

Further Mineral Sands Exploration Results at Capel Project

HIGHLIGHTS

- Drilling program at the Capel Mineral Sands Project has defined cohesive heavy mineral (HM) mineralisation up to a maximum strike length of approximately 2.5 kilometres
- Final assays from the 2,067m, ninety-five (95) hole, aircore drilling program received, with highlights Including¹:
 - 4.9% HM over 6m from 15m downhole including 3m at <u>7.7% HM</u> (CAP040)
 - 4.5% HM over 5m from surface (CAP060)
 - 3.4% HM over 7m from 12m downhole including 2m at <u>5.9% HM</u> (CAP037)
 - 3.1% HM over 6m from surface (CAP046)
- Three shallow strandlines and localised moderate grade, dunal HM mineralisation identified
- The southwest of Western Australia is a well-known HM region with several large deposits currently being mined by global companies including Tronox (NYSE: TROX), Iluka (ASX: ILU) and Doral (Iwatani Corp TYO:8088)

Pinnacle Minerals Ltd (**PIM**:ASX) ("**Pinnacle**", the "**Company**") is pleased to announce that the extension and infill drilling testing historical, wide-spaced drilling conducted by Iluka has defined cohesive and shallow HM mineralisation over a strike length of up to 2.5 kilometres.

All assays from the program have now been received by the Company with the technical team in the process of reviewing and modelling the entire data set of assay results with a view to determining the next steps in advancing the project.

Previous exploration results announced by the Company on the 25th of June 2024 have been confirmed by intersections including 4.5% HM over 5m from surface (CAP060) and 4.9% HM over 6m from 15m downhole, including 3m at 7.7% HM (CAP040). A summary of all intercepts and assays are presented in Appendix 2 and Appendix 3.

These latest results are from the central and northeastern part of the mineralised zone (*Figure 1*) where initial modelling in Datamine shows that the drilling program has defined three shallow SE/NW trending strandlines, with the largest strandline being approximately 2.5km long, up to 6m thick and 150m in width in sections. In addition, a localised moderate grade dunal accumulation of HM mineralisation was also intercepted in CAP057 – 061 with grades exceeding 4% HM from surface.

Pinnacle Minerals Managing Director, Nic Matich, commented:

"The drilling campaign has successfully defined cohesive heavy mineral (HM) mineralisation over a strike length of approximately 2.5 kilometres. Intercepting both strandline and dunal HM mineralisation at surface certainly assists the potential of the project."

¹ Intervals reported at 1.0% THM cutoff

Pinnacle Minerals Ltd ACN: 655 033 677 ASX: **PIM** **Issued Capital** 45,463,317 Shares 44,867,271 Options

Australian Registered Office

Unit 6, Level 1, 389 Oxford Street Mount Hawthorn WA 6016 T: + 61 8 9426 0666 E: admin@pinnacleminerals.com.au

Directors

WILLIAM WITHAM – Non-Executive Chairman NIC MATICH – Managing Director LINCOLN LIU – Non-Executive Director STEPHEN ROSS – Non-Executive Director

www.pinnacleminerals.com.au

Figure 1: Capel Mineral Sands Project - Drill collars referenced in this announcement

Exploration Timeline 2024 (subject to change and pending exploration success):

	Q3 2024	Q4 2024	Q1 2025
CANADA (Lithium)			
Adina East – LIDAR results			
Adina East – Field mapping and rock chip sampling			
Adina East – Diamond drilling / trenching of lithium targets			
SOUTH AUSTRALIA (Uranium and Rare Earths)			
Wirrulla – Historical drill core XRF & assays			
Wirrulla – Drill program permitting (PEPR)			
Wirrulla – Drilling uranium targets			
WESTERN AUSTRALIA (Mineral Sands)			
Capel – Final assay results			
Capel – Project review			

This announcement has been authorised for release by the Board of Pinnacle Minerals Ltd.

For further information, please contact:

Non Executive Chairman

William Witham Pinnacle Minerals Limited T: + 61 (0) 8 9426 0666 E: admin@pinnacleminerals.com.au

Media and Investor Inquiries

Jane Morgan Jane Morgan Management +61(0) 405 555 618 E: jm@janemorganmanagement.com.au

About Pinnacle Minerals

Pinnacle Minerals Ltd (ASX:PIM) is an ASX listed technology minerals company focused on delivering shareholder value via the systematic exploration and development of its portfolio of battery and technology metals projects in Canada, Western Australia and South Australia. Pinnacle aims to deliver exploration success via systematic and geologically rigorous techniques. The Company's focus is the "Adina East Project" in James Bay, Quebec which is proximal to the world class Adina Lithium Project (Winsome Resources: ASX:WR1) and adjacent to the Trieste Lithium Project (Loyal Lithium: ASX:LLI) and the Tilly Lithium Project (ASX:WR1). The Company's Australian exploration assets are prospective for Uranium, Rare Earth Elements and Heavy Mineral Sands.

Forward Looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance, or achievements to be materially different from those expressed or implied by such forward-looking information.

Competent person statement

The information in this announcement that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Richard Stockwell, a Competent Person who is a Fellow of The Australian Institute of Geoscientists (AIG). Richard Stockwell is a director of Placer Consulting and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Richard Stockwell consents to the inclusion in the presentation of the matters based on his information in the form and context in which it appears.

Managing Director

Nic Matich Pinnacle Minerals Limited T: + 61 (0) 475 870 345 E: admin@pinnacleminerals.com.au

Figure 2: Pinnacle Minerals Projects' Location Map

Appendix 1: Collar Summary

	Easting	Northing	RL	EOH	Dia	471
Hole ID	(GDA94 Zone 50)	(GDA94 Zone 50)	(m)	(m)	р	AZI
CAP027	364901	6279902	-	21	-90	360
CAP028	364941	6279859	-	15	-90	360
CAP029	365370	6280310	-	21	-90	360
CAP030	365365	6280390	-	21	-90	360
CAP031	365368	6280458	-	21	-90	360
CAP032	365362	6280574	-	21	-90	360
CAP033	365324	6280610	-	24	-90	360
CAP033a	365322	6280612	-	24	-90	360
CAP034	365284	6280652	-	21	-90	360
CAP035	365243	6280690	-	21	-90	360
CAP036	365193	6280740	-	21	-90	360
CAP037	365160	6280772	-	23	-90	360
CAP038	365123	6280823	-	21	-90	360
CAP039	365078	6280859	-	21	-90	360
CAP040	365372	6281136	-	21	-90	360
CAP041	365412	6281085	-	21	-90	360
CAP042	365463	6281036	-	21	-90	360
CAP043	365517	6281029	-	21	-90	360
CAP044	365580	6280925	-	21	-90	360
CAP045	365624	6280886	-	21	-90	360
CAP046	365665	6280827	-	21	-90	360
CAP047	365708	6280785	-	21	-90	360
CAP048	365760	6280762	-	21	-90	360
CAP049	365682	6281397	-	21	-90	360
CAP050	365719	6281354	-	21	-90	360
CAP051	365761	6281311	-	21	-90	360
CAP052	365799	6281273	-	21	-90	360
CAP053	365816	6281200	-	21	-90	360
CAP053a	365817	6281200	-	21	-90	360
CAP054	365890	6281193	-	21	-90	360
CAP055	365932	6281148	-	21	-90	360
CAP056	365979	6281131	-	22	-90	360
CAP057	365945	6281687	-	22	-90	360
CAP058	365987	6281649	-	21	-90	360
CAP059	366034	6281610	-	21	-90	360
CAP060	366071	6281564	-	21	-90	360
CAP061	366113	6281525	-	21	-90	360
CAP062	366007	6281056	-	23	-90	360
CAP063	366033	6281002	-	21	-90	360
CAP064	366093	6280970	-	21	-90	360
CAP065	366133	6280939	-	21	-90	360
CAP066	368131	6282323	-	21	-90	360
CAP067	368171	6282284	-	21	-90	360
CAP068	368211	6282242	-	21	-90	360
CAP069	368253	6282199	-	21	-90	360
CAP070	368297	6282154	-	21	-90	360
CAP071	368340	6282112	-	21	-90	360
CAP072	368385	6282065	-	21	-90	360
CAP073	368425	6282027	-	21	-90	360
CAP0/4	367833	6281486	-	21	-90	360
CAPU/5	36/86/	6281448	-	21	-90	360
CAPU/6	367695	6281283	-	21	-90	360
CAPU/6a	367695	6281283	-	21	-90	360
CAP077	367644	6281323	-	21	-90	360
CAP078	367600	6281381	-	21	-90	360
CAP0/9	367568	6281407	-	21	-90	360

	Easting	Northing	RL	EOH	Din	471
	(GDA94 Zone 50)	(GDA94 Zone 50)	(m)	(m)	Dip	<u>76</u> 1
CAP081	367756	6281558	-	21	-90	360
CAP082	367090	6281671	-	21	-90	360
CAP083	367133	6281624	-	25	-90	360
CAP084	367175	6281580	-	24	-90	360
CAP085	367206	6281562	-	24	-90	360
CAP086	367278	6281560	-	22	-90	360
CAP087	367685	6281635	-	22	-90	360
CAP088	367672	6281696	-	24	-90	360
CAP089	367620	6281691	-	22	-90	360
CAP090	367567	6281754	-	24	-90	360
CAP091	367513	6281783	-	21	-90	360

Appendix 2: Intervals > 2m in length and over 1.5% THM mineralisation (unbroken)

