

Yinnetharra & Mt Ida Exploration Update

Highlights:

- The **Yinnetharra Lithium Project** is an exploration project covering a **substantial 1,769km²** (including Farm-In's) within the Gascoyne Lithium Province of **Western Australia**
 - o Maiden Resource Estimate (MRE) of 25.7Mt @ 1% Li₂O reported at the Malinda Prospect in December 2023¹
 - The Malinda MRE is located within a 1.6km section of the 80km strike length of Delta's prospective stratigraphy at the broader Yinnetharra Lithium Project, including the Jameson Prospect
- Highlights from resource definition at Malinda in this round of results include²:
 - o **25m @ 2.84% Li₂O** from 148m in YRRD050 at M36
 - o **124m @ 1.1% Li₂O** from 11m in YDPT005 at M1 (metallurgical hole not true width)
 - o 46m @ 1.1% Li₂O from 203m in YDGT002 at M1
 - 78m @ 0.8% Li₂O from 105m in YRRD668 at M47
 - including 22m @ 1.4% Li₂O from 160m
- **Final assays from Jamesons** current program show continuation of strong spodumene mineralisation at depth
 - o 10m @ 2.2% Li₂O from 113m in JREX030A
- Mt Ida is an exploration project located 240km north of Kalgoorlie in the Eastern Goldfields Province
 of Western Australia, and containing JORC resources for both Lithium and Gold
 - o Lithium MRE of **14.6Mt @ 1.2% Li₂O**³
 - Gold MRE of 6.6 Mt @ 3.5g/t Au for 752,000 oz⁴
- Gold exploration at Mt Ida has commenced to target high-grade resource extensions and regional targets

Delta Lithium Limited (ASX: DLI) ("Delta" or the "Company"), is pleased to announce an update for the ongoing exploration activities at its 100% owned Western Australian Projects, Yinnetharra Lithium Project and the Mt Ida Project.

The Company's recent drilling at Yinnetharra continues to provide high-grade lithium results from resource definition drilling at Malinda, as well as further encouraging intercepts from Jamesons prospect.

At Mt Ida, an RC rig has recently mobilised and commenced lithium exploration and gold resource development drilling. A subsequent diamond drill program will follow to target extensions to the high-grade gold resource.

¹ Refer ASX Announcement 27 December 2023 titled "Yinnetharra Lithium Project Maiden Mineral Resource Estimate"

² Refer to Appendix 3 for full drill hole information

³ Refer ASX Announcement 3 October 2023 titled "Mt Ida Lithium Mineral Resource Estimate Update"

⁴ Refer ASX Announcement 28 June 2024 titled "Mt Ida Gold MRE Update"

Commenting on the results Managing Director, James Croser said;

"The Mt Ida Project was purchased for the gold back in late 2021, and almost immediately a lithium discovery was made. Since then, most exploration at Mt Ida has been for lithium, however gold has continually been encountered, reminding us of Mt Ida's gold potential. Delta has always considered the gold at Mt Ida a genuine hedge against cyclic lows in a volatile lithium market.

While we take a more prudent approach to lithium exploration during this cycle low, we will seek to advance the gold asset at Mt Ida in parallel. This is a simple redeployment of Delta resources across our operating sites.

At Yinnetharra, lithium metallurgy and other development and approvals work will continue at Malinda, with RC drilling continuing in the vicinity of Malinda and regional prospects."



Figure 1: Location of Delta Projects with resources

Mt Ida Project

Mt Ida is located approximately 240km north of Kalgoorlie in Western Australia. The Project area resides on granted mining leases and is approved for commencement of initial open pit mining.

Lithium

Mapping and surface rock chips identified the Drake and Bonny lithium prospects on the eastern granite margin. The prospects show a strike extent of at least 250m and returned rock chip assays up to 2.1% Li₂O. The Company recently mobilised an RC rig to Mt Ida to commence Stage 1 of a modest four stage drill program.

The program commenced on first-pass reconnaissance of a surface spodumene target at the Bonny & Drake lithium prospects followed by targeted gold drilling. Initial results from the first 2 Bonny holes have been returned which have intercepted pegmatite, however they did not intercept the high-grade plunge of the spodumene observed at surface. All remaining assays are pending. This first pass program has drilled 1,200m to test these prospects and final assay results when received will determine future actions.

Gold

Delta has recently announced an updated gold resource for its 100% owned Mt Ida Project (refer ASX announcement 28 June 2024 titled) "Mt Ida Gold MRE Update".

The Mineral Resource estimate for Mt Ida Gold is 6.6Mt @ 3.5 g/t Au for 752,000 ounces¹.

This includes the high grade Baldock Deposit 4.8Mt @ 4.4g/t Au for 674,000 oz.

¹see Appendix 2 Mt Ida Gold MRE summary table

ASX ANNOUNCEMENT

2 August 2024

Following completion of the reconnaissance drilling at Bonny and Drake, the RC rig has now moved onto resource extension gold drilling at Baldock and regional gold drilling. The four-stage program will consist of approximately 35-40,000 drill metres including both RC and diamond drilling.

Stage 1 is currently underway with the RC rig mobilised to the Baldock area. This drilling will target shallow resource extensions and further along the 3km strike of the Baldock Deposit. See Figure 2 for drill areas by Stage.

Stage 2 to follow this program will complete step out RC drilling of the existing JORC Compliant resources including Kestrel. This stage will also complete pre-collars for the arrival of a diamond drill rig in the coming months.

