

PHASE TWO DRILLING AT TIN CAN PROSPECT COMPLETE

HIGHLIGHTS

- Phase two drilling at the Tin Can Prospect now complete
- 48 RC holes drilled for 3,516 metres
- One metre splits from phase one drilling confirm high grade gold mineralisation

Peregrine Gold Limited ("**Peregrine**" or the "**Company**") (ASX: **PGD**) is pleased to announce the completion of the Phase 2 reverse circulation ("**RC**") drilling programme at the Newman Gold Project (the "**Project**").

RC Drilling at Tin Can

Phase 2 reverse circulation drilling was completed on the 24th July 2024. Forty-eight holes were drilled for 3,516 metres with hole depths ranging from 24 to 102 metres with an average drill depth of 73 metres. As with phase one drilling, no fresh rock was intersected. A total of 955 four metre composite samples including duplicates, standards and blanks have been despatched for assay.

Logging of drill chips has continued to demonstrate the presence of the hanging wall talcose schist unit underlain by a brown to red brown clay unit approximately 25 to 35 metres true width with small amounts of often persistent quartz veining. This clay unit is host to the gold mineralisation identified to date. The footwall to the brown to red brown clay unit is a dominant grey clay unit most likely a fine-grained sedimentary unit.

Drilling in the vicinity of a possible second gold shoot structure identified in phase one by drill hole 24KRC-2 (4 metres @ 10.42 g/t Au from 36 to 40 metres) reported strong quartz veining with occasional small amounts of ferruginous material.

Results are expected in the coming weeks.

Phase One RC Drilling – 1 Metre Split Highights

Four metre composite drill samples from the first phase of drilling were submitted for gold analysis at one metre intervals.

Significant intersects include:

24KRC 2	9 metres @ 4.74 g/t Au from 33 to 42 metres, including
	5 metres @ 8.22 g/t Au from 34 to 39 metres
24KRC 7	6 metres @ 4.28 g/t Au from 19 to 25 metres
24KRC 11	6 metres @ 6.92 g/t Au from 30 to 36 metres
24K <mark>RC</mark> 12	6 metres @ 3.23 g/t Au from 36 to 42 metres
24KRC 14	4 metres @ 10.84 g/t Au from 28 to 32 metres

24KRC 20 8 metres @ 1.42 g/t Au from 42 to 50 metres
--

24KRC 21 2 metres @ 1.98 g/t Au from 44 to 46 metres

The one metre splits have confirmed the mineralised gold previously reported in the 4 metre composite samples. The one metre splits have also increased the width of the mineralised envelope with no significant reduction in the gold grades.

The Tin Can prospect has thus far delivered robust grades and widths within the mineralised structures. The focus is to identify within this gold structure, areas where the thickness of the shoots expands with additional extensions along strike.

Panning of selected drill chips from the mineralised gold intervals revealed abundant pieces of gold as well as some pyrite. Consequently, an assessment is now underway for an Induced Polarisation (IP) survey as a method to provide a sub-surface image of potentially larger mineralised zones that contain pyrite. We look forward to updating the market as this programme progresses.

Additionally, we look forward to reporting shortly on the geological mapping and sampling programmes at the Epithermal prospect followed by assay results from the second round of drilling.

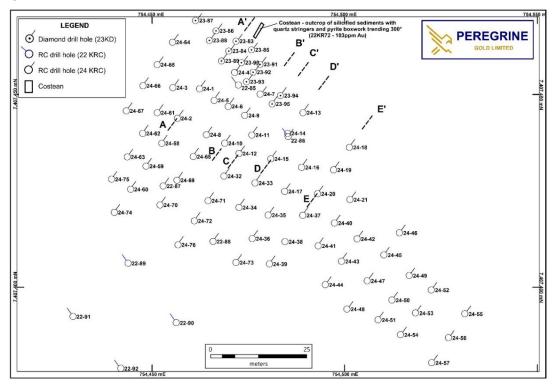


Figure 1: Tin Can Prospect – Drill Hole Plan

Technical Director of Peregrine, Mr. George Merhi, commented:

