

NEW WORLD RESOURCES

ANTLER COPPER PROJECT PRE-FEASIBILITY STUDY

Rapidly Redeveloping One of the World's Highest Grade Copper Deposits in Arizona, USA

JULY 2024

DISCLAIMER

Information included in this presentation constitutes forward-looking statements. When used in this announcement, forward-looking statements can be identified by words such as "anticipate", "believe", "could", "estimate", "future", "intend", "may", "opportunity", "plan", "potential", "project", "seek", "will" and other similar words that involve risks and uncertainties.

Forward-looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any forward looking statements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licences and permits and diminishing quantities or grades of resources and reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation as well as other uncertainties and risks set out in the announcements made by the Company from time to time with the Australian Securities Exchange.

Forward-looking statements are not guarantees of future performance and involve known and unknown risks, uncertainties, assumptions and other important factors, many of which are beyond the control of the Company, its directors and management of the Company that could cause the Company's actual results to differ materially from the results expressed or anticipated in these statements.

The Company cannot and does not give any assurance that the results, performance or achievements expressed or implied by the forward-looking statements contained in this presentation will actually occur and investors are cautioned not to place undue reliance on these forward-looking statements. The Company does not undertake to update or revise forward-looking statements, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this report, except where required by applicable law and stock exchange listing requirements.

NEW WORLD RESOURCES July 24

NEW WORLD RESOURCES

 $\mathsf{ASX}: \ \mathsf{NWC}$

CORPORATE SUMMARY

Share Price

A\$0.034

52-week range: \$0.048 - \$0.024

Market Capitalisation

At A\$0.034/share

A\$23.4m At 31 March 24

Cash

Options

Shares on Issue **2,835.6m**

Performance Rights 32.7m

Held by Management Team

126.8m Exercisable A\$0.04 - A\$0.049

SHAREHOLDERS

Resource Capital Funds **5.5%**

Directors & Management **3.3%**

Top 20 **50.1%**

NWC Share Price Chart

BOARD AND OFFICERS

Richard Hill Non-Executive Chairman

Mike Haynes Managing Director/CEO Nick Woolrych Exec. Director & COO

Tony Polglase Non-Executive Director lan Cunningham Company Secretary Beverley Nichols Chief Financial Officer

ANALYST COVERAGE

EURØZ HARTLEYS

NEW WORLD HAS TWO CLEAR CORPORATE OBJECTIVES

1

Advance the Antler Project to Production as Quickly as Possible

- One of the world's highest-grade copper deposits
- Low capex, high margin products

2

Continue to Increase the Company's Resource Base

• Exploration drilling ongoing at the Antler and Javelin Projects

New World is an outstanding copper investment opportunity with exceptional project economics and substantial exploration upside

RESOURCES July

24

INVESTMENT OVERVIEW

OUTSTANDING PROJECTS

Strategically Located High-Grade Copper Development Project, and Regional Exploration Targets

High Grade

- Mining Inventory 13.6Mt @ 1.6% Cu, 3.7% Zn, 0.6% Pb, 24.5 g/t Ag and 0.3 g/t Au (3.0% CuEq1)
- Defined Resource places Antler in top 4%* of copper deposits globally by CuEq grade

Excellent Location

- **Direct access** to power, water and transportation infrastructure locally
- 70% of US Copper produced in Arizona

Exploration Upside

- Cluster of 30-40 known VMS deposits in northern Arizona
- 17+ VMS drilling targets across 2 Project areas (Antler & Javelin)

Outstanding ESG Credentials

- Best practice across all areas of project development
- >30% Renewables by 2030

B ROBUST ECONOMICS

High Margin Mine Plan Strong Cashflow and Low Capital Intensity

Strong Returns

- Revenue US\$3.16bn (A\$4,61bn) LOM from 341kt Payable CuEq (av. 30.1ktpa CuEq steady state)
- Average annual post tax free cash flow of US\$115m (A\$168m)
- NPV₇ US\$636m (A\$929m), 34.3% IRR Pre-Tax
- NPV increases +35% at spot prices

High Margin

- Life of Mine EBITDA: US\$1.68bn (A\$2.45bn)
- C1¹ Cash Cost Net of Co-products: \$0.12/lb CuEq
- AISC²Net of Co-products: \$0.51/lb CuEq

Modest Capex

- US\$298m
- Payback of 3.3 years (Post-Tax)
- US\$8,563/t CuEq Capital Intensity lowest quartile globally
- Readily debt financeable for >60% capital

EXCEPTIONAL TIMING

Near Term Production Coinciding with Emerging Copper Supercycle

Near term production

Construction 2026, Production 2027

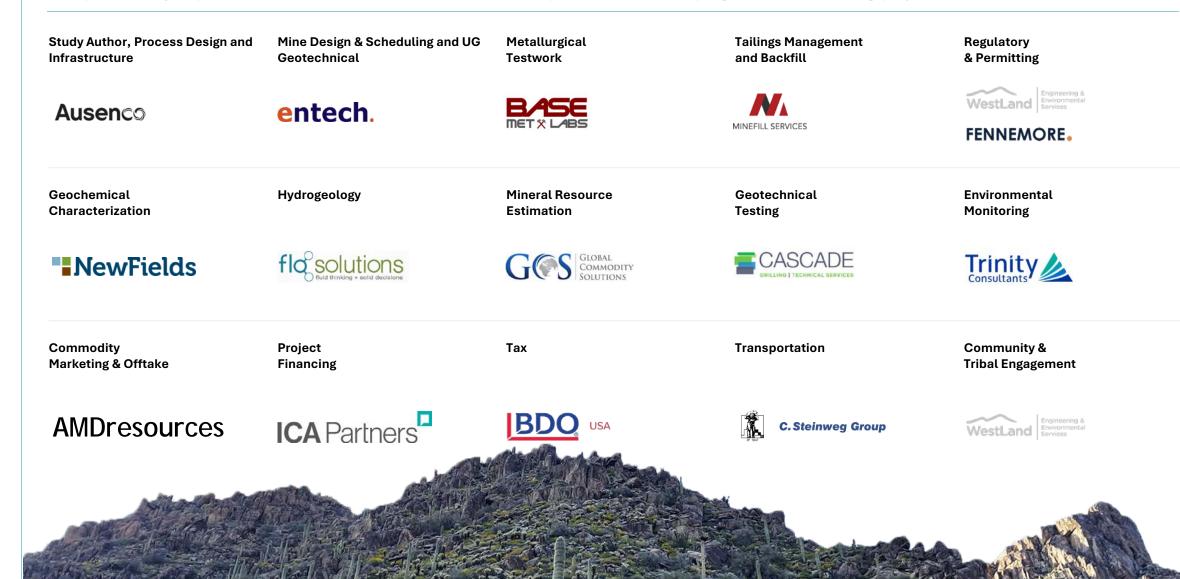
Multiple Upcoming Milestones and Catalysts

- Significant regional exploration ongoing 3 rigs
- Reserve drill out ongoing
- State and Federal permitting advancing
- DFS has commenced