Stage 3 will comprise of Diamond drilling to test the downdip and plunge extensions to higher grade shoots of the Baldock Deposit. Note that all resource extensional drilling from Stages 1 - 3 will be completed on granted mining leases and within the scope of existing Programs of Work (PoW's).

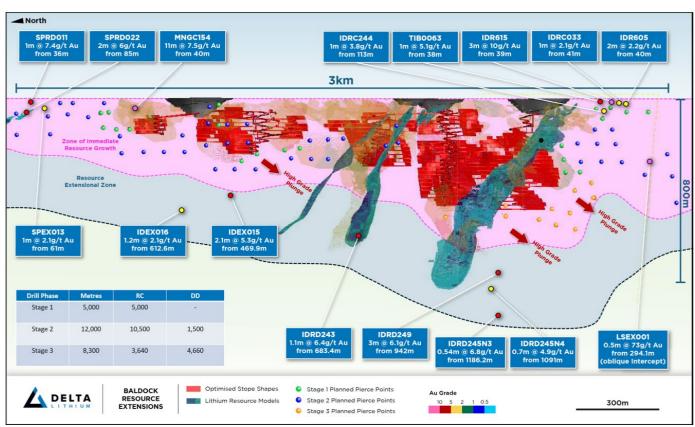


Figure 2 Baldock Deposit Long Section showing 3-stage Drill Program targeting Gold

Stage 4 RC drilling will assess a number of defined regional prospects (see figure 3). Drillholes have been designed to follow up historic high-grade intercepts and represent compelling upside for the gold potential of the Mt Ida project.

An internal Scoping Study has been completed by the Company. Due to the proportion of inferred material reporting to a Mining Inventory, the Company is not permitted to release the production physicals and cost estimate information. However, the positive results give confidence to invest in the necessary gold exploration to improve the Indicated/Inferred resource categories. Delta has commenced investigation of capex/opex estimates for a stand-alone processing option. The Company remains open to all options to realise the maximum value from monetising the gold asset.

Results from drilling will be released to market as they become available.

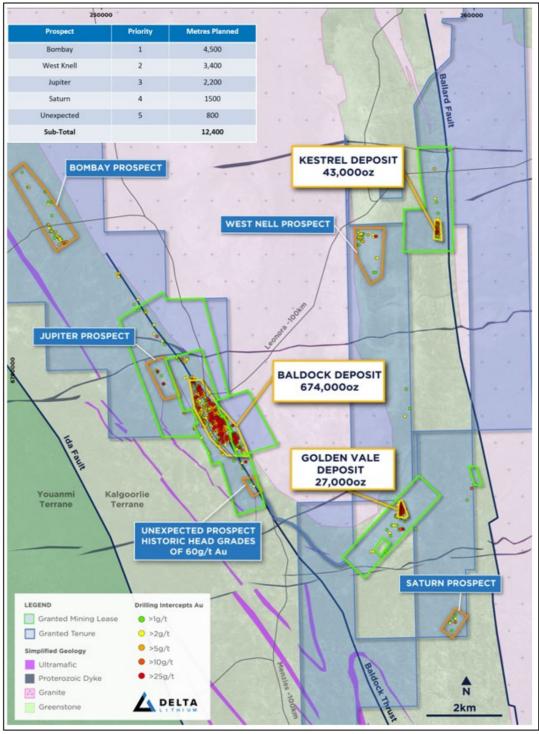


Figure 3: Mt Ida Au 2012 JORC compliant resources and regional prospects

Yinnetharra Exploration

The Yinnetharra project is in the Gascoyne region of Western Australia targeting Lithium mineralisation. Delta Lithium has 1,769km² of tenure owned outright and as Farm-in Joint Ventures. A maiden MRE was released in December 2023 of **25.7Mt @ 1% Li₂O**. Farm-In Joint Venture Agreements have expanded the prospective stratigraphy to over 80km in length.

The Company has continued to actively explore at Yinnetharra with two (2) drill rigs currently operating at the Malinda prospect. Drilling completed since last reporting at Malinda has demonstrated continued lithium intercepts from the M1, M36 and M47 pegmatites, which form the bulk of the MRE. Recent highlights can be seen below in Table 1 and Figure 5, with a full list of recent results in Appendix 3.

Exploration during the current Quarter will focus on completion of the resource definition program for Malinda and completion of the diamond programs to collect representative bulk samples for metallurgical testwork.

The RC rig at Malinda will then investigate regional targets at Jameson, Talisker and Caribou while target generation and exploration work continues across the various regional prospects. See Figure 4 for Yinnetharra prospect locations.

Delta is in the process of identifying a suitable track-mounted RC rig to be used at Jamesons while access constraints are surveyed for heritage importance before the drilling can be recommenced. Multiple field teams continue to undertake detailed geological mapping and geochemical surface sampling across prospective areas of the large 1,769km² Yinnetharra tenement package.

Ongoing exploration efforts and cooperation with Traditional Owners will support the expansion and further definition of target prospects as the Company moves into development phases at Malinda while also increasing regional efforts across the tenure.

