

5 August 2024

SQM Completes Drilling at Mogumber

HIGHLIGHTS

- Reconnaissance aircore drilling completed on E70/6285.
- Extensive and contiguous north-south striking Ta-Nb anomaly identified on eastern margin of drilling.
- Comprehensive follow up assay for gold.

Tambourah Metals Ltd (ASX:TMB) is pleased to provide an update on the aircore drilling program carried out by earn-in partner Sociedad Quimica y Minera de Chile S.A. (SQM) at Mogumber, part of the Julimar Nth project located 100km north of Perth, Western Australia (Figure 1).

The drilling program comprising 220 aircore holes for a total 5,287m was completed over an area of approximately 3.8km by 4.7km to test an historic geochemical anomaly within E70/6285. The drilling was completed on a 400m by 200m grid. Drill hole information is listed in the Appendix.

A preliminary assessment of the assay results identified a contiguous low-level Ta-Nb geochemical anomaly in 1 metre bottom of hole samples that extends in a north-south orientation for the 3,000m covered by the drill program (see Figures 2 and 3 and Tables 1 and 2). Samples from the drill program will also be analysed for gold as part of Tambourah's ongoing review of assay results.

SQM will determine the next phase of exploration at Mogumber and continues to advance exploration at the Julimar Nth project with data from the recently completed regional aeromagnetic survey currently being processed.

Table 1 Anomalous tantalum from end of hole

			From			Sample	
HOLE ID	East_MGA	North_MGA	(m)	To (m)	Interval	Туре	Ta_ppm
MOGAC0022	419280	6561868	26	27	1	AC_1m	7.23
MOGAC0050	419703	6562803	20	21	1	AC_1m	7.58
MOGAC0106	419591	6561487	31	32	1	AC_1m	7.14
MOGAC0116	419392	6562343	12	13	1	AC_1m	7
MOGAC0203	418980	6562600	17	18	1	AC_1m	9.04

Table 2 Anomalous niobium from end of hole.

	Id	ble 2 Anomalou	From	from end c	or noie.	Sample	
HOLEID	East_MGA	North_MGA	(m)	To (m)	Interval	Туре	Nb_ppm
MOGAC0012	419692	6561088	26	27	1	AC_1m	74.2
MOGAC0014	420116	6561087	22	23	1	AC_1m	63.4
MOGAC0015	420292	6561088	4	5	1	AC_1m	60.3
MOGAC0018	420044	6561808	36	37	1	AC_1m	49.8
MOGAC0021	419485	6561851	34	35	1	AC_1m	64.5
MOGAC0022	419280	6561868	26	27	1	AC_1m	83.5
MOGAC0023	419137	6561870	23	24	1	AC_1m	51.8
MOGAC0031	415894	6562805	16	17	1	AC_1m	52.7
MOGAC0047	419114	6562802	22	23	1	AC_1m	77.1
MOGAC0050	419703	6562803	21	22	1	AC_1m	68.3
MOGAC0051	419897	6562806	12	13	1	AC_1m	52.4
MOGAC0062	419089	6563486	12	13	1	AC_1m	51.9
MOGAC0106	419591	6561487	31	32	1	AC_1m	87
MOGAC0108	419991	6561487	9	10	1	AC_1m	68.1
MOGAC0114	419809	6562287	26	27	1	AC_1m	71.5
MOGAC0116	419392	6562343	12	13	1	AC_1m	90
MOGAC0117	419190	6562303	15	16	1	AC_1m	65.7
MOGAC0120	418591	6562287	29	30	1	AC_1m	50.5
MOGAC0147	419791	6563087	14	15	1	AC_1m	86
MOGAC0148	419991	6563087	21	22	1	AC_1m	60.4
MOGAC0153	419991	6563887	28	29	1	AC_1m	57.2
MOGAC0155	419569	6563887	2	3	1	AC_1m	64
MOGAC0158	419297	6564223	2	3	1	AC_1m	49.9
MOGAC0175	415791	6563887	11	12	1	AC_1m	74.3
MOGAC0203	418980	6562600	17	18	1	AC_1m	91.9
MOGAC0204	419114	6562600	24	25	1	AC_1m	64.1
MOGAC0205	419288	6562600	33	34	1	AC_1m	56.5