Hole ID	From (m)	To (m)	Length	ТНМ	Slimes	OS
CAP027	11	14	3	2.2	13.7	0.1
CAP030	10	13	3	3.1	7.6	0.0
CAP030	14	17	3	2.5	7.2	5.0
CAP030	18	21	3	3.7	34.7	10.8
CAP031	9	13	4	3.4	10.9	0.1
CAP031	15	21	6	3.3	14.8	12.5
CAP033	3	6	3	2.2	14.3	14.4
CAP033	15	18	3	2.2	5.2	22.5
CAP036	12	21	9	2.5	2.7	19.4
CAP037	12	17	5	2.8	4.6	2.4
CAP038	12	15	3	2.2	4.6	2.4
CAP039	13	16	3	2.5	3.0	6.9
CAP040	16	21	5	5.7	14.0	3.9
CAP041	1	4	3	2.6	12.2	10.3
CAP041	14	20	6	2.1	7.7	3.6
CAP042	14	17	3	2.6	3.5	5.6
CAP043	16	20	4	2.3	9.9	8.6
CAP044	1	4	3	1.9	3.4	0.3
CAP045	16	19	3	1.9	5.4	8.0
CAP046	0	6	6	3.1	3.9	1.5
CAP047	0	4	4	2.6	8.8	2.9
CAP047	18	21	3	2.2	19.1	9.8
CAP048	9	12	3	2.4	35.3	2.4
CAP048	17	20	3	3.0	9.6	8.2
CAP051	0	3	3	2.8	8.9	1.4
CAP055	16	20	4	3.5	6.7	5.1
CAP057	0	3	3	3.1	11	0.2
CAP058	0	4	4	2.7	4.1	0.3
CAP059	0	5	5	3.0	8.5	0.4
CAP059	17	20	3	2.3	5.4	6.8
CAP060	0	5	5	4.5	7.4	2.3
CAP060	15	19	4	4.4	8.2	24.7
CAP061	0	5	5	3.3	5.4	2.9
CAO062	11	14	3	4.0	12.1	1.0
CAP063	16	20	4	3.5	4.2	5.4
CAP064	16	21	5	2.9	7.9	4.6
CAP065	17	21	4	2.0	6.6	4.3
CAP066	3	8	5	2.1	26.2	3.8
CAP067	14	18	4	2.2	6.1	2.2
CAP068	13	17	4	2.7	12.2	0.6
CAP068	18	21	3	2.0	13.2	2.5
CAP069	13	17	4	2.5	7.8	0.2
CAP069	18	21	3	1.9	11.6	5.0
CAP083	2	6	4	2.2	2.7	2.3
CAP085	19	22	3	2.4	10.4	0.2
CAP087	17	22	5	2.2	5.2	1.7
CAP089	18	22	4	1.8	5.6	1.1

Slimes < 53µm, Oversize (OS) > 1mm

Appendix 3: Assay Summary (all holes received)

Hole ID	Sample ID	From	То	ТНМ	Slimes	OS
CAP027	CMS00647	0	1	1.2%	9.7%	0.2%
CAP027	CMS00648	1	2	1.9%	17.8%	21.8%
CAP027	CMS00649	2	3	1.4%	36.9%	20.9%
CAP027	CMS00650	3	4	1.5%	44.9%	4.7%
CAP027	CMS00652	5	6	0.5%	41.7%	1.0%
CAP027	CMS00653	6	7	0.7%	29.5%	1.4%
CAP027	CMS00658	11	12	2.3%	22.1%	0.1%
CAP027	CMS00659	12	13	2.0%	8.8%	0.0%
CAP027	CMS00661	13	14	2.3%	10.3%	0.1%
CAP027	CMS00662	14	15	1.1%	5.8%	1.2%
CAP027	CMS00663	15	16	1.5%	5.9%	9.4%
CAP027	CMS00664	16	17	1.4%	15.6%	11.0%
CAP027	CMS00665	17	18	1.4%	40.0%	7.0%
CAP027	CMS00666	18	19	0.8%	11.9%	7.4%
CAP027	CMS00667	19	20	0.6%	15.0%	4.5%
CAP027	CMS00668	20	21	0.8%	35.6%	0.5%
CAP028	CMS00669	0	1	1.2%	8.8%	0.3%
CAP028	CMS00670	1	2	2.8%	13.6%	31.1%
CAP028	CMS00674	5	6	0.5%	27.7%	2.0%
CAP028	CMS00681	11	12	1.8%	17.7%	0.2%
CAP028	CMS00682	12	13	0.8%	10.0%	0.3%
CAP028	CMS00683	13	14	0.7%	7.1%	2.3%
CAP028	CMS00684	14	15	1.7%	3.4%	17.0%
CAP029	CMS00685	0	1	0.7%	13.7%	6.7%
CAP029	CMS00686	1	2	1.5%	24.6%	10.8%
CAP029	CMS00687	2	3	1.9%	27.3%	12.5%
CAP029	CMS00693	8	9	1.6%	25.2%	0.6%
CAP029	CMS00694	9	10	2.6%	17.6%	0.1%
CAP029	CMS00695	10	11	1.6%	10.3%	0.0%
CAP029	CMS00696	11	12	1.2%	8.5%	0.1%
CAP029	CMS00697	12	13	0.7%	7.9%	1.0%
CAP029	CMS00698	13	14	1.1%	5.8%	1.1%
CAP029	CMS00699	14	15	1.7%	6.3%	14.3%
CAP029	CMS00701	15	16	1.5%	7.0%	20.0%
CAP029	CMS00702	16	17	1.6%	13.6%	3.7%
CAP029	CMS00703	17	18	0.8%	20.2%	25.4%
CAP029	CMS00704	18	19	1.3%	27.3%	1.3%
CAP029	CMS00705	19	20	4.9%	56.9%	1.3%
CAP030	CMS00707	0	1	1.1%	11.3%	6.7%
CAP030	CMS00708	1	2	0.9%	13.6%	46.9%
CAP030	CMS00709	2	3	0.8%	50.8%	3.4%
CAP030	CMS00710	3	4	0.8%	44.6%	8.4%
CAP030	CMS00716	9	10	1.4%	14.8%	0.1%
CAP030	CMS00717	10	11	4.3%	11.9%	0.0%
CAP030	CMS00718	11	12	3.2%	5.9%	0.0%
CAP030	CMS00719	12	13	1.7%	5.1%	0.0%
CAP030	CIVIS00721	13	14	0.8%	4.7%	0.8%
CAP030	CIVIS00722	14	15	1.0%	0.0%	0.6%
CAP030	CIVIS00723	15	10	2.1%	0.4% 6.5%	0.5%
CAP030	CIVIS00724	10	10	3.3% 1.20/	0.5%	7.8%
CAP030	CIVIS00725	17	10	1.2%	5.1%	17.7%
CAPU3U CAPU3U	CMS00720	10	ور 20	∠.U%0 2 104	2/ 20/	∠∠.0%0 2.20%
CAPUSU	CMS00727	20	∠∪ ⊃1	5.170	54.5% 61 70/	Z.Z70 7 204
	CMC00720	20	∠ I 1	0.0%	04./% 2 E0%	0 204
	CMC00729	1	י ז	0.9%	5.570 6 Q0%	0.270 27 N04
	CMS00730	1	<u>ک</u> ج	1 2%	2/1 20%	0 /0%
	CMS00733	9	10	3 0%	2 4 .270 19 5%	0.4%
CAP031	CMS00730	10	11	5.2%	12 7%	0.1%
CAP031	CMS00739	11	12	2.0%	7 4%	0.0%
		11	12	2.2/0	/ . -+ /U	0.070

Hole ID	Sample ID	From	То	THM	Slimes	OS
CAP031	CMS00743	13	14	1.2%	2.7%	2.0%
CAP031	CMS00744	14	15	0.7%	2.9%	2.0%
CAP031	CMS00745	15	16	1.8%	4.0%	1.7%
CAP031	CMS00746	16	17	4.5%	11.1%	0.5%
CAP031	CMS00747	17	18	2.8%	12.0%	5.1%
CAP031	CMS00748	18	19	2.2%	22.9%	13.9%
CAP031	CMS00749	19	20	5.0%	31.4%	17.3%
CAP031	CMS00750	20	21	3.4%	7.2%	36.7%
CAP032	CMS00751	0	1	1.7%	6.9%	71.6%
CAP032	CMS00752	1	2	4.1%	17.1%	49.4%
CAP032	CMS00753	2	3	1.3%	41.9%	15.7%
CAP032	CMS00754	3	4	0.7%	28.7%	3.7%
CAP032	CMS00758	7	8	1.4%	25.4%	0.4%
CAP032	CMS00759	8	9	2.8%	18.4%	0.2%
CAP032	CMS00761	9	10	3.0%	6.6%	0.2%
CAP032	CMS00762	10	11	1.2%	2.3%	1.1%
CAP032	CMS00763	11	12	0.4%	1.3%	11.1%
CAP032	CMS00764	12	13	0.3%	1.5%	38.2%
CAP032	CMS00765	13	14	0.1%	0.8%	30.4%
CAP032	CMS00766	14	15	1.4%	3.6%	10.5%
CAP032	CMS00767	15	16	2.0%	11.9%	15.1%
CAP032	CMS00768	16	17	0.9%	11.7%	22.8%
CAP032	CMS00769	17	18	0.8%	20.2%	22.2%
CAP032	CMS00770	18	19	1.1%	17.2%	17.4%
CAP032	CMS00771	19	20	1.0%	15.8%	4.7%
CAP032	CMS00772	20	21	1.0%	13.6%	3.1%
CAP033	CMS00773	0	1	1.3%	7.1%	0.1%
CAP033	CMS00774	1	2	1.3%	8.3%	2.5%
CAP033	CMS00775	2	3	1.4%	14.4%	11.4%
CAP033	CMS00776	3	4	3.0%	10.3%	24.9%
CAP033	CMS00777	4	5	1.9%	17.3%	9.0%
CAP033	CMS00778	5	6	1.9%	15.1%	9.3%
CAP033	CMS00779	6	7	0.7%	30.1%	0.2%
CAP033	CMS00781	7	8	1.0%	22.1%	0.1%
CAP033	CMS00782	8	9	1.6%	12.2%	5.6%
CAP033	CMS00783	9	10	1.7%	2.4%	25.7%
CAP033	CMS00784	10	11	0.5%	1.1%	16.0%
CAP033	CMS00785	11	12	0.3%	0.9%	30.2%
CAP033	CMS00786	12	13	0.4%	1.7%	29.2%
CAP033	CMS00787	13	14	0.5%	1.8%	1.6%
CAP033	CMS00788	14	15	1.4%	1.0%	21.7%
CAP033	CMS00789	15	16	2.7%	1.9%	21.8%
CAP033	CMS00790	16	17	1.6%	6.5%	31.9%
CAP033	CMS00791	17	18	2.3%	7.1%	13.8%
CAP033	CMS00792	18	19	2.0%	6.9%	28.5%
CAP033	CMS00793	19	20	0.6%	9.5%	23.4%
CAP033	CMS00794	20	21	0.7%	11.4%	11.5%
CAP033	CIVIS00795	21	22	0.9%	8.5% 24.0%	29.3%
CAP033	CIVIS00796	22	23	3.8%	34.0%	0.2% E 704
	CM500797	23	24	1.4%	20.8%	5.7%
CAP033a	CMS00798	0	ן ר	1.4%	11.3%	0.3%
	CM500799	1	2	1.4%	11.4%	1.6%
	CMS00802	2	5	1.7%	10.8%	20.9%
	CMCOORD	2 0	4 0	2.070 1 004	10.0%	41.270 5 00%
CAPUSSA		0 Q	9 10	4.370 0 004	11.370 2 504	5.9% 26 7%
CAPUSSA	CMCOOROD	9 10	10	0.9%	2.3%	20.7%
CAPU220	CMCOOQ10	11	11	0.5%	2.0% 1 00%	32.1 % 27 00/
	CMC00010	10	12	0.5%	1.370 2.204	7 004
	CNISOUGTI	12	13	0.5%	∠.3%0 ⊃ ⊃0%	1.370 1.006
	CNISUU012	17	14	0.5% 2 204	5.270 1 CO4	4.∠%0 17 404
	CIVISUU813	14	15	∠.∠%0 ⊃ ⊃04	1.0%	17.4% 22 00/
CAPU33d		15	10	5.2%	1.0%	52.9%