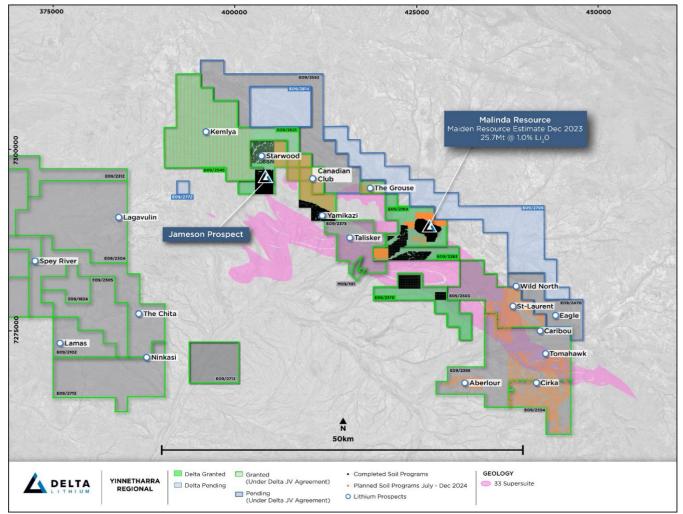


Figure 4: Location of Yinnetharra Project with regional prospects

HoleID	From m	To m	Length m	Li2O pct	Ta2O5 ppm	Fe2O3%
YDPT005	11.0	135.1	124.1	1.1	50.8	2.6
YDPT006	119	217	108	0.7	54.8	2.7
YDRD050	148	173	25	2.8	111.2	2.5
YRRD668	105	183	78	0.8	217.3	3.2
YDRD052	80.6	117.0	36.4	1.5	54.3	0.8
YRRD690	62	105	43	1.2	68.1	1.1
YDPT004	82.7	154.2	71.5	0.7	63.9	0.7
YDGT002	203.0	248.6	45.6	1.1	63.1	0.8
YRRD671	202.1	237.4	35.3	1.18	77	1.53
YDRD056	148.5	191.0	42.5	1.0	58.9	0.5
YDPT001	23.8	52.5	28.6	1.3	70.6	0.9
YDPT006	119	161	42	0.8	38.1	1.6
YRRD640	202	219	17	1.85	116	2.94
YRRD663A	149	178	29	1.0	76.9	2.5
YRRD577	170	197	27	1.0	23.2	0.9
YDPT002	37.3	61.1	23.8	1.1	76.5	1.2
JREX030A	113	123	10.0	2.2	55.7	1.1
YRRD618	152.5	170.6	18.1	1.0	58.9	1.2
YRRD690A	32	59	27	0.7	47.3	2.5
YDRD053	89	100	11	1.3	26.3	0.7
YRRD678A	186	195	9.0	1.5	25.4	0.8
YRRD679	89.0	101.3	12.3	1.1	45.1	4.9
YRRD588	 86	99	13	1.0	55.4	1.0
YRRD660	 39	59	20	0.7	242.4	1.1
YRRD634	 171	184	13	1.0	53.1	3.9
YRRD633A	150	159	9	1.3	46.1	4.2

Table 1: Highlight of recent drilling results from Yinnetharra

In Table 1, Hole identifiers YDPT relate to PQ diamond core drilled non-perpendicular into M1 for metallurgical pilot testwork. YDGT identifier relates to geotechnical holes drilled to procure samples for geotechnical logging and testwork.

Lithium resources at Malinda are largely present in three main pegmatites, the M1, M36 and M47. Mineralisation extends from surface to a depth of >300m although recent drilling has other near surface mineralisation from two other pegmatites M42 and M20.

Flotation variability metallurgical test work is ongoing with initial results from the M1 demonstrating the potential for high recovery of spodumene to high grade low impurity concentrates². Advanced M1 flowsheet development and optimisation has commenced with recent results tabulated below in Table 2, consistently showing excellent spodumene recoveries. Similar sample collection and flotation variability test work has commenced and will continue on the M36 and M47 pegmatites following.

Although test work has been completed with Perth tap water, the base case scenario for processing water on site is RO treatment of groundwater from a borefield, so tap water is considered a reasonable substitute for the test work. Subsequent tests will utilise RO water generated at site.

2 August 2024

				Head Feed		Mags & Slimes		Spodu	mene Coi	ncentrate
Program	Test	Parameter	Composite	Gra	ade	Grade	Recovery	Gra	ide	Global Recovery
				(% Li₂O)	(% Fe₂O₃)	(% Li₂O)	(% Li₂O)	(% Li₂O)	(% Fe₂O₃)	(% Li ₂ O)
	BC1	106um	Bulk	1	0.4	1	12	6.8	0.4	78
	BC2	125um	Bulk	1	0.4	0.9	10	6.8	0.4	79
Flowsheet Development	BC3	150um	Bulk	1	0.4	0.9	8	6.7	0.4	80
	BC45	180um	Bulk	1	0.4	1	7	6.4	0.4	81
	BC46	212um	Bulk	1	0.4	1	6	6.2	0.4	81

Table 2: M1 Metallurgical grind size variability flotation results*
*Testwork undertaken on a laboratory bench scale using Perth scheme water.

Figure 5: Malinda Plan view showing block models with selected recent intercepts

Next Steps

Yinnetharra:

- Continue fieldwork mapping and soils at Yinnetharra
- Continue RC drilling at Malinda, then regionally as Prospects become accessible
- Complete Diamond drilling metallurgical programs then mobilise drill to Mt Ida
- Continue M1 metallurgy testwork prepare M36, M47 composites

Mt Ida:

- Complete Stage 1 RC drilling, then commence Stage 2/3 timed to coincide with mobilisation of DD rig from Yinnetharra
- Mobilise DD rig to drill deeper high-grade shoots
- Stage 4 regional RC drilling

Ends.