Favourable Copper Market Environment

- Offtake flexibility
- Direct route to market
- Significant critical minerals funding available to mining projects in the US
- Copper market forecast to be in material deficit post 2025

- . Mining Inventory Cu equiv. (%) = (Cu% x 0.944) + (Zn% x 0.947 x 2712/9,259) + (Pb% x 0.799 x 2205/9,259) + (Ag oz/t x 0.82 x 25/9,259x 100) + (Au oz/t x 0.77 x 2055/9,259x 100)
- 2. C1 Cash costs consist of mining costs, processing costs, mine-level G&A, transport, treatment and refining charges and royalties


RESOURCES

July 2

7

PRE-FEASIBILITY STUDY CONTRIBUTING CONSULTANTS

Multiple industry experts contributed to the PFS, with extensive experience in developing world class mining projects in Arizona

RESOURCES

July

Ν

ANTLER COPPER PROJECT PFS KEY OUTCOMES

The Antler Copper Project Pre-Feasibility Study (PFS)

has defined a robust project that can produce 341kt of payable CuEq in concentrate at low cost generating strong cashflows over a >12-year mine life.

12.2 years Mine Life

13.6Mt @1.2mtpa Ore Mined 341,100 CuEq tonnes LOM Payable Metal Production **30,100 p.a CuEq tonnes** Ave. Annual Steady State Payable Metal Production

CAPITAL & OPERATING COSTS

US\$297.6m Upfront Capital

FINANCIALS

3.3 years Post-tax Payback

US\$636m Pre-Tax NPV (7%) (A\$929m) US\$77.43/t Operating Costs per tonne ore processed

US\$3.16bn

LOM Revenue

(A\$4,706m)

US\$498m

(A\$726m)

Post-Tax NPV (7%)

US\$1.97/lb CuEq C1 Cash Costs US\$0.12/lb Cu Net of Co-products

US\$1.78bn

LOM EBITDA

(A\$2,602m)

Pre-tax IRR

34.3%

US\$2.18/lb CuEq AISC US\$0.51/lb Cu Net of Co-products

US\$978m Post Tax FCF (A\$1.248)

> **30.3%** Post-tax IRR

LOCATED IN THE COPPER CAPITAL OF USA – ARIZONA

EXCELLENT LOCATION

The Antler Project is located on privately-owned land, in a sparsely populated part of northern Arizona

Arizona is 7th highest ranked jurisdiction globally in 2024 Fraser Institute Survey for investment attractiveness

Arizona is the #1 mining state in US, producing 70% of all copper produced and employing more than 35,000 people

7 of the largest operating copper mines in the US located within the State

Proven VMS district

ESTABLISHED REGIONAL INFRASTRUCTURE

15km from rail with direct access to export facilities in US and Mexico

15km from an interstate highway

55km by road to Kingman (population 35,000)

Large scale, low-cost renewable power generation in Arizona

Main Federal permit submitted, State permits to be submitted H2 2024

Recent permitting approval at the heap-leach Moss Gold Mine achieved in 18 months, on Federal land

SEXTABLISHED INFRASTRUCTURE AND SERVICES

ALMOST ALL INFRASTRUCTURE ON NWC'S PRIVATE LAND

Rail 15km away

=4=

h

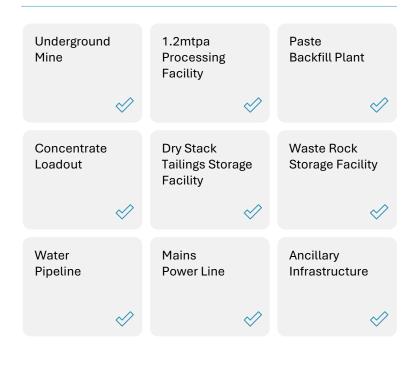
///Interstate highway15km from project

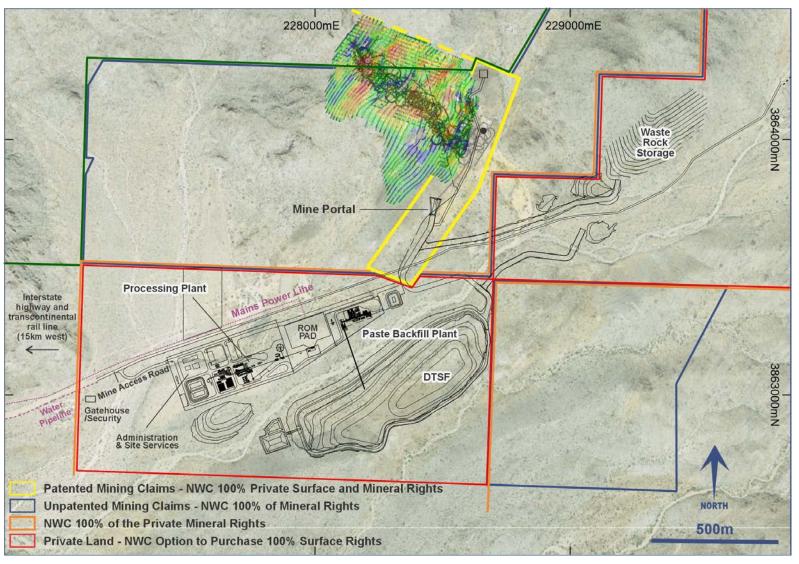
Power To the planned processing plant site

Water access secured

55km from city of 35,000 people

EXCELLENT LOCATION AND INFRASTRUCTURE = LOW CAPEX AND LOW OPEX




PROPOSED MINE PLAN: ENVIRONMENTALLY RESPONSIBLE DEVELOPMENT APPROACH

Almost all Project infrastructure will be on private land, which simplifies and streamlines mine permitting.

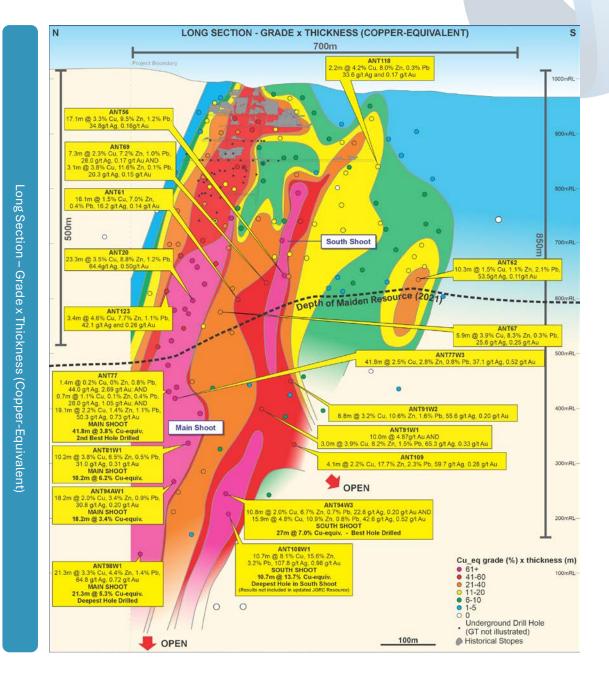
Processing plant location enables staged expansion.