Hole ID	Sa <u>mple ID</u>	F <u>rom</u>	<u> </u>	THM	S <u>limes</u>	OS
CAP033a	CMS00816	17	18	0.9%	6.7%	21.9%
CAP033a	CMS00817	18	19	0.9%	22.0%	16.8%
CAP033a	CMS00818	19	20	0.7%	12.3%	16.9%
CAP033a	CMS00819	20	21	0.6%	9.7%	15.4%
CAP033a	CMS00821	21	22	0.5%	1.7%	28.9%
CAP033a	CMS00822	22	23	2.3%	26.6%	11.1%
CAP033a	CMS00823	23	24	1.8%	29.3%	2.8%
CAP034	CMS00824	0	1	0.8%	32.5%	0.6%
CAP034	CMS00825	1	2	0.8%	36.6%	0.6%
CAP034	CMS00826	2	3	1.1%	12.8%	9.5%
CAP034	CMS00832	8	9	0.7%	18.2%	4.8%
CAP034	CMS00833	9	10	1.7%	3.6%	18.4%
CAP034	CMS00834	10	11	0.3%	1.5%	36.6%
CAP034	CMS00835	11	12	0.4%	2.9%	14.0%
CAP034	CMS00836	12	13	0.6%	1.5%	1.3%
CAP034	CMS00837	13	14	0.7%	1.2%	0.2%
CAP034	CMS00838	14	15	2.2%	9.4%	11.0%
CAP034	CMS00839	15	16	1.5%	12.1%	9.0%
CAP034	CMS00841	16	17	1.2%	17.6%	5.3%
CAP034	CMS00842	17	18	0.6%	15.5%	9.5%
CAP034	CMS00843	18	19	1.0%	19.0%	5.0%
CAP034	CMS00844	19	20	0.6%	18.4%	9.5%
CAP034	CMS00845	20	21	0.7%	16.1%	12.4%
CAP035	CMS00846	0	1	1.0%	7.8%	2.6%
CAP035	CMS00847	1	2	0.9%	7.4%	3.4%
CAP035	CMS00848	2	3	1.0%	24.9%	0.5%
CAP035	CMS00854	8	9	1.6%	26.3%	0.5%
CAP035	CMS00855	9	10	0.8%	6.2%	3.1%
CAP035		10	11	1.5%	3.1%	10.4%
CAP035		12	12	0.3%	1.5%	38.5%
CAP035		12	13	0.3%	1.1%	33.1%
	CIVIS00859	13	14	0.7%	2.4%	5.9%
CAPO25	CMS00862	14	15	0.0%	7 106	6.4%
CAP035	CMS00863	15	10	1.0%	2.1%	0.4 <i>%</i> 8.1%
	CMS00864	10	17	1.0%	20.8%	3.1%
CAP035	CMS00865	17	19	1.2%	10.8%	13.9%
CAP035	CMS00866	19	20	1.2%	12.0%	8.5%
CAP035	CMS00867	20	20	1.0%	13.2%	6.2%
CAP036	CMS00868	0	1	1.3%	6.1%	0.4%
CAP036	CMS00869	1	2	1.0%	8.8%	35.4%
CAP036	CMS00870	2	3	1.7%	21.3%	21.7%
CAP036	CMS00871	3	4	1.7%	23.3%	19.6%
CAP036	CMS00872	4	5	0.7%	30.2%	3.3%
CAP036	CMS00878	10	11	0.6%	18.7%	0.2%
CAP036	CMS00879	11	12	0.9%	7.2%	6.0%
CAP036	CMS00881	12	13	4.1%	3.9%	4.2%
CAP036	CMS00882	13	14	1.5%	2.1%	15.6%
CAP036	CMS00883	14	15	1.7%	2.2%	1.8%
CAP036	CMS00884	15	16	1.6%	1.6%	1.2%
CAP036	CMS00885	16	17	3.9%	4.2%	14.9%
CAP036	CMS00886	17	18	2.3%	2.8%	30.4%
CAP036	CMS00887	18	19	1.6%	1.2%	25.0%
CAP036	CMS00888	19	20	2.6%	0.9%	19.5%
CAP036	CMS00889	20	21	2.9%	4.8%	25.6%
CAP037	CMS00890	0	1	1.2%	3.3%	0.4%
CAP037	CMS00891	1	2	0.9%	5.9%	29.6%
CAP037	CMS00892	2	3	1.4%	25.2%	7.8%
CAP037	CMS00893	3	4	0.7%	28.2%	6.2%
CAP037	CMS00894	4	5	0.5%	23.5%	8.0%
CAP037	CMS00901	10	11	0.6%	17.5%	0.0%
CAP037	CMS00902	11	12	0.2%	6.5%	3.3%

Hole ID	Sample ID	From	То	THM	Slimes	OS
CAP037	CMS00904	13	14	3.2%	3.3%	4.1%
CAP037	CMS00905	14	15	1.5%	1.9%	1.2%
CAP037	CMS00906	15	16	1.5%	1.7%	0.9%
CAP037	CMS00907	16	17	3.0%	12.9%	3.8%
CAP037	CMS00908	17	18	1.4%	2.9%	23.7%
CAP037	CMS00909	18	19	7.1%	2.6%	13.9%
CAP037	CMS00910	19	20	4.6%	6.4%	13.2%
CAP037	CMS00911	20	21	0.9%	6.4%	35.1%
CAP037	CMS00912	21	22	2.8%	4.8%	24.3%
CAP037	CMS00913	22	23	3.4%	7.3%	3.7%
CAP037	CMS00914	23	24	0.6%	7.9%	19.8%
CAP038	CMS00915	0	1	1.2%	10.2%	0.3%
CAP038	CMS00916	1	2	1.3%	14.8%	6.8%
CAP038	CMS00925	9	10	0.4%	18.9%	0.1%
CAP038	CMS00926	10	11	0.4%	13.2%	0.8%
CAP038	CMS00927	11	12	0.2%	7.6%	13.6%
CAP038	CMS00928	12	13	1.9%	6.0%	1.8%
CAP038	CMS00929	13	14	3.1%	5.0%	3.3%
CAP038	CMS00930	14	15	1.5%	2.8%	6.4%
CAP038	CMS00931	15	16	1.4%	2.9%	10.9%
CAP038	CMS00932	16	17	1.8%	17.9%	3.6%
CAP038	CMS00933	17	18	1.3%	18.8%	4.5%
CAP038	CMS00934	18	19	0.2%	2.3%	12.8%
CAP038	CMS00935	19	20	0.3%	11.7%	9.4%
CAP038	CMS00936	20	21	0.4%	13.0%	11.8%
CAP039	CMS00937	0	1	1.8%	14.6%	1.3%
CAP039	CMS00938	1	2	2.1%	14.8%	25.2%
CAP039	CMS00946	8	9	0.3%	20.1%	0.1%
CAP039	CMS00947	9	10	0.6%	15.6%	0.1%
CAP039	CMS00948	10	11	1.2%	9.1%	0.3%
CAP039	CMS00949	11	12	1.3%	5.7%	3.5%
CAP039	CMS00950	12	13	1.0%	3.9%	17.0%
CAP039	CMS00951	13	14	2.2%	2.9%	1.7%
CAP039	CMS00952	14	15	2.3%	2.5%	9.2%
CAP039	CMS00953	15	16	3.1%	3.7%	9.8%
CAP039	CMS00954	16	17	1.4%	10.7%	7.8%
CAP039	CMS00955	17	18	0.6%	12.2%	8.3%
CAP039	CMS00956	18	19	0.2%	3.1%	45.6%
CAP039	CMS00957	19	20	0.5%	10.7%	15.4%
CAP039	CMS00958	20	21	0.4%	10.9%	7.5%
CAP040	CMS00959	0	1	0.2%	1.1%	0.2%
CAP040	CMS00961	1	2	0.3%	1.1%	0.1%
CAP040	CMS00962	2	3	0.5%	3.9%	0.1%
CAP040	CMS00963	3	4	0.7%	7.6%	0.4%
CAP040	CMS00964	4	5	1.0%	21.5%	3.2%
CAP040	CMS00967	7	8	0.7%	30.5%	1.1%
CAP040	CMS00968	8	9	0.4%	36.2%	0.8%
CAP040	CMS00972	12	13	0.3%	15.7%	0.1%
CAP040	CMS00973	13	14	0.5%	15.7%	0.1%
CAP040	CMS00974	14	15	0.8%	7.2%	0.3%
CAP040	CMS00975	15	16	1.0%	2.5%	8.2%
CAP040	CMS00976	16	17	2.4%	4.0%	2.7%
CAP040	CMS00977	17	18	11.1%	5.0%	4.5%
CAP040		18	19	4.4%	3.7%	1.6%
CAP040	CMS00979	19	20	7.6%	32.0%	3.0%
CAP040	CMS00981	20	21	2.8%	25.5%	7.8%
CAP041	CMS00982	U	1	0.7%	3.3%	0.2%
CAP041	CM200983	1	2	3.7%	6.4%	25.5%
CAP041	CM500984	2	3	2.2%	10.6%	4.1%
CAP041	CMS00985	3	4	1.9%	19.7%	1.2%
CAP041	CMS00989	/	8	0.8%	22.0%	1.3%
CAP041	CMS00993	11	12	1.3%	19.2%	0.3%