Release authorised by the Managing Director on behalf of the Board of Delta Lithium Limited.

For further information, please contact:

Delta Lithium

James Croser, Managing Director

Peter Gilford, CFO & Company Secretary
+61 8 6109 0104

Investor/Media Enquiries
Sodali & Co
Michael Weir +61 402 347 032

About Delta Lithium

info@deltalithium.com.au

Delta Lithium (ASX: DLI) is an exploration and development company focused on bringing high-quality, lithium-bearing pegmatite deposits, located in Western Australia, into production. With current global JORC compliant resources of 40.4Mt@1.1%Li2O, strong balance sheet and an experienced team driving the exploration and development workstreams, Delta Lithium is rapidly advancing its Projects.

The Mt Ida Project has coincident gold and lithium orebodies and holds a critical advantage over other developers with existing Mining Leases and an approved Mining Proposal. Delta Lithium is pursuing a development pathway to unlock maximum value for shareholders. Delta is currently drilling to extend the high-grade gold resources at Mt Ida.

Delta Lithium also holds the highly prospective Yinnetharra Lithium Project that is already showing signs of becoming one of Australia's most exciting lithium regions, with exciting lithium discoveries at the Malinda and Jamesons prospects. The Company is currently conducting exploration activities at Yinnetharra with drilling and fieldwork ongoing throughout 2024 across our large tenure package, testing additional targets and building on the Maiden Resource released in December 2023.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Shane Murray, a Competent Person who is a Member of the Australasian Institute of Geoscientists (AIG). Mr. Murray has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Murray is an employee of Delta Lithium Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Refer to www.deltalithium.com.au for past ASX announcements.

Past Exploration results and Mineral Resource Estimates reported in this announcement have been previously prepared and disclosed by Delta Lithium in accordance with JORC 2012. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.deltalithium.com.au for details on past exploration results and Mineral Resource Estimates.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on Delta Lithium management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Delta Lithium, which could cause actual results to differ materially from such statements. Delta Lithium makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing

Refer to www.deltalithium.com.au for past ASX announcements.

Appendix 1 Lithium MRE summary table

	Delta L	ithium Gr	oup Mineral Resou	rce estimat	9	
		Cut-off	Li₂O			Ta₂O₅
	Resource category	grade	Tonnes	Grade	Li ₂ O	Grade
		(Li ₂ O%)	(Mt)	(% Li ₂ O)	(Kt)	(Ta₂O₅ ppm)
	Measured		-	-	-	-
Yinnetharra	Indicated	0.5	6.7	1.0	65	51
rinnemarra	Inferred	0.5	19.0	1.0	181	67
	Total Resource		25.7	1.0	246	62
	Measured		-	-	-	-
Mt Ida	Indicated	0.5	7.8	1.3	104	224
WIL IGA	Inferred	0.5	6.8	1.1	76	154
	Total Resource		14.6	1.2	180	191
	Total Measured		-	-	-	-
Total Indicated		14.5	1.2	169	144	
Total Inferred		25.8 1.0		257	90	
	Total		40.4	1.1	426	109

Notes:

Tonnages and grades have been rounded to reflect the relative uncertainty of the estimate. Inconsistencies in the totals are due to rounding.

Appendix 2 Mt Ida Gold MRE summary table

			Indicated			Inferred			Total	
Cut off	Deposit	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
		(000s)	g/t Au	(000s)	(000s)	g/t Au	(000s)	(000s)	g/t Au	(000s)
	Baldock	1,345	4.9	209.0	1,512	3.2	158	2,857	4.0	367
Open Pit Au 0.5 g/t	Kestrel	-	-	-	570	1.6	29	570	1.6	29
	Golden Vale	-	-	-	496	1.7	27	496	1.7	27
0.0 g/t Au Cut off	Mt Ida Tailings	-	-	-	500	0.5	8	500	0.5	8
	Baldock	180	5.8	33.0	1,780	4.8	274	1,960	4.9	307
Underground	Kestrel	-	-	-	220	1.9	14	220	1.9	14
1.5 g/t Au	Golden Vale	-	-	-	-	-	-	-	-	-
	Mt Ida Tailings				500	0.5	8	500	0.5	8
All	Baldock	1,525	4.9	242.0	3,292	4.1	432	4,817	4.4	674
All	Kestrel	-	-	-	790	1.7	43	790	1.7	43
	Golden Vale	-	-	-	496	1.7	27	496	1.7	27
	Total	1,525	4.9	242.0	5,078	3.1	510	6,603	3.5	752

