

Updated Figueira MRE drives +4,000ppm TREO upside to early production outlook

Meteoric Resources NL (ASX: MEI) (**Meteoric** or the **Company**) is pleased to provide an update to the existing Mineral Resources Estimate (**MRE**) for the Figueira Mining Licences (**Figueira**) at its 100%-owned Caldeira Rare Earth Element Ionic Clay Project (**Caldeira Project**). This significantly boosts the size and geological confidence in the overall Caldeira Project MRE, last updated on 13 June 2024.

Highlights

- Figueira MRE grows to 170Mt at 2,766ppm TREO¹ at a 1,000ppm cut-off grade.
 - Includes 138Mt at 2,844ppm TREO in the Indicated category (>80% of the Figueira MRE)
- High-Grade Figueira Domain to drive upside to the early Caldeira Project production outlook.
 - Total MRE of 47Mt at 4,763ppm TREO at a 3,000ppm cut-off grade.
 - Includes 1,093ppm valuable MREO² for a MREO/TREO ratio of 22.9%
 - With 40Mt at 4,691ppm TREO residing in the Indicated category (85% Indicated)
- Significantly increases the overall Caldeira Project MRE to 740Mt at 2,572ppm TREO with 595ppm MREO for a MREO/TREO ratio of 23.1% MREO (at a 1,000ppm cut off).
 - 308Mt at 2,864ppm TREO resides in the Measured and Indicated categories, representing 42% of the overall Caldeira Project MRE.
- Caldeira Project MRE increased by more than 80% since declaration of the maiden MRE in April 2023 at an equivalent TREO grade and MREO content.
- Measured and Indicated Resources from Soberbo, Capão do Mel, and Figueira licence areas are to be the subject of a Pre-Feasibility Study for a future project development, which is currently scheduled for completion December 2024.

Chief Executive Officer, Nick Holthouse added:

"Today's announcement of the update to the existing Mineral Resources Estimate for the Figueira Mining Licences results in a significant upgrade in the size and geological confidence of our overall Caldeira Project Resource and serves to further validate the projects position as the world's premier ionic clayhosted rare earth element development.

We expect the additional 47Mt at greater than 4,000ppm TREO included in this update to drive further upside into our future early-stage, high-grade production profile.

We remain committed to our goal of being the lowest-cost, scalable supplier of rare earth elements to the growing western supply chain and remain on track to deliver a Pre-Feasibility Study for the Caldeira Project."

² Magnetic Rare Earth Oxides (MREO) = $Pr_6O_{11} + Nd_2O_{3+}Tb_4O_7 + Dy_2O_3$

Total Rare Earth Oxides (TREO) = La₂O₃ + CeO₂ +Pr₆O₁₁ + Nd₂O₃ + Sm₂O₃ + Eu₂O₃ + Ed₂O₃ + Tb₄O₇ + Dy₂O₃ + Ho₂O₃ + Er₂O₃ + Tm₂O₃ + Yb₂O₃ + Lu₂O₃ + Yb₂O₃ + Va₂O₃ +

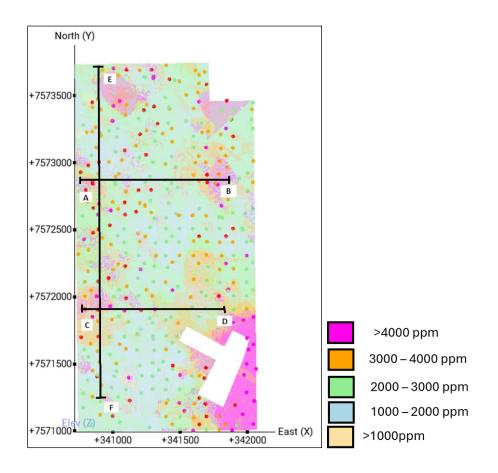
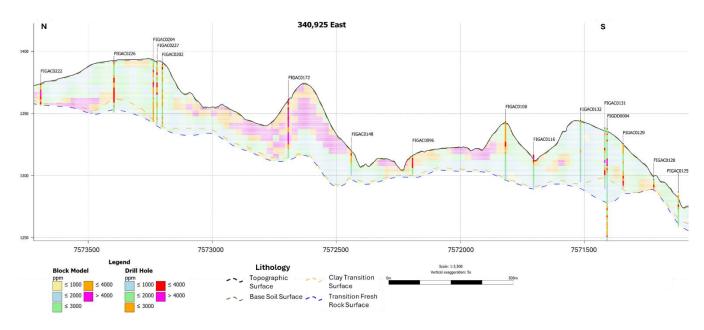

This updated MRE is the third for 2024 at the Caldeira Project, incorporating results from 9,170m of additional infill diamond core and AirCore (**AC**) drilling at Figueira. A 238% increase in tonnes is reported in the updated Figueira MRE at similar TREO grade and increased MREO content (+1.1%) relative to the June 2024 update. This confirms the Caldeira Project as one of the highest-grade Ionic Absorption Clay (**IAC**) Rare Earth Element (**REE**) deposits in the world, with MREO recoveries of more than 50%. These key resource elements cement Meteoric's position as a future potential low-cost supplier of critical minerals.

Table 1: Updated Figueira MRE reported at a 1,000ppm TREO cut-off grade.


Licence	JORC Category	Material Type	Tonnes Mt	TREO ppm	Pr ₆ O ₁₁	Nd₂O₃ ppm	Tb₄O ₇ ppm	Dy₂O₃ ppm	MREO ppm	MREO/TREO %
Figueira	Indicated	Clay	138	2,844	145	403	5	28	582	20.5%
Total	Indica	ated	138	2,844	145	403	5	28	582	20.5%
Figueira	Inferred	Clay	9	3,105	139	379	5	29	551	17.7%
Figueira	Inferred	Transition	24	2,174	115	328	4	21	468	21.5%
Total	Infer	red	33	2,437	121	342	4	23	491	20.4
Total	Indicated -	- Inferred	170	2,766	141	392	5	27	565	20.5%

The Figueira MRE includes a high-grade domain of 47Mt at 4,763 TREO, with Indicated resources of 40Mt at 4,691ppm TREO (at a 3,000ppm cut-off). This high-grade Indicated zone contains a highly desirable MREO content of 1,079ppm (refer to Table 7). It is intended that the high-grade domain will supplement the Caldeira Project's proposed early feed strategy, providing upside to the early production outlook. The combination of high-grade feed and strong metallurgical response to an ammonia sulphate wash is expected to enable a high recovery of TREO per tonne of ore feed to significantly reduce projected operating costs.

Figure 1: Grade distribution plan showing high-grade zones >4,000ppm TREO in south-eastern portion of Figueira which defines the opportunity to supplement early high-grade production from Capão do Mel.

Figure 2: Section 340,925 mE: E – F (location shown in Figure 1) shows the grade distribution through the profile of Figueira including: block model grades, AC drill hole grades, and modelled geologic surfaces (soil, clay, transition), shown at a 5 times vertical exaggeration.

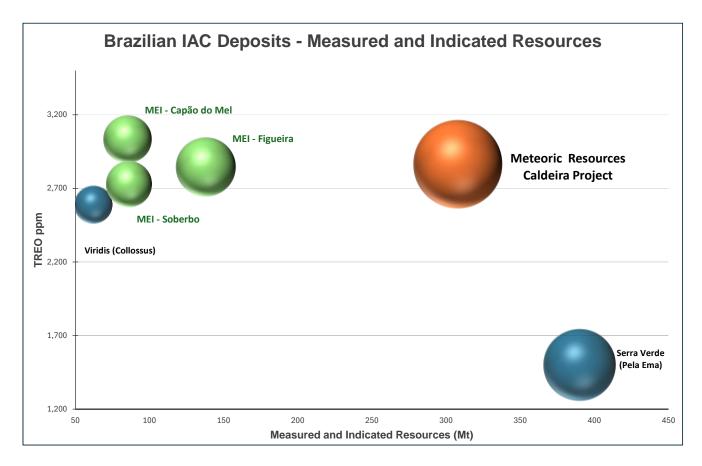
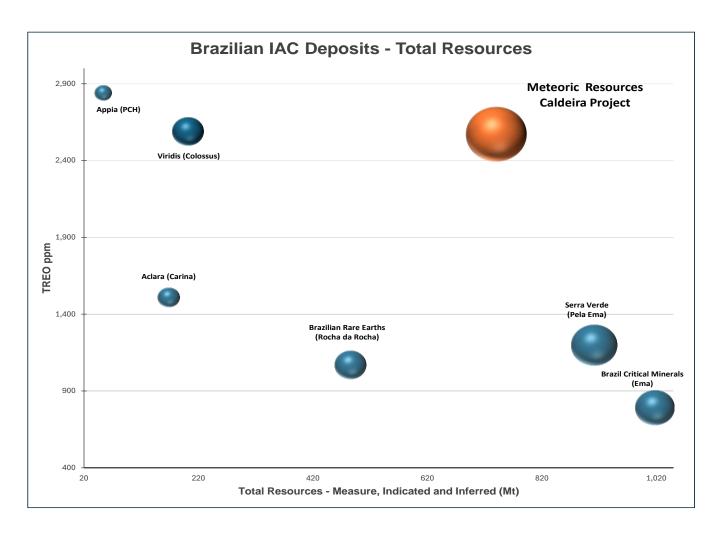

At a 1,000 ppm TREO cut-off grade, the overall Caldeira Project MRE increases to 740Mt at 2,572ppm TREO, including MREO grades of 595ppm which comprise 23.1% of the TREO basket. Measured and Indicated resources make up 308Mt at 2,864ppm TREO and 629ppm MREO, for a MREO/TREO ratio of 22.0% (refer to Table 3).

Table 2: Caldeira Project MRE by licence at 1,000ppm TREO cut-off (refer MEI Announcements dated 1 May 2023, 14 May and 13 June 2024). Differences may occur due to rounding.

Licence	JORC Category	Material Type	Tonnes	TREO ppm	Pr ₆ O ₁₁	Nd₂O₃ ppm	Tb ₄ O ₇	Dy ₂ O ₃	MREO ppm	MREO /TREO
Capão do Mel	Measured	Clay	11	3,888	222	586	6	28	842	21.7%
Total	Meas	ured	11	3,888	222	586	6	28	842	21.7%
Capão do Mel	Indicated	Clay	74	2,908	163	449	5	23	640	22.0%
Soberbo	Indicated	Clay	86	2,730	165	476	5	23	669	24.5%
Figueira	Indicated	Clay	138	2,844	145	403	5	28	582	20.5%
Total	Indic	ated	298	2,827	155	436	5	26	622	22.0%
Total	Measured -	+ Indicated	308	2,864	158	441	5	26	629	22.0%
Capão do Mel	Inferred	Clay	32	1,791	79	207	2	13	302	16.9%
Capão do Mel	Inferred	Transition	25	1,752	86	239	3	14	341	19.5%
Soberbo	Inferred	Clay	89	2,713	167	478	5	24	675	24.9%
Soberbo	Inferred	Transition	54	2,207	138	395	4	20	558	25.3%
Figueira	Inferred	Clay	9	3,105	139	379	5	28	551	17.7%
Figueira	Inferred	Transition	24	2,174	115	328	4	21	468	21.5%
Cupim Vermelho Norte ³	Inferred	Clay	104	2,485	152	472	5	26	655	26.4%
Dona Maria 1 & 2	Inferred	Clay	94	2,320	135	404	5	25	569	24.5%
Total	Inferred		431	2,363	138	406	4	23	571	24.0%
Total	Meası Indicated		740	2,572	146	420	5	24	595	23.1%



When compared to other REE IAC projects in Brazil, at a similar stage of development, the Caldeira Project stands out by virtue of its exceptional grades and significant tonnages (see Figure 2). Another key differentiator is the growing inventory of high-grade material in the Measured and Indicated categories (see Figure 3). This higher confidence ore will form the basis of a Pre-Feasibility Study, currently scheduled for completion in December 2024.

Figure 3: Graph of tonnage (Mt) v TREO Grade (ppm) for reported Measured and Indicated resources of Brazilian IAC Deposits (MEI peers). The size of the sphere is related to TREO content i.e. tonnes x grade. Full table of source data provided in Appendix 1.

Figure 4: Graph of tonnage (Mt) v TREO Grade (ppm) for total Resources (M+I+I) of Brazilian IAC Deposits (MEI peers). The size of the sphere is related to TREO content i.e. tonnes x grade. Full table of source data provided in Appendix 1.

Figure 5 shows the location of Meteoric's resource infill drilling programs at Capão do Mel, Soberbo, and Figueira in the south of the Caldeira Project which provided Measured and Indicated Resources for the recently released Scoping Study in June 2024

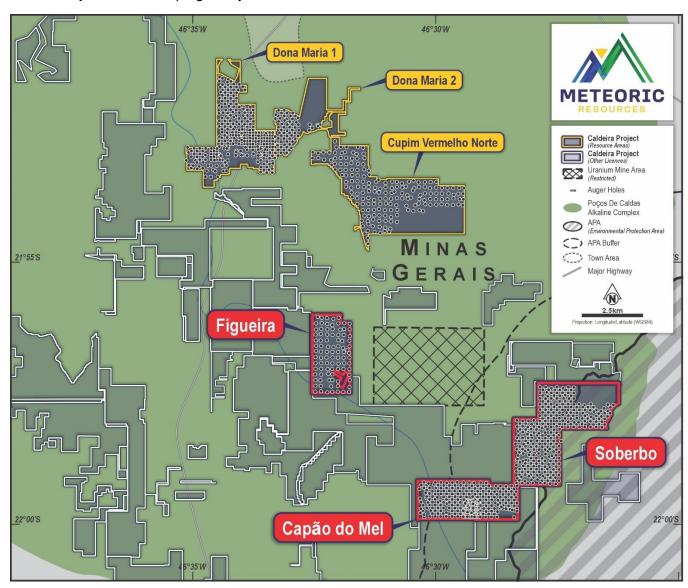


Figure 5: Location map of updated resources for the priority development targets at Capão do Mel, Soberbo, and Figueira.

Information required per ASX Listing Rule 5.8.1

Figueira Updated MRE Detail

The updated Figueira MRE was completed by BNA Consulting and incorporated results from an infill diamond core and AC drilling program, which included 301 holes for 9,170m (see Figure 8 and Table 4). The updated Figueira MRE now stands at 170Mt at 2,766ppm (at a 1,000ppm cut-off grade), with 565ppm MREO for a MRE/TREO ratio of 20.5%.

The volume and spacing of drill holes enabled a 240% increase in Inferred resources, relative to the June 2023 MRE, alongside a significant increase in the depth of clay horizon (see Figures 7 and 8).

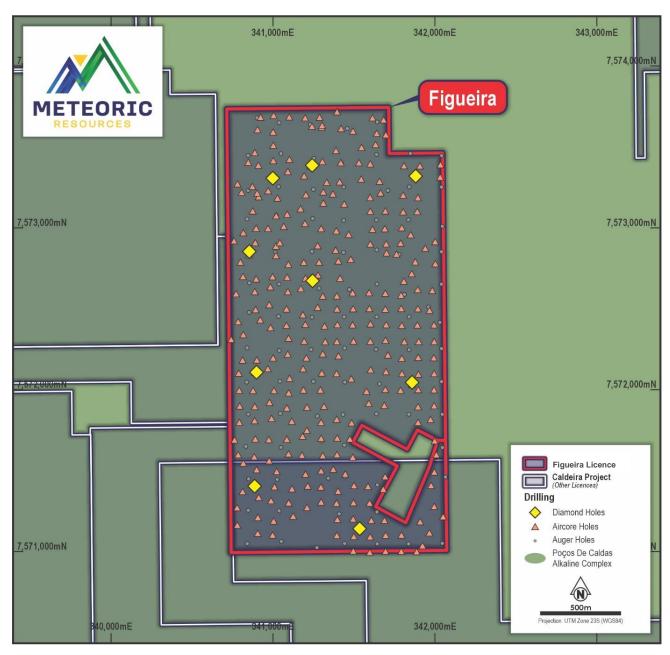


Figure 6: Updated Figueira MRE drill hole location plan by drill type with location of type cross-sections shown.

Drilling Techniques and Hole Spacing

A total of 393 drill holes were used to define the updated Figueira MRE, which included diamond core, AC and powered Auger drilling. Given the substantial geographic extent and generally shallow, flat lying geometry of the mineralisation, the chosen spacing and orientation is considered to be sufficient to establish geology and grade continuity. Most drill sites required minimal to no site preparation. On particularly steep sites, the area was levelled with a backhoe loader. Holes generally stopped at 'blade refusal' when the rotating bit was unable to cut the ground any deeper. This generally occurred in the transition zones (below clay zone and above fresh rock). On occasions a face sampling hammer was used to penetrate through the remaining transition zone and into fresh rock.

Table 3: Updated Figueira MRE drill hole statistics.

Hole Type	Number Holes	Number Samples	Total drilled (m)	Maximum depth (m)	Average depth (m)
Diamond	9	573	582.4	111.9	64.7
Aircore	292	4,343	8,587.2	52.0	29.4
Auger	92	970	950.3	20.0	10.3
Totals	393	5,886	10,119.9	111.9	34.8

Spacing for Auger holes varies across the prospect from a maximum of 200m by 200m, with infill drilled to 100m by 100m.

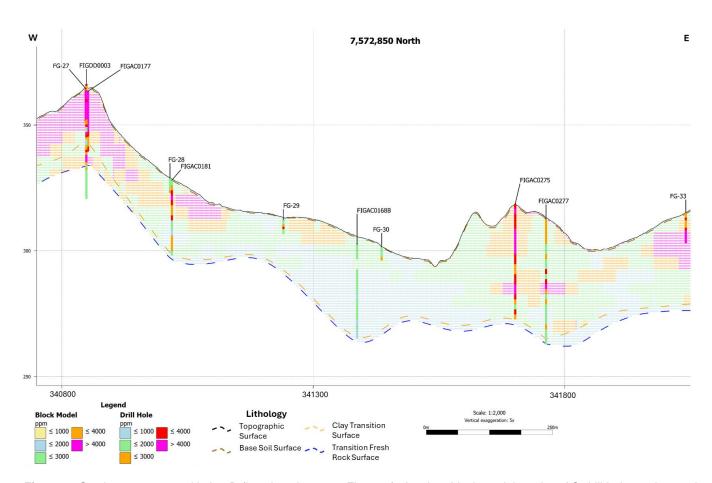
Diamond drilling:

- Conventional wireline diamond drill rig (Mach 1200)
- All holes drilled vertically using PQ diameter core to the transition zone (85mm diameter), reducing to HQ diameter core below this (63.5mm diameter).
- Depth of clay varying between 5.4m to 53.6m, with a maximum depth drilled of 57.8m.
- No regular spacing, with hole placement designed to test specific geological characteristics

AC drilling:

- Completed using a HANJIN 8D Multipurpose Track Mounted Drill Rig, configured to drill 3-inch AC holes.
- Maximum depth drilled was 50.0m, with all holes drilled vertically.
- Spacing of AC holes was a nominal 100m x 100m.

Powered Auger drilling:


- Employed a motorised post hole digger with a 4inch diameter
- The maximum depth achievable was 20m, providing the hole did not encounter fragments of rocks/boulders within the weathered profile, and/or excessive water.
- Auger drilling was completed by previous explorers and has been reported under the JORC code.
- Auger assay data was used to estimate the maiden MRE for the Caldeira Project (refer to MEI ASX announcement dated 30 April 2023).

