

5 August 2024

Assay Results from Maiden Drilling Program include 4m @ 2.5 g/t Au and 0.5% Cu

Numerous anomalous Cu values identified

Highlights

- A maiden Reverse Circulation (RC) drilling program has been successfully completed at the Mpanda project, Tanzania with significant intercepts returned from the Kabungu Prospect:
 - > 4m at 2.5g/t Au and 0.5% Cu from 39m, and
 - > 2m at 0.5g/t Au from 47m

from drill hole MPRC0007.

- The intercepts are part of a 2km geochemical anomaly that remains untested along strike.
- Numerous anomalous Cu values were recorded from drilling at the Mpanda Ndogo and Stalike Prospects, with 19 non-magmatic Cu values ranging from 0.1% Cu to 0.94%Cu.
- The sample assay results from 5 drill holes (MPRC0009 to MPRC0013) from the Mpanda Ndogo and Vikonge Prospects are pending.
- 13 Reverse Circulation (RC) holes for a total of 723m have been completed in the Mpanda Project.
- The initial drilling has been completed at four (4) prospects including Mpanda Ndogo (4 holes), Stalike (3 holes), Kabungu (3 holes) and Vikonge (3 holes).
- A ground magnetic survey program is planned at Kabungu to clearly define the structure hosting the mineralisation.

Resource Mining Corporation Limited (ASX:RMI)("RMC" or the "**Company**") is pleased to announce that it has received the initial assay results from its inaugural RC drilling campaign at the highly prospective Mpanda Cu-Au Project in Tanzania. Assay results from eight drill holes included significant intercepts in hole MPRC0007 from the Kabungu Prospect of 4m at 2.5g/t Au and 0.5% Cu from 39m and 2m at 0.74g/t Au from 47m.

Executive Chairman, Asimwe Kabunga, said "The maiden drilling program has provided a very positive start to the exploration works within this greenfields copper-gold area where no drilling has been recorded in the past. Anomalous copper-gold values are present in all prospects and work will continue to define the epithermal source from which they are derived."

Significant Cu-Au results from MPRC0007

At the Kabungu Prospect, the drilled holes were testing the western NW-SE trending geochemical anomaly that has a strike length of 2,000m. Previously collected rock samples within the anomaly had reported high grade rock samples reading up to 17.97g/t Au and 6.97% Cu (**ASX Release 1 May 2024**).

Assay results from SGS Mwanza laboratory of samples from drill holes MPRC0001 to MPRC0008 have now been received. Samples from MPRC0009 to MPRC0013 are currently being processed at the laboratory. The initial assay results have reported significant intercepts in hole MPRC0007 from the Kabungu Prospect. Below is a summary of significant results from the drill hole;

- > 4m at 2.5g/t Au and 0.5% Cu from 39m and
- > 2m at 0.74g/t Au from 47m in hole MPRC0007

HOLE_ID	From	То	Au g/t	Cu%
MPRC0007	38.00	39.00	0.07	0.02
MPRC0007	39.00	40.00	2.16	0.35
MPRC0007	40.00	41.00	0.54	0.20
MPRC0007	41.00	42.00	5.30	1.11
MPRC0007	42.00	43.00	1.92	0.34
MPRC0007	43.00	44.00	0.04	0.03
MPRC0007	44.00	45.00	0.02	0.01
MPRC0007	45.00	46.00	0.01	0.01
MPRC0007	46.00	47.00	0.02	0.05
MPRC0007	47.00	48.00	1.18	0.18
MPRC0007	48.00	49.00	0.30	0.05
MPRC0007	49.00	50.00	0.07	0.00

Table 1: One metre interval sample assay results for MPRC0007

A significant Au-Cu intercept has been identified in drill hole MPRC0007 on the extreme South East part of the anomaly. Figure 1 below is the map showing the location of drilled holes at Kabungu in relation to the geochemical anomaly, with no drilling completed north of the occurrence ensuring mineralisation is open to the north along strike. A ground magnetic survey program is planned across the soil geochemistry target at Kabungu to clearly define the structure hosting the mineralisation and aid the upcoming drilling program.

