe. Mapping in this area confirmed the presence of breccia and follow up soil and rock chip sampling has

discovered an approximately 1km x 1km geochemical anomaly, with rock chip results from historical workings including 15.5%Cu & 3.79g/t Au and 1.51%Cu & 0.98g/t Au.

No historical drilling has been completed at Nil Secundo with the nearest drill hole being over 1 km away at Nil Desperandum. Carnaby is planning electrical geophysics followed by first pass drilling.

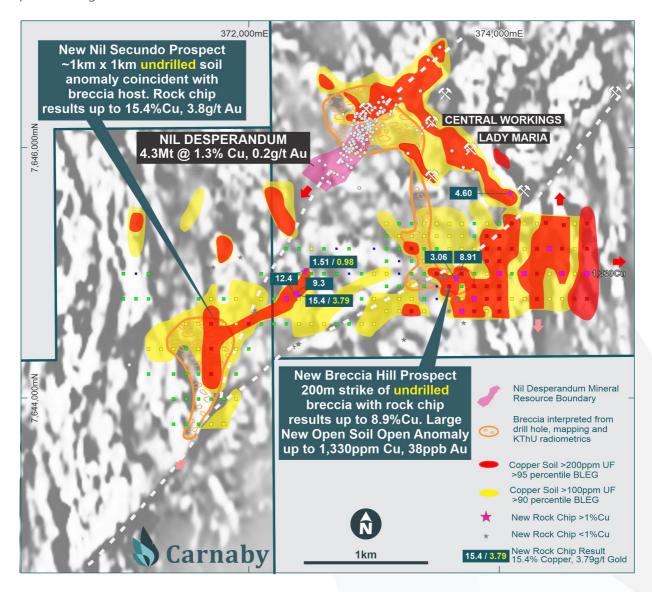


Figure 6. Nil Desperandum Regional Plan showing location of the new undrilled Breccia Hill and Nil Secundo Prospects where large surface geochemical anomalies and outcropping breccia has been mapped.

BRECCIA HILL (CNB 82.5%)

The new Breccia Hill prospect is located 1.5 km southeast of Nil Desperandum. The area was targeted using radiometrics following the Nil Desperandum breccia pipe signature to the south, as shown in Figure 6. Mapping in this area highlighted a strong breccia outcrop on a

200m long WSW trending hill with copper mineralisation present. Rock chip results from the breccia included results up to **8.91% Cu** and **3.06% Cu**.

Systematic soil sampling on a 100m x 100m and 100m x 200m spacing has revealed an approximately 1.5km long x 700m wide open soil anomaly coincident with the breccia outcrop but also extending significantly to the east where it remains completely open and requires additional soil sampling to define the extents of the Breccia Hill soil anomaly. The high soil copper and gold results to the east of Breccia Hill are located within the highly magnetic rock units to the east of a major northeast trending fault, previously thought to be a bounding structure to mineralisation. The source and extent of the large soil anomaly to the east is yet to be determined however, with soil results up to 1,330ppm Cu (0.13% Cu) and 38ppb Au on the eastern end of the soil grid, further exploration is clearly warranted. Carnaby will also complete electrical geophysics followed by first pass drilling.

MAGNA LYNN SOUTHERN CORRIDOR (CNB 100%)

The IOCG trend south of Nil Desperandum is a structural / stratigraphic corridor that was identified and pegged by Carnaby Resources on a first mover basis after the discovery of the high grade Nil Desperandum breccia pipe mineralisation in December 2021. The Magna Lynn southern corridor stretches for over 75km of strike within Carnaby's 100% owned tenure covering 775 km² of virtually unexplored terrain, where no historic soil sampling or drilling had previously been completed.

Carnaby believes the IOCG mineralisation at Mount Hope, Lady Fanny and Nil Desperandum, where Mineral Resources of 315kt CuEq have been discovered in the last two and half years, is structurally controlled IOCG mineralisation which is focussed along a fluid pathway that broadly follows the Magna Lynn Basalt structural and stratigraphic corridor as shown in Figure 7.

Carnaby has commenced early stage exploration programs along this southern corridor and in 2023 completed a detailed aeromagnetic (Figure 7) and radiometric survey and an initial first pass soil sampling program.

Carnaby recently completed soil orientation lines over the Razorback area comparing numerous analytical methods and determined that the ultrafine method is the preferred technique for surface geochemistry in this regolith. Previously reported soil sampling using partial leach technique BLEG analysis in this same area materially understated the tenor of copper and gold anomalism however did identify the main copper and gold corridor and anomalies. The orientation study found that in this area the copper soil tenor in ultrafine and aqua regia of 100ppm Cu and 200ppm Cu were approximately equivalent to the 60th percentile and 90th percentile of the BLEG results.

Wide spaced systematic soil sampling on 800m and 400m lines at 100m sample spacing is continuing and new soil sampling results are shown in Figure 7.

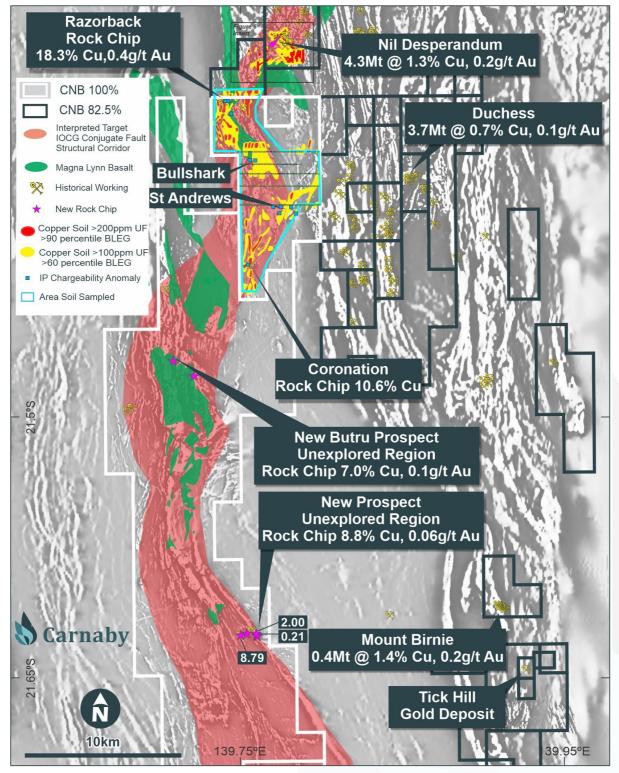


Figure 7. Magna Lynn Southern IOCG Corridor Diagram Showing New Rock Chip and Soil Locations over Detailed 1VD aeromagnetics flown in 2023.

Six first pass reconnaissance IP lines along the undrilled 10 km long Razorback to Coronation trend recorded moderate chargeability anomalies between 10 to 12 m/sec which appear to broadly coincide with the structural stratigraphic and geochemical corridor identified in soil sampling and aeromagnetic surveys (Figure 7). IP inversion results are shown in Appendix 2.

At the Bullshark Prospect a single line of IP has defined a moderate chargeability anomaly (Figure 8) which may be suggestive of a potential offline source, either along strike north or south, or off line to the east to where a 2km long by 1km copper soil anomaly has been generated in the latest soil results released today.

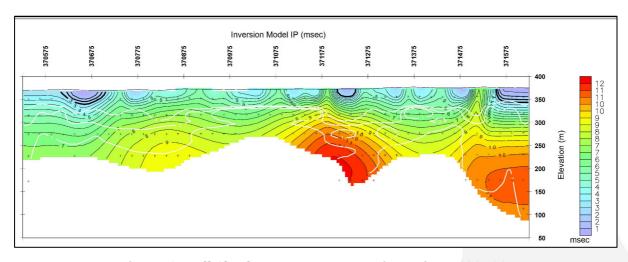


Figure 8. Bull Shark Prospect IP Inversion – Line 7638400

Recent further reconnaissance by Carnaby along the southern Magna Lyn corridor has identified several new undrilled prospects including the new Butru Prospect, where rock chip sampling from historical workings include 7.0% Cu & 0.1g/t Au, and an unnamed prospect a further 20km to the south where rock chip results up to 8.8% Cu were recorded.