Geology and Geological Interpretation

The Cretaceous (80 Ma) Alkaline Complex of Poços de Caldas in Brazil hosts deposits of REE, bauxite, white clay for ceramics, uranium, zirconium and leucite. The Poços de Caldas Intrusive Complex covers an area of approximately 800km². The main rock types found are intrusive and volcanic alkaline rocks of the nepheline syenite system, comprising phonolites and foidolites (syenites). Primary mineralisation includes uranium, zirconium and REE that are confined to the intrusives emplaced during the magmatic event. Post intrusion intense weathering of the region has resulted in an extensive clay regolith developed above the syenites.

The dominant REE mineral in the source rock (syenite) beneath the clay zone is Bastnaesite, a major source of REE worldwide. Bastnaesite is a REE carbonate-fluoride mineral (REE)CO₃F and has very low levels of uranium and thorium in its structure. Due to the chemistry of the underling intrusives and the intense weathering of the region, a thick profile comprising soil, clay and saprolite (regolith) has formed (see Figures 7 and 8). This thick profile hosts the ionic clay REE mineralisation.

Figure 7: Section 7,572,850 mN: A – B (location shown on Figure 4) showing: block model grades, AC drill hole grades, and modelled geologic surfaces (soil, clay, transition), 5 times vertical exaggeration.

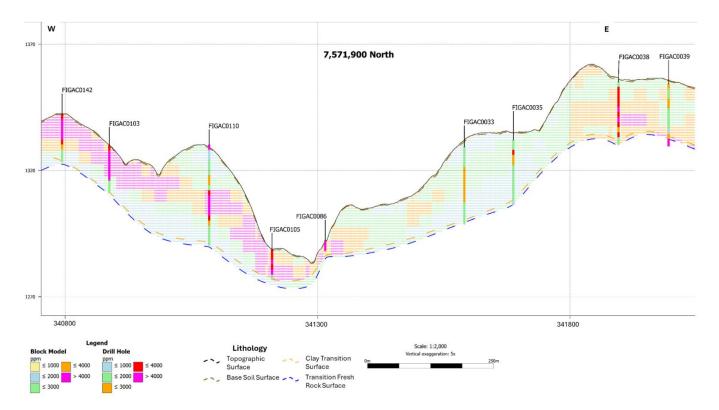


Figure 8: Section 7,571,900 mN: C – D (location shown on Figure 4) showing: block model grades, Aircore drill hole grades, and modelled geologic surfaces (soil, clay, transition), 5 times vertical exaggeration.

Sampling and Sub-sampling Techniques

Auger material: Each drill site was cleaned, removing leaves and roots from the surface. Tarps were placed on either side of the hole and samples of soil and saprolite were collected every 1m, homogenised, and then quartered with one quadrant collected in a plastic bag. Samples are weighed and if the samples are wet, they are dried for several days on rubber mats. After drying the samples are screened (5mm). Homogenization occurs by agitation in bags, followed by screening to <3mm. Fragments of rock or hardened clay that were retained in the sieves were fragmented with a 10kg manual disintegrator and a 1kg hammer, until 100% of the sample passed through the screening. The sample was homogenized again by agitation in bags. Finally, the sample was Split in a Jones 12 channel splitter, where 500g was sent to the lab (SGS_geosol laboratory in Vespasiano – Minas Gerais).

Diamond cores: Sample lengths for diamond drilling were determined by geological boundaries with a maximum sample length of 1m applied. In the saprolite zone the core was halved using a metal spatula and placed in plastic bags, and for fresh rock the core was halved using a brick saw then placed into plastic bags. Field duplicates consisted of quarter core, with two quarters sent to the lab.

Aircore material: Two-metre composite samples were collected from the cyclone of the rig in plastic buckets which were weighed. The sample (> 6kg) was passed through a single tier riffle splitter generating a 50/50 split, with one half bagged and submitted to the laboratory, and the other half bagged and stored as a duplicate at the core facility in Poços de Caldas. If a sample was <6kg the entire sample was bagged and submitted for assay. Given the grain size of the mineralisation is extremely fine (clays) and shows little variability, the practice of submitting 50% of original sample for analysis was deemed appropriate. Meteoric QAQC protocols demand a duplicate sample every 20 samples, and a blank and standard sample every 30 samples.

Sample Analysis Method

Auger: Each batch analysed at SGS Geosol Laboratory comprised approximately 43 samples. The sample preparation method employed was PRP102_E, which involves drying at 100°C, crushing 75% to less than 3 mm, homogenization before being passed through a Jones riffle splitter (250g to 300g). This aliquot was then pulverised in a steel mill to the point at which over 95% had a size of 150 microns. Analysis followed by IMS95A to determine the REE assays. With this method, samples were fused with lithium metaborate and read using the ICP-MS method, the limits or which are shown in Table 5.

Table 4: ICP-MS method results of limits (ppm) via IMS95A

	Determ	ination b	y fusion wit	th Lithium M	etaborate – IC	P MS (IMS95	A)
Ce	0,1 - 10000	Co	0,5 - 10000	Cs	0,05 - 1000	Cu	5 – 10000
Dy	0,05 - 1000	Er	0,05 – 1000	Eu	0,05 - 1000	Ga	0,1 – 10000
Gd	0,05 - 1000	Hf	0.05 - 500	Но	0,05 - 1000	La	0,1 - 10000
Lu	0,05 - 1000	Мо	2 - 10000	Nb	0,05 - 1000	Nd	0,1 - 10000
Ni	5 – 10000	Pr	0,05 - 1000	Rb	0,2 - 10000	Sm	0,1 – 1000
Sn	0,3 - 1000	Ta	0,05 - 10000	Tb	0,05 - 1000	Th	0,1 - 10000
TI	0,5 – 1000	Tm	0,05 – 1000	U	0,05 - 10000	W	0,1 - 10000
Υ	0,05 – 10000	Yb	0,1 - 1000				

Diamond and AC samples: Samples were analysed by ALS Laboratories in Vespasiano (MG), following preparation steps that included:

- Drying at 60°C.
- Crushing fresh rock to sub 2mm.
- Disaggregating saprolite with hammers.
- Passing through a riffle splitter (800g sub-sample).
- Pulverization of 800g sample to 90% passing 75um, monitored by sieving.
- Aliquot selection from pulp packet.

The aliquot obtained from the physical preparation process at Vespasiano was sent to ALS Lima for analysis by ME-MS81, consisting REE and trace elements analysis by ICP-MS for 32 elements by fusion with lithium borate as shown below (with detection limits):

Table 5: ICP-MS method results for REE and trace elements (ppm).

Code				Analytes and	ranges	(ppm)		
	Ва	0.5 – 10000	Gd	0.05 - 1000	Rb	0.2 - 10000	Ti	0.01 - 10%
	Ce	0.1 – 10000	Hf	0.5 - 10000	Sc	0.5 - 500	Tm	0.01 - 1000
	Cr	5 – 10000	Но	0.01 - 10000	Sm	0.03 - 1000	U	0.05 - 1000
ME-MS81	Cs	0.01 – 10000	La	0.1 - 10000	Sn	0.5 - 10000	V	5 - 10000
IVIE-IVISO I	Dy	0.05 – 1000	Lu	0.01 - 10000	Sr	0.1 - 10000	W	0.5 - 10000
	Er	0.03 – 1000	Nb	0.05 - 2500	Та	0.1 - 2500	Υ	0.1 - 10000
	Eu	0.02 – 1000	Nd	0.1 - 10000	Tb	0.01 - 1000	Yb	0.03 - 1000
	Ga	0.1 – 10000	Pr	0.02 - 10000	Th	0.05 - 1000	Zr	1 - 10000

Estimation Methodology

The resource estimations are based on the block model interpolated by the Ordinary Kriging (**OK**) method, using Micromine software. OK was selected as the method for grade interpolation as the sampling data has a log-normal distribution represented by a single generation.

A discretised block model was created in the sub-blocking process using wireframes of several surfaces: topography, base of soil, base of clay, and base of transition. Mineralisation begins from near surface (0.3m – 2.0m soil coverage). Where there was no information from diamond or AC drill holes (which drill to transition/fresh rock), and mineralisation was present at the end of Auger drill holes (in areas of known deep weathering), the mineralisation was assumed to extend 2m below the hole.

Initially, the model was filled with blocks measuring 25 (X) by 25 (Y) by 5 (Z) metres, which were divided into subunits of smaller size, with a factor for size subdivision of 10 by 10 by 5 in contact with the surrounding three-dimensional wireframes. The grade estimation was performed in four consecutive passes (rounds) using different criteria for: search radius, number of composite samples allowed, and number of holes the samples must come from. The radii and the orientation of the search ellipses were determined using standard variograms (refer to JORC Table 1 for additional information).

Parameters applied to each sector of a search ellipse were the maximum number of points in the sector and the minimum total number of points in the interpolation that varies depending on the size of the ellipse, from 3 to 1. Thus, the maximum total number of samples involved in the interpolation was 12 samples.

The block model was validated in several ways: by running an Inverse Distance Weighted interpolation and comparing the results, and by comparing the means and standard deviations of the block grades to the composite data set.

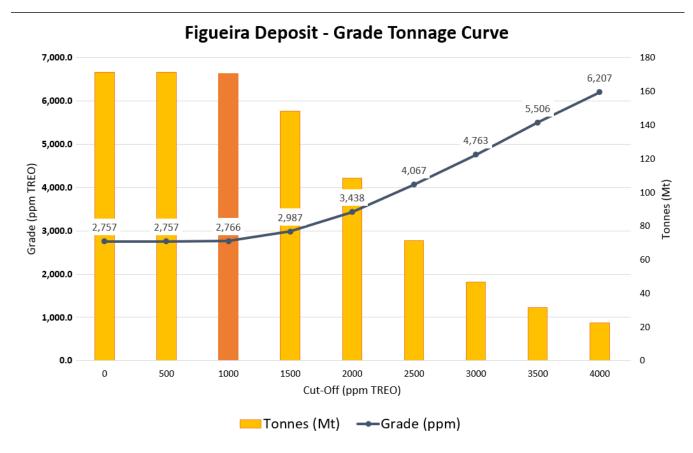
Cut-off grades, including basis for the selected Cut-off Grade

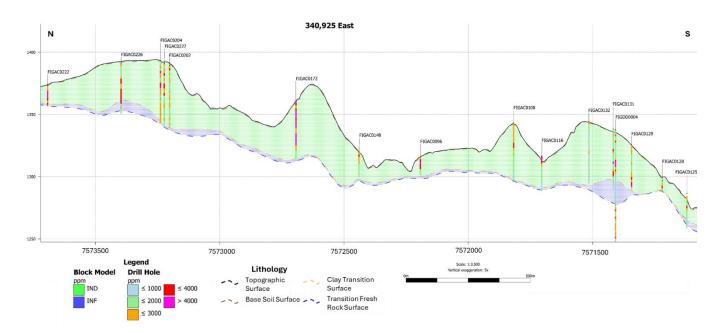
The selection of the TREO cut-off grade (1,000ppm) used for reporting was based on the experience of the Competent Person (refer to Table 7 and Figure 9). This cut-off grade was selected based on a peer review of publicly available information from more advanced projects with comparable mineralisation styles (i.e., clay-hosted rare earth mineralisation) and comparable conceptual processing methods. Material above this cut-off generates a head feed grade of over 2,523ppm, and in the opinion of the

Competent Person, meets the conditions for reporting of a Mineral Resource with reasonable prospects of eventual economic extraction.

 Table 7: Figueira MRE classifications reported by cut-off grade.

Cut-off ppm TREO	JORC Category	Material Type	Tonnes Mt	TREO ppm	Pr ₆ O ₁₁	Nd₂O₃ ppm	Tb₄O ₇ ppm	Dy ₂ O ₃	MREO ppm	MREO/TREO %
	Indicated	Clay	138	2,844	145	403	5	28	582	20.5
4000	Inferred	Clay	9	3,105	139	379	5	28	551	17.7
1000	Inferred	Transition	24	2,174	115	328	4	21	468	21.5
	Total Indica	ted + Inferred	170	2,766	141	392	5	27	565	20.4
	Indicated	Clay	94	3,396	181	503	6	33	723	21.3
0000	Inferred	Clay	7	3,560	164	447	6	33	649	18.2
2000	Inferred	Transition	7	3,885	230	653	7	38	928	23.9
	Total Indicated + Inferred		108	3,438	183	509	6	34	732	21.3
	Indicated	Clay	40	4,691	272	756	8	43	1,079	23.0
0000	Inferred	Clay	4	4,565	217	593	7	40	856	18.8
3000	Inferred	Transition	3	6,046	395	1,124	11	58	1,588	26.3
	Total Indica	ted + Inferred	47	4,763	275	765	8	44	1,093	22.9
	Indicated	Clay	19	6,132	372	1,032	11	55	1,469	24.0
	Inferred	Clay	2	5,648	270	734	8	47	1,059	18.8
4000	Inferred	Transition	2	7,594	520	1,484	15	72	2,090	27.5
	Total Indicated + Inferred		23	6,207	375	1,043	11	55	1,484	23.9




Figure 9: Updated Figueira MRE grade tonnage curve.

Criteria used for Classification

Mineral Resources for Figueira have been classified as Indicated and Inferred.

The Competent Persons are satisfied that the classification is appropriate based on the current level of confidence in the data, drill hole spacing, geological continuity, variography, bulk density, and licencing data available for the project.

Figure 10: Section 340,925 mE: E – F (location shown in Figure 1) showing the Resource classification distribution through Figueira including: block model classification, AC drill hole grades, and modelled geologic surfaces (soil, clay, transition), 5 times vertical exaggeration.

Mining and metallurgical methods and material modifying factors

No specific mining or metallurgical methods or parameters were incorporated into the modelling process.

Proposed Further Work

Measured and Indicated Resources from the Soberbo, Capão do Mel, and Figueira licence areas will be incorporated in a Pre-Feasibility Study on a future potential project development. The Pre-Feasibility study is currently scheduled for completion December 2024.

This release has been approved by the Board of Meteoric Resources NL.

For further information, please contact:

Mr Nick Holthouse

Chief Executive Officer
Meteoric Resources NL

E nholthouse@meteoric.com.au

T +61 428 964 276

Michael Vaughan

Investor and Media Relations
Fivemark Partners

E michael.vaughan@fivemark.com.au

T + 61 422 602 720

Competent Person Statements

Dr Marcelo J De Carvalho

The information in this announcement that relates to exploration results is based on information reviewed, collated and fairly represented by Dr Carvalho a Competent Person and as Member of the Australasian Institute of Mining and Metallurgy and a consultant to Meteoric Resources NL. Dr. Carvalho has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr. Carvalho consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Dr. Beck Nader

The information in this report that relates to Mineral Resources is based on information compiled by Dr. Beck Nader, a Competent Person who is a Fellow of Australian Institute of Geoscientists #4472. Dr. Beck Nader is a consultant for BNA Mining Solutions. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify him as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Beck Nader consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Dr. Volodymyr Myadzel

The information in this report that relates to Mineral Resources is based on information compiled by Dr. Volodymyr Myadzel, a Competent Person who is a Member of Australian Institute of Geoscientists #3974. Dr. Volodymyr Myadzel is a consultant for BNA Mining Solutions. He has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Dr. Volodymyr Myadzel consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this release that relates to Mineral Resource Estimates at the Cupim Vermelho Norte and the Dona Maria 1 & 2 prospects was prepared by BNA Mining Solutions and released on the ASX platform on 1 May 2023. The information in this release that relates to Mineral Resource Estimates at the Soberbo and Capão del Mel deposits was prepared by BNA Mining Solutions and released on the ASX platform on 14 May and 13 June 2024 respectively. The Company confirms that it is not aware of any new information or data that materially affects the Mineral Resources in this publication. The Company confirms that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed. The Company confirms that the form and context in which the BNA Mining Solutions findings are presented have not been materially modified.

This release includes exploration results and estimates of Mineral Resources. The Company has previously reported these results and estimates in ASX announcements dated 16 December 2022, 1 May 2023, 27 June 2023, 24 July 2023, 31 August 2023, 27 September 2023, 8 December 2023, 14 December 2023, 30 January 2024, 29 February 2024, 14 May 2024 and 13 June 2024 and 8 July 2024. The Company confirms that it is not aware of any new information or data that materially affects the information included in previous announcements (as may be cross referenced in the body of this announcement) and that all material assumptions and technical parameters underpinning the exploration results and Mineral Resource estimates continue to apply and have not materially changed.

Some statements in this document may be forward-looking statements. Such statements include, but are not limited to, statements with regard to capacity, future production and grades, projections for sales growth, estimated revenues and reserves, targets for cost savings, the construction cost of new projects, projected capital expenditures, the timing of new projects, future cash flow and debt levels, the outlook for minerals prices, the outlook for economic recovery and trends in the trading environment and may be (but are not necessarily) identified by the use of phrases such as "will", "expect", "anticipate", "believe" and "envisage".

By their nature, forward-looking statements involve risk and uncertainty because they relate to events and depend on circumstances that will occur in the future and may be outside Meteoric's control. Actual results and developments may differ materially from those expressed or implied in such statements because of a number of factors, including levels of demand and market prices, the ability to produce and transport products profitably, the impact of foreign currency exchange rates on market prices and operating costs, operational problems, political uncertainty and economic conditions in relevant areas of the world, the actions of competitors, activities by governmental authorities such as changes in taxation or regulation.

Appendix 1: Reference data

Table 8: Source data for Figure 3 (Bubble Plot): Brazilian IAC Deposits - Total Resources - Mt (M+I+I) x Grade - ppm TREO.

Company (Project)	Tonnes (Mt)	TREO Grade (ppm)	Cut-off (ppm)	Pr ₆ O ₁₁ (ppm)	Nd₂O₃ (ppm)	Tb ₄ O ₇ (ppm)	Dy₂O₃ (ppm)	MREO (ppm)	Source
Brazil Critical Minerals (Ema)	1,017	793	500	45	154	4	13	216	Ema Link Page 2, Table 1 Inferred
Serra Verde (Pela Ema)	911	1,200	NSR	49	161	4	28	242	Pela Ema Link - Slide 10, 11. Measured+Indicated+Inferred
Meteoric (Caldeira)	740	2,572	1,000	146	420	5	24	595	This Release
Brazilian Rare Earths (Rocha da Rocha)	485	1,071	200	18	87	Not Av	ailable	309	Rocha de Rocha Link - Page 71, Table 8
Viridis (Colossus)	201	2,590	1,000	157	480	5	27	668	Colossus Link - Page 4, Table 1
Aclara (Carina)	168	1,510	NSR	29	97	7 42		346	<u>Carina module Link</u> - Page 2, Table 1 Inferred
Appia (PCH)	53	2,841	NSR	121	378	5	28	532	Appia Link - Table 1: Indicated + Inferred

Table 9: Source data for Figure 2 (Bubble Plot), showing Brazilian IAC Deposits with reported Measured + Indicated Resources (Mt) x TREO Grade (ppm).

Company (Project)	Tonnes (Mt)	TREO Grade (ppm)	Cut-off (ppm)	Pr ₆ O ₁₁ (ppm)	Nd₂O₃ (ppm)	Tb₄O ₇ (ppm)	Dy₂O₃ (ppm)	MREO (ppm)	Source
Serra Verde (Pela Ema)	390	1,500	NSR	61	201	6	35	303	Pela Ema Link - Slide 10, 11. Measured + Indicated
Meteoric (Caldeira)	308	2,864	1,000	158	441	5	24	630	This Release
Meteoric (Capão do Mel)	85	3,034	1,000	171	467	5	24	666	Capaõ do Mel Link – ASX Announcement 13 June 2024, Table 1
Meteoric (Soberbo)	86	2,730	1,000	165	476	5	23	669	Soberbo Link - ASX Announcement 14 May 2024, Table 1
Meteoric (Figueira)	138	2,844	1,000	145	403	5	28	582	This Release
Viridis (Colossus)	62	2,590	1,000	154	467	5	26	663	Colossus Link - Page 4, Table 1
Appia (PCH)	7	2,513	NSR	109	358	6	31	504	Appia Link - Table 1: Indicated + Inferred

Appendix 2: Figueira – Drill Hole Collar Table.