Figure 1. Kabungu prospect drilling results combined with rock samples and soil geochem anomalies

Figure 2. Location of the intercepts at Kabungu

Anomalous non-magmatic Cu results (19 samples from 0.1% Cu– 0.94% Cu), were received from Stalike and Mpanda Ndogo Prospects providing confirmation of epithermal mineralisation potential in both locations. The Cu mineralisation noted was in the form of chalcopyrite within a mafic unit, however the lack of Ni mineralisation and the quartz veining within the mafic confirmed the epithermal nature of the Cu deposition and not through magmatic processes during the mafic's primary emplacement.

Recently completed auger surveys within the Kapalala and Stalike Prospects are under geochemical review with the goal of providing more information on the definition of further major resource targets.

Drilling Program Summary

Drilling to date confirms the presence of anomalous Au and Cu values within the Mpanda Project, with geological review and modelling confirming the form of the mineralisation and is ongoing to locate the potential areas of significant epithermal Au_Cu enrichment.

Drilling was conducted at 4 prospects within the Mpanda Project area, including Mpanda Ndogo, Stalike, Kabungu and Vikonge, and comprised 13 RC holes (MPRC0001 through to MPRC0013) for a total of 723 metres (see Table 2 below).

The program was designed to test the geological and geochemical targets that were generated from the recently completed soil geochemistry and mapping programs. Four drill holes encountered difficult drilling or a cavity and were discontinued and did not achieve their planned depth.

Prospect	Hole_ID	Easting	Northing	RL_m	Azimuth	Dip	EOH_m	Status
Mpanda Ndogo	MPRC0001	271,195	9,315,200	1196	90	50	86.00	Completed
Mpanda Ndogo	MPRC0002	271,326	9,315,203	1196	90	50	43.00	Completed
Stalike	MPRC0003	301,329	9,266,326	1023	180	50	56.00	Ended due to difficult drilling
Stalike	MPRC0004	301,304	9,266,246	1017	360	50	22.00	Ended due to difficult drilling
Stalike	MPRC0005	301,325	9,266,327	1019	220	50	80.00	Completed
Kabungu	MPRC0006	274,445	9,298,774	1101	240	50	23.00	Ended due to cavity
Kabungu	MPRC0007	274,458	9,298,774	1096	240	60	50.00	Completed
Kabungu	MPRC0008	274,490	9,298,796	1099	240	50	76.00	Completed
Vikonge	MPRC0009	268,447	9,324,394	1300	90	50	100.00	Completed
Vikonge	MPRC0010	270,409	9,325,483	1322	270	50	25.00	Completed
Vikonge	MPRC0011	270,459	9,325,565	1329	280	50	37.00	Completed
Mpanda Ndogo	MPRC0012	270,871	9,316,497	1214	270	50	25.00	Ended due to difficult drilling
Mpanda Ndogo	MPRC0013	270,941	9,316,437	1232	250	50	100.00	Completed

Table 2: List of RC drill holes

The exploration results are further reported in the attached appendices incorporating the JORC 2012 table 1, drill hole information and tabulated assay results.

This ASX announcement has been authorised for lodgment by the Board of Resource Mining Corporation Limited.

For further information, contact	For investor or media inquiries, contact	
Asimwe Kabunga	Alex Cowie	
Executive Chairman	NWR Communications	
rmc@resmin.com.au	E: alexc@nwrcommunications.com	

About Resource Mining Corporation

The strategic intent of Resource Mining Corporation (ASX:RMI) is to establish a long term business model based on mineral development delivering consistent shareholder value whilst operating in a sustainable way within the community and environment in which we operate.

RMC is currently exploring for critical minerals namely Copper and Nickel in Tanzania and Lithium in Finland. In Tanzania, RMC has two projects exploring for Copper-Gold and four projects focused on Nickel occurrences in sulphides within known and prolific mafic and ultramafic intrusions. In Finland, RMC has two projects focused on the exploration of Lithium.