"The second phase of reverse circulation drilling at the Tin Can prospect has now drill tested the main gold shoot over 100 metres along strike. The possible second gold shoot structure has also been drill tested with significant quartz and iron material reported. The one metre splits from the first round of drilling have confirmed the gold nature of the mineralising structure and increased the width of the gold intersections. Subject to results, additional reverse circulation drilling is planned"

For further information, please contact:

George Merhi

Technical Director Tel: +61 418 831 069

This ASX Announcement has been approved in accordance with the Company's published continuous disclosure policy and authorised for release by the Company Board of Directors.

COMPETENT PERSONS STATEMENT

The information in this report which relates to exploration results is compiled by George Merhi, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Merhi is a Technical Director of Peregrine Gold Limited and a holder of shares, performance shares and options in Peregrine Gold Limited. Mr Merhi has sufficient experience that is relevant to the styles of mineralisation and types of deposit under consideration, and to the activity being undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Merhi consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the Exploration Results information included in this report from previous Company announcements results announced on the dates specified in the body of this report.

FORWARD LOOKING STATEMENTS

Statements regarding plans with respect to Peregrine's projects are forward-looking statements. There can be no assurance that the Company's plans for development of its projects will proceed as currently expected. These forward-looking statements are based on the Company's expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of the Company, which could cause actual results to differ materially from such statements. The Company makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement, to reflect the circumstances or events after the date of that announcement.