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0001	SIRGAS 2000 / UTM z23S	7,571,109	341,395	1,285	21.4	-90	360
Figueira	Air Core	FIGAC0002	SIRGAS 2000 / UTM z23S	7,571,013	341,496	1,286	20.0	-90	360
Figueira	Air Core	FIGAC0003	SIRGAS 2000 / UTM z23S	7,571,004	341,597	1,282	14.5	-90	360
Figueira	Air Core	FIGAC0004	SIRGAS 2000 / UTM z23S	7,571,010	341,695	1,287	16.0	-90	360
Figueira	Air Core	FIGAC0005	SIRGAS 2000 / UTM z23S	7,571,011	341,792	1,291	16.0	-90	360
Figueira	Air Core	FIGAC0006	SIRGAS 2000 / UTM z23S	7,571,111	341,793	1,303	11.5	-90	360
Figueira	Air Core	FIGAC0007	SIRGAS 2000 / UTM z23S	7,571,110	341,696	1,299	10.5	-90	360
Figueira	Air Core	FIGAC0008	SIRGAS 2000 / UTM z23S	7,571,101	341,600	1,296	8.0	-90	360
Figueira	Air Core	FIGAC0009	SIRGAS 2000 / UTM z23S	7,571,202	341,689	1,310	8.0	-90	360
Figueira	Air Core	FIGAC0010	SIRGAS 2000 / UTM z23S	7,571,202	341,607	1,312	16.0	-90	360
Figueira	Air Core	FIGAC0011	SIRGAS 2000 / UTM z23S	7,571,103	341,499	1,299	34.0	-90	360
Figueira	Air Core	FIGAC0012	SIRGAS 2000 / UTM z23S	7,571,309	341,597	1,316	24.0	-90	360
Figueira	Air Core	FIGAC0013	SIRGAS 2000 / UTM z23S	7,571,311	341,497	1,307	9.4	-90	360
Figueira	Air Core	FIGAC0014	SIRGAS 2000 / UTM z23S	7,571,210	341,495	1,298	23.6	-90	360
Figueira	Air Core	FIGAC0015	SIRGAS 2000 / UTM z23S	7,571,207	341,398	1,290	14.0	-90	360
Figueira	Air Core	FIGAC0016	SIRGAS 2000 / UTM z23S	7,571,308	341,393	1,293	22.0	-90	360
Figueira	Air Core	FIGAC0017	SIRGAS 2000 / UTM z23S	7,571,382	341,401	1,301	18.4	-90	360
Figueira	Air Core	FIGAC0018	SIRGAS 2000 / UTM z23S	7,571,316	341,297	1,283	12.0	-90	360
Figueira	Air Core	FIGAC0019	SIRGAS 2000 / UTM z23S	7,571,281	341,210	1,277	16.0	-90	360
Figueira	Air Core	FIGAC0020	SIRGAS 2000 / UTM z23S	7,571,413	341,215	1,279	14.4	-90	360
Figueira	Air Core	FIGAC0021	SIRGAS 2000 / UTM z23S	7,571,408	341,296	1,282	16.0	-90	360
Figueira	Air Core	FIGAC0022	SIRGAS 2000 / UTM z23S	7,571,508	341,297	1,281	9.5	-90	360
Figueira	Air Core	FIGAC0023	SIRGAS 2000 / UTM z23S	7,571,517	341,372	1,296	16.0	-90	360
Figueira	Air Core	FIGAC0024	SIRGAS 2000 / UTM z23S	7,571,608	341,395	1,292	14.0	-90	360
Figueira	Air Core	FIGAC0025	SIRGAS 2000 / UTM z23S	7,571,602	341,308	1,283	16.5	-90	360
Figueira	Air Core	FIGAC0026	SIRGAS 2000 / UTM z23S	7,571,711	341,396	1,296	19.0	-90	360
Figueira	Air Core	FIGAC0027	SIRGAS 2000 / UTM z23S	7,571,709	341,297	1,286	14.5	-90	360
Figueira	Air Core	FIGAC0028	SIRGAS 2000 / UTM z23S	7,571,807	341,297	1,286	10.5	-90	360
Figueira	Air Core	FIGAC0029	SIRGAS 2000 / UTM z23S	7,571,827	341,393	1,294	8.2	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0030	SIRGAS 2000 / UTM z23S	7,571,805	341,486	1,310	18.0	-90	360
Figueira	Air Core	FIGAC0031	SIRGAS 2000 / UTM z23S	7,571,705	341,474	1,309	16.0	-90	360
Figueira	Air Core	FIGAC0032	SIRGAS 2000 / UTM z23S	7,571,592	341,492	1,301	4.2	-90	360
Figueira	Air Core	FIGAC0033	SIRGAS 2000 / UTM z23S	7,571,925	341,591	1,329	30.8	-90	360
Figueira	Air Core	FIGAC0034	SIRGAS 2000 / UTM z23S	7,571,999	341,578	1,318	18.0	-90	360
Figueira	Air Core	FIGAC0035	SIRGAS 2000 / UTM z23S	7,571,912	341,688	1,332	25.8	-90	360
Figueira	Air Core	FIGAC0036	SIRGAS 2000 / UTM z23S	7,572,011	341,694	1,325	22.0	-90	360
Figueira	Air Core	FIGAC0037	SIRGAS 2000 / UTM z23S	7,572,006	341,788	1,338	16.0	-90	360
Figueira	Air Core	FIGAC0038	SIRGAS 2000 / UTM z23S	7,571,904	341,896	1,355	25.0	-90	360
Figueira	Air Core	FIGAC0039	SIRGAS 2000 / UTM z23S	7,571,910	341,995	1,354	25.0	-90	360
Figueira	Air Core	FIGAC0040	SIRGAS 2000 / UTM z23S	7,572,009	341,995	1,343	38.0	-90	360
Figueira	Air Core	FIGAC0041	SIRGAS 2000 / UTM z23S	7,572,009	341,897	1,346	27.0	-90	360
Figueira	Air Core	FIGAC0042	SIRGAS 2000 / UTM z23S	7,572,042	341,856	1,340	18.0	-90	360
Figueira	Air Core	FIGAC0043	SIRGAS 2000 / UTM z23S	7,572,109	341,797	1,332	37.0	-90	360
Figueira	Air Core	FIGAC0044	SIRGAS 2000 / UTM z23S	7,572,105	341,898	1,337	23.0	-90	360
Figueira	Air Core	FIGAC0045	SIRGAS 2000 / UTM z23S	7,572,209	341,897	1,336	33.0	-90	360
Figueira	Air Core	FIGAC0046	SIRGAS 2000 / UTM z23S	7,572,307	341,900	1,332	42.0	-90	360
Figueira	Air Core	FIGAC0047	SIRGAS 2000 / UTM z23S	7,572,206	341,993	1,325	52.0	-90	360
Figueira	Air Core	FIGAC0048	SIRGAS 2000 / UTM z23S	7,572,109	341,995	1,332	50.0	-90	360
Figueira	Air Core	FIGAC0049	SIRGAS 2000 / UTM z23S	7,572,307	341,996	1,325	50.0	-90	360
Figueira	Air Core	FIGAC0050	SIRGAS 2000 / UTM z23S	7,572,410	341,994	1,317	34.0	-90	360
Figueira	Air Core	FIGAC0051	SIRGAS 2000 / UTM z23S	7,572,408	341,892	1,323	50.0	-90	360
Figueira	Air Core	FIGAC0052	SIRGAS 2000 / UTM z23S	7,572,499	341,967	1,307	14.0	-90	360
Figueira	Air Core	FIGAC0053	SIRGAS 2000 / UTM z23S	7,572,509	341,895	1,310	16.0	-90	360
Figueira	Air Core	FIGAC0054	SIRGAS 2000 / UTM z23S	7,572,594	341,792	1,303	10.0	-90	360
Figueira	Air Core	FIGAC0055	SIRGAS 2000 / UTM z23S	7,572,510	341,793	1,313	42.0	-90	360
Figueira	Air Core	FIGAC0056	SIRGAS 2000 / UTM z23S	7,572,406	341,795	1,326	50.0	-90	360
Figueira	Air Core	FIGAC0057	SIRGAS 2000 / UTM z23S	7,572,306	341,811	1,337	50.0	-90	360
Figueira	Air Core	FIGAC0058	SIRGAS 2000 / UTM z23S	7,572,203	341,796	1,345	50.0	-90	360
Figueira	Air Core	FIGAC0059	SIRGAS 2000 / UTM z23S	7,572,224	341,710	1,342	39.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0060	SIRGAS 2000 / UTM z23S	7,572,314	341,695	1,328	50.0	-90	360
Figueira	Air Core	FIGAC0061	SIRGAS 2000 / UTM z23S	7,572,411	341,699	1,316	50.0	-90	360
Figueira	Air Core	FIGAC0062	SIRGAS 2000 / UTM z23S	7,572,507	341,694	1,310	50.0	-90	360
Figueira	Air Core	FIGAC0063	SIRGAS 2000 / UTM z23S	7,572,604	341,694	1,304	26.0	-90	360
Figueira	Air Core	FIGAC0064	SIRGAS 2000 / UTM z23S	7,572,608	341,593	1,306	50.0	-90	360
Figueira	Air Core	FIGAC0065	SIRGAS 2000 / UTM z23S	7,572,510	341,595	1,313	49.0	-90	360
Figueira	Air Core	FIGAC0066	SIRGAS 2000 / UTM z23S	7,572,416	341,602	1,327	48.0	-90	360
Figueira	Air Core	FIGAC0067	SIRGAS 2000 / UTM z23S	7,572,308	341,600	1,342	50.0	-90	360
Figueira	Air Core	FIGAC0068	SIRGAS 2000 / UTM z23S	7,572,309	341,497	1,333	50.0	-90	360
Figueira	Air Core	FIGAC0069	SIRGAS 2000 / UTM z23S	7,572,410	341,492	1,319	50.0	-90	360
Figueira	Air Core	FIGAC0070	SIRGAS 2000 / UTM z23S	7,572,509	341,495	1,306	39.5	-90	360
Figueira	Air Core	FIGAC0071	SIRGAS 2000 / UTM z23S	7,572,607	341,492	1,299	18.0	-90	360
Figueira	Air Core	FIGAC0072	SIRGAS 2000 / UTM z23S	7,572,589	341,395	1,294	16.0	-90	360
Figueira	Air Core	FIGAC0073	SIRGAS 2000 / UTM z23S	7,572,508	341,395	1,298	28.0	-90	360
Figueira	Air Core	FIGAC0074	SIRGAS 2000 / UTM z23S	7,572,412	341,397	1,303	40.0	-90	360
Figueira	Air Core	FIGAC0075	SIRGAS 2000 / UTM z23S	7,572,402	341,318	1,292	12.5	-90	360
Figueira	Air Core	FIGAC0076	SIRGAS 2000 / UTM z23S	7,572,306	341,322	1,293	17.5	-90	360
Figueira	Air Core	FIGAC0077	SIRGAS 2000 / UTM z23S	7,572,307	341,394	1,309	29.5	-90	360
Figueira	Air Core	FIGAC0078	SIRGAS 2000 / UTM z23S	7,572,218	341,405	1,302	31.0	-90	360
Figueira	Air Core	FIGAC0079	SIRGAS 2000 / UTM z23S	7,572,121	341,698	1,320	50.0	-90	360
Figueira	Air Core	FIGAC0080	SIRGAS 2000 / UTM z23S	7,572,133	341,603	1,312	22.0	-90	360
Figueira	Air Core	FIGAC0081	SIRGAS 2000 / UTM z23S	7,572,231	341,308	1,291	18.0	-90	360
Figueira	Air Core	FIGAC0082	SIRGAS 2000 / UTM z23S	7,572,112	341,301	1,293	22.0	-90	360
Figueira	Air Core	FIGAC0083	SIRGAS 2000 / UTM z23S	7,572,109	341,392	1,305	20.0	-90	360
Figueira	Air Core	FIGAC0084	SIRGAS 2000 / UTM z23S	7,572,076	341,483	1,308	32.0	-90	360
Figueira	Air Core	FIGAC0085	SIRGAS 2000 / UTM z23S	7,572,007	341,293	1,305	21.0	-90	360
Figueira	Air Core	FIGAC0086	SIRGAS 2000 / UTM z23S	7,571,906	341,315	1,292	4.5	-90	360
Figueira	Air Core	FIGAC0087	SIRGAS 2000 / UTM z23S	7,571,151	341,533	1,300	36.5	-90	360
Figueira	Air Core	FIGAC0088	SIRGAS 2000 / UTM z23S	7,572,004	340,877	1,332	17.6	-90	360
Figueira	Air Core	FIGAC0089	SIRGAS 2000 / UTM z23S	7,572,006	340,791	1,341	16.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0090	SIRGAS 2000 / UTM z23S	7,572,140	340,968	1,316	25.0	-90	360
Figueira	Air Core	FIGAC0091	SIRGAS 2000 / UTM z23S	7,572,115	340,889	1,325	14.0	-90	360
Figueira	Air Core	FIGAC0092	SIRGAS 2000 / UTM z23S	7,572,320	340,741	1,339	25.0	-90	360
Figueira	Air Core	FIGAC0093	SIRGAS 2000 / UTM z23S	7,572,350	340,817	1,333	18.0	-90	360
Figueira	Air Core	FIGAC0094	SIRGAS 2000 / UTM z23S	7,572,111	340,789	1,335	10.0	-90	360
Figueira	Air Core	FIGAC0095	SIRGAS 2000 / UTM z23S	7,572,192	340,813	1,326	10.0	-90	360
Figueira	Air Core	FIGAC0096	SIRGAS 2000 / UTM z23S	7,572,193	340,901	1,316	15.0	-90	360
Figueira	Air Core	FIGAC0097	SIRGAS 2000 / UTM z23S	7,572,205	341,001	1,314	13.0	-90	360
Figueira	Air Core	FIGAC0098	SIRGAS 2000 / UTM z23S	7,572,229	341,090	1,303	12.0	-90	360
Figueira	Air Core	FIGAC0099	SIRGAS 2000 / UTM z23S	7,572,205	341,206	1,289	18.5	-90	360
Figueira	Air Core	FIGAC0100	SIRGAS 2000 / UTM z23S	7,572,139	341,186	1,292	11.4	-90	360
Figueira	Air Core	FIGAC0101	SIRGAS 2000 / UTM z23S	7,572,080	341,102	1,300	25.0	-90	360
Figueira	Air Core	FIGAC0102	SIRGAS 2000 / UTM z23S	7,572,004	341,006	1,310	25.0	-90	360
Figueira	Air Core	FIGAC0103	SIRGAS 2000 / UTM z23S	7,571,904	340,888	1,330	19.0	-90	360
Figueira	Air Core	FIGAC0104	SIRGAS 2000 / UTM z23S	7,571,930	340,979	1,313	20.0	-90	360
Figueira	Air Core	FIGAC0105	SIRGAS 2000 / UTM z23S	7,571,901	341,210	1,289	12.0	-90	360
Figueira	Air Core	FIGAC0106	SIRGAS 2000 / UTM z23S	7,572,008	341,188	1,289	16.0	-90	360
Figueira	Air Core	FIGAC0107	SIRGAS 2000 / UTM z23S	7,571,989	341,098	1,301	20.0	-90	360
Figueira	Air Core	FIGAC0108	SIRGAS 2000 / UTM z23S	7,571,818	340,887	1,343	46.0	-90	360
Figueira	Air Core	FIGAC0109	SIRGAS 2000 / UTM z23S	7,571,832	340,991	1,335	37.0	-90	360
Figueira	Air Core	FIGAC0110	SIRGAS 2000 / UTM z23S	7,571,897	341,085	1,330	40.0	-90	360
Figueira	Air Core	FIGAC0111	SIRGAS 2000 / UTM z23S	7,571,813	341,116	1,319	28.0	-90	360
Figueira	Air Core	FIGAC0112	SIRGAS 2000 / UTM z23S	7,571,758	341,209	1,294	8.0	-90	360
Figueira	Air Core	FIGAC0113	SIRGAS 2000 / UTM z23S	7,571,722	341,183	1,288	8.0	-90	360
Figueira	Air Core	FIGAC0114	SIRGAS 2000 / UTM z23S	7,571,703	341,085	1,298	22.0	-90	360
Figueira	Air Core	FIGAC0115	SIRGAS 2000 / UTM z23S	7,571,700	340,974	1,307	14.0	-90	360
Figueira	Air Core	FIGAC0116	SIRGAS 2000 / UTM z23S	7,571,705	340,890	1,317	28.0	-90	360
Figueira	Air Core	FIGAC0117	SIRGAS 2000 / UTM z23S	7,571,613	341,096	1,302	19.0	-90	360
Figueira	Air Core	FIGAC0118	SIRGAS 2000 / UTM z23S	7,571,604	341,179	1,286	21.0	-90	360
Figueira	Air Core	FIGAC0119	SIRGAS 2000 / UTM z23S	7,571,487	341,201	1,280	12.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0120	SIRGAS 2000 / UTM z23S	7,571,397	341,117	1,291	17.0	-90	360
Figueira	Air Core	FIGAC0121	SIRGAS 2000 / UTM z23S	7,571,310	341,097	1,288	22.0	-90	360
Figueira	Air Core	FIGAC0122	SIRGAS 2000 / UTM z23S	7,571,228	341,125	1,282	20.0	-90	360
Figueira	Air Core	FIGAC0123	SIRGAS 2000 / UTM z23S	7,571,112	340,997	1,277	16.0	-90	360
Figueira	Air Core	FIGAC0124	SIRGAS 2000 / UTM z23S	7,571,198	341,004	1,287	10.0	-90	360
Figueira	Air Core	FIGAC0125	SIRGAS 2000 / UTM z23S	7,571,121	340,905	1,287	28.0	-90	360
Figueira	Air Core	FIGAC0126	SIRGAS 2000 / UTM z23S	7,571,173	340,779	1,275	15.0	-90	360
Figueira	Air Core	FIGAC0127	SIRGAS 2000 / UTM z23S	7,571,281	340,778	1,293	16.0	-90	360
Figueira	Air Core	FIGAC0128	SIRGAS 2000 / UTM z23S	7,571,220	340,906	1,297	8.0	-90	360
Figueira	Air Core	FIGAC0129	SIRGAS 2000 / UTM z23S	7,571,344	340,912	1,326	36.0	-90	360
Figueira	Air Core	FIGAC0130	SIRGAS 2000 / UTM z23S	7,571,380	340,812	1,326	34.0	-90	360
Figueira	Air Core	FIGAC0131	SIRGAS 2000 / UTM z23S	7,571,418	340,885	1,338	49.0	-90	360
Figueira	Air Core	FIGAC0132	SIRGAS 2000 / UTM z23S	7,571,515	340,899	1,345	50.0	-90	360
Figueira	Air Core	FIGAC0133	SIRGAS 2000 / UTM z23S	7,571,555	340,816	1,345	47.6	-90	360
Figueira	Air Core	FIGAC0134	SIRGAS 2000 / UTM z23S	7,571,608	340,785	1,355	43.0	-90	360
Figueira	Air Core	FIGAC0135	SIRGAS 2000 / UTM z23S	7,571,324	340,988	1,306	31.0	-90	360
Figueira	Air Core	FIGAC0136	SIRGAS 2000 / UTM z23S	7,571,409	341,009	1,316	22.0	-90	360
Figueira	Air Core	FIGAC0137	SIRGAS 2000 / UTM z23S	7,571,504	341,023	1,327	40.0	-90	360
Figueira	Air Core	FIGAC0138	SIRGAS 2000 / UTM z23S	7,571,570	340,977	1,334	48.0	-90	360
Figueira	Air Core	FIGAC0139	SIRGAS 2000 / UTM z23S	7,571,595	340,885	1,337	37.0	-90	360
Figueira	Air Core	FIGAC0140	SIRGAS 2000 / UTM z23S	7,571,699	340,763	1,342	17.2	-90	360
Figueira	Air Core	FIGAC0141	SIRGAS 2000 / UTM z23S	7,571,807	340,792	1,348	24.0	-90	360
Figueira	Air Core	FIGAC0142	SIRGAS 2000 / UTM 223S	7,571,908	340,794	1,342	19.0	-90	360
Figueira	Air Core	FIGAC0143	SIRGAS 2000 / UTM z23S	7,572,430	340,784	1,337	16.0	-90	360
Figueira	Air Core	FIGAC0144	SIRGAS 2000 / UTM 223S	7,572,504	340,892	1,342	50.0	-90	360
Figueira	Air Core	FIGAC0145	SIRGAS 2000 / UTM z23S	7,572,309	341,192	1,289	14.4	-90	360
Figueira	Air Core	FIGAC0146	SIRGAS 2000 / UTM z23S	7,572,327	341,096	1,297	15.4	-90	360
Figueira	Air Core	FIGAC0147	SIRGAS 2000 / UTM z23S	7,572,393	340,985	1,308	32.8	-90	360
Figueira	Air Core	FIGAC0148	SIRGAS 2000 / UTM z23S	7,572,440	340,921	1,318	20.0	-90	360
Figueira	Air Core	FIGAC0149	SIRGAS 2000 / UTM z23S	7,572,406	341,083	1,307	33.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0150	SIRGAS 2000 / UTM z23S	7,572,534	340,976	1,334	46.0	-90	360