	Tanzanian Projects		Finnish Projects
•	<u>Copper-Gold</u> Mpanda and Mbozi Projects Both projects are located within the Ubendian Orogenic Belt, a major source of Ni, Cu and Au resources within Tanzania. Nickel	•	Lithium Hirvikallio Lithium Project Initial exploration works completed by GTK across the project's area identified approximately 25 km ² with pegmatite dykes returning promising results including 5m @ 2.30% Li ₂ O and 2m @ 1.33% Li ₂ O ² .
•	Kabanga North Nickel Project Situated along strike from the Kabanga Nickel Project, which has an estimated mineral resource of 58mt @ 2.62% Ni, or nickel equivalent grade of 3.14% (including cobalt and copper) ¹ .	•	Kola Lithium Project Located in the most significant lithium- mining region of Finland, and directly south of Keliber's flagship Syväjärvi and Rapasaari deposits.
•	Kapalagulu Project 32km mapped mafic/ultramafic sequence with historical reports noting nickel, PGE and copper anomalism. Kabulwanyele Project		
	The project is located in the Mpanda District of Tanzania covering approximately 20.5 square kilometres.		
•	Southern Projects (Liparamba, Kitai, Mbinga) Previously explored by BHP/Albidon and Jacana Resources.		

The Board has strong ties to Tanzania, Chaired by Asimwe Kabunga, a Tanzanian-born Australian entrepreneur who was instrumental in establishing the Tanzania Community of Western Australia Inc. and served as its first President.

¹ Refer to ASX announcement dated 9 May 2022 including the Competent Person Statement disclosed, and <u>Glencore Resources and</u> <u>Reserves as at 31 December 2019.</u> The Mineral Resource Estimate is broken down into the following classifications – 13.8mT @ 2.49% Ni Measured, 23.4mT @ 2.72% Ni% indicated & 21mT @ 2.6% Ni inferred. RMC does not have any interest in the Kabanga Nickel Project.

² Refer to ASX Announcement dated 7 June 2022 "Nickel and Lithium Tenements under Exclusive Option" including the disclosed Competent Person Statement.

Competent Persons Statements

Information in this announcement that relates to Exploration results and targets is based on, and fairly reflects, information compiled by Mr. Mark Gifford, a Competent Person who is a Fellow of the Australian Institute of Mining and Metallurgy. Mr. Gifford is an independent consultant for Resource Mining Corporation Limited. Mr. Gifford has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Gifford consents to the inclusion of the data in the form and context in which it appears.

The information in this announcement that relates to previously reported Exploration Results was previously announced in RMC's announcements dated 12 March 2024 and 1 May 2024, RMC confirms that it is not aware of any new information or data that materially affects the information included in the original announcements.

Where the Company references Mineral Resource Estimates previously announced, it confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the resource estimates with those announcements continue to apply and have not materially changed.

Forward Looking Statements

Some of the statements appearing in this announcement may be in the nature of forward looking statements. You should be aware that such statements are only predictions and are subject to inherent risks and uncertainties. Those risks and uncertainties include factors and risks specific to the industries in which the Company operates and proposes to operate as well as general economic conditions, prevailing exchange rates and interest rates and conditions in the financial markets, among other things. Actual events or results may differ materially from the events or results expressed or implied in any forward-looking statement. No forward looking statement is a guarantee or representation as to future performance or any other future matters, which will be influenced by a number of factors and subject to various uncertainties and contingencies, many of which will be outside the Company's control.

The Company does not undertake any obligation to update publicly or release any revisions to these forward-looking statements to reflect events or circumstances after today's date or to reflect the occurrence of unanticipated events. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions or conclusions contained in this announcement. To the maximum extent permitted by law, neither of the Company's Directors, employees, advisors or agents, nor any other person, accepts any liability for any loss arising from the use of the information contained in this announcement. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

This announcement is not an offer, invitation or recommendation to subscribe for, or purchase securities by the Company. Nor does this announcement constitute investment or financial product advice (nor tax, accounting or legal advice) and is not intended to be used for the basis of making an investment decision. Investors should obtain their own advice before making any investment decision.

Appendix ONE - JORC Code, 2012 Edition - Table 1

Section 1: Sampling Techniques and Data

Criteria	IORC Code explanation	Commentary
Criteria Sampling techniques	 JORC Code explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 a 	 Commentary Samples have been collected from a Reverse Circulation drill program. All samples were submitted to a qualified laboratory for analysis. All drill cuttings were collected from the drill rig on a meter by meter basis and the full sample was transported back for subsequent subsampling and remainder storage. Sampling was on a 1m by 1m basis, with sub-sampling generating a 4-5kg sample for pulverising. A 50g charge was used in an acid digest and AAS assay for both Cu and Au. No coarse gold or other issues were noted in the collection and subsequent assaying of the samples.
	drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as	

Criteria	JORC Code explanation	Commentary
	where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling was completed by a Reverse Circulation (RC) drill rig with PQ sized drill rods.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Reverse Circulation (PQ) drilling provided significant recovery of chips from the drill string. Each individual meter was weighed and any variances noted. All samples from the drill program were noted as having high recovery and consistency in volume and weight. There was no relationship noted between recoveries and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of	The drill chips recovered were geologically logged with major and minor minerals noted.