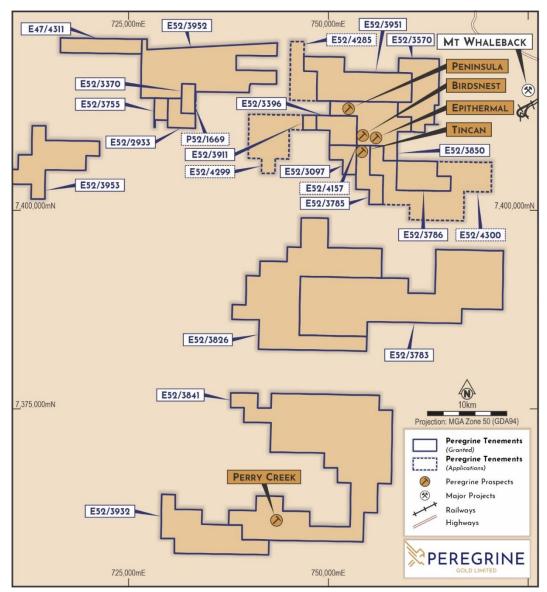


Figure 2: Newman Gold Project tenements

Table 1: Drill hole summary

Hole_ID	East	North	Dip	Azimuth	Depth (m)	Method
24KRC032	754469	7407429	-60	35	66	RC
24KRC033	754477	7407427	-60	35	54	RC
24KRC034	754473	7407421	-60	35	60	RC
24KRC035	754480	7407419	-60	35	72	RC
24KRC036	754476	7407413	-60	35	78	RC
24KRC037	754489	7407419	-60	35	72	RC
24KRC038	754485	7407412	-60	35	84	RC
24KRC039	754480	7407406	-60	35	96	RC
24KRC040	754497	7407417	-60	35	72	RC
24KRC041	754493	7407411	-60	35	78	RC
24KRC042	754503	7407413	-60	35	72	RC
24KRC043	754499	7407407	-60	35	78	RC
24KRC044	754495	7407401	-60	35	90	RC
24KRC045	754510	7407408	-60	35	84	RC
24KRC046	754514	7407414	-60	35	78	RC
24KRC047	754506	7407402	-60	35	84	RC
24KRC048	754501	7407394	-60	35	96	RC
24KRC049	754517	7407403	-60	35	78	RC
24KRC050	754512	7407397	-60	35	84	RC
24KRC051	754509	7407392	-60	35	90	RC
24KRC052	754522	7407399	-60	35	80	RC
24KRC053	754518	7407393	-60	35	84	RC
24KRC054	754514	7407388	-60	35	84	RC
24KRC055	754531	7407393	-60	35	90	RC
24KRC056	754527	7407387	-60	35	96	RC
24KRC057	754523	7407380	-60	35	102	RC
24KRC058	754453	7407437	-60	35	66	RC
24KRC059	754448	7407431	-60	35	72	RC
24KRC060	754444	7407425	-60	35	84	RC
24KRC061	754451	7407445	-60	35	66	RC
24KRC062	754448	7407440	-60	35	66	RC
24KRC063	754444	7407434	-60	35	72	RC
24KRC064	754455	7407464	-60	35	48	RC
24KRC065	754451	7407458	-60	35	48	RC
24KRC066	754448	7407452	-60	35	54	RC
24KRC067	754443	7407446	-60	35	60	RC
24KRC068	754461	7407434	-60	35	66	RC
24KRC069	754456	7407428	-60	35	72	RC
24KRC070	754452	7407421	-60	35	84	RC
24KRC071	754465	7407422	-60	35	72	RC
24KRC072	754461	7407417	-60	35	84	RC

Hole_ID	East	North	Dip	Azimuth	Depth (m)	Method
24KRC073	754472	7407406	-60	35	90	RC
24KRC074	754440	7407419	-60	35	84	RC
24KRC075	754440	7407428	-60	35	78	RC
24KRC076	754457	7407411	-60	35	78	RC
24KRC079	754146	7407525	-60	35	24	RC
24KRC080	754157	7407527	-60	35	24	RC
24KRC081	754153	7407521	-60	35	24	RC

Table 2: 4 Metre Composites/1 Metre Splits

4 METRE COM	POSITES			1 METRE SPL			
ELEMENT	Au	Au-Rp1	Au-Rp2	ELEMENT	Au	Au-Rp1	4 metr averag
UNITS	ppb	ppm	ppb	UNITS	ppb	ppm	ppb
DETECTION	1	0.005	1	DETECTION	1	0.005	
METHOD	AR25/MS	FA25/OE	AR25/MS	METHOD	FA50/MS	FA50/OE	
Sample Numbe	ers - 4m Com	posites		Sample Numb	ers - 1m Splits		
				24KRC-1 21	95		
				24KRC-1 22	98		
				24KRC-1 23	167		
				24KRC-1 24	76		109
24KRC-1 20-	113						
24				24KRC-1 25	306		
				24KRC-1 26	66		
				24KRC-1 27	104		
				24KRC-1 28	28		126
24KRC-1 24-	112						-
28				24KRC-1 29	70.4		
					794		
				24KRC-1 30	27		
				24KRC-1 31	7		
	107			24KRC-1 32	2		208
24KRC-1 28- 32	165						
				24KRC-2 33	24		
				24KRC-2 34	551		
				24KRC-2 35	3162		
				24KRC-2 36	1021		1,190
24KRC-2 32-	1,425						
36				24KRC-2 37	6089		
				24KRC-2 38	29103	28.203	
				24KRC-2 39	2179		
				24KRC-2 40	375		9,324
24KRC-2 36-	>2,000	10.415					
40				24KRC-2 41	250		
				24KRC-2 41 24KRC-2 42	380		
				24KRC-2 43 24KRC-2 44	140		210
241/ DC 2 40	140			24NKC-2 44	102		218
24KRC-2 40- 44	148						
				24KRC-2 69	Х		
				24KRC-2 70	37		
				24KRC-2 71	117		
				24KRC-2 72	165		80