Hole ID	Sample ID	Fro <u>m</u>	T <u>o</u>	THM	Slimes	OS
CAP041	CMS00995	13	14	0.6%	15.6%	0.5%
CAP041	CMS00996	14	15	1.8%	3.4%	10.8%
CAP041	CMS00997	15	16	2.3%	3.8%	0.4%
CAP041	CMS00998	16	17	2.4%	2.0%	0.5%
CAP041	CMS00999	17	18	2.1%	1.6%	2.5%
CAP041	CMS01001	18	19	2.7%	10.8%	5.1%
CAP041	CMS01002	19	20	1.7%	24.8%	2.6%
CAP041	CMS01003	20	21	0.8%	17.1%	7.3%
CAP042	CMS01004	0	1	1.2%	3.5%	4.0%
CAP042	CMS01005	1	2	1.5%	3.2%	2.7%
CAP042	CMS01006	2	3	1.1%	7.5%	4.3%
CAP042	CMS01017	13	14	0.8%	7.9%	7.0%
CAP042	CMS01018	14	15	4.2%	4.4%	5.8%
CAP042	CMS01019	15	16	1.7%	3.1%	10.4%
CAP042	CMS01021	16	17	1.8%	3.2%	0.5%
CAP042	CMS01022	17	18	1.2%	7.5%	7.7%
CAP042	CMS01023	18	19	1.9%	18.8%	4.8%
CAP042	CMS01024	19	20	1.2%	23.0%	0.8%
CAP042	CMS01025	20	21	0.6%	14.1%	18.2%
CAP043	CMS01026	0	1	2.3%	3.4%	0.2%
CAP043	CMS01027	1	2	2.1%	7.5%	0.2%
CAP043	CMS01037	11	12	1.0%	17.2%	0.2%
CAP043	CMS01038	12	13	0.2%	2.2%	4.3%
CAP043	CMS01039	13	14	1.7%	2.3%	12.7%
CAP043	CMS01041	14	15	2.2%	1.7%	0.8%
CAP043	CMS01042	15	16	1.2%	1.9%	1.2%
CAP043	CMS01043	16	17	3.0%	5.1%	0.4%
CAP043	CMS01044	17	18	1.8%	3.8%	18.8%
CAP043	CMS01045	18	19	2.9%	10.6%	8.2%
	CIVISU1046	19	20	1.7%	20.2%	7.0%
	CIVISU1047	20	21	0.8%	16.9%	12.1%
	CMS01048	0	ו ר	1.2%	3.0%	0.5%
CAP044	CMS01049	2	2	2.5%	2.0%	0.2%
	CMS01050	2	1	2.5%	5.6%	0.5%
	CMS01057	1	4	1.5%	8.7%	1.4%
CAP044	CMS01052	4 11	12	1.4%	20.9%	0.4%
CAP044	CMS01055	12	12	0.2%	9.9%	3.6%
CAP044	CMS01062	12	14	0.8%	4.6%	6.0%
CAP044	CMS01062	14	15	0.5%	1.5%	19.4%
CAP044	CMS01064	15	16	0.7%	2.0%	14.7%
CAP044	CMS01065	16	17	0.3%	1.1%	33.3%
CAP044	CMS01066	17	18	1.6%	4.0%	4.2%
CAP044	CMS01067	18	19	1.0%	1.9%	12.4%
CAP044	CMS01068	19	20	1.7%	14.0%	18.5%
CAP044	CMS01069	20	21	0.9%	12.0%	15.9%
CAP045	CMS01070	0	1	4.0%	2.3%	0.1%
CAP045	CMS01071	1	2	3.4%	3.0%	0.5%
CAP045	CMS01072	2	3	1.4%	4.9%	1.1%
CAP045	CMS01082	11	12	0.7%	8.7%	2.6%
CAP045	CMS01083	12	13	0.9%	1.9%	7.6%
CAP045	CMS01084	13	14	0.8%	2.2%	21.2%
CAP045	CMS01085	14	15	0.2%	1.5%	37.7%
CAP045	CMS01086	15	16	0.5%	1.6%	17.9%
CAP045	CMS01087	16	17	1.6%	3.5%	0.4%
CAP045	CMS01088	17	18	2.1%	2.1%	6.1%
CAP045	CMS01089	18	19	2.0%	10.7%	17.6%
CAP045	CMS01090	19	20	1.1%	37.8%	1.7%
CAP045	CMS01091	20	21	7.1%	45.8%	0.7%
CAP046	CMS01092	0	1	1.9%	2.0%	0.2%
CAP046	CMS01093	1	2	2.9%	1.5%	0.2%
CAP046	CMS01094	2	3	4.3%	1.9%	0.3%

Hole ID	Sample ID	From	То	ТНМ	Slimes	OS
CAP046	CMS01096	4	5	2.3%	3.6%	1.4%
CAP046	CMS01097	5	6	2.7%	10.3%	1.4%
CAP046	CMS01105	12	13	3.2%	18.5%	0.0%
CAP046	CMS01106	13	14	4.5%	11.0%	0.1%
CAP046	CMS01107	14	15	1.3%	2.0%	1.4%
CAP046	CMS01108	15	16	1.1%	2.4%	0.3%
CAP046	CMS01109	16	17	0.8%	3.1%	9.9%
CAP046	CMS01110	17	18	0.3%	2.9%	31.2%
CAP046	CMS01111	18	19	1.1%	4.2%	6.0%
CAP046	CMS01112	19	20	1.7%	2.7%	7.0%
CAP046	CMS01113	20	21	2.3%	2.4%	18.5%
CAP047	CMS01114	0	1	1.6%	2.0%	0.6%
CAP047	CMS01115	1	2	2.7%	2.4%	0.1%
CAP047	CMS01116	2	3	3.5%	5.3%	0.6%
CAP047	CMS01117	3	4	2.4%	25.7%	1.6%
CAP047	CMS01121	6	7	1.0%	32.0%	0.8%
CAP047	CMS01126	11	12	2.9%	21.4%	0.2%
CAP047	CMS01127	12	13	4.0%	7.7%	0.1%
CAP047	CMS01128	13	14	1.3%	4.7%	0.3%
CAP047	CMS01129	14	15	0.7%	4.2%	0.8%
CAP047	CMS01130	15	16	0.5%	3.8%	15.6%
CAP047	CMS01131	16	17	0.5%	4.3%	5.9%
CAP047	CMS01132	17	18	1.0%	3.8%	5.8%
CAP047	CMS01133	18	19	1.6%	4.4%	1.8%
CAP047	CMS01134	19	20	3.2%	4.4%	20.0%
CAP047	CMS01135	20	21	1.8%	48.5%	7.7%
CAP048	CMS01136	0	1	0.7%	1.6%	0.2%
CAP048	CMS01137	1	2	1.0%	1.3%	0.2%
CAP048	CMS01138	2	3	2.4%	9.8%	2.3%
CAP048	CMS01139	3	4	1.2%	35.8%	0.3%
CAP048	CMS01141	4	5	2.4%	32.1%	10.2%
CAP048	CMS01146	9	10	1.6%	47.5%	4.7%
CAP048	CMS01147	10	11	3.0%	29.5%	2.4%
CAP048	CMS01148	11	12	2.6%	19.0%	0.0%
CAP048	CMS01149	12	13	1.1%	7.6%	0.1%
CAP048	CMS01150	13	14	1.4%	3.2%	0.0%
CAP048	CMS01151	14	15	1.2%	6.9%	0.1%
CAP048	CMS01152	15	16	0.6%	3.4%	0.9%
CAP048	CMS01153	16	17	1.1%	4.4%	2.5%
CAP048	CMS01154	17	18	2.8%	3.1%	1.3%
CAP048	CMS01155	18	19	4.1%	3.6%	5.9%
CAP048	CMS01156	19	20	2.1%	22.3%	17.5%
CAP048	CMS01157	20	21	1.1%	69.5%	4.6%
CAP049	CMS01158	0	1	0.6%	5.6%	29.8%
CAP049	CMS01159	1	2	1.1%	6.1%	6.6%
CAP049	CMS01171	12	13	0.4%	11.7%	2.9%
CAP049	CMS01172	13	14	0.4%	7.2%	0.1%
CAP049	CMS01173	14	15	0.9%	6.0%	9.2%
CAP049	CMS01174	15	16	2.9%	5.2%	0.3%
CAP049	CMS01175	16	17	1.7%	3.0%	0.8%
CAP049	CMS01176	17	18	1.1%	2.7%	4.0%
CAP049	CMS01177	18	19	1.3%	1.7%	7.9%
CAP049	CMS01178	19	20	1.6%	12.6%	16.7%
CAP049	CMS01179	20	21	0.5%	8.7%	42.2%
CAP050	CMS01181	0	1	1.4%	1.8%	0.5%
CAP050	CMS01182	1	2	6.4%	9.3%	0.9%
CAP050	CMS01186	5	6	1.0%	35.5%	0.5%
CAP050	CMS01190	9	10	0.5%	23.0%	0.0%
CAP050	CMS01191	10	11	0.3%	16.5%	0.0%
CAP050	CMS01192	11	12	0.5%	13.5%	0.0%
CAP050	CMS01193	12	13	0.4%	6.0%	2.1%
CAP050	CMS01194	13	14	0.1%	3.3%	18.4%