Criteria	JORC Code explanation	Commentary
	 detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All sampling was carefully supervised with ticket books containing pre- numbered tickets placed in the sample bag and double checked against the ticket stubs and field sample sheets to guard against mix ups. All sub samples were taken by a 12-vein riffle splitter box. The samples were dry due to the nature of the material being RC drilled. The sub samples were predominantly 4-5kg from a primary weight of 25-30kg. Samples were thoroughly mixed and considered representative. Field duplicates, blanks and authorised standards were be incorporated into the sample string when collated at a ratio of 1 per twenty primary samples for

Criteria	JORC Code explanation	Commentary
		each of the
		components.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been 	 Assaying of the samples was completed by SGS laboratories in Mwaze. The Au analyses were completed using a 50g charge prior to a two acid digest and subsequent AAS analysis, and the Ag and Cu were from a 2.5g charge prior to a two acid digest and then subsequent AAS analysis. Both methods used were considered appropriate for this sample set. Standards, duplicates and Blanks were used to provide a level of confidence in the results, with all being incorporated into the assay laboratory sample string.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and 	 Data was recorded by the sampling geologist, entered in a company's designed excel spreadsheet before being uploaded to the company's Access database. The excel spreadsheet is designed to detect any errors entered. The Access

Criteria	JORC Code explanation	Commentary
	electronic) protocols. • Discuss any adjustment to assay data.	database contains data QAQC queries.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A handheld GPS was used to locate all drill hole locations. An accuracy of +/- 5 metres is considered appropriate. If further drilling confirms resource potential these drill hole locations will be surveyed in by a qualified surveyor. The grid system for the project was UTM36 South with WGS84 as datum
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill holes were part of a widely spaced initial exploration drill program.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	The drill holes were aligned to intercept the structures and geological features of the region as defined by field mapping and trenches in the areas of interest.

Criteria	JORC Code explanation	Commentary
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	There is insufficient information currently to be able to determine the drilling orientation and any mineralised structures currently.
Sample security	The measures taken to ensure sample security.	The samples are currently held within a secure compound at Mpanda, a major town central to the project area. All samples were sub sampled in the compound with the sample for analysis placed in the string order and bagged as sets of 20 samples. The remainder of the samples were stored for possible future work. The samples were all individually accredited a sample number and this was used through the total process from sample preparation through to full analysis.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• There is no external audit of the results currently.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land	 Type, reference 	 Mpanda:
tenure status	name/number,	Prospecting Licence
	location and	PL 11930-11936 /
	ownership including	2022 granted
	agreements or	31/05/2022. 100%

	 material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	owned by Vancouver Mineral Resources Ltd a wholly owned subsidiary of RMC. Mbozi: Prospecting Licence PL 11926- 11929 / 2022 granted 31/05/2022. 100% owned by Vancouver Mineral Resources Ltd a wholly owned subsidiary of RMC
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration has been completed historically at Mbozi by BHP/ Albidon and Vancouver Mineral Resources. All exploration results reported at Mpanda were completed by Vancouver Mineral Resources solely. The information provided by these groups provided support in determining the prospectivity of the region.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Mpanda and Mbozi Cu-Au Projects are situated within the Ubendian Orogenic Belt, a prominent geological feature in Tanzania that consists of Neoproterozoic metasedimentary and metavolcanic rocks. Shear zones associated with the emplacement of

		volcanics and other plutonic units have been variably mineralised.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill hole information is presented in Appendix 1.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade 	 Drilling results from a single drill hole was combined into two short intercepts (4m and 2m), and the samples were

	truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 weighted relative to individual sample lengths. No metal equivalents have been used in the reporting of the results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	• The geometry of the mineralization within the reported drill hole is unclear and under analysis. All values reported as composites were reported as downhole length solely.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any 	 Diagrams of the mineralised drill holes location and results have been presented in the report.

	significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 QP considers the presented information as representative.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 There is no further exploration data available at this time.