PROJECT CONSISTS OF

ANTLER DEPOSIT VERY HIGH GRADE VMS RESOURCE

Mineralisation outcrops over 750m of strike

NWC has completed >150 holes for >60,000m of drilling since March 2020


Very high-grade VMS mineralisation Open at Depth and to the South; and Fault Offset to the North

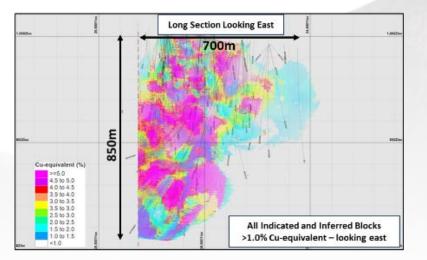
Reserve drill out commenced

HOLE ANT0094AW – 27m @ 7% CuEq

MINERAL RESOURCE ESTIMATE

PFS has been based upon the November 2022 **JORC Mineral Resource Estimate:**

At 1.0% Cu-Equivalent cut-off grade:


Tonnes	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Cu-Equiv. (%)
9,063,649	2.25	5.11	0.90	35.94	0.40	4.3
2,371,673	1.55	4.46	0.85	21.32	0.17	3.3
11,435,323	2.10	4.97	0.89	32.9	0.36	4.1
	9,063,649 2,371,673	9,063,649 2.25 2,371,673 1.55	9,063,649 2.25 5.11 2,371,673 1.55 4.46	9,063,649 2.25 5.11 0.90 2,371,673 1.55 4.46 0.85	9,063,649 2.25 5.11 0.90 35.94 2,371,673 1.55 4.46 0.85 21.32	9,063,649 2.25 5.11 0.90 35.94 0.40 2,371,673 1.55 4.46 0.85 21.32 0.17

Cross Section Looking North Cu-equivalent (%) >=5,0 4.5 to 5.0 4.0 to 4.5 35 to 4.0 3.0 to 3.5 3.5 to 3.0 2.5 to 3.0 2.0 to 2.5 All Indicated and Inferred Blocks 1.5 to 2.0 1.0 to 1.5 >1.0% Cu-equivalent - looking north

<10

Classification	Tonnes	Cu (%)	Zn (%)	Pb (%)	Ag (g/t)	Au (g/t)	Cu-Equiv. (%)
Indicated	8,209,669	2.42	5.51	0.91	36.41	0.38	4.6
Inferred	1,588,114	2.02	5.83	0.87	23.16	0.19	4.2
Total	9,797,783	2.36	5.56	0.91	34.27	0.35	4.5

UNDERGROUND MINING OPERATIONS

Ν

Antler's Mining Inventory

13.6 Mt

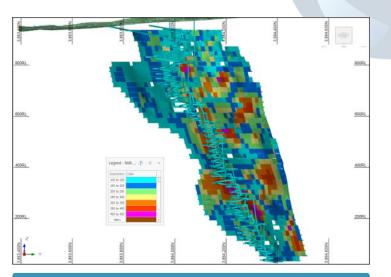
1.6% Cu, 3.7% Zn, 0.6% Pb, 24.5 g/t Ag and 0.3 g/t Au (**3.0% CuEq¹**)

Mining Method

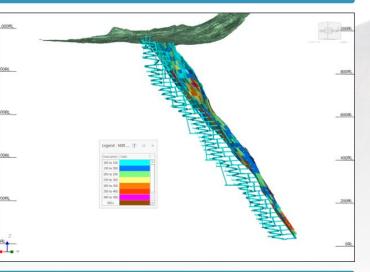
Longhole open stoping with single decline (5.5 mW x 5.8 mH), 20m sub levels

45% of tailings to be used as paste fill, remainder on DTSF

Owner operator mining

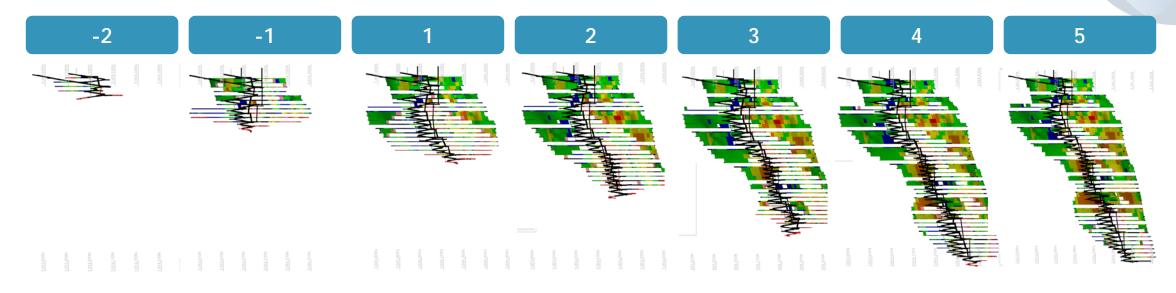


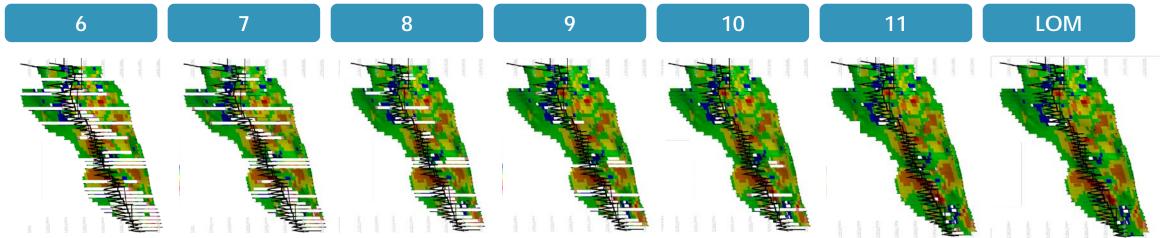
Mining Physicals


Life of Mine 12.2 years at 1.2mtpa. Ave. NSR US\$202.43/tonne

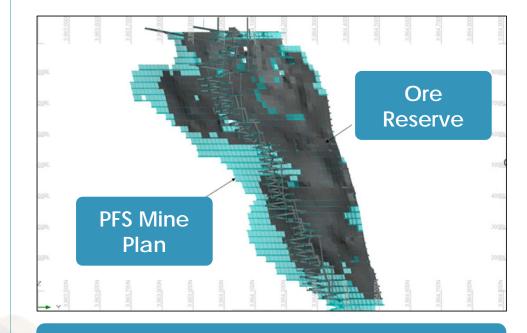
83% of the mining inventory classified as "Indicated"

Mined Metal LOM **Steady State** p.a (yr 2-12) 17.8kt Copper 216.4kt Zinc 503.4kt 41.4kt Lead 88.2kt 7.2kt Silver 10.7Moz 885.7koz Gold 115.1koz 9.0 koz