Hole ID	Sample ID	From	То	THM	Slimes	OS
CAP050	CMS01196	15	16	1.7%	5.4%	1.1%
CAP050	CMS01197	16	17	0.5%	2.4%	4.4%
CAP050	CMS01198	17	18	0.9%	3.1%	2.9%
CAP050	CMS01199	18	19	1.7%	3.7%	12.0%
CAP050	CMS01201	19	20	1.3%	10.5%	16.5%
CAP050	CMS01202	20	21	0.8%	11.2%	19.5%
CAP051	CMS01203	0	1	2.7%	4.2%	0.5%
CAP051	CMS01204	1	2	3.0%	4.7%	3.5%
CAP051	CMS01205	2	3	2.8%	17.9%	0.2%
CAP051	CMS01206	3	4	0.9%	36.2%	0.0%
CAP051	CMS01214	11	12	0.7%	37.2%	0.2%
CAP051	CMS01215	12	13	0.1%	5.0%	2.7%
CAP051	CMS01216	13	14	0.1%	2.6%	14.3%
CAP051	CMS01217	14	15	3.6%	4.2%	4.0%
CAP051	CMS01218	15	16	1.2%	2.8%	12.4%
CAP051	CMS01219	16	17	0.9%	2.3%	1.1%
CAP051	CMS01221	17	18	1.4%	1.6%	2.1%
CAP051	CMS01222	18	19	1.2%	1.0%	19.8%
CAP051	CMS01224	20	21	1.8%	21.2%	9.0%
CAP052	CMS01225	0	1	1.5%	6.8%	22.5%
CAP052	CMS01226	1	2	1.7%	28.5%	11.3%
CAP052	CMS01227	2	3	0.6%	32.3%	1.1%
CAP052	CMS01228	3	4	0.9%	16.5%	0.6%
CAP052	CMS01237	12	13	0.2%	5.3%	11.5%
CAP052	CMS01238	13	14	0.2%	2.0%	23.3%
CAP052	CMS01239	14	15	1.5%	3.6%	9.2%
CAP052	CMS01241	15	16	0.4%	1.8%	12.9%
CAP052	CMS01242	16	17	0.2%	2.0%	19.2%
CAP052	CMS01243	17	18	0.6%	2.5%	2.4%
CAP052	CMS01244	18	19	2.0%	3.4%	11.6%
CAP052	CMS01245	19	20	2.0%	15.2%	4.6%
CAP052	CMS01246	20	21	0.9%	47.6%	5.0%
CAP053	CMS01247	0	1	1.9%	3.8%	0.3%
CAP053	CMS01248	1	2	1.6%	7.5%	9.8%
CAP053	CMS01249	2	3	1.7%	23.4%	2.1%
CAP053	CMS01250	3	4	1.4%	26.3%	3.3%
CAP053	CMS01251	4	5	0.9%	35.2%	0.5%
CAP053	CMS01257	10	11	0.2%	27.4%	0.1%
CAP053	CMS01258	11	12	0.7%	14.0%	0.1%
CAP053	CMS01259	12	13	0.2%	7.8%	7.2%
CAP053	CMS01261	13	14	0.1%	7.0%	17.4%
CAP053	CMS01262	14	15	0.2%	5.4%	4.0%
CAP053	CMS01263	15	16	0.2%	3.8%	1.2%
CAP053	CMS01264	10	17	0.7%	3.2%	0.8%
	CIVISU1205	17	10	1.0%	2.1%	0.2%
	CIVISU1200	10	19	2.5%	2.9%	0.8%
CAP053	CIVISU1267	19	20	2.0%	6.4%	9.2% E 404
	CIVISU1208	20	21	2.2%	9.7%	5.4%
	CIVISU1209	0	ו ר	1.7%	5.0%	0.6%
CAPOESS	CMS01270	ו ר	2	2.004	12 704	9.0%
	CMS01271	2	5	2.0%	20.6%	0.2%
	CIVISU1272	5	4 E	1.2%	20.0%	0.2% 6 104
CAP0522	CMS01275	4 6	5 7	0.6%	33.∠70 37 70%	0.1%
CAP0522	CMC01220	11	7 10	0.070	37.∠70 10 70⁄	0.0%
CAP0522	CMS01200	12	12	0.4%	9 80%	0.3% Q /0%
(AP0522	CMS01282	12	14	0.170	5.0%	22.470
CAP0523	CMS01203	1/	14	0.2%	5.0%	2 5 %
CAP0522	CMS01204	14	16	0.570	5.4%	1.8%
CAP0523	CMS01205	16	17	1 7%	J.270 A 70%	н.070 Л 9%
CAD0522	CMC01200	17	12	1.270	4.270 1706	0.970
CAP0522	CMS01207	12	10	7.070 7.1%	4.770 2.7%	1 2%
		10	20	2.1/0	5.270	1.070

Hole ID	Sample ID	From	То	THM	Slimes	OS
CAP053a	CMS01290	20	21	1.2%	14.8%	5.1%
CAP054	CMS01291	0	1	1.4%	2.0%	0.3%
CAP054	CMS01292	1	2	1.3%	5.5%	0.3%
CAP054	CMS01293	2	3	1.6%	18.8%	0.3%
CAP054	CMS01303	11	12	0.5%	25.5%	0.2%
CAP054	CMS01304	12	13	0.1%	4.0%	14.4%
CAP054	CMS01305	13	14	0.3%	4.6%	17.8%
CAP054	CMS01306	14	15	1.3%	2.8%	0.5%
CAP054	CMS01307	15	16	1.2%	1.9%	1.4%
CAP054	CMS01308	16	17	1.3%	3.2%	4.4%
CAP054	CMS01309	17	18	1.1%	1.7%	1.8%
CAP054	CMS01310	18	19	1.4%	1.3%	7.4%
CAP054	CMS01311	19	20	1.4%	11.8%	15.4%
CAP054	CMS01312	20	21	1.2%	13.6%	21.2%
CAP055	CMS01313	0	1	1.0%	3.5%	0.3%
CAP055	CMS01314	1	2	1.3%	8.2%	15.0%
CAP055	CMS01316	3	4	0.9%	31.0%	0.8%
CAP055	CMS01326	12	13	0.3%	2.9%	8.1%
CAP055	CMS01327	13	14	0.3%	2.5%	4.4%
CAP055	CMS01328	14	15	0.4%	1.4%	23.3%
CAP055	CMS01329	15	16	0.1%	1.5%	51.1%
CAP055	CMS01330	16	17	6.3%	7.3%	4.8%
CAP055	CMS01331	17	18	1.7%	3.5%	3.5%
CAP055	CMS01332	18	19	3.4%	1.7%	5.3%
CAP055	CMS01333	19	20	2.8%	14.2%	6.9%
CAP055	CMS01334	20	21	0.5%	9.1%	23.2%
CAP056	CMS01335	0	1	1.3%	4.2%	0.2%
CAP056	CMS01336	1	2	1.1%	6.2%	20.2%
CAP056	CMS01337	2	3	1.7%	19.8%	2.5%
CAP056	CMS01342	6	7	0.7%	41.0%	0.4%
CAP056	CMS01348	12	13	0.9%	3.7%	4.0%
CAP056	CMS01349	13	14	0.4%	1.6%	17.9%
CAP056	CMS01350	14	15	0.3%	1.2%	14.4%
CAP056	CMS01351	15	16	0.5%	2.1%	48.4%
CAP056	CMS01352	16	17	0.8%	4.9%	26.1%
CAP056	CMS01353	17	18	0.8%	5.5%	36.1%
CAP056	CMS01354	18	19	1.4%	1.9%	11.4%
CAP056	CMS01355	19	20	4.9%	5.5%	2.5%
CAP056	CMS01356	20	21	2.1%	16.8%	6.5%
CAP056	CMS01357	21	22	1.7%	11.2%	7.9%
CAP057	CMS01358	0	1	2.5%	2.9%	0.1%
CAP057	CMS01359	1	2	4.1%	6.8%	0.4%
CAP057	CMS01361	2	3	2.7%	23.4%	0.2%
CAP057	CMS01370	11	12	0.5%	20.0%	0.1%
CAP057	CMS01371	12	13	0.4%	6.6%	2.2%
CAP057	CMS01372	13	14	0.4%	6.1%	4.2%
CAP057	CMS01373	14	15	0.2%	3.9%	10.5%
CAP057	CMS01374	15	16	0.6%	5.5%	1.1%
CAP057	CMS01375	16	17	0.6%	3.6%	0.2%
CAP057	CMS01376	17	18	1.0%	3.9%	8.3%
CAP057	CMS01377	18	19	0.5%	2.5%	23.5%
CAP057	CMS01378	19	20	1.9%	3.2%	11.4%
CAP057	CMS01379	20	21	1.2%	40.0%	5.2%
CAP057	CMS01381	21	22	1.3%	4.3%	11.1%
CAP058	CMS01382	0	1	2.4%	3.2%	0.2%
CAP058	CMS01383	1	2	2.4%	3.0%	0.2%
CAP058	CMS01384	2	3	2.7%	5.4%	0.7%
CAP058	CMS01385	3	4	3.1%	4.6%	0.3%
CAP058	CMS01393	11	12	0.8%	28.0%	1.1%
CAP058	CMS01394	12	13	0.3%	13.9%	0.1%
CAP058	CMS01395	13	14	0.4%	10.1%	0.3%
CAP058	CMS01396	14	15	0.3%	6.3%	0.7%
CADOFO	CL4C04007	1 5	4.6	0 50/		6.00/

Hole ID	Sample ID	From	То	ТНМ	Slimes	OS
CAP058	CMS01398	16	17	1.2%	7.1%	5.0%
CAP058	CMS01399	17	18	0.7%	3.0%	7.0%
CAP058	CMS01401	18	19	0.8%	3.2%	11.1%
CAP058	CMS01402	19	20	1.2%	9.7%	7.4%
CAP059	CMS01404	0	1	2.0%	3.7%	0.5%
CAP059	CMS01405	1	2	2.8%	1.9%	0.1%
CAP059	CMS01406	2	3	3.7%	3.4%	0.4%
CAP059	CMS01407	3	4	3.7%	13.6%	0.3%
CAP059	CMS01408	4	5	2.7%	19.7%	0.5%
CAP059	CMS01419	15	16	2.1%	11.6%	2.9%
CAP059	CMS01421	16	17	0.5%	4.3%	15.2%
CAP059	CMS01422	17	18	3.0%	6.6%	1.4%
CAP059	CMS01423	18	19	2.2%	3.9%	15.2%
CAP059	CMS01424	19	20	1.8%	5.7%	3.7%
CAP059	CMS01425	20	21	1.3%	3.4%	23.7%
CAP060	CMS01426	0	1	2.7%	2.0%	0.2%
CAP060	CMS01427	1	2	4.3%	1.9%	0.1%
CAP060	CMS01428	2	3	6.1%	2.3%	2.0%
CAP060	CMS01429	3	4	6.1%	3.1%	9.0%
CAP060	CMS01430	4	5	3.1%	28.0%	0.3%
CAP060	CMS01439	13	14	0.3%	39.6%	0.7%
CAP060	CMS01441	14	15	0.5%	24.1%	0.2%
CAP060	CMS01442	15	16	8.2%	10.1%	14.1%
CAP060	CMS01443	16	17	2.9%	5.8%	45.7%
CAP060	CMS01444	17	18	4.7%	10.6%	13.6%
CAP060	CMS01445	18	19	1.7%	6.2%	25.4%
CAP060	CMS01446	19	20	0.4%	3.2%	28.9%
CAP060	CMS01447	20	21	1.0%	5.0%	5.9%
CAP061	CMS01448	0	1	1.5%	1.2%	0.1%
CAP061	CMS01449	1	2	3.1%	1.6%	0.2%
CAP061	CMS01450	2	3	4.0%	2.2%	0.2%
CAP061	CMS01451	3	4	4.9%	2.5%	0.2%
CAP061	CMS01452	4	5	2.9%	18.1%	2.2%
CAP061	CMS01455	7	8	1.6%	33.3%	0.1%
CAP061	CMS01456	8	9	0.6%	49.6%	0.1%
CAP061	CMS01457	9	10	1.3%	33.0%	0.5%
CAP061	CMS01464	15	16	0.8%	18.4%	13.9%
CAP061	CMS01465	16	17	1.0%	12.6%	13.0%
CAP061	CMS01466	17	18	0.9%	11.6%	9.6%
CAP061	CMS01467	18	19	0.5%	7.1%	11.2%
CAP061	CMS01468	19	20	0.8%	7.8%	4.0%
CAP061	CMS01469	20	21	0.8%	6.9%	1.8%
CAP062	CMS01470	0	1	1.0%	3.5%	0.5%
CAP062	CMS01471	1	2	0.7%	9.1%	14.1%
CAP062	CMS01472	2	3	2.0%	21.6%	10.6%
CAP062	CMS01473	3	4	3.5%	29.3%	0.8%
CAP062	CMS01482	11	12	5.8%	21.8%	0.7%
CAP062	CMS01483	12	13	4.8%	8.9%	0.4%
CAP062	CMS01484	13	14	1.5%	5.7%	1.9%
CAP062	CMS01485	14	15	0.6%	3.9%	9.3%
CAP062	CMS01486	15	16	0.8%	3.8%	20.1%
CAP062	CMS01487	16	17	0.7%	3.5%	14.4%
CAP062	CMS01488	17	18	1.4%	3.8%	1.2%
CAP062	CMS01489	18	19	5.8%	1.5%	2.2%
CAP062	CMS01490	19	20	4.2%	4.6%	10.3%
CAP062	CMS01491	20	21	1.4%	14.0%	8.3%
CAP062	CMS01492	21	22	3.9%	11.3%	11.8%
CAP062	CMS01493	22	23	1.9%	12.6%	5.3%
CAP063	CMS01494	0	1	1.1%	3.7%	0.3%
CAP063	CMS01495	1	2	1.6%	14.0%	0.3%
CAP063	CMS01496	2	3	1.3%	29.4%	0.2%
CAP063	CMS01497	3	4	0.5%	54.2%	0.3%