First pass and wide spaced systematic soil sampling has commenced over the Butru Prospect.

The Magna Lynn Southern Corridor represents significant future exploration upside at Greater Duchess and will continue to be advanced.

OUTLOOK

The outstanding Mount Hope and Nil Desperandum regional targets outlined today will be aggressively explored in the second half of 2024 with electrical geophysics and first pass shallow RC drilling. Priority will be given to open pitable targets that have the potential to add valuable shallow resources to the Greater Duchess Mineral Resource. Carnaby currently has two drill rigs in operation completing exploration and resource upgrade drilling. A Pre-Feasibility study (**PFS**) for the Greater Duchess Project is underway with geotechnical drilling also in progress. Carnaby is targeting completion of the PFS by mid-2025 which will include an updated Mineral Resource Estimate for the Greater Duchess Project.

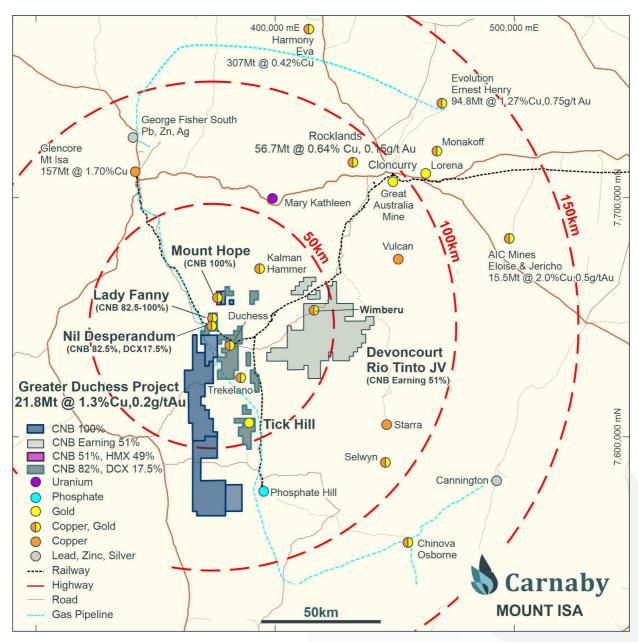


Figure 9. Greater Duchess Copper Gold Project Location Plan.

This announcement has been authorised for release by the Board of Directors.

Further information regarding the Company can be found on the Company's website:

www.carnabyresources.com.au

For additional information please contact: Robert Watkins, Managing Director +61 8 6500 3236

Competent Person Statement

The information in this document that relates to exploration results is based upon information compiled by Mr Robert Watkins. Mr Watkins is a Director and shareholder of the Company and a Member of the AUSIMM. Mr Watkins consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears. Mr Watkins has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is undertaken to qualify as a Competent Person as defined in the December 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code).

Disclaimer

References may have been made in this announcement to certain ASX announcements, including references regarding exploration results, mineral resources and ore reserves. For full details, refer to said announcement on said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and the mentioned announcements, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources, Exploration Target(s) or Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Recently released ASX Material References that may relate to this announcement include:

Wimberu Drilling Update - New Breccia Zone Discovered, 1 July 2024

Scoping Study Results Greater Duchess Project, 30 May 2024

Mount Hope Sub-Blocks and Tick Hill Transactions Complete, 21 May 2024

Queensland Resources Minister Visits Greater Duchess, 13 May 2024

Exploration Update - Drilling Recommences, 26 April 2024

Mount Hope Development And Exploration Footprint Expands, 2 April 2024

High Grade Discovery 4m @ 7.0% Cu - Exploration Update, 2 February 2024

APPENDIX ONE

Details regarding the specific information for the drilling discussed in this news release are included below in Table 1.

Table 1. Copper & Gold Rock Chip Lab Assays (>0.0005% Cu) and Location (MGA94 Zone 54).

LOCA	tion (iv	IGA34	Lone	J4).	
Prospect	Sample ID	Easting	Northing	Cu (%)	Au (g/t)
	QL027965	377912	7656006	5.750	0.3
	QL027971	377921	7658408	0.605	0.1
Big	QL027972	377677	7658344	2.780	0.0
Beauty	QL027975	377494	7658412	0.037	0.0
	QL027976	377483	7658495	0.170	0.0
	QL06847	377617	7656171	0.085	0.0
	QL06811	373715	7644600	0.004	*
	QL06812	373662	7644786	0.296	*
	QL06813	373574	7644873	0.026	*
	QL06814	373565	7644969	0.002	*
	QL06815	373530	7644969	0.003	*
	QL06816	373658	7644958	8.910	*
Breccia	QL06817	373650	7644955	3.060	*
Hill	QL06818	373885	7645093	0.010	*
	QL06819	374040	7645430	0.305	*
	QL06822	373563	7644968	0.024	*
	QL06802	372357	7644408	0.002	*
	QL06803	372393	7644430	0.001	*
	QL06804	372400	7644433	0.003	*
	QL06809	373237	7644466	0.002	*
	QL06810	373238	7644467	0.003	*
Butru	QL24867	367658	7624688	0.015	0.0
Duttu	QL24868	366341	7625644	7.040	0.1
	QL024875	379811	7659819	11.800	0.3
	QL024876	379741	7659685	0.055	0.0
Deejay	QL024877	379773	7659755	1.700	0.2
Jude	QL024895	379459	7659500	14.050	0.3
Jude	QL024896	379624	7659540	1.680	0.3
	QL027948	379679	7659511	7.360	1.2
Makbat	QL24886	375910	7574939	0.017	0.0
	QL24887	373325	7576075	0.005	0.0
	QL024869	377410	7657008	0.099	0.0
	QL024870	377390	7657032	0.021	0.0
	QL024871	377390	7657041	0.016	0.0
	QL024872	377532	7657011	0.145	0.0
	QL024897	377470	7656806	0.788	0.1
	QL027978	377489	7656904	28.300	0.9
	QL027985	377416	7656899	0.019	0.0
	QL034992	377523	7656717	0.103	0.0
Mohawk	QL034993	377470	7656806	4.290	0.9
	QL034994	377494	7656830	0.222	0.1
	QL034995	377501	7656854	0.348	0.0 2.5
	QL034996	377482	7656902	17.600	
	QL034997	377498	7656930	3.820	0.1
	QL034998	377583	7656924	3.540 0.097	0.5
	QL034999	377588	7656836	0.097	0.0
	QL035000	377570 377186	7656755	0.029	0.0
	QL06846 QL024873	377186 376662	7657220 7655981	0.019	0.0
	QL024873 QL024888				0.0
	QL024889	377192 376379	7655624 7655606	0.020	0.0
	QL024869 QL024890	376555	7655591	0.037	0.0
	QL024890 QL024891	376555	7655600	0.034	0.0
Mt Hope	QL024891 QL024892	376603	7655596	0.029	0.0
	QL024893	377182	7655906	0.021	0.0
	-				
	QL06837	377055	7659170 7659241	0.093	0.0
	QL06848	376849 376865	7659241	1.650	1.6 0.4
	QL06849 QL13968	376865 376578	7659272	6.800	
	QL13968 QL13969	376578	7658712	0.001	0.0
	Ar12202	376572	1000112	0.004	U.U