Long section of mine design looking West



Cross section of mine design looking South West


MINE DEVELOPMENT BY YEAR

6

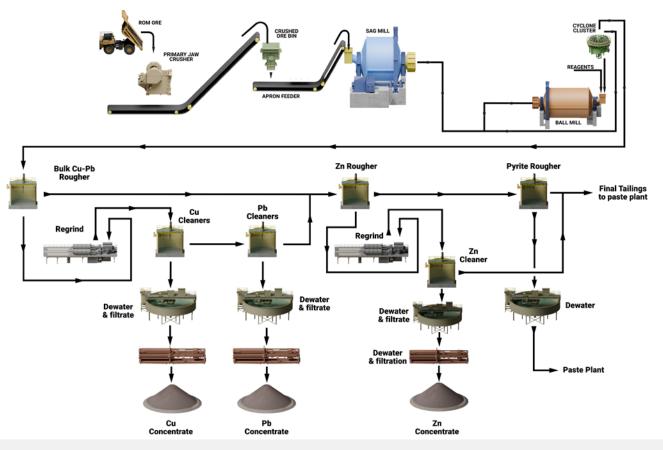
MAIDEN ORE RESERVE ESTIMATE

Antler's Maiden Ore Reserve

PROBABLE ORE RESERVE	Unit	Value		
Ore Tonnes	Mt	11		
Ore Cu Grade	%	1.6		
Ore Zn Grade	%	3.7		
Ore Pb Grade	%	0.6		
Ore Ag Grade	g/t	25.9		
Ore Au Grade	g/t	0.3		
Contained Metal				
Cu Metal	kt	180		
Zn Metal	kt.	410		

kt	180
kt	410
kt	70
Moz	9.3
koz	100
	kt kt Moz

• For further details refer ASX announcement of 17 July 2024


11 Mt

grading 1.6% Cu, 3.7% Zn,

0.7% Pb, 26 g/t Ag and 0.3 g/t Au

• Tonnage and grade calculations have been rounded to the nearest 1,000,000t of ore, 0.1 % Cu/Pb/Zn grade, 0.1 g/t Au, and 1 g/t Ag. Metal calculations have been rounded to the nearest 10,000 t of Cu/Pb/Zn metal, 10 koz au and 100 koz

CONVENTIONAL MINERAL PROCESSING

3 separate metallurgical testing programs undertaken since acquisition

Very high overall recovery to concentrates demonstrated in most recent locked cycle testwork

THE PFS DESIGN USES CONVENTIONAL CRUSH-GRIND-FLOAT PROCESSING CIRCUIT TO ACHIEVE VERY HIGH RECOVERIES

RESOURCES

July

Ν

CONCENTRATE PRODUCTION AND MARKETING

HIGH QUALITY PRODUCT AND DIRECT ACCESS TO MARKET

Three high-grade, low impurity concentrates produced:

🔗 Cu Concentrate

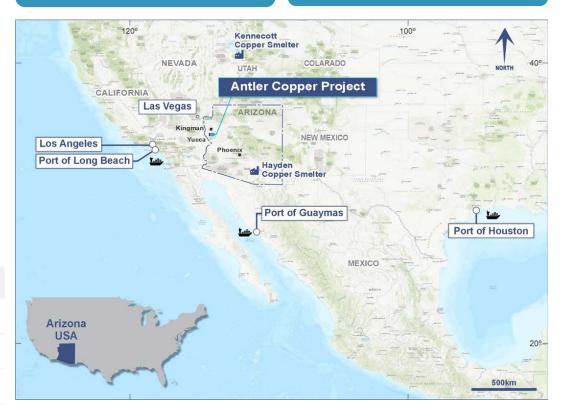
89% Cu Recovery to Cu Conc. 27.4% Cu, 1.52g/t Au – c.65,000WMT p.a

🔗 Zn Concentrate

91% Zn Recovery to Zn Conc. 52.3% Zn – c.82,000WMT p.a

Pb/Ag Concentrate

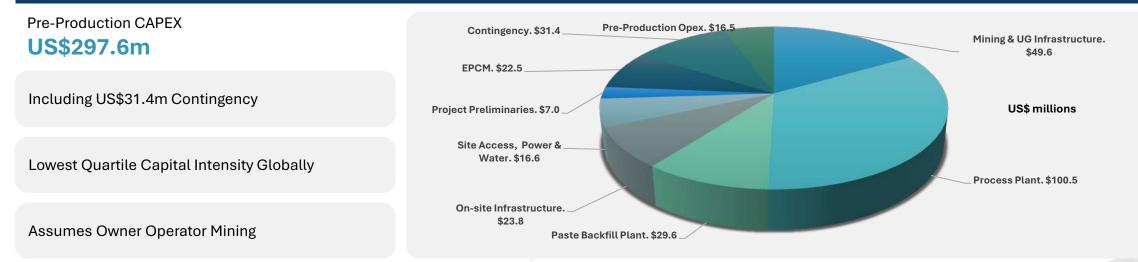
49.3% Pb Recovery to Pb Conc. 55.3% Pb, 1,361g/t Ag – c.7,000 WMT p.a


Very low levels of impurities in all concentrates, ensuring attractiveness to end users.

Product	Assay - % or g/t										
FIUCUCI	Cu	Pb	Zn	Ag	Au	Fe	S				
Cu Con	27.4	0.5	2.2	104	1.52	27	31.4				
Pb-Ag Con	3.92	55.3	6.3	1,361	1.37	9.1	20.8				
Zn Con	0.99	2.3	52.3	76	0.24	7.8	33.8				

Route to market

Ready access to end markets


RESOURCES

July

N

CAPITAL AND OPERATING COSTS

PRE-PRODUCTION CAPITAL COSTS

OPERATING COSTS

US\$/t milled	48.90
US\$/t milled	23.89
US\$/t milled	4.65
US\$/t milled	77.43
US\$/lb CuEq	1.97
US\$/lb CuEq	2.18
US\$/lb Cu	0.12
US\$/lb Cu	0.51
	US\$/t milled US\$/t milled US\$/t milled US\$/lb CuEq US\$/lb CuEq US\$/lb CuEq

SUSTAINING CAPITAL EXPENDITURE	US\$M
Sustaining Capital – Mining Development	104.1
Sustaining Capital – DSTF Embankment Works	17.6
Sustaining Capital – Tailings Management	18.7
Sustaining Capital – Processing Plant	10.1
Sustaining Capital - Total	150.6
Closure costs	8.9

ROBUST PROJECT ECONOMICS

The PFS demonstrates that Antler has robust economic potential and is readily financeable by conventional means

PROJECT ECONOMICS	Units	LOM Total US\$	LOM Total A\$
Revenue	\$bn	3.16	4.61
EBITDA	\$bn	1.68	2.45
Pre-Tax Free Cash Flow	\$bn	1.22	1.79
Taxes	\$bn	-244	-356
Post-Tax Free Cash Flow	\$bn	978	1.43
Pre-Tax NPV (7%)	\$M	636	929
Pre-Tax IRR	%	34.3%	34.3%
Pre-Tax Payback	years	3.1	3.1
Post-Tax NPV (7%)	\$M	498	726
Post-Tax IRR	%	30.3%	30.3%
Post-Tax Payback	years	3.3	3.3

ANNUAL GROSS REVENUE (US\$m)