HOLEID	East_MGA	North_MGA	From (m)	To (m)	Interval	Sample Type	Nb_ppm
MOGAC0206	419420	6562600	21	22	1	AC_1m	75
MOGAC0211	418875	6562107	33	34	1	AC_1m	54.1

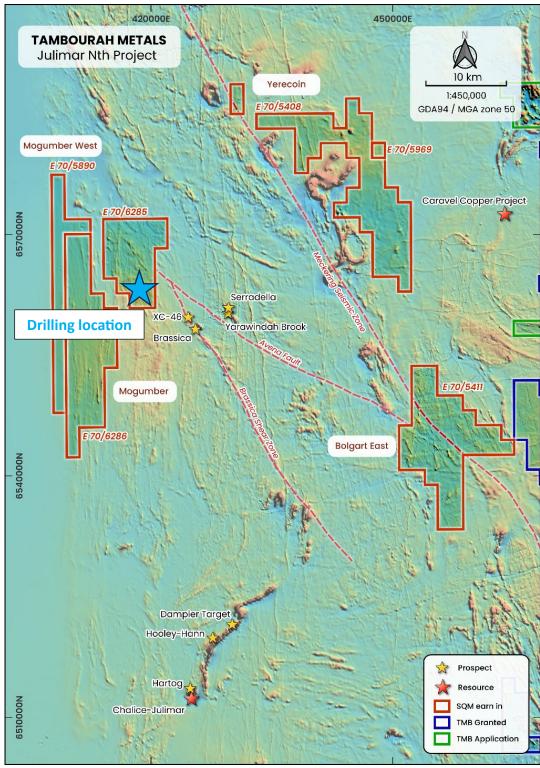


Figure 1 Julimar Nth Project (SQM earning-in) tenements showing location of drilling.

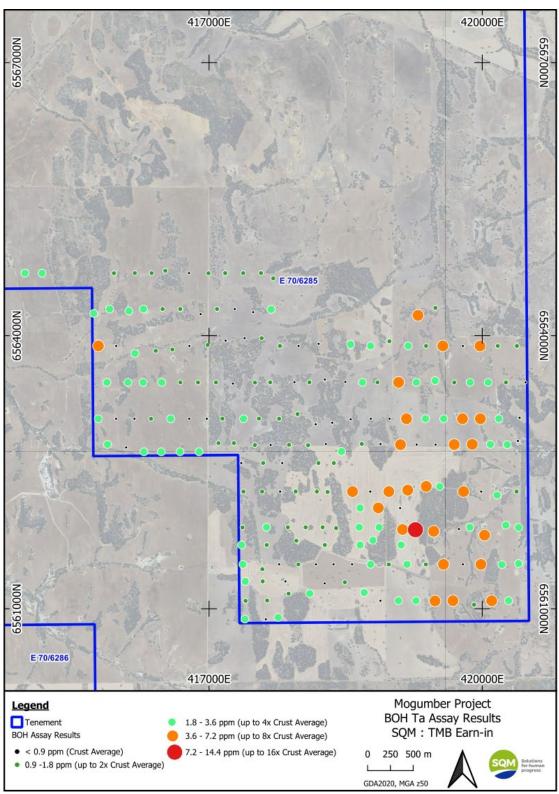


Figure 2 Distribution of end of hole Tantalum showing anomalous zone.