Figueira	Air Core	FIGAC0151	SIRGAS 2000 / UTM z23S	7,572,508	341,083	1,324	34.0	-90	360
Figueira	Air Core	FIGAC0152	SIRGAS 2000 / UTM z23S	7,572,472	341,185	1,310	30.0	-90	360
Figueira	Air Core	FIGAC0153	SIRGAS 2000 / UTM z23S	7,572,413	341,199	1,301	26.0	-90	360
Figueira	Air Core	FIGAC0154	SIRGAS 2000 / UTM z23S	7,572,518	341,276	1,292	28.0	-90	360
Figueira	Air Core	FIGAC0155	SIRGAS 2000 / UTM z23S	7,572,615	341,091	1,341	42.0	-90	360
Figueira	Air Core	FIGAC0156	SIRGAS 2000 / UTM z23S	7,572,704	341,087	1,345	32.0	-90	360
Figueira	Air Core	FIGAC0157	SIRGAS 2000 / UTM z23S	7,572,796	341,190	1,324	22.0	-90	360
Figueira	Air Core	FIGAC0158	SIRGAS 2000 / UTM z23S	7,572,796	341,284	1,320	40.0	-90	360
Figueira	Air Core	FIGAC0159	SIRGAS 2000 / UTM z23S	7,572,804	341,404	1,308	46.0	-90	360
Figueira	Air Core	FIGAC0160	SIRGAS 2000 / UTM z23S	7,572,815	341,480	1,296	18.0	-90	360
Figueira	Air Core	FIGAC0161	SIRGAS 2000 / UTM z23S	7,572,697	341,414	1,295	24.6	-90	360
Figueira	Air Core	FIGAC0162	SIRGAS 2000 / UTM z23S	7,572,587	341,308	1,296	24.4	-90	360
Figueira	Air Core	FIGAC0163	SIRGAS 2000 / UTM z23S	7,572,634	341,172	1,347	50.0	-90	360
Figueira	Air Core	FIGAC0164	SIRGAS 2000 / UTM z23S	7,572,718	341,278	1,332	39.0	-90	360
Figueira	Air Core	FIGAC0165	SIRGAS 2000 / UTM z23S	7,572,682	341,238	1,340	50.0	-90	360
Figueira	Air Core	FIGAC0166	SIRGAS 2000 / UTM z23S	7,572,698	341,201	1,335	50.0	-90	360
Figueira	Air Core	FIGAC0167	SIRGAS 2000 / UTM z23S	7,572,899	341,276	1,307	19.0	-90	360
Figueira	Air Core	FIGAC0168	SIRGAS 2000 / UTM z23S	7,572,870	341,387	1,301	6.0	-90	360
Figueira	Air Core	FIGAC0168B	SIRGAS 2000 / UTM z23S	7,572,870	341,387	1,301	37.5	-90	360
Figueira	Air Core	FIGAC0169	SIRGAS 2000 / UTM z23S	7,572,783	341,095	1,328	32.0	-90	360
Figueira	Air Core	FIGAC0170	SIRGAS 2000 / UTM z23S	7,572,645	340,984	1,363	49.0	-90	360
Figueira	Air Core	FIGAC0171	SIRGAS 2000 / UTM z23S	7,572,707	340,997	1,349	40.6	-90	360
Figueira	Air Core	FIGAC0172	SIRGAS 2000 / UTM z23S	7,572,693	340,896	1,359	47.0	-90	360
Figueira	Air Core	FIGAC0173	SIRGAS 2000 / UTM z23S	7,572,602	340,772	1,371	50.0	-90	360
Figueira	Air Core	FIGAC0174	SIRGAS 2000 / UTM z23S	7,572,615	340,888	1,376	50.0	-90	360
Figueira	Air Core	FIGAC0175	SIRGAS 2000 / UTM z23S	7,572,708	340,815	1,359	50.0	-90	360
Figueira	Air Core	FIGAC0176	SIRGAS 2000 / UTM z23S	7,572,797	340,798	1,349	33.0	-90	360
Figueira	Air Core	FIGAC0177	SIRGAS 2000 / UTM z23S	7,572,842	340,852	1,363	24.0	-90	360
Figueira	Air Core	FIGAC0178	SIRGAS 2000 / UTM z23S	7,572,918	340,891	1,365	34.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0179	SIRGAS 2000 / UTM z23S	7,573,006	340,896	1,361	21.0	-90	360
Figueira	Air Core	FIGAC0180	SIRGAS 2000 / UTM z23S	7,573,005	340,969	1,346	21.0	-90	360
Figueira	Air Core	FIGAC0181	SIRGAS 2000 / UTM z23S	7,572,838	341,019	1,328	30.0	-90	360
Figueira	Air Core	FIGAC0182	SIRGAS 2000 / UTM z23S	7,572,897	341,019	1,331	33.0	-90	360
Figueira	Air Core	FIGAC0183	SIRGAS 2000 / UTM z23S	7,572,918	341,043	1,329	30.0	-90	360
Figueira	Air Core	FIGAC0184	SIRGAS 2000 / UTM z23S	7,573,018	341,066	1,332	18.0	-90	360
Figueira	Air Core	FIGAC0185	SIRGAS 2000 / UTM z23S	7,573,083	341,019	1,340	36.8	-90	360
Figueira	Air Core	FIGAC0186	SIRGAS 2000 / UTM z23S	7,573,093	341,087	1,339	34.0	-90	360
Figueira	Air Core	FIGAC0187	SIRGAS 2000 / UTM z23S	7,572,968	341,467	1,305	34.0	-90	360
Figueira	Air Core	FIGAC0188	SIRGAS 2000 / UTM z23S	7,572,990	341,391	1,311	44.0	-90	360
Figueira	Air Core	FIGAC0189	SIRGAS 2000 / UTM z23S	7,573,004	341,298	1,315	29.0	-90	360
Figueira	Air Core	FIGAC0190	SIRGAS 2000 / UTM z23S	7,573,036	341,198	1,326	34.0	-90	360
Figueira	Air Core	FIGAC0191	SIRGAS 2000 / UTM z23S	7,573,127	341,170	1,333	28.3	-90	360
Figueira	Air Core	FIGAC0192	SIRGAS 2000 / UTM z23S	7,573,214	341,202	1,333	28.0	-90	360
Figueira	Air Core	FIGAC0193	SIRGAS 2000 / UTM z23S	7,573,162	341,311	1,318	34.0	-90	360
Figueira	Air Core	FIGAC0194	SIRGAS 2000 / UTM z23S	7,573,155	341,440	1,310	26.2	-90	360
Figueira	Air Core	FIGAC0195	SIRGAS 2000 / UTM z23S	7,573,294	341,412	1,314	32.0	-90	360
Figueira	Air Core	FIGAC0196	SIRGAS 2000 / UTM z23S	7,573,291	341,332	1,325	37.0	-90	360
Figueira	Air Core	FIGAC0197	SIRGAS 2000 / UTM z23S	7,573,231	341,310	1,334	40.0	-90	360
Figueira	Air Core	FIGAC0198	SIRGAS 2000 / UTM z23S	7,573,218	341,370	1,329	32.0	-90	360
Figueira	Air Core	FIGAC0199	SIRGAS 2000 / UTM z23S	7,572,979	340,817	1,373	21.4	-90	360
Figueira	Air Core	FIGAC0200	SIRGAS 2000 / UTM z23S	7,572,929	340,760	1,375	28.0	-90	360
Figueira	Air Core	FIGAC0201	SIRGAS 2000 / UTM z23S	7,573,113	340,875	1,382	42.5	-90	360
Figueira	Air Core	FIGAC0202	SIRGAS 2000 / UTM z23S	7,573,201	340,912	1,389	50.0	-90	360
Figueira	Air Core	FIGAC0203	SIRGAS 2000 / UTM z23S	7,573,193	341,028	1,380	50.0	-90	360
Figueira	Air Core	FIGAC0204	SIRGAS 2000 / UTM z23S	7,573,238	340,970	1,393	50.0	-90	360
Figueira	Air Core	FIGAC0205	SIRGAS 2000 / UTM z23S	7,573,311	340,999	1,394	34.0	-90	360
Figueira	Air Core	FIGAC0206	SIRGAS 2000 / UTM z23S	7,573,419	341,305	1,350	38.0	-90	360
Figueira	Air Core	FIGAC0207	SIRGAS 2000 / UTM z23S	7,573,392	341,229	1,357	32.0	-90	360
Figueira	Air Core	FIGAC0208	SIRGAS 2000 / UTM z23S	7,573,330	341,192	1,364	37.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0209	SIRGAS 2000 / UTM z23S	7,573,356	341,092	1,382	50.0	-90	360
Figueira	Air Core	FIGAC0210	SIRGAS 2000 / UTM z23S	7,573,424	341,002	1,392	28.4	-90	360
Figueira	Air Core	FIGAC0211	SIRGAS 2000 / UTM z23S	7,573,518	341,002	1,389	21.0	-90	360
Figueira	Air Core	FIGAC0212	SIRGAS 2000 / UTM z23S	7,573,432	341,101	1,370	50.0	-90	360
Figueira	Air Core	FIGAC0213	SIRGAS 2000 / UTM z23S	7,573,601	341,001	1,391	23.0	-90	360
Figueira	Air Core	FIGAC0214	SIRGAS 2000 / UTM z23S	7,573,704	341,004	1,392	22.5	-90	360
Figueira	Air Core	FIGAC0215	SIRGAS 2000 / UTM z23S	7,573,694	341,100	1,379	21.4	-90	360
Figueira	Air Core	FIGAC0216	SIRGAS 2000 / UTM z23S	7,573,636	341,241	1,351	26.0	-90	360
Figueira	Air Core	FIGAC0217	SIRGAS 2000 / UTM z23S	7,573,631	341,300	1,343	4.0	-90	360
Figueira	Air Core	FIGAC0217B	SIRGAS 2000 / UTM z23S	7,573,643	341,303	1,345	12.3	-90	360
Figueira	Air Core	FIGAC0218	SIRGAS 2000 / UTM z23S	7,573,623	341,421	1,323	18.4	-90	360
Figueira	Air Core	FIGAC0219	SIRGAS 2000 / UTM z23S	7,573,726	341,395	1,327	24.2	-90	360
Figueira	Air Core	FIGAC0220	SIRGAS 2000 / UTM z23S	7,573,692	341,288	1,351	18.0	-90	360
Figueira	Air Core	FIGAC0221	SIRGAS 2000 / UTM z23S	7,573,689	341,199	1,367	19.3	-90	360
Figueira	Air Core	FIGAC0222	SIRGAS 2000 / UTM z23S	7,573,692	340,924	1,373	17.0	-90	360
Figueira	Air Core	FIGAC0223	SIRGAS 2000 / UTM z23S	7,573,616	340,904	1,375	21.5	-90	360
Figueira	Air Core	FIGAC0224	SIRGAS 2000 / UTM z23S	7,573,414	340,848	1,375	38.0	-90	360
Figueira	Air Core	FIGAC0225	SIRGAS 2000 / UTM z23S	7,573,474	340,887	1,383	50.0	-90	360
Figueira	Air Core	FIGAC0226	SIRGAS 2000 / UTM z23S	7,573,396	340,910	1,391	40.0	-90	360
Figueira	Air Core	FIGAC0227	SIRGAS 2000 / UTM z23S	7,573,223	340,902	1,391	50.0	-90	360
Figueira	Air Core	FIGAC0228	SIRGAS 2000 / UTM z23S	7,573,264	340,873	1,388	40.0	-90	360
Figueira	Air Core	FIGAC0229	SIRGAS 2000 / UTM z23S	7,573,229	340,806	1,374	45.0	-90	360
Figueira	Air Core	FIGAC0230	SIRGAS 2000 / UTM z23S	7,573,280	340,781	1,371	27.0	-90	360
Figueira	Air Core	FIGAC0231	SIRGAS 2000 / UTM z23S	7,573,411	341,418	1,314	25.0	-90	360
Figueira	Air Core	FIGAC0232	SIRGAS 2000 / UTM z23S	7,573,486	341,389	1,325	21.0	-90	360
Figueira	Air Core	FIGAC0233	SIRGAS 2000 / UTM z23S	7,571,194	341,909	1,327	20.0	-90	360
Figueira	Air Core	FIGAC0234	SIRGAS 2000 / UTM z23S	7,571,288	341,995	1,333	18.0	-90	360
Figueira	Air Core	FIGAC0235	SIRGAS 2000 / UTM z23S	7,571,488	341,447	1,324	33.0	-90	360
Figueira	Air Core	FIGAC0236	SIRGAS 2000 / UTM z23S	7,571,417	341,500	1,337	46.0	-90	360
Figueira	Air Core	FIGAC0237	SIRGAS 2000 / UTM z23S	7,571,412	341,586	1,340	34.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0238	SIRGAS 2000 / UTM z23S	7,571,395	341,682	1,343	32.0	-90	360
Figueira	Air Core	FIGAC0239	SIRGAS 2000 / UTM z23S	7,571,471	341,693	1,366	50.0	-90	360
Figueira	Air Core	FIGAC0240	SIRGAS 2000 / UTM z23S	7,571,418	341,976	1,380	50.0	-90	360
Figueira	Air Core	FIGAC0241	SIRGAS 2000 / UTM z23S	7,571,500	341,996	1,390	45.0	-90	360
Figueira	Air Core	FIGAC0242	SIRGAS 2000 / UTM z23S	7,571,607	342,010	1,402	22.0	-90	360
Figueira	Air Core	FIGAC0243	SIRGAS 2000 / UTM z23S	7,571,693	341,999	1,408	52.0	-90	360
Figueira	Air Core	FIGAC0244	SIRGAS 2000 / UTM z23S	7,571,225	342,051	1,336	18.0	-90	360
Figueira	Air Core	FIGAC0245	SIRGAS 2000 / UTM z23S	7,571,125	341,966	1,315	28.0	-90	360
Figueira	Air Core	FIGAC0246	SIRGAS 2000 / UTM z23S	7,571,046	341,923	1,303	16.0	-90	360
Figueira	Air Core	FIGAC0247	SIRGAS 2000 / UTM z23S	7,571,008	341,888	1,291	15.4	-90	360
Figueira	Air Core	FIGAC0248	SIRGAS 2000 / UTM z23S	7,571,825	341,973	1,375	17.4	-90	360
Figueira	Air Core	FIGAC0249	SIRGAS 2000 / UTM z23S	7,571,808	341,896	1,389	12.4	-90	360
Figueira	Air Core	FIGAC0250	SIRGAS 2000 / UTM z23S	7,572,622	341,984	1,315	50.0	-90	360
Figueira	Air Core	FIGAC0251	SIRGAS 2000 / UTM z23S	7,572,628	341,894	1,305	43.0	-90	360
Figueira	Air Core	FIGAC0252	SIRGAS 2000 / UTM z23S	7,572,680	341,808	1,301	22.0	-90	360
Figueira	Air Core	FIGAC0253	SIRGAS 2000 / UTM z23S	7,572,726	341,857	1,310	50.0	-90	360
Figueira	Air Core	FIGAC0254	SIRGAS 2000 / UTM z23S	7,572,799	341,879	1,301	22.0	-90	360
Figueira	Air Core	FIGAC0255	SIRGAS 2000 / UTM z23S	7,572,788	342,002	1,311	40.0	-90	360
Figueira	Air Core	FIGAC0256	SIRGAS 2000 / UTM z23S	7,572,883	341,941	1,304	26.0	-90	360
Figueira	Air Core	FIGAC0257	SIRGAS 2000 / UTM z23S	7,572,924	342,002	1,307	21.0	-90	360
Figueira	Air Core	FIGAC0258	SIRGAS 2000 / UTM z23S	7,573,323	341,881	1,366	50.0	-90	360
Figueira	Air Core	FIGAC0259	SIRGAS 2000 / UTM z23S	7,573,211	341,804	1,351	45.0	-90	360
Figueira	Air Core	FIGAC0260	SIRGAS 2000 / UTM z23S	7,573,225	341,664	1,317	31.0	-90	360
Figueira	Air Core	FIGAC0261	SIRGAS 2000 / UTM z23S	7,573,197	341,600	1,309	21.2	-90	360
Figueira	Air Core	FIGAC0262	SIRGAS 2000 / UTM z23S	7,573,311	341,545	1,309	34.0	-90	360
Figueira	Air Core	FIGAC0263	SIRGAS 2000 / UTM z23S	7,573,411	341,531	1,311	33.0	-90	360
Figueira	Air Core	FIGAC0264	SIRGAS 2000 / UTM z23S	7,573,506	341,547	1,321	37.0	-90	360
Figueira	Air Core	FIGAC0265	SIRGAS 2000 / UTM z23S	7,573,607	341,494	1,317	15.6	-90	360
Figueira	Air Core	FIGAC0266	SIRGAS 2000 / UTM z23S	7,573,676	341,684	1,364	42.0	-90	360
Figueira	Air Core	FIGAC0267	SIRGAS 2000 / UTM z23S	7,573,689	341,615	1,346	26.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Air Core	FIGAC0268	SIRGAS 2000 / UTM z23S	7,573,405	341,601	1,321	38.5	-90	360
Figueira	Air Core	FIGAC0269	SIRGAS 2000 / UTM z23S	7,573,296	341,658	1,322	50.0	-90	360
Figueira	Air Core	FIGAC0270	SIRGAS 2000 / UTM z23S	7,573,111	341,601	1,307	31.0	-90	360
Figueira	Air Core	FIGAC0271	SIRGAS 2000 / UTM z23S	7,573,114	341,694	1,326	50.0	-90	360
Figueira	Air Core	FIGAC0272	SIRGAS 2000 / UTM z23S	7,573,003	341,691	1,311	48.0	-90	360
Figueira	Air Core	FIGAC0273	SIRGAS 2000 / UTM z23S	7,573,000	341,614	1,304	23.0	-90	360
Figueira	Air Core	FIGAC0274	SIRGAS 2000 / UTM z23S	7,572,909	341,601	1,313	50.0	-90	360
Figueira	Air Core	FIGAC0275	SIRGAS 2000 / UTM z23S	7,572,854	341,702	1,319	46.0	-90	360
Figueira	Air Core	FIGAC0276	SIRGAS 2000 / UTM z23S	7,572,910	341,699	1,325	45.0	-90	360
Figueira	Air Core	FIGAC0277	SIRGAS 2000 / UTM z23S	7,572,847	341,763	1,313	50.0	-90	360
Figueira	Air Core	FIGAC0278	SIRGAS 2000 / UTM z23S	7,572,966	341,851	1,318	50.0	-90	360
Figueira	Air Core	FIGAC0279	SIRGAS 2000 / UTM z23S	7,572,914	341,788	1,318	50.0	-90	360
Figueira	Air Core	FIGAC0280	SIRGAS 2000 / UTM z23S	7,573,010	341,795	1,330	50.0	-90	360
Figueira	Air Core	FIGAC0281	SIRGAS 2000 / UTM z23S	7,573,108	341,804	1,343	50.0	-90	360
Figueira	Air Core	FIGAC0282	SIRGAS 2000 / UTM z23S	7,573,111	341,891	1,337	40.0	-90	360
Figueira	Air Core	FIGAC0283	SIRGAS 2000 / UTM z23S	7,573,196	341,894	1,348	44.0	-90	360
Figueira	Air Core	FIGAC0284	SIRGAS 2000 / UTM z23S	7,573,392	341,907	1,375	21.2	-90	360
Figueira	Air Core	FIGAC0285	SIRGAS 2000 / UTM z23S	7,573,323	342,033	1,340	22.0	-90	360
Figueira	Air Core	FIGAC0286	SIRGAS 2000 / UTM z23S	7,573,399	342,035	1,339	24.4	-90	360
Figueira	Air Core	FIGAC0287	SIRGAS 2000 / UTM z23S	7,573,523	341,634	1,347	41.2	-90	360
Figueira	Air Core	FIGAC0288	SIRGAS 2000 / UTM z23S	7,573,584	341,698	1,343	18.0	-90	360
Figueira	Air Core	FIGAC0289	SIRGAS 2000 / UTM z23S	7,573,592	341,641	1,334	18.0	-90	360
Figueira	Air Core	FIGAC0290	SIRGAS 2000 / UTM z23S	7,573,393	341,809	1,391	49.0	-90	360
Figueira	Diamond	FIGDD0001	SIRGAS 2000 / UTM z23S	7,572,049	341,854	1,339	61.8	-90	360
Figueira	Diamond	FIGDD0002	SIRGAS 2000 / UTM z23S	7,572,677	341,239	1,340	84.5	-90	360
Figueira	Diamond	FIGDD0003	SIRGAS 2000 / UTM z23S	7,572,859	340,849	1,366	45.6	-90	360
Figueira	Diamond	FIGDD0004	SIRGAS 2000 / UTM z23S	7,571,408	340,882	1,338	111.9	-90	360
Figueira	Diamond	FIGDD0005	SIRGAS 2000 / UTM z23S	7,572,112	340,893	1,325	20.7	-90	360
Figueira	Diamond	FIGDD0006	SIRGAS 2000 / UTM z23S	7,573,390	341,236	1,357	59.0	-90	360
Figueira	Diamond	FIGDD0007	SIRGAS 2000 / UTM z23S	7,573,311	340,993	1,394	71.0	-90	360