Hole ID	Sample ID	From	_To	тнм	Slimes	05
		15	16	1 10/	2 00%	2 20%
CAFU03	CMS01510	15	17	1.170	2.370	Z.Z70 5 80%
CAPOGO	CMS01511	10	17	2.0%	2.9%	2.0%
CAPOGS	CMS01512	17	10	4.1%	2.0%	5.6%
CAPOGS	CMS01513	10	19	2.2%	2.7%	1.4%
CAP063	CMS01514	20	20	2.8%	1/ 0%	10.3%
	CMS01515	20	1	0.9%	14.0%	0.2%
CAP064	CMS01517	1	2	1.4%	4.5%	0.2%
CAP064	CMS01518	1	2	1.4%	26.9%	0.3%
CAP064	CMS01510	2	5	0.8%	36.5%	0.6%
CAP064	CMS01521	14	15	2.2%	17.6%	1.0%
CAP064	CMS01532	15	16	0.9%	3 3%	3.9%
CAP064	CMS01533	16	17	1.9%	3.0%	6.8%
CAP064	CMS01534	17	18	3.0%	2.5%	7.0%
CAP064	CMS01535	18	19	3.3%	2.7%	1.7%
CAP064	CMS01536	19	20	3.9%	10.9%	4.9%
CAP064	CMS01537	20	21	2.2%	20.5%	2.9%
CAP065	CMS01538	0	1	1.0%	5.3%	0.2%
CAP065	CMS01539	1	2	0.8%	6.9%	0.5%
CAP065	CMS01541	2	3	0.9%	27.6%	0.2%
CAP065	CMS01542	3	4	0.7%	25.2%	0.2%
CAP065	CMS01552	13	14	0.8%	29.6%	0.1%
CAP065	CMS01553	14	15	1.4%	13.2%	0.2%
CAP065	CMS01554	15	16	0.5%	2.4%	0.6%
CAP065	CMS01555	16	17	0.7%	1.8%	12.4%
CAP065	CMS01556	17	18	2.1%	1.9%	7.1%
CAP065	CMS01557	18	19	1.7%	2.0%	1.9%
CAP065	CMS01558	19	20	2.8%	9.2%	3.8%
CAP065	CMS01559	20	21	1.6%	13.3%	4.4%
CAP066	CMS01561	0	1	0.7%	10.1%	0.3%
CAP066	CMS01562	1	2	0.8%	13.9%	3.6%
CAP066	CMS01563	2	3	1.1%	30.6%	10.4%
CAP066	CMS01564	3	4	1.6%	27.4%	3.6%
CAP066	CMS01565	4	5	2.2%	17.7%	1.5%
CAP066	CMS01566	5	6	2.1%	18.1%	2.9%
CAP066	CMS01567	6	7	2.3%	17.4%	8.2%
CAP066	CMS01568	7	8	2.2%	50.4%	2.6%
CAP066	CMS01575	14	15	1.9%	7.8%	1.4%
CAP066	CMS01576	15	16	1.5%	4.6%	1.8%
CAP066	CMS01577	16	17	1.4%	4.2%	5.1%
CAP066	CMS01578	17	18	0.7%	4.0%	33.4%
CAP066	CMS01579	18	19	1.1%	3.6%	2.8%
CAP066	CMS01581	19	20	1.4%	23.0%	4.0%
CAP067	CMS01583	0	1	0.7%	10.6%	1.5%
CAP067	CMS01584	1	2	0.8%	21.6%	2.9%
	CIVISU1587	4	5	I.∠%0 1.404	32.3%	1.2%
CAP067	CNS01580	5	0 7	1.4%	21.7%	0.2%
CAP067	CMS01505	12	1.4	2.0%	20.4%	7.5%
CAP067	CMS01590	15	14	0.8%	29.2%	2.0%
CAP067	CMS01597	14	15	2.8%	5.5%	1.270
CAP067	CMS01598	15	10	2.6%	6.0%	1.4%
CAP067	CMS01601	10	17	1.7%	4.8%	5.2%
CAP067	CMS01602	18	19	1.2%	5.0%	3.7%
CAP067	CMS01602	19	20	1 4%	16.9%	3.7%
CAP067	CMS01604	20	20	0.9%	25.7%	4.6%
CAP068	CMS01605	0	1	0.7%	13.6%	0.1%
CAP068	CMS01606	1	2	0.7%	18.1%	1.4%
CAP068	CMS01607	2	-	0.8%	42.9%	7.6%
CAP068	CMS01608	- 3	4	0.9%	30.4%	2.4%
CAP068	CMS01609	- 4	5	0.9%	30.3%	3.6%
CAP068	CMS01610	5	6	0.5%	49.2%	1.3%
CA DO CO		10	-	0.001		0.404

Hole ID	Sample ID	From	То	THM	Slimes	OS
CAP068	CMS01618	13	14	1.8%	17.8%	0.1%
CAP068	CMS01619	14	15	4.4%	20.0%	0.1%
CAP068	CMS01621	15	16	2.4%	4.9%	1.6%
CAP068	CMS01622	16	17	2.2%	6.3%	0.6%
CAP068	CMS01623	17	18	1.1%	5.3%	17.7%
CAP068	CMS01624	18	19	1.6%	5.5%	2.5%
CAP068	CMS01625	19	20	2.5%	13.0%	1.4%
CAP068	CMS01626	20	21	2.0%	21.2%	3.6%
CAP069	CMS01627	0	1	0.5%	6.9%	0.2%
CAP069	CMS01628	1	2	0.6%	11.2%	0.1%
CAP069	CMS01629	2	3	0.7%	30.1%	3.8%
CAP069	CMS01641	13	14	2.5%	8.0%	0.2%
CAP069	CMS01642	14	15	2.3%	13.9%	0.1%
CAP069	CMS01643	15	16	3.6%	4.6%	0.1%
CAP069	CMS01644	16	17	1.6%	4.8%	0.3%
CAP069	CMS01645	17	18	1.1%	4.7%	2.7%
CAP069	CMS01646	18	19	1.7%	4.8%	6.8%
CAP069	CMS01647	19	20	2.5%	13.8%	1.3%
CAP069	CMS01648	20	21	1.5%	16.1%	7.1%
CAP070	CMS01649	0	1	0.6%	15.5%	1.4%
CAP070	CMS01650	1	2	0.7%	15.9%	5.0%
CAP070	CMS01651	2	3	0.8%	21.0%	3.9%
CAP070	CMS01663	13	14	1.1%	19.8%	0.1%
CAP070	CMS01664	14	15	1.9%	10.7%	0.1%
CAP070	CMS01665	15	16	1.2%	10.1%	0.0%
CAP070	CMS01666	16	17	0.6%	14.2%	0.7%
CAP070	CMS01667	17	18	0.6%	4.6%	17.0%
CAP070	CMS01668	18	19	1.0%	8.9%	10.6%
CAP070	CMS01669	19	20	1.8%	10.8%	2.7%
CAP070	CMS01670	20	21	1.5%	15.9%	10.2%
CAP071	CMS01671	0	1	0.4%	8.2%	1.4%
CAP071	CMS01672	1	2	0.6%	26.1%	5.9%
CAP071	CMS01673	2	3	0.7%	26.8%	0.4%
CAP071	CMS01686	14	15	0.9%	10.3%	2.6%
CAP071	CMS01687	15	16	0.6%	14.0%	0.2%
CAP071	CMS01688	16	17	0.4%	14.6%	0.6%
CAP071	CMS01689	17	18	0.8%	12.0%	2.7%
CAP071	CMS01690	18	19	1.1%	11.2%	5.0%
CAP071	CMS01691	19	20	1.9%	14.6%	4.9%
CAP071	CMS01692	20	21	3.8%	21.8%	9.3%
CAP072	CMS01693	0	1	0.9%	7.1%	0.4%
CAP072	CMS01694	1	2	0.7%	18.0%	8.3%
CAP072	CMS01708	14	15	1.3%	20.8%	0.2%
CAP072	CMS01709	15	16	0.6%	14.4%	0.6%
CAP072	CMS01710	16	17	0.4%	13.6%	2.3%
CAP072	CMS01711	17	18	0.4%	8.7%	3.4%
CAP072	CMS01712	18	19	0.6%	5.2%	1.6%
CAP072	CMS01713	19	20	1.1%	6.2%	5.3%
CAP073	CMS01715	0	1	0.9%	7.9%	0.3%
CAP073	CMS01716	1	2	1.3%	9.1%	17.4%
CAP073	CMS01730	14	15	2.0%	19.6%	2.6%
CAP073	CMS01731	15	16	0.8%	6.2%	0.1%
CAP073	CMS01732	16	17	0.3%	8.4%	0.9%
		10	18	0.5%	8.5% 7.40/	0.3%
CAP073	CMS01734	18	19	0.4%	7.4%	1.2%
		19	20	U.5%	/.4%	3.3% 0.00/
		20	Z I 1	1.3%	10.8%	8.9%
		U 1 F	1	0.5%	19.9%	9.0%
		15	10	1.4%	8.3%	U.1%
	CIVISU 1754	10	17	0.8%	6.4% 8.5%	U.1%
		10	18	0.9%	8.5%	1.4%
CAPU/4		18	19	1.1%	18.1%	1.6%