Prospect	Sample ID	Easting	Northing	Cu (%)	Au (g/t)
	QL06839	375727	7658002	0.014	0.0
	QL06840	375669	7656007	0.514	0.3
	QL06841	376974	7656808	0.321	2.9
	QL06842	375667	7655988	1.655	0.1
	QL06845	376016	7657602	0.008	0.0
	QL24864	371667	7608146	9.990	0.0
	QL24882	371665	7608113	0.212	0.0
	QL24883	371665	7608115	0.037	0.0
New	QL24884	371666	7608147	1.995	0.0
Prospect	QL24885	371704	7608061	0.040	0.0
	QL27960	371016	7608227	0.004	0.0
	QL27961	370646	7608114	8.790	0.1
	QL27964	371631	7608222	0.258	0.0
	QL034990	372442	7645011	1.510	1.0
	QL034991	372381	7644835	15.400	3.8
	QL06801	372010	7644540	0.003	*
	QL06805	372048	7644700	0.003	*
Nil	QL06806	372042	7644678	0.002	*
Secundo	QL06807	371716	7645044	0.001	*
	QL06808	371674	7645037	0.006	*
	QL06821	371932	7645123	0.015	*
	QL06824	372370	7644834	12.400	*
	QL06825	372395	7644823	9.300	*
	QL027966	378401	7656400	0.484	0.2
	QL027968	378520	7656003	5.710	0.0
	QL027969	378691	7657987	10.500	1.2
Pronuba	QL027973	378993	7656402	0.037	0.0
Pronuba	QL027974	378991	7655993	0.021	0.0
	SM015400	378551	7656725	0.053	0.0
	SM015401	379054	7657369	0.302	0.0
	SM015402	379054	7657369	0.297	0.0
	QL024865	376650	7658005	0.196	0.3
South	Ql024880	376643	7657964	0.338	0.9
Hope	QL024900	376638	7657852	18.100	0.0
Порс	Ql06834	376640	7658052	2.010	0.7
	QL06836	376460	7657963	0.064	0.0
	QL024860	380947	7659193	0.262	0.0
	QL024861	381340	7659201	0.260	0.0
	QL027949	379801	7661600	0.025	0.0
	QL027950	380655	7659196	2.010	0.3
	QL027951	381694	7660811	7.290	0.6
	QL027952	381573	7660796	12.700	0.6
	QL027953	382252	7660806	0.165	0.0
	QL027954	379932	7660361	34.400	1.5
Spring	QL027956	380293	7660404	0.236	0.0
Creek	QL027957	379527	7662798	5.500	0.2
	QL027958	380282	7660381	5.460	0.0
	QL027959	380255	7660392	9.130	0.3
	QL027963	380278	7660340	0.097	0.0
	QL027967	380259	7660473	0.398	0.1
	QL027970	381418	7660006	0.009	0.0
	QL027977	379700	7660369	8.750	0.2
	QL027984	380066	7660099	4.520	0.4
	QL19605	380987	7656994	0.174	0.0
	QL06838	379145	7659581	0.278	0.0
The Plus	QL024874	375838	7656390	6.910	0.3
	QL06843	375839	7656391	7.630	0.3

*Gold assay results are pending for these samples.

Table 2. Copper and Gold Soil and Stream Sample Lab Assays (>8ppm Cu) and Location (MGA94 Zone 54).

Prospect	Sample ID	Easting	Northing	Cu (ppm)	Au (ppb)
	CBS01951	377300	7655600	126	7
	CBS01952	377400	7655600	53	2
	CBS01953	377500	7655600	33	4
	CBS01954	377600	7655600	84	1
	CBS01955	377700	7655600	91	5
	CBS01956	377800	7655600	56	4
	CBS01957	377900	7655600	265	15
	CBS01958	378049	7655647	95	5
	CBS01959	378100	7655600	65	9
	CBS01960	378200	7655600	49	5
	CBS01961	378300	7655600	39	4
	CBS01962	378400	7655600	92	4
	CBS01964	378300	7656000	116	4
	CBS01965	378200	7656000	168	2
	CBS01966	378100	7656000	206	9
	CBS01967	377900	7656000	112	4
	CBS01968	377800	7656000	74	5
	CBS01969	377719	7655996	89	5
	CBS01970	377600	7656000	182	5
	CBS01971	377500	7656000	143	5
	CBS01972	377400	7656000	90	4
	CBS01973	377300	7656000	170	6
	CBS01974	377300	7656400	138	5
	CBS01975	377400	7656400	81	1
	CBS01976	377500	7656400	107	4
	CBS01977	377600	7656400	121	6
	CBS01978	377700	7656400	164	2
	CBS01979	377800	7656400	107	7
	CBS01980	377900	7656400	135	9
Big	CBS01981	378000	7656400	297	11
Beauty	CBS01982	378100	7656400	58	7
	CBS01983	378200	7656400	100	4
	CBS01998	378500	7655600	171	3
	CBS01999	378600	7655600	115	4
	CBS02011	379000	7658400	119	5
	CBS02012	378900	7658400	62	3
	CBS02013	378800	7658400	67	4
	CBS02014	378700	7658400	168	4
	CBS02015	378600	7658400	332	16
	CBS02016	378500	7658400	27	3
	CBS02017	378400	7658400	278	14
	CBS02018	378300	7658400	106	2
	CBS02019	378200	7658400	102	1
	CBS02020	378100	7658400	98	2
	CBS02021	378000	7658400	454	17
	CBS02021	377900	7658400	209	18
	CBS02023	377800	7658400	237	19
	CBS02023	377700	7658400	424	6
	CBS02024 CBS02025	377700	7658400	824	29
	CBS02025 CBS02026	377500	7658400	303	2
	CBS02026 CBS02027	378200		78	2
	CBS02027 CBS02028	378300	7658800 7658800	65	11
	CBS02029	378400	7658800	221	10
	CBS02030	378500	7658800	221	
	CBS02031	378600	7658800	51	4
	CBS02032	378700	7658800	80	5
	CBS02033	378800	7658800	148	2
	CBS02034	378900	7658800	30	4
	CBS02035	379000	7658800	27	3
	CBS01817	374000	7645300	255	3

Prospect	Sample	Easting	Northing	Cu	Au
•	ID CDC01010			(ppm)	(ppb)
	CBS01818	373900	7645300	273	9
	CBS01835	373900	7645200 7645200	261	8 7
	CBS01836 CBS01837	374000 374000	7645200	286 432	21
	CBS01838	373900	7645100	210	7
	CBS01886	373300	7644700	243	17
	CBS01887	373400	7644700	100	3
	CBS01888	373600	7644700	13	1
	CBS01889	373700	7644700	537	12
	CBS01890	373800	7644700	397	15
	CBS01891	373900	7644700	103	7
	CBS01892	374000	7644700	424	29
	CBS01893	374000	7644800	400	10
	CBS01894	373900	7644800	276	12
	CBS01895	373800	7644800	574	24
	CBS01896	373700	7644800	173	7
	CBS01897	373600	7644800	116	4
	CBS01898	373500	7644800	28	3
	CBS01899	373400	7644800	91	10
	CBS01907	373500	7644900	33	7
	CBS01908	373600	7644900	252	9
	CBS01909	373700	7644900	53	6
	CBS01910	373800	7644900	393	15
	CBS01911	373900	7644900	339	10
	CBS01912	374000	7644900	433	22
	CBS01913	374000	7645000	588	24
	CBS01914	373900	7645000	117	7
	CBS01915	373800	7645000	81	9
Breccia	CBS01916	373700	7645000	434	18
Hill	CBS01917	373600	7645000	128	16
	CBS01918	373500	7645000	201	18
	CBS01923	374700	7645400	390	7
	CBS01924 CBS01925	374600 374515	7645400 7645389	198 201	12
	CBS01925	374373	7645405	200	11
	CBS01927	374371	7645400	135	3
	CBS01928	374200	7645400	145	6
	CBS01929	374100	7645400	243	12
	CBS01930	374100	7645200	314	8
	CBS01931	374200	7645200	179	6
	CBS01932	374300	7645200	246	9
	CBS01933	374400	7645200	666	10
	CBS01934	374500	7645200	327	10
	CBS01935	374600	7645200	112	3
	CBS01936	374700	7645200	375	11
	CBS01937	374700	7645000	1330	38
	CBS01938	374600	7645000	163	3
	CBS01939	374500	7645000	553	22
	CBS01940	374400	7645000	144	7
	CBS01941	374300	7645000	238	5
	CBS01942	374200	7645000	638	15
	CBS01943	374100	7645000	65	3
	CBS01944	374100	7644800	134	4
	CBS01945	374200	7644800	136	7
	CBS01946	374300	7644800	332	12
	CBS01947	374400 374500	7644800	106 142	2
	CBS01948 CBS01949	374500	7644800 7644800	324	3
	CBS01949 CBS01950	374700	7644800	228	10
	CBS01569	371000	7645000	102	3
	CD301303	311000	10-3000	102	J