4 METRE COM	POSITES			1 METRE SPL			
ELEMENT	Au	Au-Rp1	Au-Rp2	ELEMENT	Au	Au-Rp1	4 metre average
UNITS	ppb	ppm	ppb	UNITS	ppb	ppm	ppb
DETECTION	1	0.005	1	DETECTION	1	0.005	
METHOD	AR25/MS	FA25/OE	AR25/MS	METHOD	FA50/MS	FA50/OE	
Sample Numbe	ers - 4m Com	posites		Sample Numb	ers - 1m Splits		
24KRC-2 68-	108						
72				24KRC-3 29	25		
				24KRC-3 30	11		-
				24KRC-3 31	414		
				24KRC-3 32	1728		545
24KRC-3 28-	552			241110 3 32	1720		545
32	552						
				24KRC-3 33	310		
				24KRC-3 34	353		
				24KRC-3 35	190		
				24KRC-3 36	155		252
24KRC-3 32-	210						1
36				24KRC-4 17	15		
				24KRC-4 18	153		
				24KRC-4 19	2701		
				24KRC-4 20	798		1092
24KRC-4 16-	1,143						
20	.,				470		
				24KRC-4 21	178		
				24KRC-4 22	121		
				24KRC-4 23	30		
				24KRC-4 24	11		85
24KRC-4 20- 24	100						
∠- ⊺				24KRC-6 25	17		
				24KRC-6 26	17		
				24KRC-6 27	705		
				24KRC-6 28	170		227
24KRC-6 24-	280						1
28					93		
				24KRC-6 30	30		
				24KRC-6 31	17		
				24KRC-6 32	15		39
24KRC-6 28- 32	44						
				24KRC-6 33	70		
				24KRC-6 34	190		1
•				24KRC-6 35	708		
				24KRC-6 36	553		380

4 METRE COM	POSITES			1 METRE SPLI	TS		
ELEMENT	Au	Au-Rp1	Au-Rp2	ELEMENT	Au	Au-Rp1	4 metre average
UNITS	ppb	ppm	ррb	UNITS	ppb	ppm	ppb
DETECTION	1	0.005	1	DETECTION	1	0.005	
METHOD	AR25/MS	FA25/OE	AR25/MS	METHOD	FA50/MS	FA50/OE	
Sample Numbe	ers - 4m Com	posites		Sample Numbe	ers - 1m Splits		
24KRC-6 32-	609						
36				24KRC-6 37	1224		
				24KRC-6 38	477		
				24KRC-6 39	296		
				24KRC-6 40	79		519
24KRC-6 36-	438				-		
40					44		
	-			24KRC-7 17 24KRC-7 18	44		
					81		
				24KRC-7 19	56		4 47
0.4/(DO 7.40	100			24KRC-7 20	405		147
24KRC-7 16- 20	102						
				24KRC-7 21	7643		
				24KRC-7 22	8561		
				24KRC-7 23	7849		
				24KRC-7 24	608		6165
24KRC-7 20-	>2,000	4.78					
24				24KRC-7 25	616		
				24KRC-7 26	142		
				24KRC-7 27	155		
				24KRC-7 28	232		286
24KRC-7 24-	190						
28				0.41/(DC) 7.00	25		
				24KRC-7 29	-		
04//00 7 00	110			24KRC-7 30	41		33
24KRC-7 28- 30	110						
				24KRC-8 37	1384		
				24KRC-8 38	1077		
				24KRC-8 39	76		
				24KRC-8 40	83		654
24KRC-8 36-	982						
40				24KRC-9 29	137		
				24KRC-9 30	3210		
				24KRC-9 31	1943		
				24KRC-9 32	193		1371
24KRC-9 28-	1302		1279				
32			-		04		
				24KRC-10 33	31		