Appendix 3 Recent Drilling Information

New Significant Results

HoleID	From	То	Length	Li20 %	Ta2O5ppm	Fe2O3 %
YDPT005	11.0	135.1	124.1	1.1	50.8	2.6
YDPT006	119.0	217.0	108.0	0.7	54.8	2.7
YDRD050	148.0	173.0	25.0	2.8	111.2	2.5
YRRD668	105.0	183.0	78.0	0.8	217.3	3.2
YDRD052	80.6	117.0	36.4	1.5	54.3	0.8
YRRD690	62.0	105.0	43.0	1.2	68.1	1.1
YDPT004	82.7	154.2	71.5	0.7	63.9	0.7
YDGT002	203.0	248.6	45.6	1.1	63.1	0.8
YRRD671	192.0	246.0	54.0	0.8	77.3	1.5
YDRD056	148.5	191.0	42.5	1.0	58.9	0.5
YDPT001	23.8	52.5	28.6	1.3	70.6	0.9
YDPT006	119.0	161.0	42.0	0.8	38.1	1.6
YRRD640	200.0	224.0	24.0	1.3	116.4	2.9
YRRD663A	149.0	178.0	29.0	1.0	76.9	2.5
YRRD577	170.0	197.0	27.0	1.0	23.2	0.9
YDPT002	37.3	61.0	23.8	1.1	76.5	1.2
JREX030A	113.0	123.0	10.0	2.2	55.7	1.1
YRRD618	152.5	170.6	18.1	1.0	58.9	1.2
YRRD690A	32.0	59.0	27.0	0.7	47.3	2.5
YDRD053	89.0	100.0	11.0	1.3	26.3	0.7
YRRD678A	186.0	195.0	9.0	1.5	25.4	0.8
YRRD679	89.0	101.3	12.3	1.1	45.1	4.9
YRRD588	86.0	99.0	13.0	1.0	55.4	1.0
YRRD660	39.0	59.0	20.0	0.7	242.4	1.1
YRRD634	171.0	184.0	13.0	1.0	53.1	3.9
YRRD633A	150.0	159.0	9.0	1.3	46.1	4.2
YDPT003	72.0	82.4	10.4	1.1	92.9	0.6
YRRD581	22.0	33.0	11.0	1.0	38.7	2.0
YRRD584	295.0	309.0	14.0	0.8	47.0	1.3
YRRD662	124.0	139.0	15.0	0.7	124.1	3.6
YDRD059	234.1	243.3	9.2	1.1	59.9	0.5
YRRD675	142.0	152.2	10.2	1.0	38.5	0.7
YRRD669	106.0	124.0	18.0	0.5	80.3	8.6
YRRD632	203.0	216.0	13.0	0.7	63.2	2.2
YRRD627	192.9	200.0	7.1	1.2	31.1	0.7
YDPT003	 58.3	67.0	8.7	0.8	82.2	0.6
YDPT004	 158.4	168.9	10.5	0.7	66.1	0.7
YDRD058	 142.7	149.1	6.4	1.1	37.5	3.3
YRRD681A	264.0	275.0	11.0	0.6	46.4	0.9
YRRD686	131.0	139.0	8.0	0.8	70.6	0.9

HoleID	From	То	Length	Li20 %	Ta2O5ppm	Fe2O3 %
YRRD677	76.0	82.0	6.0	1.1	15.5	0.9
YRRD693	123.0	133.0	10.0	0.6	61.5	1.1
YRRD690	111.0	116.0	5.0	1.1	34.9	1.1
YRRD653	14.0	25.0	11.0	0.5	157.3	2.1
YRRD669	140.0	150.0	10.0	0.5	34.9	6.8
YRRD676	80.0	84.0	4.0	1.2	26.7	1.1
YRRD669	125.0	135.0	10.0	0.5	46.8	11.4
YRRD658	85.0	90.0	5.0	0.8	168.1	2.7
YRRD618	206.3	211.0	4.6	0.9	30.4	0.7
YRRD619	86.0	91.0	5.0	0.7	36.0	9.1
YDRD053	79.0	83.2	4.2	0.7	42.1	0.5
YRRD682	92.0	97.0	5.0	0.6	21.3	1.1
YDPT005	184.0	188.8	4.8	0.6	20.5	0.4
YRRD638	18.0	22.0	4.0	0.7	49.6	1.3
YRRD575	21.0	27.0	6.0	0.4	47.7	0.7
YRRD657	40.0	46.0	6.0	0.4	108.8	4.0
YRRD652	182.0	187.0	5.0	0.5	108.0	1.2
YRRD639B	177.0	181.0	4.0	0.5	10.4	12.3
YDRD059	253.1	256.3	3.1	0.6	32.7	0.9
YRRD658	75.0	80.0	5.0	0.4	21.2	10.3
YRRD663A	86.0	89.0	3.0	0.5	68.3	4.7
YRRD693	 114.0	117.0	3.0	0.5	28.6	7.0

New collar information for results received

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
JREX019	239	404026.8	7296052.06	335.65	243.67	-55.72
JREX020	239	404111.46	7295856.87	329.46	302.51	-56.54
JREX021	239	404064.71	7295800.32	325.87	294.69	-55.13
JREX022	239	404041.51	7295765.15	324.77	309.49	-70.48
JREX023	239	404203	7295779	325	251.9	-55.83
JREX024	104	403996	7296209	325	202.21	-55.91
JREX025	239	403949	7296165	325	201.49	-55.5
JREX026	239	404288	7295841	325	238.96	-55.51
JREX027	239	404056	7295571	325	301.76	-54.97
JREX028	185	404342	7295856	325	232.45	-54.97
JREX029	239	404321	7295771	325	229.66	-55.68
JREX030A	160	404158	7295990	326	256.78	-50.61
JREX031	238	404188	7295899	327	290.5	-50.4
YDGT001	168.3	426475.62	7288646.44	317.5	222.3	-70.46
YDGT002	294.3	427061	7288835	327	72.45	-69.95
YDGT003	204.2	426845.61	7288769.79	321	159.86	-69.69
YDPT001	56.77	426441.37	7288902.67	317	179.05	-58.02
YDPT002	65.9	426478.22	7288856.52	317	358.62	-65.36