Prospect	Sample	Easting	Northing	Cu	Au
1 105pcct	ID			(ppm)	(ppb)
	CBS01570	371100	7645000	40	2
	CBS01571	371200	7645000	93	3
	CBS01572 CBS01573	371100 371000	7645000 7645000	20 77	3
	CBS01573	371000	7644800	81	3
	CBS01575	371100	7644800	83	3
	CBS01576	371100	7644800	98	3
	CBS01601	371900	7644000	117	3
	CBS01602	371800	7644000	82	1
	CBS01603	371700	7644000	60	5
	CBS01604	371600	7644000	92	2
	CBS01605	371500	7644000	67	2
	CBS01606	371400	7644000	99	2
	CBS01607	371400	7643800	57	2
	CBS01608	371500	7643800	57	1
	CBS01609	371600	7643800	62	2
	CBS01610	371700	7643800	114	3
	CBS01611	371800	7643800	169	5
	CBS01807	374000	7645400	76	7
	CBS01808	373900	7645400	118	6
	CBS01809	373800	7645400	56	2
	CBS01810	373700	7645400	120	5
	CBS01811	373600	7645400	151	24
	CBS01812	373500	7645400	125	6
	CBS01813	373400	7645400	109	3
	CBS01814	373300	7645400	61	5
	CBS01815	373200	7645400	69	5
	CBS01816 CBS01819	373100 373800	7645400 7645300	137 65	3
	CBS01819	373700	7645300	195	6
	CBS01821	373700	7645300	138	7
	CBS01822	373500	7645300	174	4
Bushy	CBS01823	373400	7645300	109	3
Park	CBS01824	373300	7645300	120	2
	CBS01825	373200	7645300	101	4
	CBS01826	373100	7645300	94	2
	CBS01827	373100	7645200	76	3
	CBS01828	373200	7645200	92	2
	CBS01829	373300	7645200	211	7
	CBS01830	373400	7645200	51	5
	CBS01831	373500	7645200	76	4
	CBS01832	373600	7645200	156	8
	CBS01833	373700	7645200	109	5
	CBS01834	373800	7645200	132	3
	CBS01839	373800	7645100	100	6
	CBS01840	373700	7645100	57	18
	CBS01841	373600	7645100	179	6
	CBS01842	373500	7645100	138	5
	CBS01843	373400	7645100	103	4
	CBS01844	373300	7645100	85	2
	CBS01845	373200	7645100	37	2
	CBS01846	373100	7645100	61	3
	CBS01847	372300	7645200	61	4
	CBS01848	372400	7645200	51	1
	CBS01849	372500	7645200	129	3
	CBS01850	372600	7645200	92 46	2
	CBS01851	372700 372800	7645200 7645200	54	2
	CBS01852 CBS01853	372800	7645200 7645200	54 44	1
	CBS01853 CBS01854	373000 373000	7645200	127	3
	CBS01855	373000	7645000	75	5
	CBS01856	372800	7645000	47	2
	CBS01857	372700	7645000	76	3
	CBS01858	372700	7645000	77	2
	CBS01868	372500	7644800	143	4

	CBS01869			(ppm)	(ppb)
		372600	7644800	83	4
	CBS01870	372700	7644800	100	3
	CBS01871	372800	7644800	124	2
	CBS01872	372900	7644800	91	2
	CBS01873	373000	7644800	113	3
	CBS01874 CBS01875	373000 372900	7644600 7644600	124 128	6 5
	CBS01876	372800	7644600	100	3
	CBS01877	372700	7644600	98	6
	CBS01878	372600	7644600	128	5
	CBS01879	372500	7644600	104	2
	CBS01880	372400	7644600	104	3
	CBS01881	372300	7644600	85	2
	CBS01882	372200	7644600	77	1
	CBS01884	373100	7644700	187	8
	CBS01885	373200	7644700	182	14
	CBS01900	373300	7644800	178	5
	CBS01901	373200	7644800	164	9
	CBS01902	373100	7644800	113	12
	CBS01903	373100	7644900	54	1
	CBS01904	373200	7644900	64	9
	CBS01905	373300	7644900	114	27
	CBS01906	373400	7644900	70	12
	CBS01919	373400	7645000	68	2
	CBS01920	373300	7645000	80	2
	CBS01921	373200	7645000	40	2
	CBS01922	373100	7645000	132	2
	CBS01559	372000	7644600	309	7
	CBS01560	371900	7644600	193	4
	CBS01561	371800	7644600	160	3 7
	CBS01562 CBS01563	371700	7644600	206 147	2
	CBS01563	371600 371500	7644600 7644600	104	2
	CBS01565	371600	7644800	85	4
	CBS01566	371700	7644800	120	5
	CBS01567	371800	7644800	89	4
	CBS01568	371900	7644800	139	7
	CBS01577	372000	7644400	69	2
	CBS01578	371900	7644400	102	3
	CBS01579	371800	7644400	149	5
	CBS01580	371700	7644400	209	7
	CBS01581	371600	7644400	140	4
	CBS01582	371500	7644400	82	4
Nil	CBS01583	371400	7644400	111	1
Secundo	CBS01584	371300	7644400	116	1
	CBS01594	371200	7644400	153	2
	CBS01595	371400	7644200	67	8
	CBS01596	371500	7644200	57	2
	CBS01597	371600	7644200	64	4
	CBS01598	371700	7644200	218	2
	CBS01599	371900	7644200	81	2
	CBS01600	371200	7644200	79	4
	CBS01859 CBS01860	372500	7645000 7645000	90	4
	CBS01860 CBS01861	372400 372300	7645000 7645000	79	2
	CBS01862	372300	7645000	85	3
	CBS01863	372200	7645000	73	7
	CBS01864	372100	7644800	133	6
	CBS01865	372200	7644800	80	2
	CBS01866	372300	7644800	996	6
	CBS01867	372400	7644800	162	2
	CBS01883	372100	7644600	94	1
	CBS01963	378400	7656000	124	3
Pronuba	CBS01984	378300	7656400	265	8
	CBS01985	378400	7656400	640	26