4 METRE COM	POSITES			1 METRE SPLI	TS		
ELEMENT	Au	Au-Rp1	Au-Rp2	ELEMENT	Au	Au-Rp1	4 metre average
UNITS	ppb	ppm	ppb	UNITS	ppb	ppm	ppb
DETECTION	1	0.005	1	DETECTION	1	0.005	
METHOD	AR25/MS	FA25/OE	AR25/MS	METHOD	FA50/MS	FA50/OE	
Sample Numbe	ers - 4m Com	posites		Sample Numb	ers - 1m Splits		
				24KRC-10 34	196		
				24KRC-10 35	208		
				24KRC-10 36	342		194
24KRC-10 32- 36	581						
				24KRC-10 37	67		
				24KRC-10 38	77		
				24KRC-10 39	1394		
				24KRC-10 40	55		398
24KRC-10 36-	291						
40	1			24KRC-11 29	15		
				24KRC-11 30	25		
				24KRC-11 31	2337		
				24KRC-11 32	159		634
24KRC-11 28-	399			_			
32				24KRC-11 33	442		
				24KRC-11 34	34061	34.592	
				24KRC-11 35	716	34.332	
				24KRC-11 36	3557		9760
24KRC-11 32-	>2,000	10.819		241(10-11-30	5557		3700
36	>2,000	10.019					
				24KRC-12 37	1031		
				24KRC-12 38	568		
				24KRC-12 39	37		
				24KRC-12 40	396		508
24KRC-12 36- 40	497						
	1			24KRC-12 41	6050		
	1			24KRC-12 42	11297		
	1			24KRC-12 43	62		
				24KRC-12 44	41		4363
24KRC-12 40-	>2,000	4.707		-1			
44				24KRC-12 57	212		
				24KRC-12 57	90		
				24KRC-12 58 24KRC-12 59	90 44		
				24KRC-12 59 24KRC-12 60	24		93
24KPC 12 56	805			2400-12 00	24		30
24KRC-12 56- 60	805						
				24KRC-14 29	14349		

4 METRE COM	POSITES			1 METRE SPL	тs		
ELEMENT	Au	Au-Rp1	Au-Rp2	ELEMENT	Au	Au-Rp1	4 metre average
UNITS	ppb	ppm	ppb	UNITS	ppb	ppm	ppb
DETECTION	1	0.005	1	DETECTION	1	0.005	
METHOD	AR25/MS	FA25/OE	AR25/MS	METHOD	FA50/MS	FA50/OE	
Sample Numbe	rs - 4m Com	posites		Sample Numb	ers - 1m Splits		
				24KRC-14 30	27230	26.919	
				24KRC-14 31	291		
				24KRC-14 32	1651		10841
24KRC-14 28- 32	>2,000	11.351					
				24KRC-15 33	171		
				24KRC-15 34	56		
				24KRC-15 35	135		
				24KRC-15 36	1669		508
24KRC-15 32- 36	713		640				
50				24KRC-15 41	157		
				24KRC-15 42	345		
	1			24KRC-15 43	25		1
				24KRC-15 44	6		133
24KRC-15 40-	209						
44				24KRC-16 37	29		
				24KRC-16 38	2064		
				24KRC-16 39	359		
				24KRC-16 40	120		643
24KRC-16 36-	560		683	24101040	120		040
40	300		003				
				24KRC-20 41	53		
				24KRC-20 42	94		
				24KRC-20 43	508		
				24KRC-20 44	1025		420
24KRC-20 40- 44	254						
				24KRC-20 45	4963		
	1			24KRC-20 46	383		
	1			24KRC-20 47	178		
	1			24KRC-20 48	493		1504
24KRC-20 44- 48	1,449		1,378				
				24KRC-20 49	652		
				24KRC-20 50	288		
				24KRC-20 51	20		
				24KRC-20 52	125		271
24KRC-20 48- 52	115						
UL .				24KRC-21 45	1621		1