Further work	 The nature and scale 	 RMC intends to
	of planned further	commence further
	work (e.g. tests for	exploration in the
	lateral extensions or	project areas
	depth extensions or	following up
	large-scale step-out	anomalous grades
	drilling).	noted from the drill
	 Diagrams clearly 	program as well as
	highlighting the	the area in which
	areas of possible	Au/Cu mineralised
	extensions, including	intersections have
	the main geological	been reported.
	interpretations and	
	future drilling areas,	
	provided this	
	information is not	
	commercially	
	sensitive.	

Appendix TWO: Drill Hole Collars, Mpanda Cu-Au Project

Prospect	Hole_ID	Easting	Northing	RL_m	Azimuth	Dip	EOH_m	Status
Mpanda Ndogo	MPRC0001	271,195	9,315,200	1196	90	50	86.00	Completed
Mpanda Ndogo	MPRC0002	271,326	9,315,203	1196	90	50	43.00	Completed
Stalike	MPRC0003	301,329	9,266,326	1023	180	50	56.00	Ended due to difficult drilling
Stalike	MPRC0004	301,304	9,266,246	1017	360	50	22.00	Ended due to difficult drilling
Stalike	MPRC0005	301,325	9,266,327	1019	220	50	80.00	Completed
Kabungu	MPRC0006	274,445	9,298,774	1101	240	50	23.00	Ended due to cavity
Kabungu	MPRC0007	274,458	9,298,774	1096	240	60	50.00	Completed
Kabungu	MPRC0008	274,490	9,298,796	1099	240	50	76.00	Completed
Vikonge	MPRC0009	268,447	9,324,394	1300	90	50	100.00	Completed
Vikonge	MPRC0010	270,409	9,325,483	1322	270	50	25.00	Completed
Vikonge	MPRC0011	270,459	9,325,565	1329	280	50	37.00	Completed
Mpanda Ndogo	MPRC0012	270,871	9,316,497	1214	270	50	25.00	Ended due to difficult drilling
Mpanda Ndogo	MPRC0013	270,941	9,316,437	1232	250	50	100.00	Completed

Appendix THREE: Cu-Au Assays – Mpanda Project

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0001	0.00	1.00	<]	62
MPRC0001	1.00	2.00	2	158
MPRC0001	2.00	3.00	3	225
MPRC0001	3.00	4.00	19	204
MPRC0001	4.00	5.00	<]	178
MPRC0001	5.00	6.00	9	172
MPRC0001	6.00	7.00	11	202
MPRC0001	7.00	8.00	1	133
MPRC0001	8.00	9.00	<]	181
MPRC0001	9.00	10.00	<1	120
MPRC0001	10.00	11.00	<1	106
MPRC0001	11.00	12.00	2	132
MPRC0001	12.00	13.00	<1	88
MPRC0001	13.00	14.00	<1	150
MPRC0001	14.00	15.00	2	224
MPRC0001	15.00	16.00	<1	623
MPRC0001	16.00	17.00	5	697
MPRC0001	17.00	18.00	16	629
MPRC0001	18.00	19.00	12	804
MPRC0001	19.00	20.00	9	756
MPRC0001	20.00	21.00	6	760
MPRC0001	21.00	22.00	4	1,766
MPRC0001	22.00	23.00	4	2,255
MPRC0001	23.00	24.00	<1	1,460
MPRC0001	24.00	25.00	4	773
MPRC0001	25.00	26.00	<1	121
MPRC0001	26.00	27.00	3	76
MPRC0001	27.00	28.00	<1	140
MPRC0001	28.00	29.00	<1	277
MPRC0001	29.00	30.00	<1	67
MPRC0001	30.00	31.00	2	80
MPRC0001	31.00	32.00	1	185
MPRC0001	32.00	33.00	<1	2,149
MPRC0001	33.00	34.00	<1	200
MPRC0001	34.00	35.00	<1	132
MPRC0001	35.00	36.00	5	76
MPRC0001	36.00	37.00	<1	67
MPRC0001	37.00	38.00	2	85
MPRC0001	38.00	39.00	2	76
MPRC0001	39.00	40.00	2	42
MPRC0001	40.00	41.00	<1	431
MPRC0001	41.00	42.00	5	4,178
MPRC0001	42.00	43.00	2	132