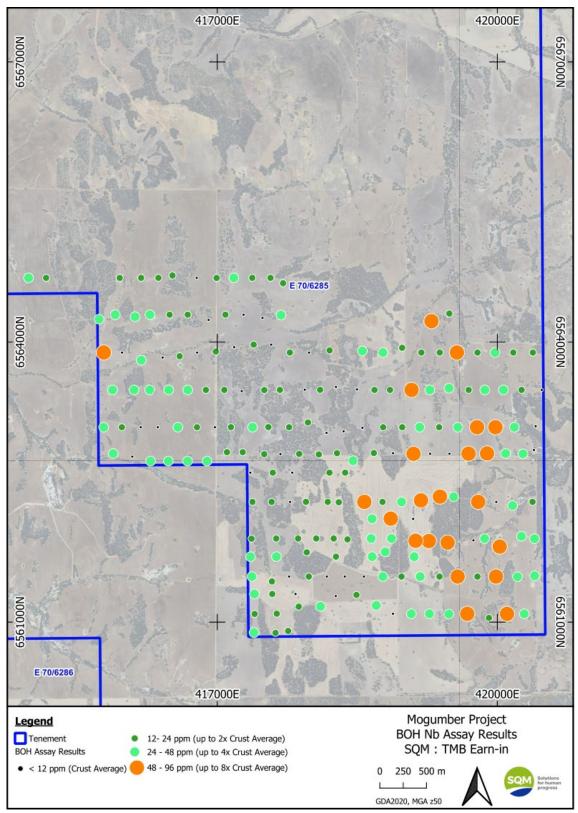


Figure 3 Distribution of end of hole Niobium showing anomalous zone coincident with tantalum.

Authorised on Behalf of the Board of Tambourah Metals Ltd.

Rita Brooks **Executive Chairperson**

E: admin@tambourahmetals.com.au

P: +61 8 9481 8669

Competent Person's Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr. Bill Clayton, Geology Manager and consultant to the company, who is a Member of the Australian Institute of Geoscientists. Mr. Bill Clayton has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Clayton consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Figure 4: Tambourah Metals Project Locations

About Tambourah Metals

Tambourah Metals is a West Australian exploration company established in 2020 to develop gold and critical mineral projects. Tambourah is exploring for Gold and Critical Minerals at the Tambourah project and Gold at the Cheela project in the Pilbara. Since listing the Company has extended the portfolio to include additional critical mineral projects in the Pilbara and has completed an earn-in and exploration agreement with major Chilean lithium developer SQM at Julimar Nth.

Forward Looking Statements

Certain statements in this document are or may be "forward-looking statements" and represent Tambourah's intentions, projections, expectations, or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forward-looking statements don't necessarily involve known and unknown risks, uncertainties, and other factors, many of which are beyond the control of Tambourah Metals, and which may cause Tambourah Metals actual performance in future periods to differ materially from any express or implied estimates or projections. Nothing in this document is a promise or representation as to the future. Statements or assumptions in this document as to future matters may prove to be incorrect and differences may be material. Tambourah Metals does not make any representation or warranty as to the accuracy of such statements or assumptions.

APPENDIX

Drill hole information (GDA2020)

Hole_ID	MGA_EAST	MGA_NORTH	RL (AHD)	Dip	Azimuth	Total_Depth
MOGAC0001	417413	6561086	323	-60	270	24
MOGAC0002	417643	6561090	316	-60	270	11
MOGAC0003	417890	6561165	321	-60	270	34
MOGAC0004	418114	6561167	317	-60	270	15
MOGAC0005	418283	6561277	318	-60	270	27
MOGAC0006	418507	6561291	322	-60	270	31
MOGAC0007	418716	6561178	328	-60	270	25
MOGAC0008	418892	6561088	331	-60	270	19
MOGAC0009	419092	6561088	322	-60	270	25
MOGAC0010	419292	6561088	328	-60	270	39
MOGAC0011	419494	6561085	318	-60	270	25
MOGAC0012	419692	6561088	310	-60	270	27
MOGAC0013	419926	6561044	298	-60	270	31
MOGAC0014	420116	6561087	290	-60	270	23
MOGAC0015	420292	6561088	284	-60	270	6
MOGAC0016	420411	6561892	266	-60	270	25
MOGAC0017	420273	6561918	268	-60	270	28
MOGAC0018	420044	6561808	275	-60	270	37
MOGAC0019	419874	6561894	270	-60	270	19
MOGAC0020	419746	6561875	276	-60	270	4
MOGAC0021	419485	6561851	285	-60	270	35
MOGAC0022	419280	6561868	306	-60	270	27
MOGAC0023	419137	6561870	320	-60	270	24
MOGAC0024	418874	6561894	336	-60	270	12
MOGAC0025	418674	6561894	332	-60	270	49
MOGAC0026	418417	6561885	331	-60	270	42
MOGAC0027	418274	6561894	324	-60	270	52
MOGAC0028	418074	6561894	318	-60	270	26
MOGAC0029	417874	6561894	314	-60	270	15
MOGAC0030	417637	6561894	296	-60	270	11
MOGAC0031	415894	6562805	262	-60	270	18
MOGAC0032	416097	6562771	266	-60	270	13
MOGAC0033	416294	6562724	266	-60	270	17
MOGAC0034	416494	6562724	282	-60	270	36
MOGAC0035	416694	6562724	298	-60	270	24
MOGAC0036	416894	6562724	297	-60	270	8
MOGAC0037	417109	6562820	303	-60	270	10
MOGAC0038	417288	6562820	310	-60	270	30
MOGAC0039	417513	6562798	319	-60	270	18