Hole ID	Sample ID	Fro <u>m</u>	T <u>o</u>	THM	Slimes	O <u>S</u>
CAP075	CMS01760	0	1	0.8%	7.6%	0.3%
CAP075	CMS01761	1	2	1.0%	32.5%	12.7%
CAP075	CMS01762	2	3	1.1%	31.4%	3.1%
CAP075	CMS01763	3	4	0.4%	23.0%	2.2%
CAP075	CMS01764	4	5	0.5%	31.2%	0.3%
CAP075	CMS01775	15	16	0.4%	20.4%	1.5%
CAP075	CMS01776	16	17	1.3%	10.0%	0.3%
CAP075	CMS01777	17	18	0.6%	3.6%	0.2%
CAP075	CMS01778	18	19	0.7%	11.9%	0.7%
CAP075	CMS01779	19	20	1.1%	4.6%	0.9%
CAP075	CMS01780	20	20	3.3%	5.4%	0.7%
CAP075	CMS01781	20	21	2.2%	6.4%	9.7%
CAP076	CMS01782	0	1	1.1%	10.4%	0.3%
CAP076	CMS01783	1	2	1.0%	20.6%	6.2%
CAP076	CMS01798	16	17	0.8%	8.5%	0.0%
CAP076	CMS01799	17	18	0.2%	3.1%	4.4%
CAP076	CMS01800	17	18	0.2%	2.4%	4.2%
CAP076	CMS01801	18	19	0.8%	2.1%	4.8%
CAP076	CMS01802	19	20	0.5%	3.4%	1.1%
CAP076	CMS01803	20	21	0.6%	17.3%	5.8%
CAP076a	CMS01804	0	1	1.2%	12.9%	0.2%
CAP076a	CMS01805	1	2	0.7%	23.3%	3.4%
CAP076a	CMS01819	15	16	1.2%	36.2%	0.4%
CAP076a	CMS01821	16	17	0.6%	5.8%	0.0%
CAP076a	CMS01822	17	18	0.9%	4.2%	0.8%
CAP076a	CMS01823	18	19	1.1%	2.3%	4.8%
CAP076a	CMS01824	19	20	0.6%	3.7%	1.3%
CAP076a	CMS01825	20	21	0.9%	7.3%	2.3%
CAP077	CMS01826	0	1	1.2%	16.9%	20.5%
CAP077	CMS01846	16	17	0.6%	5.9%	0.2%
CAP077	CMS01847	17	18	1.1%	3.7%	10.3%
CAP077	CMS01848	18	19	2.1%	2.0%	4.7%
	CMS01849	19	20	1.2%	3.9%	3.2% 2.704
		20	Z I 1	0.9%	4.0%	5.7 <i>%</i> 1.004
	CMS01851	0	10	0.7%	10.0%	2.0%
CAP078	CMS01862	9 10	10	1.0%	41.0%	5.9%
	CMS01863	10	17	0.9%	45.4%	1.5%
CAP078	CMS01864	12	12	0.5%	57.9%	4.3%
CAP078	CMS01865	12	14	1 3%	49.9%	2.9%
CAP078	CMS01866	14	15	1.5%	39.0%	0.3%
CAP078	CMS01867	15	16	1.8%	33.0%	0.1%
CAP078	CMS01868	16	17	1.0%	31.1%	0.2%
CAP078	CMS01869	17	18	0.5%	7.1%	6.7%
CAP078	CMS01870	18	19	0.9%	1.8%	6.7%
CAP078	CMS01871	19	20	1.2%	1.8%	0.3%
CAP078	CMS01872	20	21	1.3%	4.7%	5.0%
CAP079	CMS01873	0	1	0.5%	10.2%	2.1%
CAP079	CMS01876	3	4	0.4%	25.6%	5.8%
CAP079	CMS01877	4	5	0.4%	38.4%	3.3%
CAP079	CMS01889	15	16	1.1%	28.6%	0.9%
CAP079	CMS01890	16	17	1.1%	13.2%	0.2%
CAP079	CMS01891	17	18	2.2%	8.3%	1.5%
CAP079	CMS01892	18	19	1.1%	3.9%	6.9%
CAP079	CMS01893	19	20	1.1%	4.3%	0.5%
CAP079	CMS01894	20	21	1.0%	24.8%	9.6%
CAP080	CMS01895	0	1	0.5%	19.1%	0.5%
CAP080	CMS01913	17	18	1.7%	11.1%	3.9%
CAP080	CMS01914	18	19	1.0%	1.8%	9.1%
CAP080	CMS01915	19	20	1.2%	4.4%	1.7%
CAP080	CMS01916	20	21	1.0%	11.0%	6.1%
CAP081	CMS01917	0	1	0.4%	4.8%	1.6%

Hole ID	Sample ID	F <u>rom</u>	<u></u>	THM	Slimes	OS
CAP081	CMS01928	10	11	0.8%	28.2%	7.5%
CAP081	CMS01933	15	16	1.5%	22.6%	0.2%
CAP081	CMS01934	16	17	1.8%	9.7%	0.2%
CAP081	CMS01935	17	18	1.3%	5.6%	3.2%
CAP081	CMS01936	18	19	6.0%	6.4%	2.2%
CAP081	CMS01937	19	20	2.5%	7.7%	3.2%
CAP081	CMS01938	20	21	1.2%	4.3%	14.6%
CAP082	CMS01939	0	1	0.5%	1.4%	0.7%
CAP082	CMS01941	1	2	0.9%	1.3%	0.5%
CAP082	CMS01942	2	3	1.3%	1.5%	1.0%
CAP082	CMS01943	3	4	1.7%	4.2%	1.1%
CAP082	CMS01944	4	5	1.4%	6.9%	0.4%
CAP082	CMS01945	5	6	1.9%	12.2%	0.4%
CAP082	CMS01957	17	18	1.1%	7.5%	0.1%
CAP082	CMS01958	18	19	0.6%	2.5%	1.9%
CAP082	CMS01959	19	20	0.3%	3.9%	10.9%
CAP082	CMS01961	20	21	0.3%	2.8%	7.3%
CAP083	CMS01962	0	1	0.7%	1.7%	0.7%
CAP083	CMS01963	1	2	1.3%	1.8%	1.2%
CAP083	CMS01964	2	3	1.5%	1.6%	2.4%
CAP083	CMS01965	3	4	2.4%	2.0%	1.9%
CAP083	CMS01966	4	5	3.1%	2.8%	3.3%
CAP083	CMS01967	5	6	1.7%	4.4%	1.5%
CAP083	CMS01968	6	7	1.1%	18.1%	0.1%
CAP083	CMS01971	9	10	0.8%	28.1%	1.0%
CAP083	CMS01972	10	11	0.8%	13.4%	0.8%
CAP083	CMS01981	18	19	0.8%	11.1%	0.0%
CAPU83	CMS01982	19	20	0.7%	6.9%	0.1%
	CNIS01983	20	21	0.5%	3.7%	1.8%
	CIVISU 1984	21	22	0.4%	3.0%	4.3%
	CNISU 1985	22	23	0.8%	3.7%	1.4%
CAP005	CMS01980	25	24	0.2%	7.4%	7.7%
	CMS01988	0	2	0.3%	2.9%	0.5%
	CMS01989	2	2	0.4%	2.5%	1.3%
	CMS01990	2	1	0.0%	1.6%	1.3%
CAP084	CMS01997	4	5	1.2%	3.0%	0.9%
CAP084	CMS01992	5	6	0.9%	12.0%	0.3%
CAP084	CMS01994	6	7	0.7%	24.0%	0.1%
CAP084	CMS01995	7	8	0.9%	17.3%	0.1%
CAP084	CMS01996	8	9	0.7%	34.7%	0.2%
CAP084	CMS01997	9	10	0.6%	29.1%	0.6%
CAP084	CMS02007	18	19	0.6%	5.1%	0.1%
CAP084	CMS02008	19	20	0.8%	4.2%	0.5%
CAP084	CMS02009	20	21	0.9%	3.6%	3.3%
CAP084	CMS02010	21	22	0.5%	2.8%	6.7%
CAP084	CMS02011	22	23	0.9%	2.9%	12.6%
CAP084	CMS02012	23	24	5.6%	6.1%	19.3%
CAP085	CMS02013	0	1	0.2%	1.9%	0.2%
CAP085	CMS02014	1	2	0.2%	1.0%	0.3%
CAP085	CMS02015	2	3	0.3%	1.5%	0.4%
CAP085	CMS02016	3	4	0.4%	2.2%	0.4%
CAP085	CMS02017	4	5	0.8%	12.3%	0.2%
CAP085	CMS02018	5	6	0.8%	5.6%	0.8%
CAP085	CMS02019	6	7	1.1%	17.2%	0.1%
CAP085	CMS02032	18	19	0.5%	36.6%	0.1%
CAP085	CMS02033	19	20	1.5%	15.3%	0.3%
CAP085	CMS02034	20	21	2.8%	10.2%	0.0%
CAP085	CMS02035	21	22	3.0%	5.8%	0.3%
CAP085	CMS02036	22	23	0.8%	2.2%	33.7%
CAP085	CMS02037	23	24	1.8%	4.3%	1.6%
CAP086	CMS02038	0	1	0.1%	2.1%	0.2%