LOM Price

Assumption

\$4.20

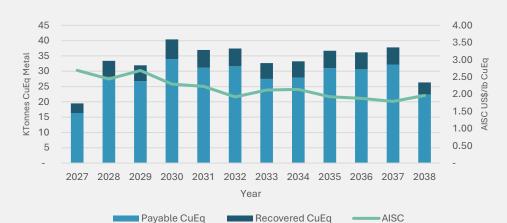

\$1.23

\$1.00

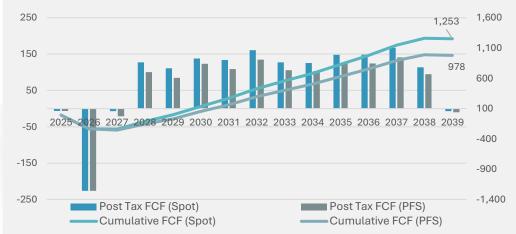
\$2,055

\$25.00

REVENUE BREAKDOWN BY COMMODITY


SIGNIFICANT LEVERAGE TO SPOT COMMODITY PRICES

SPOT PRICE FINANCIAL METRICS


		PFS	Case	Spot Prices		
	Units	US\$	A\$	US\$	A\$	
Pre-Tax NPV ₇	\$M	636	929	857	1,251	
Post-Tax NPV ₇	\$M	498	726	668	975	
Post Tax IRR	%	30.3%	30.3%	37.2%	37.2%	
LOM Revenue	\$M	3,158	4,611	3,520	5,139	
Av. Annual Revenue	\$M	279	410	311	457	
LOM Post-Tax FCF	\$M	978	1,428	1,253	1,829	
Av. Annual Post-Tax FCF	\$M	115	168	139	204	
C1 Cost Net of Co-Products	US\$/lb	0.12		-0.29		
AISC Net of Co-Products	US\$/lb	0.51		0.10		

Commodity	Unit	PFS Price Assumption	Spot Prices	% Difference PFS vs Spot
Copper	US\$/lb	\$4.20	\$4.66	11%
Zinc	US\$/lb	\$1.23	\$1.36	11%
Lead	US\$/lb	\$1.00	\$1.02	2%
Gold	US\$/oz	\$2,055	\$2,392	16%
Silver	US\$/oz	\$25.00	\$31.12	24%

METAL PRODUCTION AND AISC

FCF GENERATION (US\$M) – PFS AND SPOT PRICES

PERMITTING AND SUSTAINABILITY

N <u>T</u>

20

Majority of Infrastructure On NWC's Privately-Owned Land

 New World either owns or has the right to purchase the land upon which infrastructure to develop the project will be constructed, streamlining permitting significantly

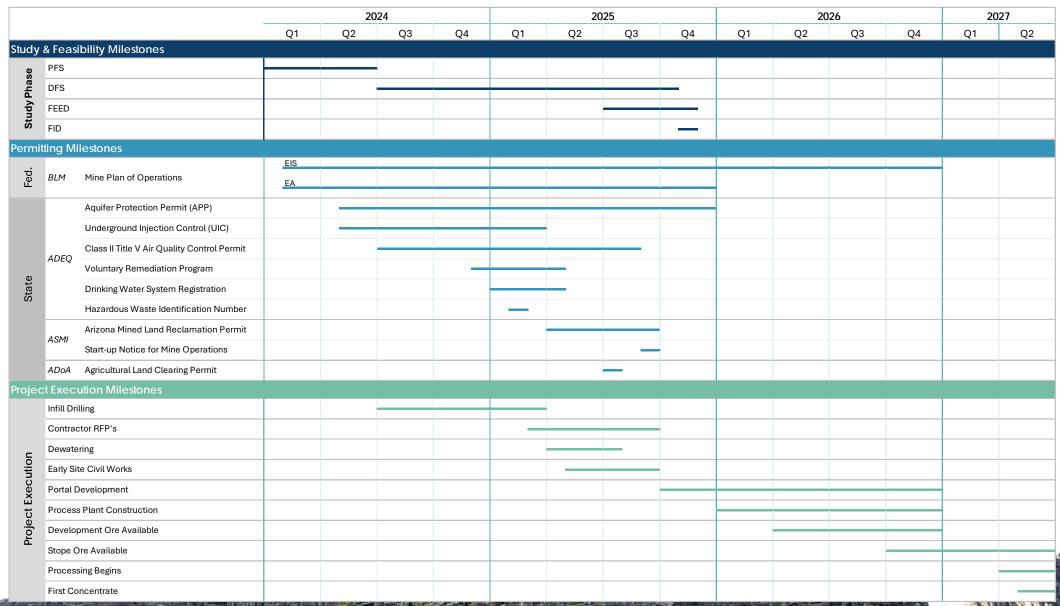
Permitting Well Advanced – A Streamlined Process

- Key Federal Permit, Mine Plan of Operations (MPO), submitted in January 2024; preparation of State applications is well advanced.
- State and Federal mine permitting processes will run concurrently.
- Permitting process completed in 18 months at the nearby Moss Gold Mine.
- Strong government and community support for the mining industry in the area.

Environmentally and Socially Responsible Development Approach

NWC has prioritised an environmentally and socially responsible development approach involving:

- Underground mining only (limited surface disruption)
- Dry-stack filtered tailings (45% to be used in underground fill)
- Comparably low carbon emission operation


Environmental Baseline Data Collection Work In Progress

• Environmental baseline data collection work at the Project was initiated in 2021 and has regularly continued since.

				20	2024			2025			2026				2027	
			Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
Permi	tting Mi	lestones														
			EIS													
Fed.	BLM	Mine Plan of Operations	EA													
		Aquifer Protection Permit (APP)														
	ADEQ	Underground Injection Control (UIC)						-								
		Class II Title V Air Quality Control Permit														
Ð	ADEQ	Voluntary Remediation Program														
State		Drinking Water System Registration														
		Hazardous Waste Identification Number														
	ASMI	Arizona Mined Land Reclamation Permit														
		Start-up Notice for Mine Operations														
	ADoA	Agricultural Land Clearing Permit							-							
			Server and the server of the s													

PRIVATE LAND ADVANTAGE | STREAMLINED PROCESS

PROJECT SCHEDULE: UPCOMING MILESTONES

PFS SUMMARY

ANTLER PFS DEFINES A LOW-COST PROJECT GENERATING STRONG CASHFLOWS OVER A 12+YEAR MINE LIFE

- Pre-Tax: US\$636m (A\$929m) NPV₇; 34.3% IRR
 Post-Tax:
 - US\$498m (A\$726m) NPV₇; 30.3% IRR
- Low Cost, Low Capital Intensity
- US\$0.12/lb Cu C1 (net of co-products)
- US\$298m upfront capital, readily debt financeable