Prospect	Sample ID	Easting	Northing	Cu (ppm)	Au (ppb)
	CBS01986	378520	7656406	144	7
	CBS01987	378600	7656400	291	6
	CBS01988	378700	7656400	343	10
	CBS01989	378800	7656400	187	4
	CBS01990	378900	7656400	147	5
	CBS01991	379000	7656400	253	7
	CBS01992	379000	7656000	90	9
	CBS01993	378900	7656000	280	8
	CBS01994 CBS01995	378800 378700	7656000 7656000	116 92	10 9
	CBS01995	378600	7656000	3470	135
	CBS01997	378500	7656000	292	4
	CBS02000	378700	7655600	368	7
	CBS02001	378800	7655600	654	24
	CBS02002	378900	7655600	297	9
	CBS02003	379000	7655600	513	10
	CBS02004	379000	7657200	260	7
	CBS02005	378900	7657200	106	5
	CBS02006	378800	7657200	578	9
	CBS02007	378700	7657200	145	4
	CBS02008	378600	7657200	368	13
	CBS02009	378500	7657200	33	7
	CBS02010 CBS02036	378400 379000	7657200 7658000	367 50	19 3
	CBS02036 CBS02037	378900	7658000	33	3
	CBS02037	378800	7658000	104	5
	CBS02039	378700	7658000	568	26
	CBS02040	378600	7658000	270	12
	CBS02041	378500	7658000	301	19
	CBS02042	378400	7658000	104	6
	CBS02043	378400	7657600	182	12
	CBS02044	378500	7657600	169	17
	CBS02045	378600	7657600	78	14
	CBS02046	378700	7657600	238	7
	CBS02047	378800	7657600	95	4
	CBS02048	378900	7657600	70	3
	CBS02049	379000	7657600	116 97	7
	CBS01050 CBS01051	370600 370700	7635600 7635600	78	1
	CBS01051	370700	7635600	84	3
	CBS01053	370900	7635600	74	1
	CBS01054	371000	7635600	71	2
	CBS01055	371100	7635600	67	1
	CBS01056	371200	7635600	67	2
	CBS01057	371300	7635600	65	8
	CBS01058	371400	7635600	60	8
	CBS01059	371500	7635600	40	9
	CBS01060	371600	7635600	60	2
	CBS01061	371700	7635600	54	6
	CBS01062	371800	7635600	53	4
Razorback	CBS01063	371900	7635600 7635600	54	2
	CBS01064 CBS01065	372000 372100	7635600 7635600	58 55	2
	CBS01065	372100	7635600	60	3
	CBS01067	372300	7635600	62	2
	CBS01068	372400	7635600	59	1
	CBS01069	372500	7635600	56	3
	CBS01070	372600	7635600	59	2
	CBS01071	372700	7635600	65	2
	CBS01072	372800	7635600	83	1
	CBS01073	372900	7635600	84	9
	CBS01074	373000	7635600	52	2
	CBS01075	373100	7635600	42	3
	CBS01076	373200	7635600	59	10
	CBS01077	373300	7635600	84	1

Prospect	Sample ID	Easting	Northing	Cu (ppm)	Au (ppb)
	CBS01078	373400	7635600	78	3
	CBS01079	373500	7635600	91	0
	CBS01080	373600	7635600	94	1
	CBS01081	373700	7635600	84	2
	CBS01082	373800	7635600	78	1
	CBS01083 CBS01084	373900 374000	7635600 7635600	82 68	3
	CBS01085	374100	7635600	62	0
	CBS01086	374200	7635600	71	2
	CBS01087	374300	7635600	81	6
	CBS01088	374400	7635600	92	2
	CBS01089	374500	7635600	83	2
	CBS01090	374600	7635600	84	2
	CBS01091	374700	7635600	80	1
	CBS01092 CBS01093	374800 374900	7635600 7635600	97 106	3
	CBS01093	375000	7635600	75	1
	CBS01091	375100	7635600	54	1
	CBS01096	375200	7635600	69	2
	CBS01097	375300	7635600	82	1
	CBS01098	375400	7635600	103	10
	CBS01099	375500	7635600	118	3
	CBS01100	375600	7635600	86	5
	CBS01101	375700	7635600	121	3
	CBS01550	369200	7642200	141	3
	CBS01551 CBS01552	369300 369400	7642200 7642200	122	5
	CBS01553	369500	7642200	588	9
	CBS01554	369600	7642200	82	3
	CBS01555	369700	7642200	177	3
	CBS01556	369800	7642200	97	2
	CBS01557	369900	7642200	64	1
	CBS01558	370000	7642200	64	2
	CBS01612	370600	7637600	63	1
	CBS01613 CBS01614	370700 370800	7637600 7637600	70 71	1
	CBS01615	370900	7637600	73	1
	CBS01616	371000	7637600	76	1
	CBS01617	371100	7637600	67	1
	CBS01618	371200	7637600	102	1
	CBS01619	371300	7637600	120	1
	CBS01620	371400	7637600	81	4
	CBS01621	371500	7637600	139	4
	CBS01622	371600 371700	7637600	137 89	2
	CBS01623 CBS01624	371700	7637600 7637600	94	3
	CBS01625	371900	7637600	108	3
	CBS01626	374500	7638200	66	1
	CBS01627	374400	7638200	76	4
	CBS01628	374300	7638200	63	2
	CBS01629	374200	7638200	42	2
	CBS01630	374100	7638200	51	1
	CBS01631 CBS01632	374000 373900	7638200 7638200	27 65	3
	CBS01632 CBS01633	373900	7638200	28	0
	CBS01634	373700	7638200	59	2
	CBS01635	373600	7638200	45	1
	CBS01636	373500	7638200	31	2
	CBS01637	373400	7638200	45	3
	CBS01638	373300	7638200	35	2
	CBS01639	373200	7638200	77	2
	CBS01640	373100	7638200	54	1
	CBS01641 CBS01642	373000 371800	7638200 7638200	47 126	3
	CBS01642 CBS01643	371900	7638200	105	4
	00001070	3.1300	. 555200	103	

Prospect	Sample ID	Easting	Northing	Cu (ppm)	Au (ppb)
	CBS01644	372000	7638200	126	1
	CBS01645	372100	7638200	103	3
	CBS01646	372200	7638200	130	3
	CBS01647	372300	7638200	134	2
	CBS01648	372400	7638200	100	3
	CBS01649	372500	7638200	126	2
	CBS01650 CBS01651	372600 372700	7638200 7638200	117 62	1
	CBS01652	372700	7638200	65	0
	CBS01653	372900	7638200	61	1
	CBS01654	370400	7639000	91	3
	CBS01655	370500	7639000	84	4
	CBS01656	370600	7639000	100	1
	CBS01657	370700	7639000	93	1
	CBS01658	370800	7639000	76	3
	CBS01659	370900	7639000	125	3
	CBS01660	371000	7639000	100	1
	CBS01661	371100	7639000	97	1
	CBS01662	371200	7639000	92	1
	CBS01663	371300	7639000	86	2
	CBS01664	371400	7639000	75	2
	CBS01665	371500	7639000	100	3
	CBS01666	371600	7639000	113	3
	CBS01667	371700	7639000	176 73	2
	CBS01668 CBS01669	371800 371900	7639000 7639000	150	3
	CBS01679	371900	7639000	95	4
	CBS01671	372100	7639000	151	5
	CBS01672	372200	7639000	109	1
	CBS01673	372300	7639000	49	1
	CBS01674	372400	7639000	34	2
	CBS01675	372500	7639000	50	3
	CBS01676	372600	7639000	40	7
	CBS01677	372700	7639000	70	2
	CBS01678	372800	7639000	49	1
	CBS01679	372900	7639000	70	1
	CBS01680	373000	7639000	88	1
	CBS01681	373100	7639000	88	1
	CBS01682	373200	7639000 7639000	66	3
	CBS01683 CBS01684	373300 373400	7639000	60 78	1
	CBS01685	373500	7639000	84	2
	CBS01686	373300	7639000	85	1
	CBS01687	373700	7639000	90	2
	CBS01688	373800	7639000	143	4
	CBS01689	373900	7639000	44	1
	CBS01690	374000	7639000	87	1
	CBS01691	374100	7639000	46	1
	CBS01692	374200	7639000	78	4
	CBS01693	374300	7639000	101	2
	CBS01694	374400	7639000	57	2
	CBS01695	374500	7639000	97	3
	CBS01696	374600	7639000	129	1
	CBS01697	374700	7639000	79	1
	CBS01698	374800	7639000	69	0
	CBS01699 CBS01700	374900 375000	7639000 7639000	44	3 6
	CBS01700 CBS01701	374800	7639000	87	3
	CBS01701	374900	7636800	87	2
	CBS01702	375000	7636800	77	1
	CBS01703	375100	7636800	83	1
	CBS01705	375200	7636800	106	3
	CBS01706	375300	7636800	104	3
	CBS01707	375400	7636800	123	2
	CBS01708	375500	7636800	139	2