Hole_ID	MGA_EAST	MGA_NORTH	RL (AHD)	Dip	Azimuth	Total_Depth
MOGAC0040	417692	6562799	325	-60	270	30
MOGAC0041	417895	6562801	328	-60	270	34
MOGAC0042	418099	6562795	323	-60	270	20
MOGAC0043	418297	6562809	309	-60	270	27
MOGAC0044	418474	6562728	310	-60	270	40
MOGAC0045	418692	6562810	308	-60	270	28
MOGAC0046	418892	6562808	318	-60	270	18
MOGAC0047	419114	6562802	298	-60	270	23
MOGAC0048	419291	6562802	290	-60	270	22
MOGAC0049	419499	6562802	286	-60	270	23
MOGAC0050	419703	6562803	286	-60	270	22
MOGAC0051	419897	6562806	282	-60	270	13
MOGAC0052	420093	6562805	277	-60	270	7
MOGAC0053	420282	6562802	260	-60	270	15
MOGAC0054	420404	6562843	258	-60	270	25
MOGAC0055	420489	6563486	290	-60	270	24
MOGAC0056	420289	6563486	285	-60	270	57
MOGAC0057	420089	6563486	279	-60	270	47
MOGAC0058	419889	6563486	274	-60	270	44
MOGAC0059	419704	6563486	265	-60	270	23
MOGAC0060	419489	6563505	264	-60	270	14
MOGAC0061	419289	6563486	276	-60	270	24
MOGAC0062	419089	6563486	274	-60	270	13
MOGAC0063	418870	6563487	273	-60	270	40
MOGAC0064	418689	6563486	278	-60	270	8
MOGAC0065	418502	6563492	281	-60	270	11
MOGAC0066	418286	6563518	300	-60	270	29
MOGAC0067	418113	6563487	307	-60	270	22
MOGAC0068	417943	6563488	311	-60	270	11
MOGAC0069	417694	6563487	322	-60	270	44
MOGAC0070	417514	6563485	322	-60	270	19
MOGAC0071	417272	6563474	321	-60	270	19
MOGAC0072	417089	6563486	315	-60	270	25
MOGAC0073	416889	6563486	303	-60	270	20
MOGAC0074	416689	6563486	297	-60	270	8
MOGAC0075	416489	6563486	296	-60	270	17
MOGAC0076	416289	6563486	292	-60	270	24
MOGAC0077	416118	6563486	288	-60	270	18
MOGAC0078	415889	6563486	264	-60	270	19
MOGAC0079	415736	6564244	277	-60	270	3