METRE COM	POSITES			1 METRE SPLI	TS		
ELEMENT	Au	Au-Rp1	Au-Rp2	ELEMENT	Au	Au-Rp1	
UNITS	ppb	ppm	ppb	UNITS	ppb	ppm	
DETECTION	1	0.005	1	DETECTION	1	0.005	
METHOD	AR25/MS	FA25/OE	AR25/MS	METHOD	FA50/MS	FA50/OE	
Sample Numbe	ers - 4m Com	posites		Sample Numbe	ers - 1m Splits		
				24KRC-21 46	2512	2.152	
				24KRC-21 47	149		Ī
				24KRC-21 48	75		T
24KRC-21 44- 48	423						
				24KRC-28 5	362		
				24KRC-28 6	1495		
				24KRC-28 7	227		
				24KRC-28 8	148		
24KRC-28 4-8	519						\dagger

Appendix 1: JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 The sampling has been carried out using Reverse Circulation (RC) drilling from the following project and target; Tin Can 48 Holes for 3516 m Samples were collected as drilling chips from the RC rig using a cyclone collection unit and directed through a static cone splitter to create a 2-3 kg sample for assay. Samples were taken as individual metre samples.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Sampling was carried out under Peregrine Gold's protocol and QAQC procedures. Laboratory QAQC was also conducted. See further details below. Holes were drilled with a 5.5-inch face-sampling bit, and 1 m samples were collected through a cyclone and static cone splitter, to form a 2-3 kg sample. For all samples, that were sent to the Intertek Genalysis laboratory in Perth for analysis. Samples were dried, and fully pulverised at the laboratory to - 75 um and split to produce a nominal 200 g sub- sample of which 10 g was analysed using aqua-regia digestion. This is deemed acceptable and industry standard for detecting low- level gold anomalism in weathered terranes.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The program was conducted using a Schramm T685 exploration RC drilling rig, owned and operated by TopDrill Drilling. The face-sampling RC bit has a diameter of 5.5 inches (140 mm).
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The majority of RC samples were dry. Drilling operators ensured water was lifted from the face of the hole at each rod change to ensure water did not interfere with drilling and to make sure samples were collected dry. Wet or damp samples are recorded in the database. RC recoveries were visually estimated, and recoveries were recorded in the log as a percentage. Recovery of the samples was good, generally estimated to be full, except for some sample loss at the top of the hole. All mineralised samples were dry. Peregrine Gold Limited's procedure is to stop RC drilling if water cannot be kept out of the hole and continue with a DDH tail at a later time if required. Face-sample bits and dust suppression were used
		to minimise sample loss. Drilling airlifted the water column above the bottom of the hole to ensure dry sampling. RC samples are collected through a cyclone and static cone splitter, the rejects are deposited in a plastic bag and a 2 to 3kg lab is collected, to enable a full sample pulverisation.

Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All chips were geologically logged by Peregrine Gold Limited geologists, using the Company's prescribed logging scheme. The detail of logging was sufficient for mineral resource estimation and technical studies. Logging of RC chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. All samples are wet-sieved and stored in a chip tray. All holes were logged in full.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 n/a 1 m drill samples are channelled through a static cone-splitter, installed directly below a rig mounted cyclone, and an average 2-3 kg sample is collected in a numbered calico bag, and positioned on top of the plastic bag. >95% of samples were dry, and whether wet or dry is recorded. A duplicate field sample is taken at a rate of approximately 1 in 40 samples. At the laboratory, regular Repeats and Lab Check samples are assayed. 1 m samples are split on the rig using a static conesplitter, mounted directly under the cyclone. Samples are collected to weigh between 2 to 3 kg to ensure total preparation at the pulverisation stage.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Samples were analysed at the Intertek Genalysis Laboratory in Perth. The analytical method used was a 50 g Fire Assay with ICP finish for gold only, which is considered to be appropriate for the material and mineralisation. The method gives a near-total digestion of the material intercepted. Field Standards (Certified Reference Materials) and Blanks were inserted at a rate of 4 Standards and 4 Blanks per 100 samples. Field duplicates are generally inserted at a rate of approximately 1 in 40. Umpire checks are not required for early-stage projects.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Significant results are checked by the Technical Director. Additional checks are completed by the Database Manager. High-grade gold RC samples are panned or sieved to check for visual evidence of coarse gold. No twinned holes have been completed. All field logging is carried out in the field by a qualified geologist. Logging data is submitted electronically to the Database Geologist in the Perth office. Assay files are received electronically from the Laboratory. All data is stored in SQL database system and maintained by the Database Manager. No assay data was adjusted. The lab's primary Au field is the one used for plotting and resource purposes. No averaging is employed.

Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	RC locations were determined by handheld GPS, with an accuracy of 5 m in Northing and Easting. Additionally hole collars are measured with a tape measure and compass for direction to maintain accurate relative locations to each collar. For angled drill holes, the drill rig mast is set up using a clinometer. Grid projection is GDA94, MGA Zone 51. RC RL's are controlled from a detailed lidar digital elevation model.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Tin Can – 48 Holes completed This is not considered relevant for this report. Samples are collected using a 4m composite for all drill holes, using the scoop/spear methodology from the large one-metre sample bags. One metre individual samples are submitted where anomalous results arise from the composited samples. Composite sampling is undertaken using a stainless steel spear/trowel on the one-metre samples and combining them into a calico bag for a combined weight of approximately 2- 3kg.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling is designed to intersect any mineralisation as close to perpendicular as possible. Most drill holes are designed to dip at -60 degrees. The true width of drill intersection is not known at this
Sample security	The measures taken to ensure sample security.	Pre-numbered calico sample bags were collected in plastic bags (five calico bags per single plastic bag), sealed, and transported by company transport to the Intertek Genalysis Laboratory in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling and assaying techniques are industry- standard. No specific external audits or reviews have been undertaken at this stage in the programme.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The exploration results in this report relate to Exploration Licenses E52/3785. Tenure in the form of Exploration Licenses with standard expiry conditions and options for renewal.
		E52/3785 is 100% owned by Peregrine's subsidiary, Pilbara Gold Exploration Pty Ltd.
		The tenement is within the Nyiyaparli and Nyiyaparli #3 determination and claim for native title purposes.
		The tenements are in good standing and there are no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Limited regional exploration on E52/3785 was undertaken by previous companies and included geophysical, and geochemical surveys
		Geochemical surveys included soil and stream sampling.
Geology	Deposit type, geological setting and style of mineralisation.	The tenement partially overlap the southeast corner of the Pilbara Craton with Archaean granite and minor greenstone exposed in the Sylvania Inlier. The northern margin of this terrane is in tectonic contact with the Fortescue and Hamersley Groups that lie within the Hamersley Basin. In the south it is unconformably overlain by the Bresnahan and Bangemall basins that form the Bangemall Group.

Criteria	JORC Code explanation	Commentary
		Gold deposits of significant scale occur in a variety of spatial and temporal settings.
		The assembly of the Archaean to Proterozoic rock between the Pilbara and Yilgarn cratons is referred to as the Capricorn Orogen. Approximately 1000km long and 500km wide, the damage zone of this orogen records this punctuated Proterozoic construction. It includes the deformed margins of these cratons as well as the continental margin rocks such as the Hamersley Basin, meta-igneous and metasedimentary rocks of the Gascoyne Complex and numerous low- grade sedimentary rocks such as the Bresnahan Basin.
		Throughout the region there are numerous gold, basemetal and rare earth element occurrences. Deposits of significance are observed within the boundaries of the Capricorn Orogen which include the nearby Bibra, Paulsons/Whyloo Dome, Plutonic, Ashburton Project and the DeGrussa copper-gold- silver deposit.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to tables included in the body of the report.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Only field observations have been reported. There has been no data aggregation.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Due to the poor outcrop coverage in the prospect area, width of mineralisation is currently unknown.
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to diagrams in body of the report.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All available relevant information is presented.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All available relevant information is presented.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Future exploration activities may include additional costeans followed by close spaced diamond drilling beneath the vein systems.