Prospect	Sample ID	Easting	Northing	Cu (ppm)	Au (ppb)
	CBS01709	375600	7636800	85	3
	CBS01710	374700	7636800	72	3
	CBS01711	374600	7636800	74	1
	CBS01712	374500	7636800	57	2
	CBS01713	374400	7636800	50	2
	CBS01714	374300	7636800	64	2
	CBS01715	374200	7636800	62	2
	CBS01716	374100	7636800	71	1
	CBS01717	374000	7636800	56	2
	CBS01718	373900	7636800	66	1
	CBS01719	373800	7636800	61	4
	CBS01720	373700	7636800	54	4
	CBS01721	373600	7636800	56	2
	CBS01722	373500	7636800	71	3
	CBS01723	373400	7636800	61	3
	CBS01724	373300	7636800	61	3
	CBS01725	373500	7637600	57	2
	CBS01726	373400	7637600	36	3
	CBS01727	373300	7637600	38	3
	CBS01728	373200	7637600	29	1
	CBS01729	373100	7637600	28	2
	CBS01730	373000	7637600	42	2
	CBS01731 CBS01732	372900 372800	7637600 7637600	144 156	3
	CBS01732 CBS01733	372800 372700	7637600	65	2
	CBS01733	372700	7637600	56	2
	CBS01734	372500	7637600	52	3
	CBS01736	372400	7637600	58	3
	CBS01737	372300	7637600	62	3
	CBS01738	372200	7637600	61	3
	CBS01739	372100	7637600	104	1
	CBS01740	372000	7637600	136	1
	CBS01741	371700	7636800	66	2
	CBS01742	371800	7636800	60	3
	CBS01743	371900	7636800	69	3
	CBS01744	372000	7636800	62	2
	CBS01745	372100	7636800	59	2
	CBS01746	372200	7636800	66	4
	CBS01747	372300	7636800	54	2
	CBS01748	372400	7636800	57	2
	CBS01749	372500	7636800	60	2
	CBS01750	372600	7636800	63	2
	CBS01751	372700	7636800	62	3
	CBS01752	372800	7636800	60	2
	CBS01753	372900	7636800	63	2
	CBS01754	373000	7636800	63	1
	CBS01755	373100	7636800	71	2
	CBS01756	373200	7636800	71	2
	CBS01757	371600	7636800 7636800	60	2
	CBS01758 CBS01759	371500 371400		62 53	2
	CBS01759 CBS01760	371300	7636800 7636800	91	3
	CBS01760	371300	7636800	88	1
	CBS01761	371100	7636800	85	2
	CBS01763	371000	7636800	74	2
	CBS01764	370900	7636800	70	2
	CBS01765	370800	7636800	83	2
	CBS01766	370700	7636800	72	1
	CBS01767	370600	7636800	82	2
	CBS01768	373600	7637600	37	1
	CBS01769	373700	7637600	55	0
	CBS01770	373800	7637600	52	1
	CBS01771	373900	7637600	91	2
	CBS01772	374000	7637600	50	1
	CBS01773	374100	7637600	93	3

Prospect	Sample ID	Easting	Northing	Cu (ppm)	Au (ppb)
	CBS01774	374200	7637600	79	2
	CBS01775	374300	7637600	76	1
	CBS01776	374400	7637600	84	1
	CBS01777	374500	7637600	96	2
	CBS01778	374600	7637600	81	1
	CBS01779	374700	7637600	59	1
	CBS01780	374800	7637600	32	0
	CBS01781	374900	7637600	51	2
	CBS01782 CBS01783	375000 375100	7637600 7637600	40 99	1
	CBS01784	375100	7637600	90	1
	CBS01785	375300	7637600	78	1
	CBS01786	375400	7637600	73	2
	CBS01787	375500	7637600	58	2
	CBS01788	375600	7637600	110	2
	CBS01789	371200	7638200	74	2
	CBS01790	371100	7638200	69	2
	CBS01791	371000	7638200	62	1
	CBS01792	370900	7638200	71	2
	CBS01793 CBS01794	370800	7638200 7638200	65 72	2
	CBS01794 CBS01795	370700 370600	7638200 7638200	74	1
	CBS01793	371300	7638200	74	1
	CBS01797	371400	7638200	78	2
	CBS01798	371500	7638200	71	1
	CBS01799	371600	7638200	183	1
	CBS01800	371700	7638200	190	3
	CBS01801	375100	7639000	89	0
	CBS01802	375200	7639000	84	3
	CBS01803	375300	7639000	71	2
	CBS01804	375400	7639000	98	3
	CBS01805 CBS01806	375500 375600	7639000 7639000	104 72	1
	CBS02050	379500	7662800	1040	57
	CBS02051	379600	7662800	186	12
	CBS02052	379700	7662800	374	9
	CBS02053	379800	7662800	84	26
	CBS02054	379900	7662800	261	29
	CBS02055	380000	7662800	36	12
	CBS02056	380100	7662800	101	3
	CBS02057	380300	7662800	65	6
	CBS02058	380400	7662800	107	34 16
	CBS02059 CBS02060	380500 380600	7662800 7662800	169 206	16 7
	CBS02060 CBS02061	380700	7662800	248	10
	CBS02062	380700	7662400	613	43
	CBS02063	380600	7662400	369	9
	CBS02064	380500	7662400	215	13
Spring	CBS02065	380400	7662400	676	49
Creek	CBS02066	380300	7662400	52	9
	CBS02067	380200	7662400	75	9
	CBS02068	380100	7662400	85	10
	CBS02069	380000	7662400	85	10
	CBS02070 CBS02071	379900 379800	7662400 7662400	35 172	14 22
	CBS02071 CBS02072	379700	7662400	309	12
	CBS02072	379600	7662400	145	9
	CBS02074	379500	7662400	571	19
	CBS02075	379900	7661200	192	15
	CBS02076	380000	7661200	143	15
	CBS02077	380100	7661200	35	6
	CBS02078	380200	7661200	31	4
	CBS02079	380300	7661200	104	17
	CBS02089	381100	7660400	130	5
	CBS02090	381000	7660400	123	11

Prospect	Sample ID	Easting	Northing	Cu (ppm)	Au (ppb)
	CBS02091	380900	7660400	416	18
	CBS02091	380800	7660400	66	4
	CBS02093	380700	7660400	320	17
	CBS02094	380600	7660400	134	9
	CBS02095	380500	7660400	168	10
	CBS02096	380400	7660400	184	18
	CBS02097	380300	7660400	232	17
	CBS02097	380500	7661200	124	15
	CBS02099	380600	7661200	502	19
	CBS02100	380700	7661200	358	27
	CBS02111	382200	7660800	157	2
	CBS02111	382300	7660800	402	6
	CBS02112	382400	7660783	132	9
	CBS02113	382000	7660400	97	26
	CBS02111	381900	7660400	149	10
	CBS02116	381800	7660400	89	5
	CBS02117	381700	7660400	125	13
	CBS02118	381600	7660400	286	21
	CBS02110	381500	7660400	392	14
	CBS02119	381384	7660424	286	14
	CBS02121	381300	7660400	156	15
	CBS02122	381200	7660400	161	8
	CBS02124	380200	7660400	587	36
	CBS02125	380100	7660400	799	15
	CBS02127	379900	7660400	2270	100
	CBS02128	379800	7660400	1270	15
	CBS02129	379700	7660400	3370	45
	CBS02130	379600	7660400	237	10
	CBS02131	379500	7660400	537	21
	CBS02132	379400	7660400	895	44
	CBS02133	379300	7660400	311	7
	CBS02134	379200	7660400	679	10
	CBS02135	379100	7660400	342	15
	CBS02136	379000	7660400	140	3
	CBS02154	382200	7660000	17	1
	CBS02155	382300	7660000	20	1
	CBS02156	382408	7660011	45	2
	CBS02182	382200	7659200	21	1
	CBS02183	382300	7659200	19	1
	CBS02184	382400	7659200	87	4
	CBS02185	382400	7659600	9	0
	CBS02186	382300	7659600	38	0
	CBS02187	382200	7659600	28	1
	CBS02198	380200	7661600	218	11
	CBS02199	380500	7661600	388	12
	CBS02200	380600	7661600	286	9
	CBS02201	380700	7661600	244	14
	CBS02202	380700	7662000	59	7
	CBS02203	380600	7662000	273	12
	CBS02204	380400	7662000	976	22
\	CBS02205	380300	7662000	617	44
	CBS02206	380200	7662000	244	17
	CBS02207	380100	7662000	386	29
	CBS02208	380000	7662000	341	34
	CBS02209	379900	7662000	148	11
	CBS02210	379800	7662000	90	5
	CBS02211	379700	7662000	118	7
	CBS02212	379800	7661600	91	13
	CBS02213	379900	7661600	200	20
	CBS02214	380000	7661600	182	11
	CBS02215	380100	7661600	417	30
	CBS02126	380000	7660400	1360	29