Hole_ID	MGA_EAST	MGA_NORTH	RL (AHD)	Dip	Azimuth	Total_Depth
MOGAC0080	415915	6564292	278	-60	270	14
MOGAC0081	416127	6564270	291	-60	270	15
MOGAC0082	416300	6564292	291	-60	270	40
MOGAC0083	416500	6564292	295	-60	270	19
MOGAC0084	416700	6564292	306	-60	270	32
MOGAC0085	416918	6564236	306	-60	270	21
MOGAC0086	417100	6564292	306	-60	270	24
MOGAC0087	417300	6564292	300	-60	270	35
MOGAC0088	417370	6561700	306	-60	270	26
MOGAC0089	417645	6561700	302	-60	270	23
MOGAC0090	417973	6561746	320	-60	270	27
MOGAC0091	418278	6561700	324	-60	270	13
MOGAC0092	418673	6561700	336	-60	270	27
MOGAC0093	418816	6561751	339	-60	270	33
MOGAC0094	417375	6561893	302	-60	270	15
MOGAC0095	417391	6561487	304	-60	270	39
MOGAC0096	417593	6561435	304	-60	270	15
MOGAC0097	417791	6561487	310	-60	270	41
MOGAC0098	417991	6561487	316	-60	270	20
MOGAC0099	418191	6561487	318	-60	270	33
MOGAC0100	418391	6561487	323	-60	270	48
MOGAC0101	418591	6561487	325	-60	270	39
MOGAC0102	418791	6561487	338	-60	270	32
MOGAC0103	418991	6561487	336	-60	270	34
MOGAC0104	419191	6561487	329	-60	270	34
MOGAC0105	419391	6561487	317	-60	270	20
MOGAC0106	419591	6561487	300	-60	270	32
MOGAC0107	419791	6561487	293	-60	270	7
MOGAC0108	419991	6561487	299	-60	270	10
MOGAC0109	420219	6561485	298	-60	270	6
MOGAC0110	420404	6561495	280	-60	270	9
MOGAC0111	420391	6562287	250	-60	270	27
MOGAC0112	420173	6562247	258	-60	270	20
MOGAC0113	419991	6562287	277	-60	270	4
MOGAC0114	419809	6562287	291	-60	270	27
MOGAC0115	419549	6562341	308	-60	270	31
MOGAC0116	419392	6562343	309	-60	270	13
MOGAC0117	419190	6562303	313	-60	270	16
MOGAC0118	418991	6562287	316	-60	270	32
MOGAC0119	418791	6562287	319	-60	270	40

Hole_ID	MGA_EAST	MGA_NORTH	RL (AHD)	Dip	Azimuth	Total_Depth
MOGAC0120	418591	6562287	322	-60	270	30
MOGAC0121	418322	6562283	327	-60	270	41
MOGAC0122	418191	6562287	323	-60	270	14
MOGAC0123	417962	6562288	318	-60	270	23
MOGAC0124	417791	6562287	316	-60	270	20
MOGAC0125	417591	6562287	304	-60	270	16
MOGAC0126	417391	6562287	288	-60	270	26
MOGAC0127	415791	6563087	283	-60	270	14
MOGAC0128	415991	6563087	289	-60	270	24
MOGAC0129	416191	6563087	293	-60	270	19
MOGAC0130	416391	6563087	296	-60	270	54
MOGAC0131	416591	6563087	301	-60	270	24
MOGAC0132	416791	6563087	306	-60	270	15
MOGAC0133	416991	6563087	314	-60	270	31
MOGAC0134	417166	6563087	320	-60	270	39
MOGAC0135	417391	6563087	320	-60	270	24
MOGAC0136	417554	6563088	324	-60	270	12
MOGAC0137	417788	6563087	332	-60	270	36
MOGAC0138	417984	6563138	322	-60	270	25
MOGAC0139	418192	6563026	314	-60	270	42
MOGAC0140	418360	6563043	305	-60	270	14
MOGAC0141	418566	6563080	292	-60	270	21
MOGAC0142	418791	6563087	304	-60	270	28
MOGAC0143	418991	6563087	305	-60	270	18
MOGAC0144	419191	6563087	291	-60	270	45
MOGAC0145	419391	6563087	277	-60	270	28
MOGAC0146	419591	6563087	272	-60	270	28
MOGAC0147	419791	6563087	270	-60	270	15
MOGAC0148	419991	6563087	278	-60	270	22
MOGAC0149	420191	6563087	262	-60	270	16
MOGAC0150	420414	6563098	259	-60	270	7
MOGAC0151	420391	6563887	282	-60	270	20
MOGAC0152	420191	6563887	279	-60	270	39
MOGAC0153	419991	6563887	264	-60	270	30
MOGAC0154	419791	6563887	261	-60	270	6
MOGAC0155	419569	6563887	250	-60	270	3
MOGAC0156	419391	6563887	267	-60	270	15
MOGAC0157	419191	6563887	262	-60	270	8
MOGAC0158	419297	6564223	253	-60	270	3
MOGAC0159	419500	6564305	242	-60	270	27