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0001	43.00	44.00	<1	45
MPRC0001	44.00	45.00	<]	30
MPRC0001	45.00	46.00	<1	45
MPRC0001	46.00	47.00	<1	246
MPRC0001	47.00	48.00	2	52
MPRC0001	48.00	49.00	2	25
MPRC0001	49.00	50.00	<1	74
MPRC0001	50.00	51.00	<1	720
MPRC0001	51.00	52.00	<]	107
MPRC0001	52.00	53.00	7	268
MPRC0001	53.00	54.00	4	1,898
MPRC0001	54.00	55.00	<1	2,000
MPRC0001	55.00	56.00	<]	369
MPRC0001	56.00	57.00	3	57
MPRC0001	57.00	58.00	1	54
MPRC0001	58.00	59.00	<]	198
MPRC0001	59.00	60.00	3	267
MPRC0001	60.00	61.00	3	728
MPRC0001	61.00	62.00	12	327
MPRC0001	62.00	63.00	3	3,108
MPRC0001	63.00	64.00	3	835
MPRC0001	64.00	65.00	<]	65
MPRC0001	65.00	66.00	4	3,745
MPRC0001	66.00	67.00	6	1,296
MPRC0001	67.00	68.00	2	694
MPRC0001	68.00	69.00	<]	77
MPRC0001	69.00	70.00	<]	398
MPRC0001	70.00	71.00	<1	868
MPRC0001	71.00	72.00	<1	42
MPRC0001	72.00	73.00	<]	37
MPRC0001	73.00	74.00	<]	140
MPRC0001	74.00	75.00	<1	148
MPRC0001	75.00	76.00	3	9,425
MPRC0001	76.00	77.00	2	1,377
MPRC0001	77.00	78.00	<]	112
MPRC0001	78.00	79.00	1	341
MPRC0001	79.00	80.00	5	1,435
MPRC0001	80.00	81.00	1	927
MPRC0001	81.00	82.00	<1	597
MPRC0001	82.00	83.00	2	135
MPRC0001	83.00	84.00	<1	39
MPRC0001	84.00	85.00	<1	35
MPRC0001	85.00	86.00	4	27
MPRC0002	0.00	1.00	2	135
MPRC0002	1.00	2.00	3	151
MPRC0002	2.00	3.00	4	152

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0002	3.00	4.00	6	228
MPRC0002	4.00	5.00	13	249
MPRC0002	5.00	6.00	11	278
MPRC0002	6.00	7.00	2	252
MPRC0002	7.00	8.00	2	295
MPRC0002	8.00	9.00	2	521
MPRC0002	9.00	10.00	2	249
MPRC0002	10.00	11.00	206	372
MPRC0002	11.00	12.00	7	253
MPRC0002	12.00	13.00	4	276
MPRC0002	13.00	14.00	7	276
MPRC0002	14.00	15.00	15	252
MPRC0002	15.00	16.00	5	355
MPRC0002	16.00	17.00	<1	301
MPRC0002	17.00	18.00	<1	313
MPRC0002	18.00	19.00	<1	264
MPRC0002	19.00	20.00	<1	271
MPRC0002	20.00	21.00	1	447
MPRC0002	21.00	22.00	31	1,048
MPRC0002	22.00	23.00	<1	796
MPRC0002	23.00	24.00	2	754
MPRC0002	24.00	25.00	<1	415
MPRC0002	25.00	26.00	<1	333
MPRC0002	26.00	27.00	7	4,527
MPRC0002	27.00	28.00	3	771
MPRC0002	28.00	29.00	<1	291
MPRC0002	29.00	30.00	2	190
MPRC0002	30.00	31.00	2	157
MPRC0002	31.00	32.00	1	214
MPRC0002	32.00	33.00	2	230
MPRC0002	33.00	34.00	<1	83
MPRC0002	34.00	35.00	1	45
MPRC0002	35.00	36.00	<1	195
MPRC0002	36.00	37.00	3	612
MPRC0002	37.00	38.00	<1	199
MPRC0002	38.00	39.00	1	89
MPRC0002	39.00	40.00	<1	40
MPRC0002	40.00	41.00	1	69
MPRC0002	41.00	42.00	<1	28
MPRC0002	42.00	43.00	<1	25
MPRC0003	0.00	1.00	3	29
MPRC0003	1.00	2.00	3	13
MPRC0003	2.00	3.00	7	43
MPRC0003	3.00	4.00	3	34
MPRC0003	4.00	5.00	13	26
MPRC0003	5.00	6.00	<1	28