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YDPT003	89.63	426544	7288912	319	195.21	-58.25
YDPT004	210	426914	7288939	321	180.51	-71.85
YDPT005	230.3	426759.51	7288979.12	319.92	177.93	-54.7
YDPT006	251.7	427070.51	7288963.9	323.37	178.17	-65.15
YDRD050	207.2	426271	7289403	323.1	1.1	-72.64
YDRD051	239.8	426845	7288777	321	347.97	-62.32
YDRD052	195	426721.91	7288878	320.7	25.7	-57.29
YDRD053	179.8	426414.46	7288736.39	314.86	9.72	-56.54
YDRD056	261.11	427039.61	7288844.23	322.69	345.26	-74.11
YDRD057	300.08	427282	7288868.13	326	0.95	-65.69
YDRD058	200.7	427142	7288860	324	352.78	-67.11
YDRD059	351.05	427324	7288774	331	19.87	-65.14
YRRD564	189	425990.15	7289385.15	327.96	359.7	-72.71
YRRD565	237	425990.88	7289325.82	325.73	359.7	-73.7
YRRD568	213	426032.3	7289343.21	326.97	355.71	-71.34
YRRD569	213	426070.93	7289326.24	325.93	354.5	-60.84
YRRD570	345	426276	7289850	322	163.99	-59.58
YRRD571	129	426275	7289847	322	177.31	-55.52
YRRD572	321	426275	7289847	322	176.48	-58.71
YRRD573	333	426319	7289820	321	167.34	-60.47
YRRD574	93	426633	7289263	325	358.64	-49.75
YRRD575	81	426628.86	7289309.26	326.83	179.69	-49.78
YRRD576	93	426716.08	7288737.25	321	0.66	-61.21
YRRD577	231	426716.08	7288737.25	321	359.83	-63.35
YRRD578	267	426407	7288753	315	330.07	-58.92
YRRD579	81	426403.1	7288785.45	315.93	280.11	-54.51
YRRD580	63	426395.45	7288815.92	316.11	280.38	-54.64
YRRD581	51	426395.3	7288844.99	316.43	301.37	-55.03
YRRD582	123	426400	7288499	315	345.77	-49.85
YRRD583	177	426565	7288627	315	358.37	-74.82
YRRD584	351	427325	7288684	315	332.84	-58.43
YRRD585	129	427194	7288822	315	21.71	-71.81
YRRD586	261	427164	7288777	315	5.63	-49.42
YRRD587	49	427164	7288777	326	16.51	-59.75
YRRD587A	105	427164	7288777	326	22.13	-64.48
YRRD588	129	426952	7288893	322	20.4	-69.88
YRRD589	213	426684	7288734	321	1.8	-70.5
YRRD601	90	426641	7288676	319	352.27	-72.3
YRRD610	90	426477.74	7288672.44	316.5	358.29	-54.71
YRRD613	228	426813.71	7288739.8	320.3	352.43	-59.41
YRRD618	224.8	426911.57	7288793	321.39	358.34	-62.91
YRRD619	108	426955.82	7288906.14	321.77	46.54	-59.22
YRRD622	108	426333.29	7288716.76	314.57	62.43	-59.13
YRRD623	48	426316.1	7288817.39	314.97	84.41	-51.01
YRRD624	60	426309.92	7288796.62	315.14	0.89	-80.59

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YRRD625	72	426290.88	7288740.52	314.94	357.64	-51.51
YRRD626	90	427138.21	7288864.26	323.6	351.92	-71.28
YRRD627	242.7	426731.75	7288706.91	319.16	346.6	-60.33
YRRD628	120	427325.27	7288734.7	330.37	12.33	-64.97
YRRD629	390.2	427324.87	7288665.81	327.89	7.68	-72.95
YRRD630	183	426113.43	7289441.8	327.79	3.79	-67.59
YRRD631	177	426149.07	7289454.07	326.38	354.63	-80.33
YRRD632	231	426192.28	7289305.05	326.07	357.98	-75.47
YRRD633A	207	426230.44	7289405.44	325.85	354.98	-80.2
YRRD634	243	426277.73	7289346.48	323.51	354.51	-70.44
YRRD635	267	426311.64	7289242.01	319.31	0.31	-68.74
YRRD636	129	426477.54	7289238.86	321.04	19.91	-60.16
YRRD637	231	426151.88	7289284.6	324.4	353.73	-74.41
YRRD638	129	426110.86	7289266.41	322.33	358.3	-59.51
YRRD639A	99	426071.45	7289319.56	325.31	354.91	-72.15
YRRD639B	231	426071.48	7289319.53	325.41	1.14	-76.36
YRRD640	243	426455.04	7289342.54	319.84	347.47	-61.72
YRRD641	9	426479.47	7289237.49	321.58	24.7	-65
YRRD642	213	426473.64	7289204.4	319.87	23.93	-65.62
YRRD643	99	426518.45	7289320.1	323.25	8.06	-66.34
YRRD643A	75	426511	7289323	323	18.9	-68.43
YRRD644	434	426665.99	7289233.07	324.48	10.07	-64.41
YRRD645	213	426552.7	7289342.36	324.28	356.21	-64.58
YRRD646	75	425484.69	7289465.32	322.14	342.63	-60.57
YRRD647	81	425483.93	7289444.82	322.2	344.86	-60.3
YRRD648	87	425565.36	7289481.82	321.85	1.33	-70.17
YRRD649	159	425832.28	7289422.86	327.32	0.45	-60.61
YRRD651	308.7	427203.81	7288692.04	326.37	351.25	-65.95
YRRD652	243	427326.2	7288854.67	327.24	23.93	-69.72
YRRD653	63	425767.83	7289796.77	322.48	179.06	-58.89
YRRD654	52	425790.62	7289782.51	324.32	180.41	-58.94
YRRD656	58	425825.52	7289775.26	326.04	178.99	-59.3
YRRD657	129	425827.91	7289807.6	323.43	180.21	-59.15
YRRD658	129	425855.27	7289778.41	326.15	177.19	-74.36
YRRD659	123	425855.3	7289777.37	326.44	177.55	-54.89
YRRD660	117	425910.78	7289766.62	327.24	178.67	-75.58
YRRD661	93	425910.85	7289765.41	327.41	178.34	-54.84
YRRD662	153	425948.92	7289805.69	323.68	178.66	-59.38
YRRD663	63	426012.72	7289808.95	324.23	181.3	-57.49
YRRD663A	195	426013.76	7289807.66	324.23	164.31	-59.18
YRRD664	69	425982.63	7289745.81	327.58	179.96	-71.73
YRRD665	45	425982.68	7289744.39	327.78	179.04	-49.58
YRRD666	69	425940.68	7289745.76	329.35	178.93	-74.15
YRRD667	39	425940.7	7289744.5	329.42	179.1	-54.56
YRRD668	213	426074.39	7289785.1	324.13	180.55	-65.6