APPENDIX TWO

Magna Lynn Southern Corridor IP Chargeability Inversion Plots

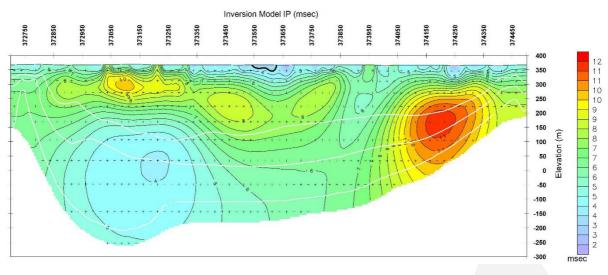


Figure 1. St Andrews Prospect – Line 7635000

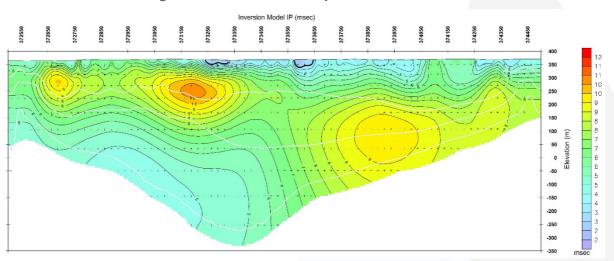


Figure 2. St Andrews Prospect – Line 7635400

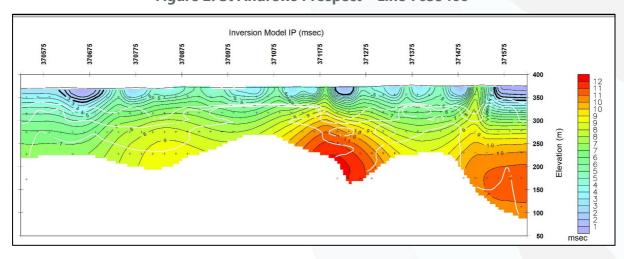


Figure 3. Bull Shark Prospect – Line 7638400

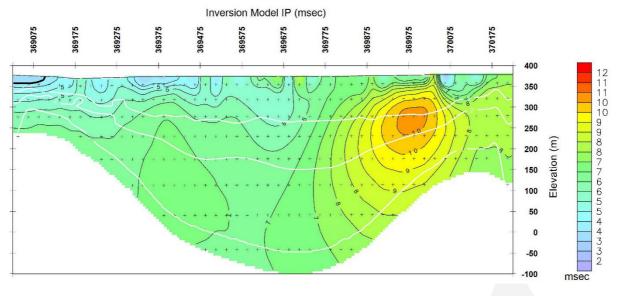
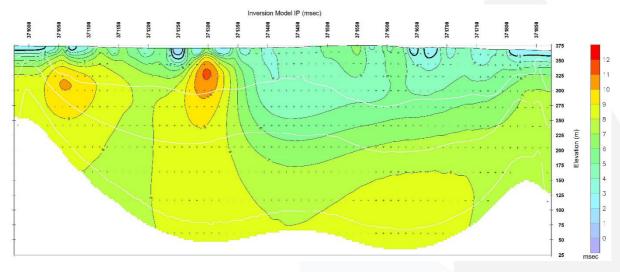



Figure 4. Razorback Prospect – Line 7641400

Figure 5. Coronation Prospect – Line 7631980

APPENDIX THREE

JORC Code, 2012 Edition | 'Table 1' Report Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg' reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Soils Samples Soil samples collected by Carnaby Staff. Involved the removal of 30cm of surface material and the collection of soil at the "B Horizon". Approximately 1kg of soil was sieved to collect -2mm grain size fraction. Approximately 200g of the sieved soil was collected in soil geochemistry packets for analysis at the lab. Sample submitted to Labwest for Ultrafine + method developed by the CSIRO for exploration of blind deposits Rock Chip Samples 2021 Rock Chips were collected by Carnaby staff and submitted for analysis at ALS in Brisbane. Rock chips are random, subject to bias and often unrepresentative for the typical widths required for economic consideration. They are by nature difficult to duplicate with any acceptable form of precision or accuracy. Rock chips collected by Carnaby staff were also collected to assist in characterising different lithologies, alterations and expressions of mineralisation. These have been logged with further petrological work to be conducted in the near term. Rock chips were submitted to ALS Laboratories in Brisbane for determination of trace level gold using a 25g aqua regia digest and 48 multi-elements using four acid digest with an ICP-MS finish respectively. IP Geophysics IP Geophysics IP Geophysics was undertaken using the following equipment: One Iris I-FullWaver Current Recorder. Eight Iris V-FullWaiver IP/Resistivity Recievers. One GDD TXUV, 20Amp transmitter. 7.5kVA diesel gererator. 24 x half-cell non-polarising electrodes. 8km of industry rated IP cable and collection mechanisms. Set of distributed IP system Rx cables. Two 64s Garmin handheld GPS. Field processing computer. E-W orientatied IP traverses were completed in Pole-Dipole configuration with 50m Rx dipoles and 100m Tx poles offset from Rx poles. Weasurements to be made in PDP and DPP sense. Rx and Tx locations recorded in GDA94 MGA zone 54 grid.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• N/A
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• N/A
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Soils samples were logged in the field with respect to the regolith type and landform features. Rock Chip Samples Rock chip lithology, alteration and mineralisation is recorded at outcrop rock chip sites along with any structural orientation information.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Rock Chip Samples Entire rock chips were submitted to the lab for sample preparation and analysis. Soil Samples Soil samples collected by Carnaby Staff involved the removal of 30cm of surface material and the collection of soil at the "B Horizon". Approximately 1kg of soil was sieved to collect -2mm grain size fraction. Approximately 200g of the sieved soil was collected in soil geochemistry packets for analysis at the lab. Sample submitted to Labwest for Ultrafine + method developed by the CSIRO for exploration of blind deposits
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	Rock Chip Samples Rock Chips were analysed at ALS in Brisbane using the AuME_TL43 method for gold involving aqua regia digest and the analysis of 48 multi elements by ME-MS61 method using four acid digest and ICP-MS finish. Soil Samples The Ultrafine + method developed by the CSIRO for exploration of blind deposits was considered an

Criteria	JORC Code explanation	Commentary	
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	appropriate method for detecting gold and base metals given the relatively shallow transported cover over the areas sampled. No company inserted standards were used in the reporting of the Ultrafine soils results. IP Geophysics IP Geophysics was undertaken using the following equipment: One Iris I-FullWaver Current Recorder. Eight Iris V-FullWaiver IP/Resistivity Recievers. One GDD TXUV, 20Amp transmitter. 7.5kVA diesel gererator. 24 x half-cell non-polarising electrodes. 8km of industry rated IP cable and collection mechanisms. Set of distributed IP system Rx cables. Two 64s Garmin handheld GPS. Field processing computer. E-W orientatied IP traverses were completed in Pole-Dipole configuration with 50m Rx dipoles and 100m Tx poles offset from Rx poles. Use 100 m A-spacing for receiver and transmitter. Receiver and transmitter points offset. Measurements to be made in PDP and DPP sense. Rx and Tx locations recorded in GDA94 MGA zone 54 grid.	
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historic production data has been collated from government open file reports. A Maxgeo hosted SQL database (Datashed) is currently used in house for all historic and new records. The database is maintained on the Maxgeo Server by a Carnaby database administrator. Logchief Lite is used for drill hole logging and daily uploaded to the database. Recent results have been reported directly from lab reports and sample sheets collated in excel. Results reported below the detection limit have been stored in the database at half the detection limit – e.g., <0.001ppm stored as 0.0005ppm 	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Soil and rock chips are collected with a Garmin GPS (+/- 3m accuracy). IP locations were obtained using a Garmin GPS in UTM MGA94 grid. 	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Soil sampling was undertaken on lines spaced at 400m x 100m. At Breccia Hill a 200mx100m and 100m x 100m soils sample spacing was used. Rock chip sampling was undertaken at insitu outcrop where available. 	
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible	The soils lines have been completed on E-W orientated lines to transect potential N-W, N-S and N-E trending mineralised structures. This has been deemed to be the	