Hole_ID	MGA_EAST	MGA_NORTH	RL (AHD)	Dip	Azimuth	Total_Depth
MOGAC0160	418991	6563938	261	-60	270	20
MOGAC0161	418791	6563887	276	-60	270	33
MOGAC0162	418570	6563903	289	-60	270	30
MOGAC0163	418210	6563910	290	-60	270	13
MOGAC0164	417991	6563887	290	-60	270	15
MOGAC0165	417791	6563887	297	-60	270	25
MOGAC0166	417598	6563972	300	-60	270	40
MOGAC0167	417398	6563972	306	-60	270	15
MOGAC0168	417191	6563945	308	-60	270	21
MOGAC0169	416995	6563897	304	-60	270	20
MOGAC0170	416791	6563887	291	-60	270	12
MOGAC0171	416604	6563847	281	-60	270	13
MOGAC0172	416429	6563833	274	-60	270	29
MOGAC0173	416191	6563805	262	-60	270	9
MOGAC0174	415991	6563887	270	-60	270	20
MOGAC0175	415791	6563887	268	-60	270	12
MOGAC0176	414991	6564687	210	-60	270	23
MOGAC0177	415191	6564687	224	-60	270	48
MOGAC0178	415970	6564686	287	-60	270	30
MOGAC0179	416191	6564687	289	-60	270	12
MOGAC0180	416391	6564687	303	-60	270	41
MOGAC0181	416542	6564712	311	-60	270	43
MOGAC0182	416791	6564687	318	-60	270	21
MOGAC0183	417005	6564686	320	-60	270	23
MOGAC0184	417191	6564687	315	-60	270	26
MOGAC0185	417391	6564687	311	-60	270	31
MOGAC0186	417591	6564687	304	-60	270	41
MOGAC0187	417712	6564629	300	-60	270	14
MOGAC0188	417705	6564288	298	-60	270	45
MOGAC0189	417501	6564258	300	-60	270	33
MOGAC0190	417396	6560887	324	-60	270	5
MOGAC0191	417630	6560883	323	-60	270	12
MOGAC0192	417772	6560904	323	-60	270	24
MOGAC0193	417860	6561300	312	-60	270	43
MOGAC0194	417597	6561300	307	-60	270	16
MOGAC0195	417409	6561300	312	-60	270	23
MOGAC0196	417370	6562600	308	-60	270	32
MOGAC0197	417609	6562600	314	-60	270	28
MOGAC0198	417826	6562600	319	-60	270	45
MOGAC0199	418207	6562600	320	-60	270	10

Hole_ID	MGA_EAST	MGA_NORTH	RL (AHD)	Dip	Azimuth	Total_Depth
MOGAC0200	418393	6562600	316	-60	270	45
MOGAC0201	418600	6562600	317	-60	270	19
MOGAC0202	418774	6562600	320	-60	270	24
MOGAC0203	418980	6562600	310	-60	270	18
MOGAC0204	419114	6562600	302	-60	270	25
MOGAC0205	419288	6562600	290	-60	270	34
MOGAC0206	419420	6562600	292	-60	270	22
MOGAC0207	419600	6562600	296	-60	270	28
MOGAC0208	419800	6562600	296	-60	270	27
MOGAC0209	419128	6561700	327	-60	270	36
MOGAC0210	419108	6562105	321	-60	270	19
MOGAC0211	418875	6562107	325	-60	270	34
MOGAC0212	418673	6562106	326	-60	270	30
MOGAC0213	418539	6562100	331	-60	270	37
MOGAC0214	418323	6562099	325	-60	270	13
MOGAC0215	418186	6562093	318	-60	270	18
MOGAC0216	418034	6562099	316	-60	270	28
MOGAC0217	417866	6562099	308	-60	270	27
MOGAC0218	420400	6562600	255	-60	270	6
MOGAC0219	420200	6562600	268	-60	270	7
MOGAC0220	420000	6562600	280	-60	270	7