Target	Drill Type	Hole_ID	Datum	Easting	Northing	Elevation	Depth (m)	Dip	Azimuth
Figueira	Diamond	FIGDD0008	SIRGAS 2000 / UTM z23S	7,571,146	341,530	1,300	31.3	-90	360
Figueira	Diamond	FIGDD0009	SIRGAS 2000 / UTM z23S	7,573,324	341,876	1,366	96.7	-90	360

Appendix 3: Table of mineralised intercepts Figueira Aircore drilling

• •					-	•		_
Target	Hole_ID	From	То	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO	Mineralised Intercept
Figueira	FIGAC0001	0.0	21.4	21.4	3,915	533	13.6%	21.4m @ 3915 ppm [0m]
Figueira	FIGAC0002	0.0	20.0	20.0	2,699	447	16.6%	20m @ 2699 ppm [0m]
Figueira	FIGAC0003	0.0	14.5	14.5	2,937	474	16.1%	14.5m @ 2937 ppm [0m]
Figueira	FIGAC0004	0.0	16.0	16.0	2,364	358	15.1%	16m @ 2364 ppm [0m]
Figueira	FIGAC0005	0.0	16.0	16.0	4,731	769	16.2%	16m @ 4731 ppm [0m]
Figueira	FIGAC0006	0.0	11.5	11.5	11,665	2,039	17.5%	11.5m @ 11665 ppm [0m]
Figueira	FIGAC0007	0.0	10.5	10.5	2,722	375	13.8%	10.5m @ 2722 ppm [0m]
Figueira	FIGAC0008	0.0	8.0	8.0	3,123	378	12.1%	8m @ 3123 ppm [0m]
Figueira	FIGAC0009	0.0	8.0	8.0	4,508	697	15.5%	8m @ 4508 ppm [0m]
Figueira	FIGAC0010	0.0	16.0	16.0	6,032	518	8.6%	16m @ 6032 ppm [0m]
Figueira	FIGAC0011	0.0	34.0	34.0	1,906	196	10.3%	34m @ 1906 ppm [0m]
Figueira	FIGAC0012	0.0	24.0	24.0	2,730	369	13.5%	24m @ 2730 ppm [0m]
Figueira	FIGAC0013	0.0	9.4	9.4	3,588	508	14.1%	9.4m @ 3588 ppm [0m]
Figueira	FIGAC0014	0.0	23.6	23.6	2,988	452	15.1%	23.6m @ 2988 ppm [0m]
Figueira	FIGAC0015	0.0	14.0	14.0	2,228	264	11.8%	14m @ 2228 ppm [0m]
Figueira	FIGAC0016	0.0	22.0	22.0	2,355	336	14.3%	22m @ 2355 ppm [0m]
Figueira	FIGAC0017	0.0	18.0	18.0	5,283	999	18.9%	18m @ 5283 ppm [0m]
Figueira	FIGAC0018	0.0	12.0	12.0	1,815	268	14.8%	12m @ 1815 ppm [0m]
Figueira	FIGAC0019	0.0	16.0	16.0	1,640	280	17.1%	16m @ 1640 ppm [0m]
Figueira	FIGAC0020	0.0	14.4	14.4	1,385	212	15.3%	14.4m @ 1385 ppm [0m]
Figueira	FIGAC0021	0.0	16.0	16.0	2,015	328	16.3%	16m @ 2015 ppm [0m]
Figueira	FIGAC0022	0.0	9.5	9.5	2,168	344	15.8%	9.5m @ 2168 ppm [0m]
Figueira	FIGAC0023	0.0	16.0	16.0	2,636	478	18.1%	16m @ 2636 ppm [0m]
Figueira	FIGAC0024	0.0	14.0	14.0	1,840	360	19.6%	14m @ 1840 ppm [0m]
Figueira	FIGAC0025	0.0	38.0	38.0	1,808	342	18.9%	38m @ 1808 ppm [0m]
Figueira	FIGAC0026	0.0	19.0	19.0	2,046	338	16.5%	19m @ 2046 ppm [0m]
Figueira	FIGAC0027	0.0	14.5	14.5	1,543	249	16.1%	14.5m @ 1543 ppm [0m]
Figueira	FIGAC0028	0.0	10.5	10.5	2,782	461	16.6%	10.5m @ 2782 ppm [0m]
Figueira	FIGAC0029	0.0	8.2	8.2	2,427	459	18.9%	8.2m @ 2427 ppm [0m]
Figueira	FIGAC0030	0.0	14.0	14.0	3,736	550	14.7%	14m @ 3736 ppm [0m]
Figueira	FIGAC0031	0.0	16.0	16.0	3,042	522	17.2%	16m @ 3042 ppm [0m]
Figueira	FIGAC0032	0.0	4.0	4.0	1,490	162	10.9%	4m @ 1490 ppm [0m]
Figueira	FIGAC0033	0.0	30.8	30.8	1,769	263	14.9%	30.8m @ 1769 ppm [0m]
Figueira	FIGAC0034	0.0	18.0	18.0	2,808	474	16.9%	18m @ 2808 ppm [0m]
Figueira	FIGAC0035	0.0	24.0	24.0	1,703	267	15.7%	24m @ 1703 ppm [0m]
Figueira	FIGAC0036	0.0	22.0	22.0	1,907	321	16.8%	22m @ 1907 ppm [0m]
Figueira	FIGAC0037	0.0	16.0	16.0	3,508	727	20.7%	16m @ 3508 ppm [0m]
Figueira	FIGAC0038	0.0	25.0	25.0	3,185	584	18.3%	25m @ 3185 ppm [0m]
Figueira	FIGAC0039	0.0	25.0	25.0	2,127	374	17.6%	25m @ 2127 ppm [0m]
Figueira	FIGAC0040	0.0	38.0	38.0	1,808	342	18.9%	38m @ 1808 ppm [0m]
Figueira	FIGAC0041	0.0	27.0	27.0	1,640	252	15.4%	27m @ 1640 ppm [0m]
Figueira	FIGAC0042	0.0	18.0	18.0	1,977	327	16.5%	18m @ 1977 ppm [0m]

Target	Hole_ID	From	То	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO	Mineralised Intercept
Figueira	FIGAC0043	0.0	37.0	37.0	1,557	254	16.3%	37m @ 1557 ppm [0m]
Figueira	FIGAC0044	0.0	23.0	23.0	3,364	420	12.5%	23m @ 3364 ppm [0m]
Figueira	FIGAC0045	0.0	33.0	33.0	1,733	207	12.0%	33m @ 1733 ppm [0m]
Figueira	FIGAC0046	6.0	42.0	36.0	2,309	412	17.9%	36m @ 2309 ppm [6m]
Figueira	FIGAC0047	0.0	34.0	34.0	1,538	222	14.4%	34m @ 1538 ppm [0m]
Figueira	FIGAC0048	0.0	28.0	28.0	1,263	150	11.9%	28m @ 1263 ppm [0m]
Figueira	FIGAC0049	0.0	50.0	50.0	1,807	253	14.0%	50m @ 1807 ppm [0m]
Figueira	FIGAC0050	0.0	34.0	34.0	2,734	497	18.2%	34m @ 2734 ppm [0m]
Figueira	FIGAC0051	0.0	48.0	48.0	2,179	377	17.3%	48m @ 2179 ppm [0m]
Figueira	FIGAC0052	0.0	14.0	14.0	21,033	5,647	26.8%	14m @ 21033 ppm [0m]
Figueira	FIGAC0053	0.0	16.0	16.0	2,444	489	20.0%	16m @ 2444 ppm [0m]
Figueira	FIGAC0054	0.0	10.0	10.0	2,173	358	16.5%	10m @ 2173 ppm [0m]
Figueira	FIGAC0055	0.0	42.0	42.0	2,693	483	18.0%	42m @ 2693 ppm [0m]
Figueira	FIGAC0056	0.0	50.0	50.0	2,408	536	22.3%	50m @ 2408 ppm [0m]
Figueira	FIGAC0057	0.0	50.0	50.0	1,740	192	11.0%	50m @ 1740 ppm [0m]
Figueira	FIGAC0058	0.0	50.0	50.0	1,590	171	10.8%	50m @ 1590 ppm [0m]
Figueira	FIGAC0059	0.0	39.0	39.0	2,897	444	15.3%	39m @ 2897 ppm [0m]
Figueira	FIGAC0060	0.0	50.0	50.0	2,630	480	18.2%	50m @ 2630 ppm [0m]
Figueira	FIGAC0061	0.0	50.0	50.0	1,872	356	19.0%	50m @ 1872 ppm [0m]
Figueira	FIGAC0062	0.0	50.0	50.0	1,856	395	21.3%	50m @ 1856 ppm [0m]
Figueira	FIGAC0063	0.0	26.0	26.0	1,879	335	17.8%	26m @ 1879 ppm [0m]
Figueira	FIGAC0064	0.0	48.0	48.0	1,522	290	19.1%	48m @ 1522 ppm [0m]
Figueira	FIGAC0065	0.0	49.0	49.0	1,953	358	18.4%	49m @ 1953 ppm [0m]
Figueira	FIGAC0066	0.0	48.0	48.0	1,975	329	16.6%	48m @ 1975 ppm [0m]
Figueira	FIGAC0067	0.0	50.0	50.0	2,397	341	14.2%	50m @ 2397 ppm [0m]
Figueira	FIGAC0068	0.0	48.0	48.0	2,140	375	17.5%	48m @ 2140 ppm [0m]
Figueira	FIGAC0069	0.0	30.0	30.0	2,599	556	21.4%	30m @ 2599 ppm [0m]
Figueira	FIGAC0070	0.0	39.5	39.5	2,979	472	15.8%	39.5m @ 2979 ppm [0m]
Figueira	FIGAC0071	0.0	18.0	18.0	2,055	365	17.8%	18m @ 2055 ppm [0m]
Figueira	FIGAC0072	0.0	16.0	16.0	1,657	299	18.0%	16m @ 1657 ppm [0m]
Figueira	FIGAC0073	0.0	16.0	16.0	2,192	441	20.1%	16m @ 2192 ppm [0m]
Figueira	FIGAC0074	0.0	32.0	32.0	1,575	291	18.5%	32m @ 1575 ppm [0m]
Figueira	FIGAC0075	0.0	12.5	12.5	1,470	229	15.6%	12.5m @ 1470 ppm [0m]
Figueira	FIGAC0076	0.0	17.5	17.5	3,258	795	24.4%	17.5m @ 3258 ppm [0m]
Figueira	FIGAC0077	0.0	29.5	29.5	2,290	503	22.0%	29.5m @ 2290 ppm [0m]
Figueira	FIGAC0078	0.0	31.0	31.0	2,484	540	21.8%	31m @ 2484 ppm [0m]
Figueira	FIGAC0079	0.0	50.0	50.0	1,755	276	15.7%	50m @ 1755 ppm [0m]
Figueira	FIGAC0080	0.0	22.0	22.0	2,362	513	21.7%	22m @ 2362 ppm [0m]
Figueira	FIGAC0081	0.0	18.0	18.0	2,093	445	21.3%	18m @ 2093 ppm [0m]
Figueira	FIGAC0082	0.0	22.0	22.0	1,653	297	18.0%	22m @ 1653 ppm [0m]
Figueira	FIGAC0083	0.0	20.0	20.0	1,949	364	18.7%	20m @ 1949 ppm [0m]
Figueira	FIGAC0084	0.0	32.0	32.0	2,041	349	17.1%	32m @ 2041 ppm [0m]
		0.0	21.0	21.0	3,532	798	22.6%	21m @ 3532 ppm [0m]

Target	Hole_ID	From	То	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO	Mineralised Intercept
Figueira	FIGAC0086	0.0	4.5	4.5	4,547	1,148	25.2%	4.5m @ 4547 ppm [0m]
Figueira	FIGAC0087	0.0	36.5	36.5	4,144	498	12.0%	36.5m @ 4144 ppm [0m]
Figueira	FIGAC0088	0.0	17.6	17.6	4,220	1,096	26.0%	17.6m @ 4220 ppm [0m]
Figueira	FIGAC0089	0.0	16.0	16.0	2,401	608	25.3%	16m @ 2401 ppm [0m]
Figueira	FIGAC0090	0.0	25.0	25.0	2,997	737	24.6%	25m @ 2997 ppm [0m]
Figueira	FIGAC0091	0.0	14.0	14.0	2,807	714	25.4%	14m @ 2807 ppm [0m]
Figueira	FIGAC0092	0.0	25.0	25.0	2,475	557	22.5%	25m @ 2475 ppm [0m]
Figueira	FIGAC0093	0.0	18.0	18.0	3,303	747	22.6%	18m @ 3303 ppm [0m]
Figueira	FIGAC0094	0.0	10.0	10.0	2,085	495	23.7%	10m @ 2085 ppm [0m]
Figueira	FIGAC0095	0.0	10.0	10.0	1,764	394	22.3%	10m @ 1764 ppm [0m]
Figueira	FIGAC0096	0.0	15.0	15.0	2,692	614	22.8%	15m @ 2692 ppm [0m]
Figueira	FIGAC0097	0.0	13.0	13.0	4,189	1,176	28.1%	13m @ 4189 ppm [0m]
Figueira	FIGAC0098	0.0	12.0	12.0	2,916	750	25.7%	12m @ 2916 ppm [0m]
Figueira	FIGAC0099	0.0	18.5	18.5	1,906	353	18.5%	18.5m @ 1906 ppm [0m]
Figueira	FIGAC0100	0.0	11.4	11.4	2,080	389	18.7%	11.4m @ 2080 ppm [0m]
Figueira	FIGAC0101	0.0	25.0	25.0	2,181	496	22.7%	25m @ 2181 ppm [0m]
Figueira	FIGAC0102	0.0	16.0	16.0	1,944	403	20.7%	16m @ 1944 ppm [0m]
Figueira	FIGAC0103	0.0	19.0	19.0	4,130	1,071	25.9%	19m @ 4130 ppm [0m]
Figueira	FIGAC0104	0.0	20.0	20.0	3,667	985	26.9%	20m @ 3667 ppm [0m]
Figueira	FIGAC0105	0.0	12.0	12.0	5,133	1,467	28.6%	12m @ 5133 ppm [0m]
Figueira	FIGAC0106	0.0	16.0	16.0	1,853	367	19.8%	16m @ 1853 ppm [0m]
Figueira	FIGAC0107	0.0	20.0	20.0	11,740	3,481	29.7%	20m @ 11740 ppm [0m]
Figueira	FIGAC0108	0.0	40.0	40.0	2,115	425	20.1%	40m @ 2115 ppm [0m]
Figueira	FIGAC0109	0.0	36.0	36.0	1,791	345	19.3%	36m @ 1791 ppm [0m]
Figueira	FIGAC0110	0.0	40.0	40.0	2,583	580	22.5%	40m @ 2583 ppm [0m]
Figueira	FIGAC0111	0.0	28.0	28.0	2,135	324	15.2%	28m @ 2135 ppm [0m]
Figueira	FIGAC0112	2.0	6.0	4.0	1,199	205	17.1%	4m @ 1199 ppm [2m]
Figueira	FIGAC0113	0.0	6.0	6.0	2,962	603	20.4%	6m @ 2962 ppm [0m]
Figueira	FIGAC0114	0.0	22.0	22.0	1,573	339	21.5%	22m @ 1573 ppm [0m]
Figueira	FIGAC0115	0.0	14.0	14.0	1,962	343	17.5%	14m @ 1962 ppm [0m]
Figueira	FIGAC0116	0.0	22.0	22.0	2,139	434	20.3%	22m @ 2139 ppm [0m]
Figueira	FIGAC0117	0.0	19.0	19.0	4,924	982	19.9%	19m @ 4924 ppm [0m]
Figueira	FIGAC0118	0.0	21.0	21.0	2,865	664	23.2%	21m @ 2865 ppm [0m]
Figueira	FIGAC0119	0.0	12.0	12.0	3,492	838	24.0%	12m @ 3492 ppm [0m]
Figueira	FIGAC0120	0.0	14.0	14.0	3,493	906	25.9%	14m @ 3493 ppm [0m]
Figueira	FIGAC0121	0.0	22.0	22.0	2,079	519	25.0%	22m @ 2079 ppm [0m]
Figueira	FIGAC0122	2.0	20.0	18.0	2,795	711	25.4%	18m @ 2795 ppm [2m]
Figueira	FIGAC0123	2.0	16.0	14.0	2,100	472	22.5%	14m @ 2100 ppm [2m]
Figueira	FIGAC0124	0.0	10.0	10.0	3,227	857	26.6%	10m @ 3227 ppm [0m]
Figueira	FIGAC0125	2.0	28.0	26.0	1,681	366	21.8%	26m @ 1681 ppm [2m]
Figueira	FIGAC0126	4.0	14.0	10.0	1,377	179	13.0%	10m @ 1377 ppm [4m]
Figueira	FIGAC0127	0.0	10.0	10.0	4,558	1,313	28.8%	10m @ 4558 ppm [0m]
				8.0				