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YRRD669	189	426074.4	7289784.68	324.14	179.6	-59.24
YRRD670	150	427327.27	7288675.17	328.48	15.45	-80.25
YRRD671	285.2	427270.76	7288792.69	329.24	12.15	-68.11
YRRD672	96	427428.18	7288768.68	333.87	10.82	-74.56
YRRD673	60	427431	7288705.81	332.88	14.87	-74.9
YRRD674	84	427468.13	7288789.62	334.75	21.15	-76.13
YRRD675	194.6	426565.17	7288669.95	317.82	348.02	-54.95
YRRD676	117	426405.89	7288750.79	314.83	289.53	-49.79
YRRD677	120	426409.29	7288746.22	314.89	339.52	-50.99
YRRD678	33	426732	7288705	319	337.7	-71
YRRD678A	228	426732	7288705	319	341.33	-75.21
YRRD679	221.4	427064	7288902	323	314.88	-58.3
YRRD680	240	426765	7288743	321	338.62	-77.93
YRRD681	120	427265	7288741	330	9.7	-75
YRRD681A	318	427265	7288741	330	11.45	-81.04
YRRD682	168	426321	7288675	315	72.54	-55.04
YRRD683	102	426323.86	7288714.88	314.57	12.69	-50.76
YRRD684	42	426249.15	7288771.68	315.49	0	-90
YRRD685	219	425838.18	7289303.04	327.63	0.83	-61
YRRD686	165	425913.74	7289402.74	327.89	358.3	-70.08
YRRD688	129	426636.02	7288716.56	320	356.38	-54.31
YRRD689	33	426912	7288792	322	3.7	-78
YRRD689A	33	426912	7288792	322	9.7	-80
YRRD690	116	426746	7288921	320	0	-90
YRRD690A	81	426746	7288921	320	0.45	-59.75
YRRD691	33	426581	7288961	319	0	-90
YRRD692	33	427064	7288902	323	348.93	-82.69
YRRD693	177	427064	7288902	323	358.58	-84.67
YRRD694	63	426116	7289795	323	175.11	-60.77
YRRD695	63	426152	7289763	324	175.47	-69.4
YRRD696	123	426240	7289797	323	164.65	-60.45
YRRD697	36	426283.89	7289816	322	180.38	-59.67
YRRD698	123	426292	7289789.53	323	172.06	-63.98
YRRD699	141	425544.9	7289334.4	324.3	0.27	-78.46
YRRD700	125	425763.76	7289472	327.1	0.66	-66.85
YRRD701	41	425871.38	7289423	327.5	359.7	-77
YRRD701A	143	7289250.6	323	327.5	8.84	-76.53
YRRD702	275	426029.99	7289250.6	323	354.48	-60.17
YRRD703	197	426191	7289363	328.2	355.69	-69.69
YRRD704	41	426557.46	7289302.4	325	177.96	-59.33
YRRD705	83	426734	7289257	326	352.61	-49.49
YRRD706	59	425699	7289588.3	327	358.45	-59.98
YRRD707	119	425699	7289568.35	327	4.85	-61.01
YRRD708	59	425739	7289608.35	327	0.08	-61.99
YRRD709	101	425737.92	7289577.24	330	349.8	-62.53

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YRRD710	119	425778.41	7289567.52	329	359.4	-56.61
YRRD711	77	425813	7289586	330	359.12	-51.5
YRRD712	149	425837	7289551	330	339.34	-54.54
YRRD720	63	426291	7289790	323	169.21	-71.54
YRRD720A	309	426291	7289790	323	167.43	-68.24

JORC Code, 2012 Edition
Table 1; Section 1: Sampling Techniques and Data Yinnetharra