Hole ID	Sample ID	Fro <u>m</u>	T <u>o</u>	T <u>HM</u>	Slimes	OS
CAP086	CMS02041	2	3	0.3%	2.4%	0.4%
CAP086	CMS02042	3	4	0.5%	6.6%	0.6%
CAP086	CMS02043	4	5	0.7%	16.3%	0.4%
CAP086	CMS02044	5	6	1.0%	18.5%	0.2%
CAP086	CMS02045	6	7	1.1%	20.0%	1.3%
CAP086	CMS02046	7	8	0.7%	29.8%	0.6%
CAP086	CMS02054	15	16	0.8%	32.3%	0.4%
CAP086	CMS02056	17	18	0.8%	19.2%	1.2%
CAP086	CMS02057	18	19	0.8%	7.0%	17.9%
CAP086	CMS02059	20	21	1.1%	3.4%	24.9%
CAP086	CMS02061	21	22	0.7%	2.4%	10.4%
CAP087	CMS02062	0	1	0.1%	1.4%	0.5%
CAP087	CMS02063	1	2	0.3%	2.0%	0.3%
CAP087	CMS02064	2	3	0.4%	3.9%	1.1%
CAP087	CMS02065	3	4	0.8%	21.8%	0.5%
CAP087	CMS02066	4	5	0.8%	17.9%	0.4%
CAP087	CMS02079	17	18	2.4%	10.1%	0.3%
CAP087	CMS02080	17	18	2.5%	10.4%	0.1%
CAP087	CMS02081	18	19	2.6%	5.9%	0.1%
CAP087	CMS02082	19	20	1.8%	3.3%	2.7%
CAP087	CMS02083	20	21	1.8%	2.0%	4.7%
CAP087	CMS02084	21	22	2.4%	4.9%	0.8%
CAP088	CMS02085	0	1	0.9%	2.2%	2.1%
CAP088	CMS02086	1	2	0.8%	2.2%	3.4%
CAP088	CMS02087	2	3	1.3%	4.4%	5.9%
CAP088	CMS02088	3	4	1.1%	21.3%	0.3%
CAP088	CMS02089	4	5	1.1%	17.4%	0.3%
CAP088	CMS02096	11	12	1.1%	32.2%	0.6%
CAP088	CMS02101	15	16	0.9%	34.2%	1.6%
CAP088	CMS02104	18	19	0.9%	4.5%	0.0%
CAP088	CMS02105	19	20	1.0%	3.2%	0.1%
	CIVISU2106	20	21	1.4%	4.1%	0.1%
CAPUSS	CMS02107	21	22	1.3%	3.3% 13.9%	0.2%
CAPOSS	CMS02108	22	23	0.8%	12.0%	2.7%
CAPORO	CMS02109	23	24	0.8%	2 0%	2.470
CAP089	CMS02110	0	2	0.5%	1.8%	2.9%
CAP089	CMS02111	2	2	0.3%	1.0%	1.5%
CAP089	CMS02112	2	4	1.2%	13.6%	0.5%
CAP089	CMS02175	15	16	0.9%	16.0%	0.0%
CAP089	CMS02127	16	17	0.5%	13.8%	0.1%
CAP089	CMS02128	17	18	0.8%	16.2%	0.2%
CAP089	CMS02129	18	19	1.8%	6.7%	0.1%
CAP089	CMS02130	19	20	1.5%	6.5%	0.1%
CAP089	CMS02131	20	21	1.9%	4.0%	3.7%
CAP089	CMS02132	21	22	2.1%	5.3%	0.6%
CAP090	CMS02133	0	1	0.7%	3.9%	0.4%
CAP090	CMS02134	1	2	0.8%	2.8%	0.7%
CAP090	CMS02135	2	3	0.7%	4.3%	1.3%
CAP090	CMS02136	3	4	0.9%	27.4%	0.2%
CAP090	CMS02137	4	5	1.0%	14.6%	0.2%
CAP090	CMS02138	5	6	0.5%	24.3%	0.3%
CAP090	CMS02139	6	7	0.6%	45.0%	0.8%
CAP090	CMS02151	17	18	1.2%	9.5%	1.6%
CAP090	CMS02152	18	19	1.0%	3.4%	2.3%
CAP090	CMS02153	19	20	0.6%	2.6%	16.9%
CAP090	CMS02154	20	21	2.8%	11.8%	0.5%
CAP090	CMS02155	21	22	0.8%	6.1%	5.4%
CAP090	CMS02156	22	23	1.4%	10.2%	9.7%
CAP090	CMS02157	23	24	0.7%	17.9%	3.5%
CAP091	CMS02158	0	1	0.4%	2.6%	0.6%
CAP091	CMS02159	1	2	0.6%	3.5%	1.8%
C 1 D 0 0 4	CL 10001 CO	4	2	0 60/	2 60/	4 20/

Hole ID	Sample ID	From	То	ТНМ	Slimes	OS
CAP091	CMS02161	2	3	0.7%	23.0%	0.6%
CAP091	CMS02162	3	4	0.6%	22.6%	0.2%
CAP091	CMS02163	4	5	0.9%	13.8%	0.4%
CAP091	CMS02174	15	16	1.1%	3.2%	0.1%
CAP091	CMS02175	16	17	2.4%	3.9%	0.3%
CAP091	CMS02176	17	18	1.7%	4.8%	1.4%
CAP091	CMS02177	18	19	1.0%	3.9%	4.8%
CAP091	CMS02178	19	20	1.5%	5.2%	0.4%
CAP091	CMS02179	20	21	2.7%	7.1%	0.8%

Slimes < 53µm, Oversize (OS) > 1mm

Appendix 4 JORC Tables

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Sampling techniques, are by RC Aircore Drilling. A 25%, sample sub- split is collected at a 1m down-hole interval, using an on-board rotary splitter mounted beneath the rig cyclone. All samples are logged for HM estimate and most samples were submitted for analysis. Consistency in split sample weights is monitored via intermittent testing in the field and through recording of air-dried sample weights at the sample preparation stage. RCAC drilling is used to obtain the sample as described above. Samples were analysed by industry typical methods for heavy minerals at Diamantina laboratory. The samples were dried, de-slimed using wet sieving (material <53 µm removed) and then had oversize (material +1mm) removed. About 100g of the remaining sand fraction was then subjected to float/sink analysis using TetraBromEthane (T.B.E with SG=2.92g/cm³ – 2.96g.cm³). The resulting heavy sinks were then dried and weighed and the HM content of the sample was calculated.
Drilling techniques	• Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 All samples are generated by RCAC drilling utilising ~76 mm diameter (NQ) air-core drill tooling. Drill holes are oriented vertically and approximate a perpendicular intersection of the mineralisation.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drilling utilises water injection to ensure fine material is retained and drilling progresses without blockage. There are no recorded intervals in the geology logs that indicate loss or contamination of samples. Sample weights also appear appropriate and representative of the intervals drilled. The configuration of drilling and nature of sediments encountered results in negligible sample loss. Sample representivity is maintained by the use of a rotary splitter

Criteria	JORC Code explanation	Commentary
		 attached to the drill rig. Sample weights are monitored to ensure optimal representivity. Drilling was conducted to industry standards with suitably trained and qualified drilling operators. Typically, drill penetration is halted at the end of each sample interval to allow time for the sample to return to surface and be collected. Drilling proceeds once sample delivery ceases. No relationship is believed to exist between grade and sample recovery. Sample size is well within the expected size range.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Qualitative digital logs of geological characteristics are collected. Samples are panned in the field to determine dominant and secondary host materials characteristics and heavy mineral content. Logging of RCAC samples is qualitative and includes description of sample colour, lithology, grainsize, sorting, induration type, hardness, estimated rock and estimated HM. A comments field is employed to allow further description of materials/formation/sample quality. All drill holes are logged in full and all samples with observed HM (and designated for assay) are assayed.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc., and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All samples are unconsolidated and comprise sand, silt, clay and rock fragments. Samples are taken at a 1m downhole interval using the on-board rotary splitter set at 25% of the splitter cycle, which delivers about 1.5kg of sample. Drill samples are dried and split for analysis. Sample preparation techniques and QA/QC protocols are consistent with industry standard practice and appropriate for the heavy mineral determination. Sample preparation is consistent with industry standard practice and is deemed to be appropriate for Heavy Mineral determination. The method processes the whole subsample. Quality control methods include

Criteria	JORC Code explanation	Commentary
		 field duplicate sampling and insertion of HM standards. Where error or bias is detected lab or drilling practice is investigated and appropriate measures are taken to ensure sampling representivity. Suitably trained staff are employed for all roles. Sample weight is recorded and monitored for outliers or spurious results. When these occur, they are investigated and re-assayed where fault is detected. Field Duplicate and standard sample geostatistical analysis is employed to manage sample precision and analysis accuracy. Sample size analysis is completed as discussed above. Field duplicates are collected for precision analysis of the rotary splitting system on the rig. Given that the grain size of the material being sampled is sand and approximately 70 to 300 µm, an approximate sample size of 1.5 kg is more than adequate.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Laboratory analysis was completed by Diamantina Laboratories. The technique is supported by extensive QA/QC practices. The analysis is considered to be total. No Geophysical tools were utilised. To maintain QA/QC, Pinnacle apply a duplicate and standard assaying procedure with both standards and duplicates submitted to the laboratory. Duplicates and Standards are alternated every 20th sample.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All results are checked by the Competent Person Approximately 5% of holes were twinned Standard Certified Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<2SD) and that there is no bias or drift Field logging data are entered digitally in the field using ruggedized computer, with on- board validation capability. Data are verified when incorporated in

Criteria	JORC Code explanation	Commentary
		the database.No assay adjustments were conducted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes were set out by Pinnacle employees, using a GARMAN Montana 750i. This provides collar set out accuracy stated at +/-0.5m or better in the X/Y directions. A LIDAR dataset obtained from the Department of Water and Environment (DWER) will be utilised to determine the Z (elevation) value for and Mineral Resource calculation Drill holes locations are in MGA94, Zone 50.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill density was 60m (laterally)- 400m (longitudinally). Samples were taken every vertical meter. Intervals reported are averaged over length.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sample orientation is vertical and approximately perpendicular to the dip and strike of the mineralization, which results in true thickness estimates. Drilling and sampling is carried out on a regular rectangular grid that is broadly aligned and consistent with the anisotropy of the mineralisation. No apparent bias is known to arise from the orientation of the drill holes with respect to the strike and dip of the units drilled.
Sample security	• The measures taken to ensure sample security.	Samples were delivered to Diamantina by Capel Transport for processing and analysis by Diamantina Staff
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No independent audits or reviews of sampling techniques and data has been conducted. Internal reviews undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The exploration results are coincident with the granted Exploration Lease E70/6372. This licence is wholly owned by Pinnacle Minerals Limited. Upon mining, there is a customary 5%, state government royalty payable. There are no known impediments to the security of tenure over the area containing the reported exploration results.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Prior exploration was completed by Iluka Resources Limited. Iluka defined mineralisation at wide spacing over the tenement but was deemed not of a sufficient size to follow up.
Geology	• Deposit type, geological setting and style of mineralisation.	• Exploration results are indicative of potential beach placer and aeolian (dunal) detrital heavy mineral sand deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All significant drill results and drill hole collar locations have been identified in Appendix 1 and Appendix 2 of this report. No relevant material data has been excluded from this report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values 	 Intercepts are reported whole-of-hole above the bottom cut. No metal equivalents were used for reporting of exploration results.

Criteria	JORC Code explanation	Commentary
	should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 All drill holes are vertical and perpendicular to the dip and strike of mineralisation and therefore all intercepts are approximately true thickness. Drilling indicates mineralisation is parallel with neighbouring deposits owned by lluka Resources and parallel to the trend of paleo-beach successions.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Figures and plans are displayed in the main text of the release.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Reporting of results and. Intercepts are disclosed in an unambiguous way.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Exploration and mining has occurred in the Southwest region of WA for decades and a familiarity and acceptance has grown with this. However, areas dominated by recent land purchase are likely to be somewhat reluctant or even refuse access for further work. Nature reserves and heritage sites are known in the region. Water and infrastructure supply is sufficient to support exploration and mining operations.
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further assays are pending and dependant on results aad consistency of mineralisation a JORC resource or exploration target will be determined. Refer to the main body of the release for further information regarding diagrams