Target	Hole_ID	From	То	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO	Mineralised Intercept
Figueira	FIGAC0129	0.0	36.0	36.0	2,346	405	17.3%	36m @ 2346 ppm [0m]
Figueira	FIGAC0130	0.0	34.0	34.0	1,713	288	16.8%	34m @ 1713 ppm [0m]
Figueira	FIGAC0131	0.0	44.0	44.0	1,964	308	15.7%	44m @ 1964 ppm [0m]
Figueira	FIGAC0132	0.0	8.0	8.0	1,527	86	5.6%	8m @ 1527 ppm [0m]
Figueira	FIGAC0133	0.0	47.6	47.6	2,582	528	20.4%	47.6m @ 2582 ppm [0m]
Figueira	FIGAC0134	0.0	34.0	34.0	1,295	144	11.1%	34m @ 1295 ppm [0m]
Figueira	FIGAC0135	0.0	31.0	31.0	2,129	419	19.7%	31m @ 2129 ppm [0m]
Figueira	FIGAC0136	0.0	22.0	22.0	2,655	516	19.5%	22m @ 2655 ppm [0m]
Figueira	FIGAC0137	18.0	40.0	22.0	2,148	387	18.0%	22m @ 2148 ppm [18m]
Figueira	FIGAC0138	0.0	48.0	48.0	1,604	418	26.1%	48m @ 1604 ppm [0m]
Figueira	FIGAC0139	0.0	37.0	37.0	3,235	639	19.8%	37m @ 3235 ppm [0m]
Figueira	FIGAC0140	0.0	17.2	17.2	3,927	1,019	26.0%	17.2m @ 3927 ppm [0m]
Figueira	FIGAC0141	0.0	24.0	24.0	3,460	817	23.6%	24m @ 3460 ppm [0m]
Figueira	FIGAC0142	0.0	19.0	19.0	4,546	1,244	27.4%	19m @ 4546 ppm [0m]
Figueira	FIGAC0143	0.0	16.0	16.0	6,099	1,454	23.8%	16m @ 6099 ppm [0m]
Figueira	FIGAC0144	0.0	50.0	50.0	3,507	565	16.1%	50m @ 3507 ppm [0m]
Figueira	FIGAC0145	0.0	14.4	14.4	1,619	290	17.9%	14.4m @ 1619 ppm [0m]
Figueira	FIGAC0146	0.0	15.4	15.4	3,678	828	22.5%	15.4m @ 3678 ppm [0m]
Figueira	FIGAC0147	0.0	32.8	32.8	2,386	416	17.4%	32.8m @ 2386 ppm [0m]
Figueira	FIGAC0148	0.0	18.0	18.0	1,979	436	22.0%	18m @ 1979 ppm [0m]
Figueira	FIGAC0149	0.0	33.0	33.0	2,239	480	21.4%	33m @ 2239 ppm [0m]
Figueira	FIGAC0150	0.0	4.0	4.0	2,082	164	7.9%	4m @ 2082 ppm [0m]
Figueira	FIGAC0150	8.0	44.0	36.0	2,831	510	18.0%	36m @ 2831 ppm [8m]
Figueira	FIGAC0151	0.0	34.0	34.0	2,047	416	20.3%	34m @ 2047 ppm [0m]
Figueira	FIGAC0152	0.0	18.0	18.0	3,833	839	21.9%	18m @ 3833 ppm [0m]
Figueira	FIGAC0153	0.0	26.0	26.0	2,312	500	21.6%	26m @ 2312 ppm [0m]
Figueira	FIGAC0154	0.0	18.0	18.0	1,450	251	17.3%	18m @ 1450 ppm [0m]
Figueira	FIGAC0155	0.0	42.0	42.0	2,502	424	17.0%	42m @ 2502 ppm [0m]
Figueira	FIGAC0156	0.0	32.0	32.0	2,072	335	16.1%	32m @ 2072 ppm [0m]
Figueira	FIGAC0157	0.0	22.0	22.0	2,040	377	18.5%	22m @ 2040 ppm [0m]
Figueira	FIGAC0158	0.0	36.0	36.0	3,231	655	20.3%	36m @ 3231 ppm [0m]
Figueira	FIGAC0159	0.0	46.0	46.0	2,301	408	17.7%	46m @ 2301 ppm [0m]
Figueira	FIGAC0160	0.0	18.0	18.0	1,553	256	16.5%	18m @ 1553 ppm [0m]
Figueira	FIGAC0161	0.0	24.6	24.6	1,747	331	18.9%	24.6m @ 1747 ppm [0m]
Figueira	FIGAC0162	0.0	24.4	24.4	2,927	600	20.5%	24.4m @ 2927 ppm [0m]
Figueira	FIGAC0163	0.0	50.0	50.0	2,387	347	14.5%	50m @ 2387 ppm [0m]
Figueira	FIGAC0164	0.0	38.0	38.0	2,194	393	17.9%	38m @ 2194 ppm [0m]
Figueira	FIGAC0164	18.0	30.0	12.0	3,225	652	20.2%	12m @ 3225 ppm [18m]
Figueira	FIGAC0165	0.0	50.0	50.0	2,428	353	14.5%	50m @ 2428 ppm [0m]
Figueira	FIGAC0166	0.0	50.0	50.0	2,251	409	18.2%	50m @ 2251 ppm [0m]
Figueira	FIGAC0167	0.0	19.0	19.0	1,637	233	14.2%	19m @ 1637 ppm [0m]
Figueira	FIGAC0168	0.0	6.0	6.0	1,314	143	10.9%	6m @ 1314 ppm [0m]
-	FIGAC0168_B	0.0	34.0	34.0	1,043	144	13.9%	34m @ 1043 ppm [0m]

Target	Hole_ID	From	То	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO	Mineralised Intercept
Figueira	FIGAC0169	0.0	32.0	32.0	3,757	781	20.8%	32m @ 3757 ppm [0m]
Figueira	FIGAC0170	0.0	36.0	36.0	3,146	467	14.8%	36m @ 3146 ppm [0m]
Figueira	FIGAC0170	40.0	49.0	9.0	2,232	367	16.4%	9m @ 2232 ppm [40m]
Figueira	FIGAC0171	0.0	40.6	40.6	2,798	464	16.6%	40.6m @ 2798 ppm [0m]
Figueira	FIGAC0172	0.0	46.0	46.0	4,581	727	15.9%	46m @ 4581 ppm [0m]
Figueira	FIGAC0173	0.0	36.0	36.0	1,811	325	17.9%	36m @ 1811 ppm [0m]
Figueira	FIGAC0173	40.0	50.0	10.0	1,798	355	19.7%	10m @ 1798 ppm [40m]
Figueira	FIGAC0174	0.0	50.0	50.0	3,940	629	16.0%	50m @ 3940 ppm [0m]
Figueira	FIGAC0175	0.0	50.0	50.0	1,875	376	20.1%	50m @ 1875 ppm [0m]
Figueira	FIGAC0176	0.0	20.0	20.0	3,871	863	22.3%	20m @ 3871 ppm [0m]
Figueira	FIGAC0177	0.0	24.0	24.0	4,765	841	17.6%	24m @ 4765 ppm [0m]
Figueira	FIGAC0178	0.0	34.0	34.0	3,320	571	17.2%	34m @ 3320 ppm [0m]
Figueira	FIGAC0179	0.0	21.0	21.0	2,244	473	21.1%	21m @ 2244 ppm [0m]
Figueira	FIGAC0180	0.0	20.0	20.0	3,944	941	23.9%	20m @ 3944 ppm [0m]
Figueira	FIGAC0181	0.0	30.0	30.0	2,473	418	16.9%	30m @ 2473 ppm [0m]
Figueira	FIGAC0182	0.0	33.0	33.0	2,745	548	19.9%	33m @ 2745 ppm [0m]
Figueira	FIGAC0183	0.0	30.0	30.0	2,956	553	18.7%	30m @ 2956 ppm [0m]
Figueira	FIGAC0184	0.0	18.0	18.0	2,950	603	20.4%	18m @ 2950 ppm [0m]
Figueira	FIGAC0185	0.0	36.8	36.8	2,368	493	20.8%	36.8m @ 2368 ppm [0m]
Figueira	FIGAC0186	0.0	32.0	32.0	2,859	794	27.8%	32m @ 2859 ppm [0m]
Figueira	FIGAC0187	0.0	34.0	34.0	1,688	299	17.7%	34m @ 1688 ppm [0m]
Figueira	FIGAC0188	0.0	44.0	44.0	2,326	375	16.1%	44m @ 2326 ppm [0m]
Figueira	FIGAC0189	0.0	29.0	29.0	1,744	315	18.1%	29m @ 1744 ppm [0m]
Figueira	FIGAC0190	0.0	34.0	34.0	3,140	702	22.4%	34m @ 3140 ppm [0m]
Figueira	FIGAC0191	0.0	28.3	28.3	3,692	923	25.0%	28.3m @ 3692 ppm [0m]
Figueira	FIGAC0192	0.0	28.0	28.0	2,972	747	25.1%	28m @ 2972 ppm [0m]
Figueira	FIGAC0193	0.0	34.0	34.0	2,750	569	20.7%	34m @ 2750 ppm [0m]
Figueira	FIGAC0194	0.0	26.2	26.2	1,957	319	16.3%	26.2m @ 1957 ppm [0m]
Figueira	FIGAC0195	0.0	32.0	32.0	1,864	382	20.5%	32m @ 1864 ppm [0m]
Figueira	FIGAC0196	0.0	37.0	37.0	1,730	328	19.0%	37m @ 1730 ppm [0m]
Figueira	FIGAC0197	0.0	40.0	40.0	11,307	2,745	24.3%	40m @ 11307 ppm [0m]
Figueira	FIGAC0198	0.0	32.0	32.0	2,126	375	17.6%	32m @ 2126 ppm [0m]
Figueira	FIGAC0199	0.0	21.4	21.4	8,472	1,733	20.5%	21.4m @ 8472 ppm [0m]
Figueira	FIGAC0200	0.0	28.0	28.0	5,344	1,088	20.3%	28m @ 5344 ppm [0m]
Figueira	FIGAC0201	0.0	42.5	42.5	2,377	411	3.5%	42.5m @ 2377 ppm [0m]
Figueira	FIGAC0202	0.0	50.0	50.0	1,973	323	16.4%	50m @ 1973 ppm [0m]
Figueira	FIGAC0203	0.0	40.0	40.0	2,565	498	19.4%	40m @ 2565 ppm [0m]
Figueira	FIGAC0204	0.0	50.0	50.0	2,462	381	15.5%	50m @ 2462 ppm [0m]
Figueira	FIGAC0205	0.0	34.0	34.0	3,378	616	18.2%	34m @ 3378 ppm [0m]
Figueira	FIGAC0206	0.0	38.0	38.0	3,133	725	23.1%	38m @ 3133 ppm [0m]
Figueira	FIGAC0207	0.0	32.0	32.0	3,040	531	17.5%	32m @ 3040 ppm [0m]
Figueira	FIGAC0208	0.0	37.0	37.0	2,814	555	19.7%	37m @ 2814 ppm [0m]
	FIGAC0209	0.0	50.0	50.0	2,657	510	19.2%	50m @ 2657 ppm [0m]

Target	Hole_ID	From	То	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO	Mineralised Intercept
Figueira	FIGAC0210	0.0	28.4	28.4	2,890	621	21.5%	28.4m @ 2890 ppm [0m]
Figueira	FIGAC0211	2.0	21.0	19.0	5,233	1,229	23.5%	19m @ 5233 ppm [2m]
Figueira	FIGAC0212	0.0	24.0	24.0	2,779	669	24.1%	24m @ 2779 ppm [0m]
Figueira	FIGAC0212	28.0	38.0	10.0	1,343	272	20.3%	10m @ 1343 ppm [28m]
Figueira	FIGAC0212	42.0	50.0	8.0	1,523	294	19.3%	8m @ 1523 ppm [42m]
Figueira	FIGAC0213	0.0	23.0	23.0	2,758	623	22.6%	23m @ 2758 ppm [0m]
Figueira	FIGAC0214	0.0	22.5	22.5	3,024	748	24.8%	22.5m @ 3024 ppm [0m]
Figueira	FIGAC0215	0.0	10.0	10.0	3,681	1,036	28.1%	10m @ 3681 ppm [0m]
Figueira	FIGAC0215	16.0	21.4	5.4	1,734	325	18.8%	5.4m @ 1734 ppm [16m]
Figueira	FIGAC0216	0.0	26.0	26.0	1,932	508	26.3%	26m @ 1932 ppm [0m]
Figueira	FIGAC0217	0.0	4.0	4.0	3,744	1,199	32.0%	4m @ 3744 ppm [0m]
Figueira	FIGAC0217B	0.0	12.3	12.3	4,726	1,543	32.7%	12.3m @ 4726 ppm [0m]
Figueira	FIGAC0218	0.0	18.0	18.0	2,179	542	24.9%	18m @ 2179 ppm [0m]
Figueira	FIGAC0219	0.0	24.2	24.2	2,167	506	23.4%	24.2m @ 2167 ppm [0m]
Figueira	FIGAC0220	0.0	14.0	14.0	3,242	947	29.2%	14m @ 3242 ppm [0m]
Figueira	FIGAC0221	0.0	19.3	19.3	3,216	954	29.7%	19.3m @ 3216 ppm [0m]
Figueira	FIGAC0222	0.0	17.0	17.0	3,471	894	25.7%	17m @ 3471 ppm [0m]
Figueira	FIGAC0223	0.0	21.5	21.5	2,302	481	20.9%	21.5m @ 2302 ppm [0m]
Figueira	FIGAC0224	0.0	38.0	38.0	2,077	316	15.2%	38m @ 2077 ppm [0m]
Figueira	FIGAC0225	0.0	18.0	18.0	1,966	215	11.0%	18m @ 1966 ppm [0m]
Figueira	FIGAC0225	24.0	44.0	20.0	3,160	604	19.1%	20m @ 3160 ppm [24m]
Figueira	FIGAC0226	0.0	40.0	40.0	2,575	526	20.4%	40m @ 2575 ppm [0m]
Figueira	FIGAC0227	0.0	48.0	48.0	2,165	339	15.6%	48m @ 2165 ppm [0m]
Figueira	FIGAC0228	0.0	40.0	40.0	2,378	481	20.2%	40m @ 2378 ppm [0m]
Figueira	FIGAC0229	0.0	44.0	44.0	2,393	380	15.9%	44m @ 2393 ppm [0m]
Figueira	FIGAC0230	0.0	27.0	27.0	1,554	178	11.4%	27m @ 1554 ppm [0m]
Figueira	FIGAC0231	0.0	25.0	25.0	3,128	702	22.4%	25m @ 3128 ppm [0m]
Figueira	FIGAC0232	0.0	21.0	21.0	2,149	427	19.9%	21m @ 2149 ppm [0m]
Figueira	FIGAC0233	0.0	20.0	20.0	5,322	208	3.9%	20m @ 5322 ppm [0m]
Figueira	FIGAC0234	0.0	18.0	18.0	4,369	725	16.6%	18m @ 4369 ppm [0m]
Figueira	FIGAC0235	0.0	8.0	8.0	1,780	114	6.4%	8m @ 1780 ppm [0m]
Figueira	FIGAC0235	12.0	33.0	21.0	1,844	285	15.5%	21m @ 1844 ppm [12m]
Figueira	FIGAC0236	0.0	40.0	40.0	3,065	442	14.4%	40m @ 3065 ppm [0m]
Figueira	FIGAC0237	0.0	34.0	34.0	2,327	388	16.7%	34m @ 2327 ppm [0m]
Figueira	FIGAC0238	0.0	30.0	30.0	2,551	435	17.1%	30m @ 2551 ppm [0m]
Figueira	FIGAC0239	0.0	50.0	50.0	7,392	1,359	18.4%	50m @ 7392 ppm [0m]
Figueira	FIGAC0240	0.0	50.0	50.0	5,117	574	11.2%	50m @ 5117 ppm [0m]
Figueira	FIGAC0241	0.0	45.0	45.0	5,276	491	9.3%	45m @ 5276 ppm [0m]
Figueira	FIGAC0242	0.0	22.0	22.0	7,233	540	7.5%	22m @ 7233 ppm [0m]
Figueira	FIGAC0243	0.0	52.0	52.0	5,738	462	8.1%	52m @ 5738 ppm [0m]
Figueira	FIGAC0244	0.0	18.0	18.0	14,303	2,307	16.1%	18m @ 14303 ppm [0m]
Figueira	FIGAC0245	0.0	28.0	28.0	5,929	1,130	19.1%	28m @ 5929 ppm [0m]
	FIGAC0246	0.0	16.0	16.0	8,066	1,766	21.9%	