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0003	6.00	7.00	3	21
MPRC0003	7.00	8.00	3	34
MPRC0003	8.00	9.00	1	124
MPRC0003	9.00	10.00	3	100
MPRC0003	10.00	11.00	3	85
MPRC0003	11.00	12.00	10	28
MPRC0003	12.00	13.00	<1	77
MPRC0003	13.00	14.00	<1	43
MPRC0003	14.00	15.00	<1	234
MPRC0003	15.00	16.00	126	637
MPRC0003	16.00	17.00	25	675
MPRC0003	17.00	18.00	9	298
MPRC0003	18.00	19.00	3	80
MPRC0003	19.00	20.00	4	24
MPRC0003	20.00	21.00	5	26
MPRC0003	21.00	22.00	4	35
MPRC0003	22.00	23.00	<1	47
MPRC0003	23.00	24.00	<1	19
MPRC0003	24.00	25.00	<1	47
MPRC0003	25.00	26.00	6	60
MPRC0003	26.00	27.00	2	31
MPRC0003	27.00	28.00	<1	33
MPRC0003	28.00	29.00	10	88
MPRC0003	29.00	30.00	2	135
MPRC0003	30.00	31.00	2	231
MPRC0003	31.00	32.00	1	42
MPRC0003	32.00	33.00	<1	31
MPRC0003	33.00	34.00	<1	82
MPRC0003	34.00	35.00	8	200
MPRC0003	35.00	36.00	<1	250
MPRC0003	36.00	37.00	<1	221
MPRC0003	37.00	38.00	<1	5
MPRC0003	38.00	39.00	3	3,339
MPRC0003	39.00	40.00	<1	1,231
MPRC0003	40.00	41.00	2	432
MPRC0003	41.00	42.00	<1	68
MPRC0003	42.00	43.00	2	45
MPRC0003	43.00	44.00	3	262
MPRC0003	44.00	45.00	5	193
MPRC0003	45.00	46.00	3	103
MPRC0003	46.00	47.00	20	38
MPRC0003	47.00	48.00	<1	48
MPRC0003	48.00	49.00	<1	75
MPRC0003	49.00	50.00	5	87
MPRC0003	50.00	51.00	2	92
MPRC0003	51.00	52.00	2	67

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0003	52.00	53.00	7	104
MPRC0003	53.00	54.00	5	156
MPRC0003	54.00	55.00	4	117
MPRC0003	55.00	56.00	3	138
MPRC0004	0.00	1.00	14	60
MPRC0004	1.00	2.00	26	168
MPRC0004	2.00	3.00	<]	217
MPRC0004	3.00	4.00	<1	193
MPRC0004	4.00	5.00	<1	172
MPRC0004	5.00	6.00	6	70
MPRC0004	6.00	7.00	<]	139
MPRC0004	7.00	8.00	<]	237
MPRC0004	8.00	9.00	1	119
MPRC0004	9.00	10.00	<]	163
MPRC0004	10.00	11.00	5	57
MPRC0004	11.00	12.00	<]	88
MPRC0004	12.00	13.00	1	78
MPRC0004	13.00	14.00	10	75
MPRC0004	14.00	15.00	<]	121
MPRC0004	15.00	16.00	2	87
MPRC0004	16.00	17.00	<]	119
MPRC0004	17.00	18.00	4	238
MPRC0004	18.00	19.00	43	1,461
MPRC0004	19.00	20.00	19	218
MPRC0004	20.00	21.00	17	231
MPRC0004	21.00	22.00	<]	165
MPRC0005	0.00	1.00	31	132
MPRC0005	1.00	2.00	2	13
MPRC0005	2.00	3.00	3	8
MPRC0005	3.00	4.00	3	33
MPRC0005	4.00	5.00	<1	27
MPRC0005	5.00	6.00	<1	18
MPRC0005	6.00	7.00	1	13
MPRC0005	7.00	8.00	1	15
MPRC0005	8.00	9.00	6	24
MPRC0005	9.00	10.00	<1	31
MPRC0005	10.00	11.00	<1	45
MPRC0005	11.00	12.00	1	176
MPRC0005	12.00	13.00	1	248
MPRC0005	13.00	14.00	21	39
MPRC0005	14.00	15.00	<1	7
MPRC0005	15.00	16.00	2	7
MPRC0005	16.00	17.00	<1	6
MPRC0005	17.00	18.00	<1	4
MPRC0005	18.00	19.00	3	6
MPRC0005	19.00	20.00	<1	10