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 Diamond (DD) and reverse circulation (RC) drilling has been carried out by Delta Lithium at the Yinnetharra project, encompassing the Malinda and Jameson prospects RC samples are collected from a static cone splitter mounted directly below the cyclone on the rig DD sampling is carried out to lithological/alteration domains with lengths between 0.3-1.1m Limited historic data has been supplied, reverse circulation (RC) drilling and semi-quantative XRD analysis have been completed at the project. Historic drilling referenced has been carried out by Segue Resources and Electrostate Historic sampling of RC drilling has been carried out via a static cone splitter mounted beneath a cyclone return system to produce a representative sample, or via scoop These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling has been carried out by DDH1 utilising a Sandvik DE880 truck mounted multipurpose rig or Frontline Drilling and is HQ or NQ diameter, or PQ for metallurgical drilling. RC drilling has carried out by Precision Exploration Drilling (PXD) using a Schramm 850 rig, Orlando Drilling, or Frontline Drilling. Some RC precollars have been completed, diamond tails average up to 225m depth Historic RC drilling was completed using a T450 drill rig with external booster and auxiliary air unit, or unspecified methods utilising a 133mm face sampling bit It is assumed industry standard drilling methods and equipment were utilised for all drilling
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs are carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Poor recoveries were occasionally encountered in near surface drilling of the pegmatite due to the weathered nature Historic RC recoveries were visually estimated on the rig, bulk reject sample from the splitter was retained on site in green bags for use in weighing and calculating drill recoveries at a later date if required Sample weights were recorded by the laboratory

Criteria	Explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core and RC chip logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All diamond drillholes and RC chip trays are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering No historic chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray. Metallurgical drilling was quarter core sampled to retain maximum material for testwork Occasional wet RC samples are encountered, extra cleaning of the splitter is carried out afterward RC and core samples have been analysed for Li suite elements by ALS Laboratories, Samples are crushed and pulverised to 85% passing 75 microns for peroxide fusion digest followed by ICPOES or ICPMS determination Historic RC sampling methods included single metre static cone split from the rig or via scoop from the green bags, field duplicates were inserted at a rate of 1:20 within the pegmatite zones Historic samples were recorded as being mostly dry Historic samples were analysed by Nagrom or ALS Laboratories where 3kg samples were crushed and pulverised to 85% passing 75 microns for a sodium peroxide fusion followed by ICP-MS determination for 25 elements. Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative subsample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Samples have been analysed by an external laboratory utilising industry standard methods The assay method utilised by ALS for core sampling allows for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC and DD sampling, all QAQC analyses were within tolerance Duplicate samples are inserted at a rate of 1:20 in RC sampling, with the frequency increasing in ore zones The sodium peroxide fusion used for historic assaying is a total digest method All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods In the historic data field duplicates, certified reference materials (CRMs) and blanks were inserted into the sampling sequence at a rate of 1:20 within the pegmatite zone Internal standards, duplicates and repeats were carried out by Nagrom and ALS as part of the assay process No standards were used in the XRD process

Criteria	Explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	Significant intercepts have been reviewed by senior personnel Some holes in the current diamond program have been designed to twin historic RC drillholes and verify mineralised intercepts Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database Historic data was recorded in logbooks or spreadsheets before transfer into a geological database No adjustments to assay data have been made other than conversion from Li to Li2O and Ta to Ta2O5
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	 Drill collars are located using a handheld GPS unit, all holes will be surveyed by third party contractor once the program is complete GDA94 MGA zone 50 grid coordinate system was used Downhole surveys were completed by DDH1, PXD, Orlando or Frontline using a multishot tool or north seeking gyro Historic collars were located using handheld Garmin GPS unit with +/- 5m accuracy Historic holes were not downhole surveyed, planned collar surveys were provided
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	Drill holes were orientated to intersect the pegmatite zones as close to perpendicular as possible; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised as true orientation of the pegmatites is yet to be determined
Sample security	The measures taken to ensure sample security	Samples are prepared onsite under supervision of Delta Lithium staff and transported by a third party directly to the laboratory Historic samples were collected, stored, and delivered to the laboratory by company personnel
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 2; Section 2: Reporting of Exploration Results, Yinnetharra

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	 Drilling and sampling activities have been carried on E09/2169 (Malinda) and E09/2621 (Jameson) The tenements are in good standing There are no heritage issues
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The area has a long history of multi commodity exploration including base and precious metals, industrial minerals and gemstones stretching back to the 1970s, activities carried out have included geophysics and geochemical sampling, and some drilling Targeted Li exploration was carried out in 2017 by Segue Resources with follow up drilling completed by Electrostate in July 2022
Geology	Deposit type, geological setting and style of mineralisation.	The project lies within the heart of the Proterozoic Gascoyne Province, positioned more broadly within the Capricorn Orogen — a major zone of tectonism formed between the Archean Yilgarn and Pilbara cratons. The Gascoyne Province has itself been divided into several zones each characterised by a distinctive and episodic history of deformation, metamorphism, and granitic magmatism. The project sits along the northern edge of the Mutherbukin zone, along the Ti Tree Syncline. Mutherbukin is dominated by the Thirty-Three supersuite — a belt of plutons comprised primarily of foliated metamonzogranite, monzogranite and granodiorite. Rareearth pegmatites have been identified and mined on small scales
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used Significant intercepts are calculated with a cut-off grade of 0.3% Li2O
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The pegmatites are interpreted as dipping moderately to steeply toward the south at Malinda Pegmatites at Jameson have an unknown orientation Further drilling is required to confirm the true orientation of the pegmatites across multiple lines

Criteria		Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All drill collars, and significant intercepts have been reported in the appendix
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Metallurgical testwork from Malinda indicates the potential for high grade, high recovery, low impurity spodumene concentrates.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Work across the Yinnetharra project is ongoing with multiple drill rigs operating at multiple prospects, mapping teams, studies testwork