Target	Hole_ID	From	То	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO	Mineralised Intercept
Figueira	FIGAC0247	0.0	15.4	15.4	4,481	592	13.2%	15.4m @ 4481 ppm [0m]
Figueira	FIGAC0248	0.0	17.4	17.4	5,868	1,203	20.5%	17.4m @ 5868 ppm [0m]
Figueira	FIGAC0249	0.0	12.4	12.4	3,574	455	12.7%	12.4m @ 3574 ppm [0m]
Figueira	FIGAC0250	0.0	50.0	50.0	2,229	375	16.8%	50m @ 2229 ppm [0m]
Figueira	FIGAC0251	0.0	43.0	43.0	2,582	512	19.8%	43m @ 2582 ppm [0m]
Figueira	FIGAC0252	0.0	22.0	22.0	2,700	576	21.3%	22m @ 2700 ppm [0m]
Figueira	FIGAC0253	0.0	50.0	50.0	2,305	487	21.1%	50m @ 2305 ppm [0m]
Figueira	FIGAC0254	0.0	22.0	22.0	2,388	446	18.7%	22m @ 2388 ppm [0m]
Figueira	FIGAC0255	0.0	40.0	40.0	2,920	451	15.4%	40m @ 2920 ppm [0m]
Figueira	FIGAC0256	0.0	26.0	26.0	1,378	202	14.7%	26m @ 1378 ppm [0m]
Figueira	FIGAC0257	0.0	21.0	21.0	3,100	483	15.6%	21m @ 3100 ppm [0m]
Figueira	FIGAC0258	0.0	50.0	50.0	2,625	535	20.4%	50m @ 2625 ppm [0m]
Figueira	FIGAC0259	0.0	45.0	45.0	2,231	337	15.1%	45m @ 2231 ppm [0m]
Figueira	FIGAC0260	0.0	31.0	31.0	1,757	258	14.7%	31m @ 1757 ppm [0m]
Figueira	FIGAC0261	0.0	21.2	21.2	1,785	242	13.6%	21.2m @ 1785 ppm [0m]
Figueira	FIGAC0262	0.0	34.0	34.0	1,967	327	16.6%	34m @ 1967 ppm [0m]
Figueira	FIGAC0263	0.0	33.0	33.0	3,610	913	25.3%	33m @ 3610 ppm [0m]
Figueira	FIGAC0264	0.0	37.0	37.0	2,917	713	24.4%	37m @ 2917 ppm [0m]
Figueira	FIGAC0265	0.0	15.6	15.6	3,397	892	26.3%	15.6m @ 3397 ppm [0m]
Figueira	FIGAC0266	0.0	42.0	42.0	5,212	1,448	27.8%	42m @ 5212 ppm [0m]
Figueira	FIGAC0267	0.0	26.0	26.0	2,933	769	26.2%	26m @ 2933 ppm [0m]
Figueira	FIGAC0268	0.0	38.5	38.5	1,758	371	21.1%	38.5m @ 1758 ppm [0m]
Figueira	FIGAC0269	0.0	48.0	48.0	1,468	199	13.5%	48m @ 1468 ppm [0m]
Figueira	FIGAC0270	0.0	31.0	31.0	2,592	338	13.0%	31m @ 2592 ppm [0m]
Figueira	FIGAC0271	0.0	50.0	50.0	2,388	316	13.2%	50m @ 2388 ppm [0m]
Figueira	FIGAC0272	0.0	48.0	48.0	3,145	459	14.6%	48m @ 3145 ppm [0m]
Figueira	FIGAC0273	0.0	23.0	23.0	2,302	383	16.6%	23m @ 2302 ppm [0m]
Figueira	FIGAC0274	0.0	50.0	50.0	2,289	384	16.8%	50m @ 2289 ppm [0m]
Figueira	FIGAC0275	0.0	46.0	46.0	3,582	526	14.7%	46m @ 3582 ppm [0m]
Figueira	FIGAC0276	0.0	45.0	45.0	2,084	336	16.1%	45m @ 2084 ppm [0m]
Figueira	FIGAC0277	0.0	50.0	50.0	2,267	446	19.7%	50m @ 2267 ppm [0m]
Figueira	FIGAC0278	0.0	28.0	28.0	2,359	367	15.5%	28m @ 2359 ppm [0m]
Figueira	FIGAC0279	0.0	50.0	50.0	4,341	636	14.6%	50m @ 4341 ppm [0m]
Figueira	FIGAC0280	0.0	50.0	50.0	2,241	311	13.9%	50m @ 2241 ppm [0m]
Figueira	FIGAC0280	0.0	50.0	50.0	3,024	365	12.1%	50m @ 3024 ppm [0m]
Figueira	FIGAC0281	0.0	40.0	40.0	2,739	372	13.6%	40m @ 2739 ppm [0m]
Figueira	FIGAC0283	0.0	44.0	44.0	2,827	502	17.8%	44m @ 2827 ppm [0m]
Figueira	FIGAC0284	0.0	21.2	21.2	2,531	569	22.5%	21.2m @ 2531 ppm [0m]
Figueira	FIGAC0284	0.0	22.0	22.0	2,005	362	18.0%	22m @ 2005 ppm [0m]
Figueira	FIGAC0286	0.0	24.4	24.4	2,307	343	14.9%	24.4m @ 2307 ppm [0m]
Figueira	FIGAC0286 FIGAC0287	0.0	41.2	41.2	2,510	501	20.0%	41.2m @ 2510 ppm [0m]
						624		
Figueira	FIGAC0288	0.0	16.0	16.0	2,350	024	26.5%	16m @ 2350 ppm [0m]

Target	Hole_ID	From	То	Interval (m)	TREO (ppm)	MREO (ppm)	MREO/TREO	Mineralised Intercept
Figueira	FIGAC0290	0.0	49.0	49.0	4,396	664	15.1%	49m @ 4396 ppm [0m]
	Weighte	d Averages		27.4	2,831	526	18.2%	27.4m @ 2831ppm [0m]

^{*}min 4m width, bottom cut-off 1000ppm TREO, max 2m internal dilution

Appendix 4: Caldeira REE Project licence details

Licence	Status	Licence Holder	Area (Ha)
808027/1975	MINING CONCESSION	COMPANHIA GERAL DE MINAS	600.76
809358/1975	MINING CONCESSION	COMPANHIA GERAL DE MINAS	617.23
809359/1975	MINING CONCESSION	COMPANHIA GERAL DE MINAS	317.36
815645/1971	MINING CONCESSION	COMPANHIA GERAL DE MINAS	366.02
815682/1971	MINING CONCESSION	COMPANHIA GERAL DE MINAS	575.26
817223/1971	MINING CONCESSION	MINERAÇÃO DANIEL TOGNI LOUREIRO LTDA	772.72
803459/1975	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	24.02
808556/1974	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	204.09
811232/1974	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	524.40
814251/1971	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	124.35
815006/1971	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	717.52
816211/1971	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	796.55
835022/1993	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	73.50
835025/1993	MINING CONCESSION	MINERAÇÃO PERDIZES LTDA	100.47
814860/1971	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	341.73
815681/1971	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	766.54
820352/1972	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	26.40
820353/1972	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	529.70
820354/1972	MINING CONCESSION	MINERAÇÃO ZELÂNDIA LTDA	216.49
2757/1967	MINING CONCESSION	RAJ MINERIOS LTDA	20.10
5649/1963	MINING CONCESSION	RAJ MINERIOS LTDA	12.41
803457/1975	MINING CONCESSION	RAJ MINERIOS LTDA	60.64
825972/1972	MINING CONCESSION	RAJ MINERIOS LTDA	377.42
833914/2007	MINING CONCESSION	RAJ MINERIOS LTDA	6.99
002.349/1967	MINING CONCESSION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	74.01
830443/2018	EXPLORATION LICENSE	FERTIMAX FERTILIZANTES ORGANICOS LTDA	79.24
830444/2018	EXPLORATION LICENSE	FERTIMAX FERTILIZANTES ORGANICOS LTDA	248.34
830824/2006	EXPLORATION LICENSE	RAJ MINERIOS LTDA	13.24
832350/2006	EXPLORATION LICENSE	RAJ MINERIOS LTDA	27.14
832351/2006	EXPLORATION LICENSE	RAJ MINERIOS LTDA	16.77
832671/2005	EXPLORATION LICENSE	RAJ MINERIOS LTDA	16.91
832714/2016	EXPLORATION LICENSE	RAJ MINERIOS LTDA	13.61
832800/2002	EXPLORATION LICENSE	RAJ MINERIOS LTDA	6.94
831686/2012	EXPLORATION LICENSE	VARGINHA MINERACAO E LOTEAMENTOS LTDA	6.50
832193/2012	EXPLORATION LICENSE	VARGINHA MINERACAO E LOTEAMENTOS LTDA	12.46
807899/1975	MINING APPLICATION	COMPANHIA GERAL DE MINAS	948.92
815274/1971	MINING APPLICATION	COMPANHIA GERAL DE MINAS	739.73
833486/1996	MINING APPLICATION	MINAS RIO MINERADORA LTDA	79.38
833655/1996	MINING APPLICATION	MINAS RIO MINERADORA LTDA	249.11
833656/1996	MINING APPLICATION	MINAS RIO MINERADORA LTDA	82.77
833657/1996	MINING APPLICATION	MINAS RIO MINERADORA LTDA	68.25
834743/1995	MINING APPLICATION	MINAS RIO MINERADORA LTDA	283.19

Licence	Status	Licence Holder	Area (Ha)
830513/1979	MINING APPLICATION	MINERAÇÃO MONTE CARMELO LTDA	457.77
804222/1975	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA	403.65
813025/1973	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA	943.74
830000/1980	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA	203.85
831092/1983	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA	171.39
830391/1979	MINING APPLICATION	MINERAÇÃO PERDIZES LTDA.	7.30
830633/1980	MINING APPLICATION	MINERAÇÃO ZELÂNDIA LTDA	35.25
831880/1991	MINING APPLICATION	MINERAÇÃO ZELÂNDIA LTDA	84.75
815237/1971	MINING APPLICATION	RAJ MINERIOS LTDA	131.98
830722/2002	MINING APPLICATION	RAJ MINERIOS LTDA	5.60
831250/2008	MINING APPLICATION	RAJ MINERIOS LTDA	2.48
831598/1988	MINING APPLICATION	RAJ MINERIOS LTDA	930.90
832889/2005	MINING APPLICATION	RAJ MINERIOS LTDA	27.82
837368/1993	MINING APPLICATION	RAJ MINERIOS LTDA	340.04
830551/1979	MINING APPLICATION	TOGNI S/A MATERIAIS REFRATÕ RIOS	528.88
830416/2001	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	166.22
831269/1992	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	442.16
832146/2002	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	18.95
832252/2001	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	51.96
832572/2003	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	204.49
833551/1993	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	98.87
833553/1993	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	98.13
830.697/2003	MINING APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	5.38
830.461/2018	EXPLORATION APPLICATION	FERTIMAX FERTILIZANTES ORGANICOS LTDA	50.88
832799/2002	EXPLORATION APPLICATION	RAJ MINERIOS LTDA	38.35
830955/2006	EXPLORATION APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	1993.50
833176/2008	EXPLORATION APPLICATION	VARGINHA MINERACAO E LOTEAMENTOS LTDA	634.00

Appendix 5: JORC Table 1

Section 1: Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling	The resource was sampled using: a powered auger drill machine (open hole), a diamond drill machine are
techniques	an Aircore drill machine.
·	 Auger drill holes Each drill site was cleaned, removing leaves and roots from the surface. Tarps were placed on either side of the hole and samples of soil and saprolite where collected every 1m of advance, logger photographed with subsequent bagging of the sample in plastic bags.
	Diamond drill holes
	 The intact drill cores are collected in plastic core trays with depth markers recording the depth at the end of each drill run (blocks).
	 Samples were collected at 1m intervals. In the saprolite zone the core is halved with a metal spatu and bagged in plastic bags, the fresh rock was halved by a powered saw and bagged. Aircore drill holes
	Two (2) metre composite samples are collected from the cyclone of the rig in plastic buckets. The material from the plastic buckets is passed through a single tier, riffle splitter which generates a 50/5 split. One half is bagged and numbered for submission to the laboratory, and the other half bagged and given the same number, then stored as a duplicate at the core facility in Poços de Caldas.
Drilling	Powered Auger
techniques	Powered auger drilling employed a motorised post hole digger with a 4 inch diameter. All holes we drilled vertical. The maximum depth achievable was 20m, providing the hole did not encount fragments of rocks/boulders within the weathered profile and/or excessive water. Final depths we recorded according to the length of rods in the hole.
	Diamond Core
	 Diamond drilling employed a conventional wireline diamond drill rig (Mach 1200). All holes were drilled vertical using PQ diameter core through soils and clays (85mm core diameter), reducing to HQ through transition material and fresh rock (63.5mm core diameter). The maximum depth drilled was 48.1m. The final depth was recorded using the length of the rods in the hole.
	• Aircore
	 Drilling was completed using a HANJIN 8D Multipurpose Track Mounted Drill Rig, configured to drill inch Aircore holes. The rig is supported by an Atlas Copco XRHS800 compressor which supplies sufficient air to keep the sample dry down to the current deepest depth of 73m. All holes are drilled vertical.
	 Most drill sites require minimal to no site preparation. On particularly steep sites, the area is levelle with a backhoe loader.
	 Drilling is stopped at 'blade refusal' when the rotating bit is unable to cut the ground any further. Th generally occurs in the transition zones (below clay zone and above fresh rock). On occasions a fac sampling hammer is used once 'blade refusal' is reached to penetrate through the remaining transitic zone and into the fresh rock.
Drill sample	Auger sample recovery
recovery	 Estimated visually based on the amount of sample recovered per 1m interval drilled. Recoveries we generally in a range from 75% - 100%. If estimates dropped below 75% recovery in a 1m interval, the field crew aborted the drill hole and redrilled the hole.
	Diamond drill hole recovery
	 Calculated after each run, comparing length of core recovery vs. drill depth. Overall core recoveries are 92.5%, achieving 95% in the saprolite target horizon, 89% in the transition zone and 92.5% in free rock.
	Aircore recovery
	 Every 2m composite sample is collected in plastic buckets and weighed. Each sample average approximately 12kg. This is considered acceptable given the hole diameter and specific density of the material.
Logging	Auger drilling,

Criteria Commentary

fragments); material colour; predominant particle size; presence of moisture; indicator minerals; extra observations.

Diamond drilling

- Geology description is made in a core facility, focused on the soil (humic) horizon, saprolite, transition zone and fresh rock boundaries. The geology depth is honored and described with downhole depth (not metre by metre). Parameters logged include: grainsize, texture and colour, which can help to identify the parent rock before weathering.
- All drill holes are photographed and stored at Core facility in Poços de Caldas.

Aircore drilling

- The material is logged at the drill rig by a geologist. Logging focused on soil (humic) horizon, saprolite/clay zones and transition boundaries. Other parameters recorded includes: grainsize, texture and colour, which can help to identify the parent rock before weathering.
- Logging is done on 2m intervals due to the nature of the drilling with 2m composite samples collected in a bucket and presented for sampling and logging.
- The chip trays of all drilled holes have a digital photographic record and are retained at a Core facility in Poços de Caldas.

Subsampling techniques and sample preparation

Auger material

- Samples are weighed and if the samples are wet, they are dried for several days on rubber mats. After drying the samples are screened (5mm). Homogenization occurs by agitation in bags, followed by screening to <3mm. Fragments of rock or hardened clay that are retained in the sieves are fragmented with a 10kg manual disintegrator and a 1kg hammer, until 100% of the sample passes through the screening. The sample is homogenized again by agitation in bags. Finally, the sample is Split in a Jones 12 channel splitter, where 500g is sent to the lab (SGS_geosol laboratory in Vespasiano Minas Gerais).
- Remaining samples are placed in 20-liter plastic buckets, clearly labelled by Hole ID and depth, and stored in shed facility in Poços de Caldas.

Diamond cores

- o In the saprolite zone the core is halved with a metal spatula and bagged in plastic bags
- The fresh rock was halved by a powered saw and bagged into a plastic bag with a unique sequential number of samples and sent to ALS laboratory in Vespasiano – Minas Gerais.
- o Field duplicates consist of quarter core, with both quarters sent to the lab.

Aircore material

- Samples are weighed at the Rig. When the sample > 6kg it passes through a single tier Riffle splitter generating a 50/50 split, one for ALS Laboratory and a duplicate which is retained in core facility.
 Samples are bagged in plastic bags with unique tag for the interval.
- Given the grainsize if the mineralisation is extremely fine (clays) and shows little variability, the practice
 of submitting 50% of original sample for analysis is deemed appropriate.
- Field Duplicates are routinely submitted and results analysed by examining the correlation between original and duplicate samples. More than 90% of duplicates show <20% variance.

Quality of assay data and laboratory tests

- Auger samples were analysed at SGS Geosol laboratory in batches of 43 samples, 37 of which belong to
 exploration intervals and 6 are QA/QC samples (duplicate, blank and standards).
 - The sample preparation method employed was PRP102_E: the samples are dried at 100°C, crushed to 75% less than 3 mm, homogenized and passed through a Jones riffle splitter (250g to 300g). This aliquot was then pulverized in a steel mill to the point at which over 95% had a size of 150 microns.

	Det	ermination b	y fusion v	with Lithium M	etaborate –	ICP MS (IMS95/	A)
Ce	0,1 - 10000	Co	0,5 - 10000	Cs	0,05 - 1000	Cu	5 – 10000
Dy	0,05 - 1000	Er	0,05 - 1000	Eu	0,05 - 1000	Ga	0,1 – 10000
Gd	0,05 - 1000	Hf	0.05 - 500	Но	0,05 - 1000	La	0,1 - 10000
Lu	0,05 - 1000	Мо	2 – 10000	Nb	0,05 - 1000	Nd	0,1 - 10000
Ni	5 – 10000	Pr	0,05 - 1000	Rb	0,2 - 10000	Sm	0,1 - 1000
Sn	0,3 - 1000	Ta	0,05 - 10000	Tb	0,05 - 1000	Th	0,1 - 10000
TI	0,5 – 1000	Tm	0,05 - 1000	U	0,05 - 10000	W	0,1 – 10000
Υ	0,05 - 10000	Yb	0,1 - 1000				

Analysis followed by IMS95A to determine the Rare Earth Elements. With this method, samples are
melted with lithium metaborate and read using the ICP-MS method, the limits or which are shown
below.

Criteria Commentary

- Diamond and Aircore samples are analysed by ALS Laboratories (accredited) in Batches up to 72 samples.
 Upon arriving at ALS Vespasiano samples receive additional preparation (drying, crushing, splitting, and pulverising):
 - dried at 60°C
 - o the fresh rock is crushed to sub 2mm
 - o the saprolite is disaggregated with hammers
 - o Riffle split 800g sub-sample
 - o 800 g pulverized to 90% passing 75um, monitored by sieving.
 - Aliquot selection from pulp packet

The aliquot obtained from the physical preparation process at Vespasiano is sent to ALS Lima or analysis by ME-MS81 – which consists of analysis of Rare Earths and Trace Elements by ICP-MS for 32 elements by fusion with lithium borate as seen below (with detection limits):

Code	Analytes & Ranges (ppm)								
	Ва	0.5 - 10000	Gd	0.05 - 1000	Rb	0.2 - 10000	Ti	0.01 - 10%	
	Ce	0.1 - 10000	Hf	0.5 - 10000	Sc	0.5 - 500	Tm	0.01 - 1000	
	Cr	5 - 10000	Но	0.01 - 10000	Sm	0.03 - 1000	J	0.05 - 1000	
ME-MS81	Cs	0.01 - 10000	La	0.1 - 10000	Sn	0.5 - 10000	V	5 - 10000	
IVIE-IVISO I	Dy	0.05 - 1000	Lu	0.01 - 10000	Sr	0.1 - 10000	W	0.5 - 10000	
	Er	0.03 - 1000	Nb	0.05 - 2500	Ta	0.1 - 2500	Υ	0.1 - 10000	
	Eu	0.02 - 1000	Nd	0.1 - 10000	Tb	0.01 - 1000	Yb	0.03 - 1000	
	Ga	0.1 - 10000	Pr	0.02 - 10000	Th	0.05 - 1000	Zr	1 - 10000	

 MEI QAQC protocols demand duplicate sample every 20 samples, and a blank and standard sample in each 30 samples. In addition, ALS inserted their own internal reference check samples as well as conducting repeat analysis. Results show: 94.94% of Standards are within tolerance limits, 99.96% of Blanks are within tolerance limits, and only 4.92% of Duplicate samples showed >30% variation for the Original result.