- 13.6Mt @ 3.0% CuEq*
 PFS Case mine plan
- +12 years mine life at 1.2mtpa

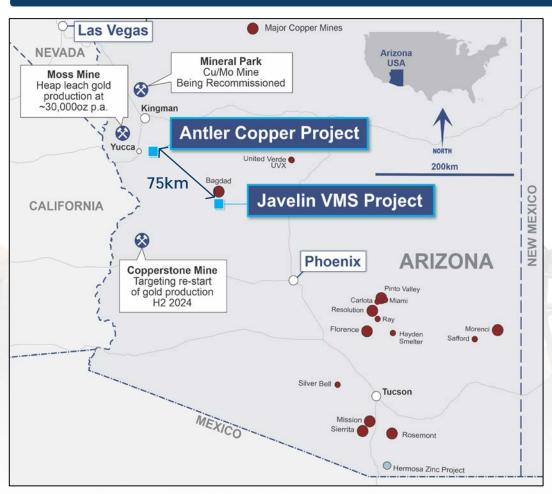
High Quality 전전 Product

341.1kt of CuEq metal payable in 3 separate, clean concentrates with direct access to market

- US\$3.16bn (A\$4.61bn) LOM Revenue
- US\$1.68bn (A\$2.45bn) LOM EBITDA
- US\$978bn (A\$1.43bn) LOM Free Cash Flow (post-tax)

- **Low impact underground mining,** with paste backfill and dry-stack tailings storage
- >30% renewable power by 2030

*The 13.6Mt mining inventory includes both Indicated (83%) and Inferred (17%) Mineral Resources. New World notes that there is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration work will result in the determination of Indicated Mineral Resources, or that the production target itself will be realised.


REGIONAL EXPLORATION

UNTESTED EXPLORATION UPSIDE

PREVIOUS PRODUCTION FROM 8 HIGH-GRADE VMS DEPOSITS

100% OF ALL DRILLING PRE-JAN. 2024 OVER JUST 700M OF STRIKE AT THE ANTLER DEPOSIT

Antler VMS District

Past-production from 2 deposits 6km apart:

Antler Copper Deposit:

1916-70: 70,000t @ 2.9% Cu, 6.2% Zn

Copper World Deposit 1944-70: ~40,000t @ 3.5% Cu & 10.3% Zn

Javelin VMS District

Past-production from 6 deposits, including:

Old Dick Mine

1943-65: 614,000t @ 3.4% Cu & 10.6% Zn

Bruce Mine

1968-77: 746,000t @ 3.7% Cu & 12.7% Zn

Pinafore Deposit

Historical Production: 9,100t @5% CuEq (1902-1950) Historical Resource: 630,000t @ 3.4% Cu & 7.1% Zn