Criteria	JORC Code explanation	Commentary	
geological structure	structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 best soil line orientation and coincides with historic soil sample grids. IP lines have been orientated E-W to transect potential N-W, N-S,and N-E orientated mineralised structures with in the Magna-Lynn Southern Corridor. 	
Sample security	The measures taken to ensure sample security.	Soil and rock chip samples were transported from the field to the lab by Carnaby Staff.	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sample practices and Lab QAQC were internally audited by PayneGeo and externally audited by SnowdenOptiro Pty Ltd as part of the Maiden Resource Estimate released on 27th October 2023. All QAQC results were satisfactory.	

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section).

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Mount Hope Mining Lease ML90240 is 100% owned by Carnaby Resources Ltd. The Nil Desperandum, Shamrock, Burke & Wills and Lady Fanny South Prospects are located on EPM14366 (82.5% interest acquired from Discovex Resources Limited (Discovex, ASX: DCX). Discovex retains a 17.5% free carried interest in the project through to a Decision to Mine. At a Decision to Mine, Carnaby has the first right of refusal to acquire the remaining interest for fair market value. The Lady Fanny Prospect area encompassed by historical expired mining leases have been amalgamated into EPM14366 and is 100% owned by Carnaby. Discovex Resources Limited (Discovex, ASX: DCX) are in dispute with Carnaby and claim that Lady Fanny is part of the Joint Venture area (see ASX release 18 September 2023). The Company has entered into a Farm-in and Joint Venture Agreement with Rio Tinto Exploration Pty Ltd (RTX) whereby Carnaby can earn a majority joint venture interest in the Devoncourt Project, which contains the Wimberu Prospect, by sole funding staged exploration on the project as discussed in the ASX release dated 2 August 2023. Tenements subject to the Farm-in Joint Venture Agreement: EPM14955, EPM17805, EPM26800, EPM27363, EPM27364, EPM27365], EPM 27424 and EPM27465. The South Hope, Stubby and The Plus Prospects are contained in three (3) sub-blocks covering 9 km2 within exploration permit EPM26777, immediately adjoining and surrounding the Company's Mount Hope Central and Mount Hope North deposits. Carnaby has entered into binding agreement with Hammer Metals Limited (Hammer, ASX: HMX) and its

Criteria	Explanation	Commentary
		wholly owned subsidiary Mt. Dockerell Mining Pty Ltd, pursuant to which Carnaby will acquire an initial 51% beneficial interest in the sub-blocks (see ASX release 2 April 2024). Carnaby has the right to acquire an additional 19% beneficial interest to take its total beneficial interest in the Sub-Blocks to 70%.
Acknowledgment and appraisal of exploration by other parties.	Acknowledgment and appraisal of exploration by other parties.	 There has been exploration work conducted over the Greater Duchess project regions for over a century by previous explorers. The project comes with significant geoscientific information which covers the tenements and general region, including: a compiled database of 6658 drill hole (exploration and near-mine), 60,300 drilling assays and over 50,000 soils and stream sediment geochemistry results. This previous exploration work is understood to have been undertaken to an industry accepted standard and will be assessed in further detail as the projects are developed. There has been limited historical exploration over the Devoncourt Project given the thickness of cover sequences overlying the Proterozoic basement within the local region (ca 220–250m). The earliest exploration in the local region was in the 1960–70's for phosphate mineralisation hosted in the Cambrian Beetle Creek Formation. The first exploration for metal mineralisation, in the Proterozoic basement, wasn't until the 1990's by Mount Isa Mines. Subsequently, only two other explorers – North Mining Ltd and Isa Tenements Pty Ltd – have explored the region for metal mineralisation within the Proterozoic basement since the 1990's.
Geology	Deposit type, geological setting and style of mineralisation.	 The Greater Duchess Project is in the Mary Kathleen domain of the eastern Fold Belt, Mount Isa Inlier. The Eastern Fold Belt is well known for copper, gold and copper-gold deposits; generally considered variants of IOCG deposits. The region hosts several long-lived mines and numerous historical workings. Deposits are structurally controlled, forming proximal to district-scale structures which are observable in mapped geology and geophysical images. Local controls on the distribution of mineralisation at the prospect scale can be more variable and is understood to be dependent on lithological domains present at the local-scale, and orientation with respect to structures and the stress-field during D3/D4 deformation, associated with mineralisation. Most of the mineralised zones are primary with chalcopyrite being the main copper bearing mineral. Portions of the Mount Hope deposit have been weathered resulting in the formation of secondary sulphide minerals including chalcocite. The Devoncourt North project area encompasses part of the Wimberu Granite, which is a series of superimposed granitic plutons belonging to the greater Williams Supersuite (ca 1490–1530 Ma). The Wimberu and greater Williams-Naraku supersuite are a series of oxidised, high-Th-U-F, I-type granitoids emplaced during rifting and thin-skinned convergence cycles.

Criteria	Explanation	Com	imentary
		•	The Wimberu Granite is generally coarse grained and massive, composed of porphyritic to equigranular biotite-hornblende granite to granodiorite, with lesser leucogranite, pyroxene-bearing granite, microgranite, aplite and pegmatite. The primary granite mineralogy consists of quartz, plagioclase, K-feldspar, hornblende, muscovite, biotite and magnetite with accessory sphene, allanite and fluorite. The Wimberu granite is concentrically zoned, grading from a mafic magnetite-hornblende-biotite granodiorite rim to more felsic compositions towards the core. The Wimberu Granite is often cross-cut by north-northeast and northnorthwest shear zones belonging to the D4 and D5 deformation events (Wyborn, 1998).
			The Wimberu granite within the 'Devoncourt North' project area is locally overlain by up to 240 m of cover, consisting of flat-lying Cambrian siliclastics and limestones belonging to the Georgina Basin. These Cambrian sequences include a basal unit of siliclastics belonging to the Mount Birnie Beds (conglomerates, sandstones, mudstones, dolomites) followed by various carbonate units consisting of limestones, cherts, marl and dolomites. The Cambrian sequences are in-turn overlain by flat-lying Ordovician and Mesozoic sediments (sandstones, siltstones, mudstones, conglomerates, cherts, limestones) and lastly by Cainozoic soils, sands and gravels. The 'Devoncourt North' surface geology map is shown in Figure 4. The Devoncourt North project area contains two discrete magnetic-high features (Figure 5) hosted within a coinciding, single gravity-high feature. These features represent variably magnetite-altered granite and were interpreted as potential hosts of IOCG-style mineralisation. The higher density could also, in-part, be explained by the presence of a paleo-topographic high. Copper mineralisation at Wimberu is dominantly comprised of chalcopyrite with bornite also observed, occurring as disseminations in the host granite, breccia fill and as discrete veins.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: O easting and northing of the drill hole collar O elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar O dip and azimuth of the hole O down hole length and interception depth O hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	•	Included in report Refer to Appendix 1, Table 1 & 2.

Criteria	Explanation	Commentary	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalent values have been reported.	
Average Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	• N/A	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See the body of the announcement.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	As discussed in the announcement	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	As discussed in the announcement	
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Planned exploration works are detailed in the announcement.	