Verification of sampling and assaying

- Given the nature of the ionic clay mineralisation visual checks are not appropriate for verification of mineralised intercepts.
- MEI completed several rounds of Twin Hole drilling:
 - o DD drill holes twinning historic Auger holes
 - A total of 32 DD holes were drilled to twin historic Auger holes and confirm the reported widths and grades across the 6 resource areas (February 2023 January 2024). Results confirmed the width and general nature of high-grade TREO mineralization, showing a slight (14%) Positive Bias in Auger results compared to DD results. The apparent Bias is not considered significant.
 - o AC holes twinning existing DD holes
 - A total of 17 AC holes were drilled at Soberbo, Capão do Mel and Figueira deposits to twin existing DD drill holes and assess AC as a sampling method (March 2023 – March 2024). Results confirmed the width and general nature of high-grade TREO mineralization, showing a slight (20%) Negative Bias in AC results compared to DD results. The apparent Bias is not considered significant.
- For historic Auger holes, collar co-ordinates are recorded, and holes were logged and photographed at the
 drill site prior to information being transferred into Excel Spreadsheets back at the office. Drilling data is kept
 in Excel Spreadsheets in a well organised structure of file folders on a local network and in the 'Cloud'. The
 original paper logging sheets were not retained.
- For all drilling conducted by MEI (DD and AC), data is recorded into MX Deposit tables (collar, survey, geology, sample) using tablets/laptops at the Aircore Rig or in the Core Shed. Files are forwarded via email by Geologists to Database manager for uploading into the Database. The data is stored in MX Deposit database (Sequent). Data validation is turned ON during the import of data avoiding errors.
- Raw assays are received as Elemental data (ppm) from ALS laboratories. The Elemental data is converted to Element Oxide data using the following conversion factors:

Element Oxide	Oxide Factor	Element Oxide	Oxide Factor
CeO_2	1.2284	Pr_6O_{11}	1.2082
Dy_2O_3	1.1477	Sm_2O_3	1.1596
Er_2O_3	1.1435	Tb_4O_7	1.1762
Eu ₂ O ₃	1.1579	ThO2	1.1379
Gd_2O_3	1.1526	Tm_2O_3	1.1421
Ho_2O_3	1.1455	U_3O_8	1.1793
La_2O_3	1.1728	Y_2O_3	1.2699
Lu_2O_3	1.1728	Yb_2O_3	1.1387
Nd_2O_3	1.1664		

Criteria	Commentary
Location of data points	 Auger drill collars All holes were picked up by Nortear Topografia e Projectos Ltda., planialtimetric topographic surveyor The GPS South Galaxy G1 RTK GNSS was used, capable of carrying out data surveys and kinematil locations in real time (RTK-Real Time Kinematic), consisting of two GNSS receivers, a BASE and ROVER. The horizontal accuracy, in RTK, is 8mm + 1ppm, and vertical 15mm + 1ppm. The coordinates were provided in the following formats: Sirgas 2000 datum, and UTM WGS 84 datu - georeferenced to spindle 23S. Diamond and Aircore collars The survey was made by MEI personal using a GPS CHCNAV i73 RTK GNSS capable of carrying o data surveys and kinematic locations in real time (RTK-Real Time Kinematic), consisting of two GNS receivers, a BASE and a ROVER. The horizontal accuracy, in RTK, is 8mm +/- 1mm, and vertical 15m +/- 1mm. Topography imaging survey A detailed imaging and topographic survey was done by GeoSense Engenharia e Geotecnologia Ltd The survey was done using a DJI Matrice 300 RTK drone with vertical accuracy with 0.1metre ar horizontal accuracy of 0.3metre using visual system. Using the GPS system the vertical accuracy 0.5metre and horizontal accuracy is 1.5metre. Using the RTK system the vertical accuracy is 0.1metre and horizontal accuracy is 0.1metre. A on board LiDAR Alpha Air 450 sensor was used which has a range of 450 metres, accuracy of 15mr acquisition tax of 240,000 points per second (first pass), 480,000 points per second (second pass) ar 720,000 points per second (third pass), equipped with a Sony A5100 camera with 26 Mega Pixels ar an integrated GNSS receptor (L1L2). For the base points it was used a GPS CHCNAV i73 RTK GNSS capable of carrying out data survey and kinematic locations in real time (RTK-Real Time Kinematic), consisting of two GNSS recei
Data spacing and distribution	 Hole spacing for Auger holes varies across the prospect scale from a maximum of: 200m by 200m, interest designed to 100m by 100m, with tighter spacing of 50m by 50m in the closest space areas. Aircore drilling ward done at a nominal 100m x 100m, infill drilled to 50m x 50m in areas of high grade in the 2023 Inferred Resource. Diamond holes had no regular spacing but were designed to target specific geologic characteristics (i.e. grade, density). Given the substantial geographic extent and generally shallow, flat lying geometry of the mineralisation, the spacing and orientation are considered sufficient to establish geologic and grade continuity. Sample compositing: Auger samples were collected at 1.0m composites. Diamond samples were collected at 1.00m composites, respecting the geological contacts. Aircore samples were collected at 2.00m composites.
Orientation of data in relation to geological structure	The mineralisation is flat lying and occurs within the saprolite/clay zone of a deeply developed regoli (reflecting topography and weathering). Vertical sampling from all sampling methods is considered mo appropriate.
Sample security	 Auger samples: Samples were removed from the field by Company staff and transported back to a facility in Poços of Caldas. From here the samples are packed in plastic bags and transported to SGS-Geosol in Belo to a commercial Transport Company. The remaining sample is stored in 20 litre plastic buckets, labelled with the name of the target, ho name and sampled intervals. Samples are securely locked up in the storage shed. Diamond samples: Samples are removed from the field by MEI staff and transported back to a Core shad to be logged and sampled. All samples for submission to the lab are packed in plastic bags (in batches) and sent the lab where it is processed as reported above. The transport of samples from Poços de Caldas to ALS laboratory in Vespasiano was undertaken by a commercial Transport Company. Aircore samples: Samples are split and bagged in the field and transported back to a Core shed. All samples for samples from Poços de Caldas to ALS laboratory in Vespasiano was undertaken by a commercial Transport Company.

Criteria		Commentary
		submission to the lab are packed in plastic bags (in batches) and despatched to ALS laboratory in Vespasiano using a commercial Transport Company.
Audits or reviews	•	MEI conducted a review of assay results as part of its Due Diligence prior to acquiring the project. Approximately 5% of all stored coarse rejects from auger drilling were resampled and submitted to two (2) labs: SGS Geosol and ALS Laboratories. Results verified the existing assay results, returning values +/-10% of the original grades, well within margins of error for the grade of mineralisation reported. (see ASX:MEI 13/03/23 for a more detailed discussion) A site visit was carried out by Volodymyr Myadzel from BNA Mining Solutions on 19-20 February 2024 to: inspect drilling and sampling procedures, verify survey methods, inspect the storage shed, verification of geological records, review of QAQC procedures and review of geologic model.

Section 2: Reporting of Exploration Results (criteria in this section apply to all succeeding sections).

Criteria	Commentary
Mineral tenement and land tenure status	 Listed in Appendix 4. Given the rich history of mining and current mining activity in the Poços de Caldas there appears to be no impediments to obtaining a License to operate in the area.
Exploration done by other parties	 The Caldeira Project has had significant exploration in the form of surface geochem across 30 granted mining concessions, plus: geologic mapping, topographic surveys, and powered auger (1,396 holes for 12,963 samples). MEI performed Due Diligence on historic exploration and are satisfied the data is accurate and correct (refer ASX Release 13 March 2023 for a discussion).
Geology	 The Alkaline Complex of Poços de Caldas represents in Brazil one of the most important geological terrains which hosts deposits of bauxite, clay, uranium, zirconium, rare earths and leucite. The different types of mineralization are products of a history of post-magmatic alteration and weathering, in the last stages of its evolution (Schorscher & Shea, 1992; Ulbrich et al., 2005). The dominant REE mineral in the source rock (syenite) beneath the clay zone is Bastnaesite, a major source of REE worldwide. Bastnaesite is a REE carbonate-fluoride mineral (REE)CO3F and has very low levels of U and Th in its structure. Due to the chemistry of the underling intrusives and the intense weathering of the region, a thick profile comprising soil, clay and saprolite (regolith) has formed (Figures 3-5), and these are the hosts to the ionic clay REE mineralization.
Drill hole Information	 Information for all Auger holes was reported in a previous ASX Release on 01 May 2023 "Caldeira REE Project Maiden Mineral Resource". Drill hole information for all Aircore & Diamond Core holes is presented in Appendix 2.
Data aggregation methods	 Mineralised Intercepts are reported with a minimum of 4m width, lower cut-off 1,000ppm TREO, with a maximum of 2m internal dilution. High-Grade Intercepts reported as "including" are reported

Criteria	Commentary
	 with a minimum of 2m width, lower cut-off 3,000 ppm TREO, with a maximum of 1m internal dilution. Extreme High-Grade Intercepts reported as "with" are reported with a minimum of 2m width, lower cut-off 10,000 ppm TREO, with a maximum of 1m internal dilution. No Metal Equivalents are used.
Mineralisation widths and intercept lengths	 All holes are vertical, and mineralisation is developed in a flat lying clay and transition zone within the regolith. As such, reported widths are considered to equal true widths.
Diagrams	Reported in the body of the text.
Balanced reporting	 Significant Intercepts for all Auger drill holes were reported in a previous ASX Release on 01 May 2023 "Caldeira REE Project Maiden Mineral Resource".
Other substantive exploration data	 Metallurgical work was carried out on samples split from a 200kg composite sample, which in turn was composed of a selection of 184 samples from 41 holes (100 x100m grid) across the Capo do Mel Target. Head grade of the composite sample was 4,917ppm TREO. Results showed excellent recoveries by desorption of Rare Earth Elements (REE) using ammonium sulphate solution [(NH4)2SO4)] in weakly acidic conditions [pH 4]. Average recovery of the low temperature magnet REE Pr + Nd was 58%. desorption was achieved using a standard ammonium sulphate solution at pH 4 and confirms the Caldeira Project is an Ionic (Adsorption) Clay REE deposit (for further discussion refer ASX Release 20 December 2023). A maiden Inferred resource was published to the ASX on May 1st 2023.
Further work	Proposed work is discussed in the body of the text.

Section 3: Estimation and reporting of Mineral Resources (Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Database integrity	 All data was imported into Micromine Software. The database was validated using specific processes to verify the existence of the errors listed below: The drill hole's name is present in the collar file but is missing from the analytical database; The drill hole's name is present in the analytical database, but is absent in the collar file; The drill hole's name appears repeated in the analytical database and in the collar file; The drill hole's name does not appear in the collar file and in the analytical database; One or more coordinate notes are absent from the collar file; FROM or TO are not present in the analytical database; FROM > TO in the analytical database; Sampling intervals are not continuous in the analytical database (there are gaps between the logs); Sampling intervals overlap in the analytical database; The first sample does not correspond to 0 m in the analytical database; The hole total depth is shallower than the depth of the last sample. Random checks of the original data as received from SGS-Geosol and ALS laboratories was compared with the provided database and no errors were found.
Site visits	A site visit was carried out by Volodymyr Myadzel from BNA Mining Solutions on 19-20 February

Criteria	Commentary
	2024 to: inspect drilling and sampling procedures, verify survey methods, inspect the storage shed, verification of geological records, review of QAQC procedures and review of geologic model.
Geological interpretation	 The resource estimation is based on historical Auger data an additional 3,133m of infill Diamond and Aircore drilling. Confidence in the geological interpretation of the rare earth mineralization in clay and saprolite is very high as drilling activities used a regular and relatively close-spaced drill spacing. Where there is no information from Diamond or Aircore drill holes (which drill to transition/fresh rock), and mineralisation was present at the end of Auger drill holes (in areas of known deep weathering), the mineralisation was assumed to extend 2m below the hole. This is prevalent in the APA area. Factors affecting rare earth mineralisation in saprolite rocks include the degree of weathering of primary rocks and variations in mineralization. These were detailed in Diamond, Aircore, and Auger drilling from surface and into the fresh rock.
Dimensions	 The Mineral Resource is spread across 2,600m x 1,200m in N-S direction. The top of the rare earth element mineralization is the topographic surface.

Estimation and modelling techniques

- The results are based on a block model interpolated by Ordinary Kriging (OK) method, using Micromine software. Ordinary Kriging was selected as the method for grade interpolation as the sample data has a log-normal distribution represented by a single generation.
- All analysed elements were interpolated to the empty block model using Ordinary Kriging (OK) and IDW3 (Inverse Distance Weighting with inverse power 3) methods. The IDW3 method was used for control and comparison.
- The grade estimation was performed in four consecutive passes (rounds) using different sizes of search radius, criteria of number of composite samples, and number of holes.

Search Ellipse parameters by pass.

Pass	Search Ellipse (size factor)	Min. No. Composites	Max. No. Composites	Min. No. Drill Holes
01	0.667	4	3	2
02	1	2	3	2
03	2	2	3	1
04	100	1	3	1

- Column 'Min No. Composites' is the minimum number of composites required for each of the
 estimation passes. Column 'Max No. Composites' is the maximum number of samples allowed
 for each of the four sectors of the ellipsoid used for the elements' estimation process.
- The Block Model created in the process of discretization of the wireframes using the sub-blocking process. Initially, the model was filled with blocks measuring 25 (X) by 25 (Y) by 5 (Z) meters, which were divided into subunits of smaller size, with a factor for size subdivision of 10 by 10 by 5 in contact with the surrounding three-dimensional wireframes.
- The radii and the orientation of search ellipse were determined using standard variograms. The
 limitations presented by each sector of a search ellipse were the maximum number of points in
 the sector and the minimum total number of points in the interpolation that varies depending on
 the size of the ellipse, from 3 to 1. Thus, the maximum total number of samples involved in the
 interpolation was 12 samples.

Radii of Search Ellipsoid by element.

Element		Soberbo	
	Х	Υ	Z
La (ppm)	130	90	15
Ce (ppm)	130	90	15
Pr (ppm)	130	90	15
Nd (ppm)	130	90	15
Sm (ppm)	130	90	15
Eu (ppm)	130	90	15
Gd (ppm)	130	90	15
Tb (ppm)	130	90	15
Dy (ppm)	130	90	15
Ho (ppm)	130	90	15

Criteria		Commentary		
	Er (ppm)	130	90	15
	Tm (ppm)	130	90	15
	Yb (ppm)	130	90	15
	Lu (ppm)	130	90	15
	Y (ppm)	130	90	15
	Th (ppm)	125	85	10
	U (ppm)	125	85	10

Orientation of Azimuth of the search ellipsoid for every element (Dip = 0, Plunge = 0 for all elements in all Deposits).

0.101.0	mente in an Bepeerteji	
Element (ppm)	Soberbo	
La	42	
Ce	42	
Pr	42	
Nd	42	
Sm	42	
Eu	42	
Gd	42	
Tb	42	
Dy	42	
Но	42	
Er	42	
Tm	42	
Yb	42	
Lu	42	
Y	42	
Th	144	
U	144	

 The block model was validated in several ways: by running and Inverse Distance Weighted interpolation and comparing the results, and by comparing the means and standard deviations of the block grades to the composite data set.

Moisture

All estimations are reported as a dry tonnage.

Cut-off parameters

- Cut-off grades for TREO were used to prepare the reported resource estimates. The selection
 of the cut-off was based on the experience of the Competent Person, plus a peer review of
 publicly available information from more advanced projects with comparable mineralisation
 styles (i.e. clay and transition zone hosted rare earth mineralisation) and comparable
 conceptual processing methods.
- The chosen cut-off grade of 1,000 ppm TREO is consistent with this.

Mining factors or assumptions

No specific mining method is assumed other than potentially the use of open pit mining methods.

Metallurgical factors or assumptions

- Auger historic metallurgy data has been completed and reported to ASX:MEI 20/12/2023.
- Head grade of the composite sample for test work collected from 44 holes, over 140 samples (200 kg) was 4,917ppm TREO including 25.5% Magnet REE.
- Initial metallurgical test work showed excellent recoveries by desorption of Rare Earth Elements (REE) by using ammonium sulphate solution [(NH4)2SO4)] in weakly acidic conditions [pH 4]
- Average recovery of the low temperature magnet REE Pr + Nd was 58%
- Average recovery of high temperature magnet REE, Tb +Dy was 43%.
- The results show that excellent REE desorption was achieved using a standard ammonium sulphate solution at pH 4 and crucially confirms that the high-grade Caldeira Project is an Ionic (Adsorption) Clay REE deposit.

Environmental factors or assumptions

There are two Environmental areas within the municipality of Caldas which encroach upon the current resources at Soberbo and Capaõ do Mel deposits, being:-

- (i) Environmental Protection Area ("APA") Ecological Sanctuary of Serra da Pedra Branca (established by Municipal Law of Caldas/MG no 1.973/2006) and
- (ii) a three (3) kilometre strip surrounding the APA ("Buffer Zone").

Criteria Commentary

Part of the Soberbo resource is within the APA whilst the remaining (larger) part of Soberbo resource and the entire Capão do Mel resource are within the Buffer Zone.

Article 51 of Law of Caldas/MG no 1.973/2006 stipulates that mining activity is currently not permitted within the APA (other than for existing activity with operating licenses). Importantly, for Meteoric's current program no infill drilling has been performed inside the APA, nor are there current plans to conduct any exploration activities inside the APA. Additionally, the 'Base Case' development scenario contemplated in MEI's current Scoping Study and Preliminary Environmental Permit (LP) application do not propose any activity inside the APA area.

Mining activity within the Buffer Zone is permitted and may be undertaken upon completion of an Environmental Impact Assessment, a proposal of measures necessary to mitigate any possible impact on ecosystems, and seeking authorization from the municipality of Caldas and the APA Management Council.

Meteoric has conducted extensive research and consultation from mid-2023 with the object of seeking and obtaining permission to conduct activities in the Buffer Zone and is confident of obtaining favourable consideration from the relevant authorities. That confidence is based upon: Environmental Impact Statement (EIS) and relevant flora and fauna and ethnographic studies completed over the area, ongoing dialogue and consultation with multiple stakeholders including favourable feedback from a Social Diagnosis and Stakeholder Survey of the Caldeira REE Project conducted by EcoDue Ambiental in December 2023, and specifically by reason of the terms of a written Protocol of Intent entered into between the Government of Minas Gerais and Meteoric Brazil [See ASX Announcement "Cooperation Agreement Signed with Government of Minas Gerais and Invest Minas" - 11 August 2023].

As such we consider there are reasonable prospects for eventual economic extraction to justify the Mineral Classifications of Indicated (within the Buffer Zone) and Inferred (within the APA).

There are no Environmental Zones within the Figueira ML.

Bulk density

Diamond drill samples were selected to get the specific gravity, these samples were not cut in the
middle as a normal sample. The sample was sent to ALS lab and was submitted to an industrial
specific gravity method (OA-GRA09a, bulk density paraphing coating).

Classification

- The Mineral Resources for the project have been classified as Indicated and Inferred.
- The Competent Person is satisfied that the classification is appropriate based on: current drill hole spacing, geological continuity, variography, and bulk density data available for the project.

Audits or reviews

As yet there have been no third-party audits or reviews of the mineral resource estimates.

Discussion of relative accuracy/ confidence

- The block model with interpolated grades was subject to visual and statistical verification. Histograms and probability graphs of the interpolated grades were built. Then, the interpolated grades of the block model were compared with the same histograms and probability graphs of the composite samples. The histograms and graphs of the interpolated grades and composite samples were similar, and the block model histograms were smoother than the composite histograms. The comparisons confirmed the validity and consistency of the built block model.
- The mineral resource is a global resource estimate and locally resource estimates may vary in a negative or positive manner.