Red Cloud Mine

200t @ 6.4% Cu , 2.7% Zn & 2.6g/t Au

17+ VMS TARGETS ACROSS 2 PROJECTS

Antler VMS District

11+ Very High-Priority Exploration Targets

Southern End of Antler Deposit – Geology

Bullhorn – Mag/IP/Geology

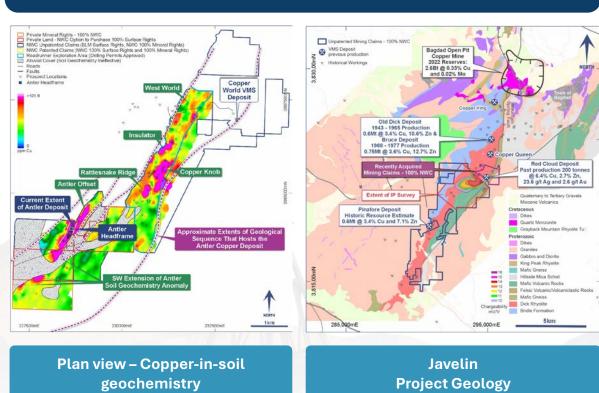
Cowhorn - Mag/IP/Geology

SW Antler Geochem – Geology/Mag

Antler Offset – Geochem/Strike Extents/IP

Mack – Mag/IP/Geology

Longhorn – Mag/IP/Geology


Rattlesnake Ridge – Geochem/IP/Geology

Copper Knob – Geochem/IP/Geology

Insulator – Geochem/IP/Geology

West World - IP/Geochem/Geology

3 Diamond Core Rigs Now Drilling to Expand The Shallow Resource Base

Javelin VMS District

6+ Very High-Priority Exploration Targets

Pinafore - 630kt historic resource

Discus-IP/Geochem

Red Cloud – Past Production/Geochem

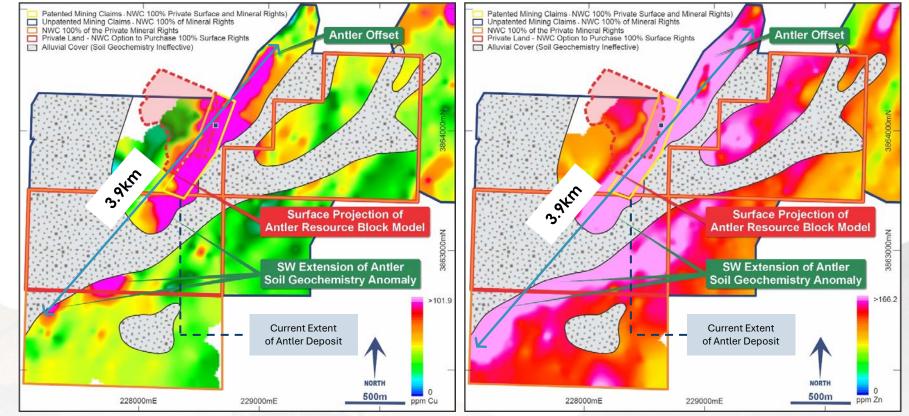
Rudkins – Historic Workings/Geochem

Red Cloud-Rudkins – 1,300m Geochem

Discus South Corridor – 3,000m Geochem

ANTLER PROJECT

GEOCHEMISTRY INDICATES POTENTIAL TO DISCOVER EXTENSIONS OF ANTLER DEPOSIT ALONG STRIKE


Copper-In-Soil Anomaly
3.9km-long

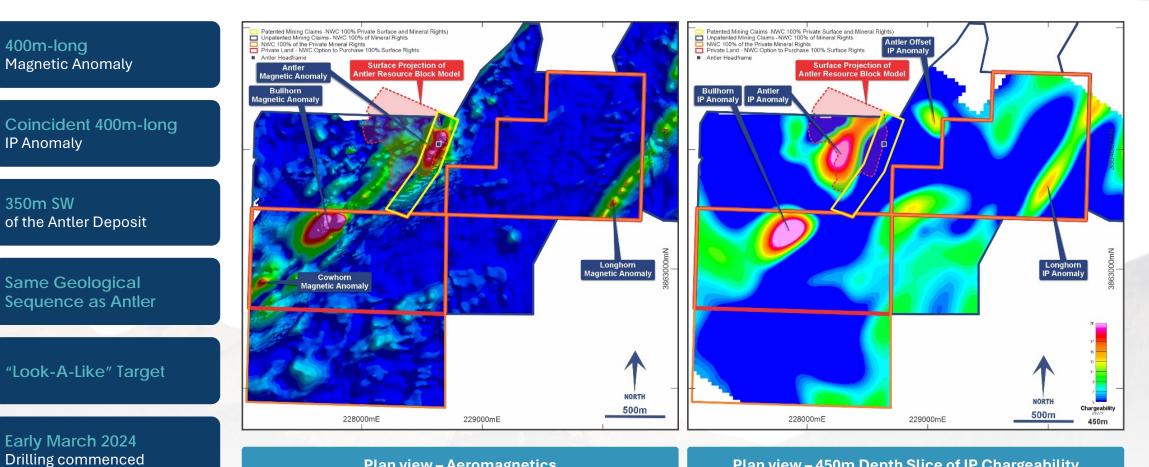
2.9km-long

Zinc-In-Soil Anomaly

Only 700m of Strike Drill-Tested to Date

Mineral Rights to South and East of Antler Deposit Only Secured in Dec. 2023

Plan view – Copper-in-soil geochemistry

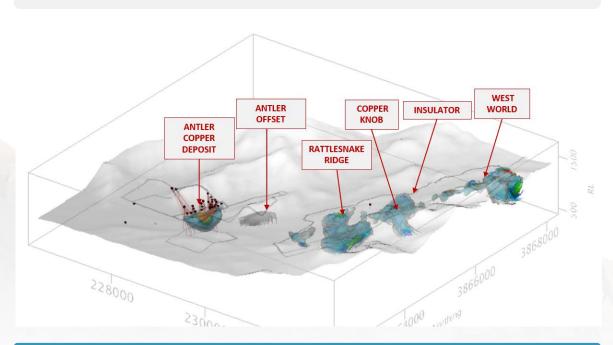

Plan view – Zinc-in-soil geochemistry

ANTLER PROJECT

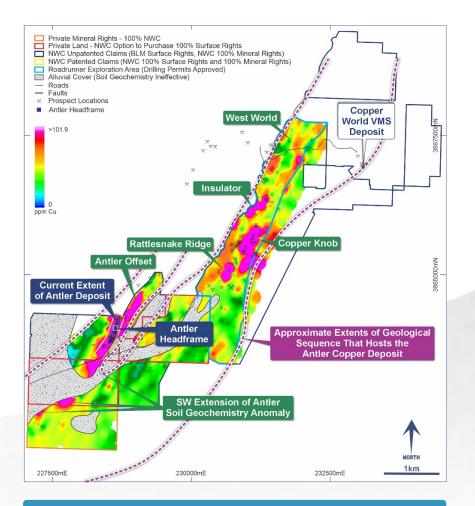
BULLHORN TARGET (+COWHORN, LONGHORN, ANTLER OFFSET AND MACK TARGETS)

Plan view – Aeromagnetics

Plan view – 450m Depth Slice of IP Chargeability


ANTLER PROJECT

"ROADRUNNER" TARGETS BETWEEN THE ANTLER AND COPPER WORLD VMS DEPOSITS


No previous drilling

between the Antler and Copper World Deposits

Multiple look-a-like coincident IP/geochemistry targets **over 6km of strike**

Orthogonal view – IP Chargeability Anomalies

Plan view – Copper-in-soil geochemistry

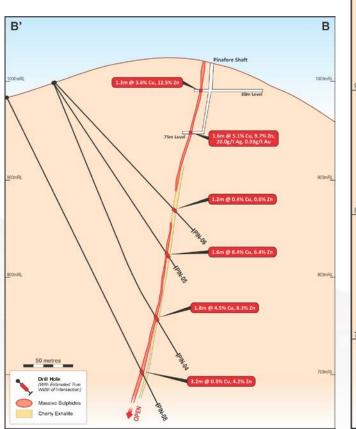
JAVELIN PROJECT - PINAFORE VMS DEPOSIT

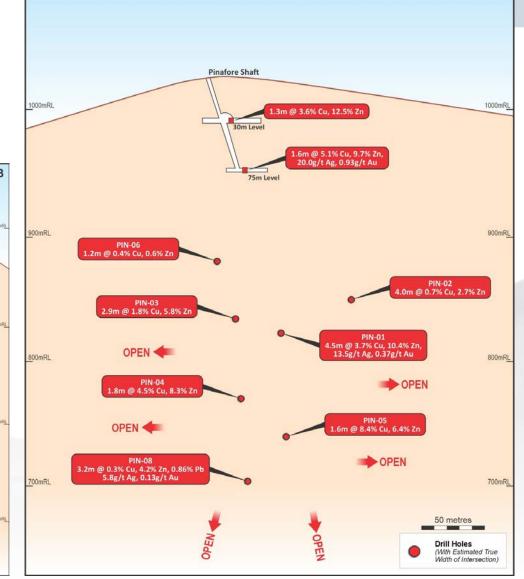
NO EXPLORATION SINCE 1993

Past Production 9,100t @ 5% Cu and 11% Zn

Mineralisation intersected in 7 of only 9 previous drill holes

including: 4.5m @ 3.7% Cu & 10.4% Zn; 1.6m @ 8.4% Cu & 6.4% Zn; 1.8m @ 4.6% Cu & 8.3% Zn; and 2.9m @ 1.8% Cu & 5.6% Zn. (All Estimated True Widths)


Alteration over 1,200m of strike, with mineralisation open at depth

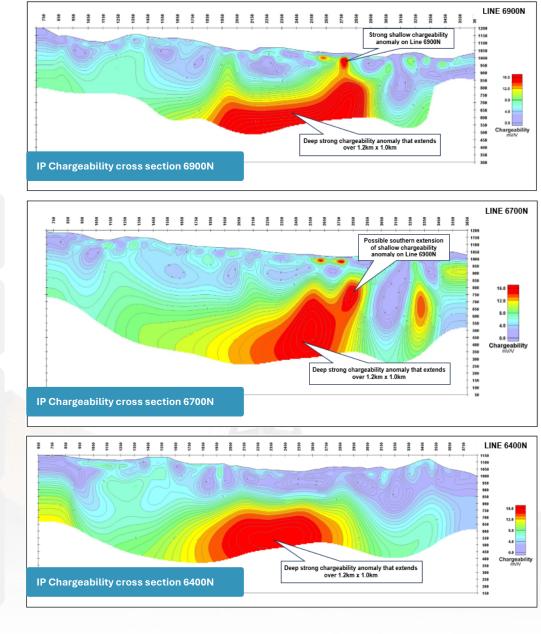

Private Land

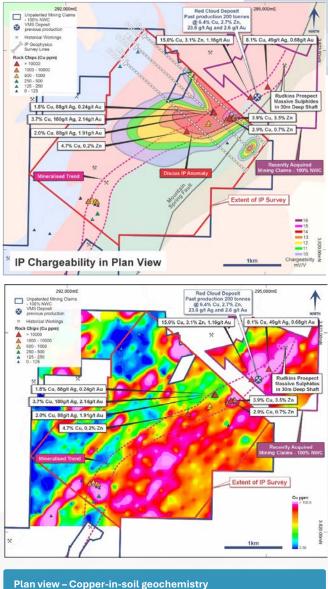
Drilling commenced mid-June; Potential to expedite mine permits.