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria **JORC Code explanation** Commentary Sampling Nature and quality of sampling (eg Aircore drilling program with 1m techniques cut channels, random chips, or samples collected from on-board specific specialised industry standard cyclone and placed in sequence in measurement tools appropriate to rows on the ground. A sub-sample for the minerals under investigation, assay of approximately 3kg was such as down hole gamma sondes. collected using a metal scoop to or handheld XRF instruments, etc). collect across each drill sample pile to These examples should not be taken produce a composite sample for as limiting the broad meaning of every 4m interval. A ~2kg 1m end of samplina. hole sample was also collected for multi-element analysis. Holes were Include reference to measures taken drilled to blade refusal or terminated if to ensure sample representivity and water resulted in poor sample the appropriate calibration of any measurement tools or systems used. recovery. Aspects of the determination of Blanks, laboratory repeat samples and certified reference materials mineralisation that are Material to the (CRM's) were included in the sample Public Report. stream at a ratio of 1:20. Measures In cases where 'industry standard' were taken to minimise wet samples work has been done this would be relatively simple (eg 'reverse and the cyclone was cleaned regularly. Sample recoveries were circulation drilling was used to obtain visually estimated and recorded by 1 m samples from which 3 kg was the geologist. pulverised to produce a 30 g charge A 3kg 4m composite sample was for fire assay'). In other cases more explanation may be required, such collected from the 1m drill piles and as where there is coarse gold that placed in a numbered calico bag. The has inherent sampling problems. samples were crushed, split and 750g Unusual commodities or pulverised (85% passing -75 micron) before a 0.25g charge was assayed mineralisation types (eg submarine for multi-elements by four acid digest nodules) may warrant disclosure of with ICP-MS finish. detailed information. A ~2kg 1m sample was collected from the final drilled metre sample pile and placed in a separate sequence of numbered calico bags. The samples were crushed, split, pulverised (85% passing -75 micron) before a 0.25g

charge was assayed for multielements by four acid digest with ICP-

MS finish.

Drilling techniques

- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).
- Aircore drilling was completed using an approximately 85mm diameter blade bit. Two 4x4 light truck mounted drill rigs with an onboard Sullair 560 cfm @ 200psi compressor were utilised.

Drill sample recovery

- Method of recording and assessing core and chip sample recoveries and results assessed.
- Measures taken to maximise sample recovery and ensure representative nature of the samples.
- Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.
- Sample recoveries were assessed visually and recorded by the geologist.
- Holes were terminated if water resulted in poor sample recovery or contamination.
- Sample recoveries were estimated to be satisfactory and no relationship between sample recovery and grade has been identified.

Logging

- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.
- All drill samples were logged for lithology, alteration, veining and mineralisation.
- Logging was qualitative in nature. All samples were retained as 1m chip samples in plastic trays.
- The total length of the drill hole was logged.

Subsampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

- No core drilling was undertaken.
- A rig-mounted cyclone was used to obtain a representative 1m sample. 1m drill samples were sampled using obtain metal scoop to representative 4m composite sample for assay, other than the end of hole interval where the last metre was sampled and assayed as an individual ~2.5kg sample. The samples submitted for assay were crushed, and a 750g split was pulverised to 85% passing -75 microns. A 0.25g charge was analysed by four acid digest with ICP-MS or AES finish. The mixed acid digest provides a near digest for most minerals although refractory minerals are not completely taken into solution. The sampling and analytical method are suitable for an exploration drilling program.

		Laboratory internal QC includes the use of reference standards, blanks and repeat assays. Company QC includes the use of independent, certified reference material and blank material. Sample size is considered appropriate for first-pass exploration drilling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were analysed for multi-elements by Australian Laboratory Services Pty Ltd (ALS) in Perth using Method ME-MS61 (4 acid digest with ICP-MS finish) for 48 elements. The 1m end of hole samples were analysed for the same multi-element suite as the 4m composites with the addition of REE. The sample preparation and analytical method are appropriate for exploration drilling for LCT mineralisation and base metal and magmatic sulphides, the method approaches a total estimation for these pathfinders. No geophysical tools were used. SQM inserted CRM's at a ratio of ~1:20. Laboratory standards, blanks and repeats were included in the laboratory report. Based on the results acceptable accuracy and precision were achieved.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No significant intersections have been reported. Anomalous results have been verified by Tambourah's contract exploration manager and geology manager. No twinned holes were drilled. Primary data entry is managed by SQM. There is no adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill collars were surveyed using a hand-held GPS with an estimated accuracy of ±5m. GDA2020 MGA Z50 coordinate system was used. Topographic control is calculated from SRTM survey data.

Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Due to the early stage of exploration and wide-spaced drilling completed to date the sampling is non-systematic nor representative. There is insufficient data to establish the degree of continuity appropriate for a Mineral Resource. 4m composite primary samples were generally collected from the weathered zone between 0-20m with 1m sampling at end of hole. Average depth of drilling is 24m with a maximum hole depth of 57m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 There is currently no known connection between the sample distribution and possible structures. At the first pass exploration stage there does not appear to be any bias introduced into the sampling and the geology or assay results as a function of the orientation of the sampling with respect to the geological structure.
Sample security	The measures taken to ensure sample security.	Samples were taken from the drill site in secure bulka bags by SQM personnel and delivered directly to the laboratory. Sample reconciliation was reported by the laboratory on receipt of the samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• The drilling was conducted on Tambourah's tenement E70/6285, held in the name of Baracus Pty Ltd. E70/6285 expires on 1st December 2027. There are no third-party royalties applied to the tenements. TMB has signed an earn-in agreement with Chilean lithium producer Sociedad Quimica y Minera de Chile S.A. (SQM) whereby SQM are sole funding \$1.5M of exploration to earn an initial 50% interest in the Julimar Nth Project of which E70/6285 is part. TMB has an

Aboriginal Heritage Agreement in place				
with the Yued traditional owners. The				
area is not a designated wilderness or				
national park.				

The tenement is in good standing.

Explorati on done by other parties

 Acknowledgment and appraisal of exploration by other parties.

- All historic work referenced in this announcement has been undertaken by previous project explorers. Whilst it could be expected that the work and reporting practices were of an adequate standard, this cannot be confirmed.
- The area of the E70/6285 has been explored for Au, base metals, Cr, Mo, Nb, Sn and W. Between 1983-1986 Commonwealth Scientific Industrial Research Organisation (CSIRO) carried out multi-element geochemical surveys in the district of E70/6285 which identified anomalous tin (Sn) in the laterite with values ranging from 10ppm 50ppm.

Greenbushes Ltd carried out a programme of exploration in 1986 along the Darling Fault escarpment and concluded that their mapping and petrological studies suggested

the presence of a Sn granite. Exploration by others included a study in 1988 by Geological Survey of Western Australia of the exploration potential of SW Western Australia identified a number of precious and base metal anomalies close to E70/6285.

Pacminex Pty Ltd and Rio Tinto sporadically tested the tenement and the surrounding area in the late 1960's and early 2000's for alumina. Most recently Aluminex continued exploration of laterites for alumina and completed rock chip sampling, aeromagnetic surveys and resource estimation.

Geology

Deposit type, geological setting and style of mineralisation.

 The drilling targeted pegmatite-hosted LCT mineralisation within Archaean gneissic granite terrane. The giant Greenbushes Sn-Ta-Li pegmatite deposit is located within the Western Gneiss Terrane of Western Australia.

Drill hole Informati on

- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
 - easting and northing of the drill hole collar
 - elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar
 - o dip and azimuth of the hole
 - down hole length and interception depth
 - o hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

 Details of the drill holes are provided in the Appendix.

Data aggregat ion methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

- No top cuts have been applied.
- No aggregation of drill hole intercepts has been applied.
- No metal equivalent grades have been reported or used in the calculating of the assay results.

Relation ship between mineralis ation widths and intercept lengths

- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').
- No information on mineralisation is reported, the results reflect a geochemical anomaly to be followed with additional assays.
- Geometry is unknown.

Diagram s	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	See body of the announcement.
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	See Tables1 and 2 and the Appendix.
Other substanti ve explorati on data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	•	No other relevant exploration data.
Further work	•	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	•	Additional assaying of samples from the current program for gold is planned. No extensions known at this time.