Historic Resource

630,000t @ 3.4% Cu and 7.1% Zn

JAVELIN PROJECT


DISCUS, RED CLOUD, RUDKINS VMS TARGETS


Over 4.5km Very strong soil geochemistry

1.2km x 1.0km IP Anomaly

Coincident rock samples to 15.0% Cu, 3.5% Zn, 180 g/t Ag and 2.14 g/t Au

Commenced Drilling Jan. 2024 Initial 8 hole, +3,000m drilling program

INVESTMENT OVERVIEW

OUTSTANDING PROJECTS

Strategically Located Copper Development Project, and Regional Exploration Targets

High Grade

- Mining Inventory 13.6Mt @ 1.6% Cu, 3.7% Zn, 0.6% Pb, 24.5 g/t Ag and 0.3 g/t Au (3.0% CuEq1)
- Defined Resource places Antler in top 4%* of copper deposits globally by CuEq grade

Excellent Location

- Direct access to power, water and transportation infrastructure locally
- 70% of US Copper produced in Arizona

Exploration Upside

- Cluster of 30-40 known VMS deposits in northern Arizona
- 17+ VMS drilling targets across 2 Project areas (Antler & Javelin)

Outstanding ESG Credentials

- Best practice across all areas of project development
- >30% Renewables by 2030

ROBUST ECONOMICS

High Margin Mine Plan Strong Cashflow and Low Capital Intensity

Strong Returns

- Revenue US\$3.16bn (A\$4,61bn) LOM from 341kt Payable CuEq (av. 30.1ktpa CuEq steady state)
- Average annual post tax free cash flow of US\$115m (A\$168m)
- NPV₇ US\$636m (A\$929m), 34.3% IRR Pre-Tax
- NPV₇ increases +35% at spot prices

High Margin

- Life of Mine EBITDA: US\$1.68bn (A\$2.45bn)
- C1¹ Cash Cost Net of Co-products: \$0.12/lb CuEq
- AISC² Net of Co-products: \$0.51/lb CuEq

Modest Capex

- US\$298m
- Payback of 3.3 years (Post-Tax)
- US\$8,563/t CuEq Capital Intensity lowest quartile globally

EXCEPTIONAL TIMING

Near Term Production Coinciding with Emerging Copper Supercycle

Near term production

Construction 2026, Production 2027

Multiple Upcoming Milestones and Catalysts

- Significant regional exploration ongoing
- Reserve drill out ongoing
- State and Federal permitting advancing
- DFS has commenced

Favourable Copper Market Environment

- Offtake flexibility
- Direct route to market
- Significant critical minerals funding available to mining projects in the US
- Copper market forecast to be in material deficit post 2025

- 1. Cu equiv. (%) = (Cu% x 0.872) + (Zn% x 0.889 x 3,011/7,507) + (Pb% x 0.591 x 2,116/7,507) + (Ag oz/t x 0.503 x 20.26/7,507x 100) + (Au oz/t x 0.700 x 1,709/7,507x 100). Refer ASX Announcement 28 November 2022
- 2. C1 Cash costs consist of mining costs, processing costs, mine-level G&A, transport, treatment and refining charges and royalties
- 3. AISC include C1 cash costs plus sustaining capital and closure costs

Additional Information

Previously Reported Results

There is information in this presentation relating to:

- 1. the maiden Ore Reserve estimate for the Antler Copper Deposit, which was previously announced on 17 July 2024;
- 2. the updated Mineral Resource Estimate for the Antler Copper Deposit, which was previously announced on 28 November 2022; and
- exploration results which were previously announced on 14 January, 9 and 20 March, 17 and 24 April, 12 May, 3 June, 7, 21 and 28 July, 3 and 31 August, 22 September, 22 October and 2 and 10 and 25 November 2020 and 18 January and 2, 12 and 19 March and 8 and 20 April, 20 May, 21 June, 15 and 29 July, 16 August, 22 September, 13 October, 1, 5 and 30 November 2021 and 20 January, 1 March, 20 April, 14 and 22 July, 26 September, 4 and 11 October, 23 November and 5 December 2022 and 7 and 13 June, 31 July, 20 October, 9, 12 and 23 November, 21 December 2023 and 8 January, 5 February and 18, 22 and 25 March and 30 May 2024.
 7 June, 31 July, 18 September, 20 October, 13 November and 30 November 2023-, 8 January, 5 February, 18 and 22 March and 30 May 2024.

Other than as disclosed in those announcements, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and that all material assumptions and technical parameters have not materially changed. The Company also confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

All references to the Pre-Feasibility Study and its outcomes in this document relate to the announcement of 17 July 2024 titled "Antler Copper Project – Pre-Feasibility Study". Please refer to that announcement for full details and supporting information.

Additional Information

Copper Equivalent Calculation

For the JORC Mineral Resource Estimate for the Antler Copper Deposit: copper equivalent grades were calculated based on the following assumed metal prices that closely reflect the spot prices prevailing on 10 October 2022; namely: copper – US\$7,507/t, zinc – US\$3,011/t, lead – US\$2,116/t, silver – US\$20.26/oz and gold – US\$1,709/oz. Potential metallurgical recoveries have been included in the calculation of copper equivalent grades. These recoveries have been based on metallurgical testwork that New World had conducted. This metallurgical testwork is continuing, but recoveries are expected to be in the order of: copper – 87.2%, zinc – 88.9%, lead – 59.1%, silver – 50.3% and gold – 70.0%. New World believes that all elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

The following formula was used to calculate the copper equivalent grade, with results rounded to one decimal point: Resource Cu equiv. (%) = $(Cu\% x \ 0.872) + (Zn\% x \ 0.889 x \ 3,011/7,507) + (Pb\% x \ 0.591 x \ 2,116/7,507) + (Ag \ oz/t x \ 0.503 x \ 20.26/7,507x \ 100) + (Au \ oz/t x \ 0.700 x \ 1,709/7,507x \ 100$

For the Mining Inventory calculation: copper equivalent grades were calculated based on the following assumed metal prices that closely reflect the spot prices prevailing on 10 July 2024; namely: copper – US\$9,259/t, zinc – US\$2,712/t, lead – US\$2,205/t, silver – US\$25/oz and gold – US\$2,055/oz. Potential metallurgical recoveries have been included in the calculation of copper equivalent grades. These recoveries have been based on metallurgical testwork that New World had conducted. This metallurgical testwork is continuing, but overall recoveries to concentrate are expected to be in the order of: copper – 94.4%, zinc – 94.7%, lead – 79.9%, silver – 82% and gold – 77%%. New World believes that all elements included in the metal equivalent calculation have a reasonable potential to be recovered and sold.

The following formula was used to calculate the copper equivalent grade, with results rounded to one decimal point: *Mining Inventory Cu equiv.* (%) = (Cu% x 0.944) + (Zn% x 0.947 x 2712/9,259) + (Pb% x 0.799 x 2205/9,259) + (Ag oz/t x 0.82 x 25/9,259x100) + (Au oz/t x 0.77 x 2055/9,259x 100)

Mike Haynes

+61 419 961 895 mhaynes@newworldres.com

Nick Woolrych

+61 432 492 010 nwoolrych@newworldres.com

WWW.NEWWORLDRES.COM