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0005	20.00	21.00	23	10
MPRC0005	21.00	22.00	2	6
MPRC0005	22.00	23.00	2	5
MPRC0005	23.00	24.00	3	5
MPRC0005	24.00	25.00	2	3
MPRC0005	25.00	26.00	2	4
MPRC0005	26.00	27.00	2	4
MPRC0005	27.00	28.00	3	6
MPRC0005	28.00	29.00	<]	13
MPRC0005	29.00	30.00	5	8
MPRC0005	30.00	31.00	2	8
MPRC0005	31.00	32.00	3	66
MPRC0005	32.00	33.00	5	161
MPRC0005	33.00	34.00	<]	83
MPRC0005	34.00	35.00	23	468
MPRC0005	35.00	36.00	5	748
MPRC0005	36.00	37.00	13	309
MPRC0005	37.00	38.00	49	2,478
MPRC0005	38.00	39.00	10	230
MPRC0005	39.00	40.00	3	87
MPRC0005	40.00	41.00	3	20
MPRC0005	41.00	42.00	3	24
MPRC0005	42.00	43.00	2	37
MPRC0005	43.00	44.00	3	25
MPRC0005	44.00	45.00	3	529
MPRC0005	45.00	46.00	3	69
MPRC0005	46.00	47.00	14	118
MPRC0005	47.00	48.00	2	31
MPRC0005	48.00	49.00	3	19
MPRC0005	49.00	50.00	<1	10
MPRC0005	50.00	51.00	3	6
MPRC0005	51.00	52.00	3	11
MPRC0005	52.00	53.00	2	17
MPRC0005	53.00	54.00	9	49
MPRC0005	54.00	55.00	2	130
MPRC0005	55.00	56.00	3	57
MPRC0005	56.00	57.00	3	27
MPRC0005	57.00	58.00	6	12
MPRC0005	58.00	59.00	3	9
MPRC0005	59.00	60.00	2	15
MPRC0005	60.00	61.00	3	18
MPRC0005	61.00	62.00	2	20
MPRC0005	62.00	63.00	3	69
MPRC0005	63.00	64.00	5	53
MPRC0005	64.00	65.00	1	14
MPRC0005	65.00	66.00	2	38

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0005	66.00	67.00	1	16
MPRC0005	67.00	68.00	8	441
MPRC0005	68.00	69.00	4	245
MPRC0005	69.00	70.00	14	69
MPRC0005	70.00	71.00	2	36
MPRC0005	71.00	72.00	<1	10
MPRC0005	72.00	73.00	2	26
MPRC0005	73.00	74.00	3	33
MPRC0005	74.00	75.00	4	17
MPRC0005	75.00	76.00	3	21
MPRC0005	76.00	77.00	8	31
MPRC0005	77.00	78.00	7	34
MPRC0005	78.00	79.00	7	18
MPRC0005	79.00	80.00	4	32
MPRC0006	0.00	1.00	<1	24
MPRC0006	1.00	2.00	<1	42
MPRC0006	2.00	3.00	10	77
MPRC0006	3.00	4.00	3	84
MPRC0006	4.00	5.00	15	15
MPRC0006	5.00	6.00	5	11
MPRC0006	6.00	7.00	4	11
MPRC0006	7.00	8.00	<1	16
MPRC0006	8.00	9.00	<1	18
MPRC0006	9.00	10.00	<1	11
MPRC0006	10.00	11.00	4	32
MPRC0006	11.00	12.00	<1	29
MPRC0006	12.00	13.00	2	31
MPRC0006	13.00	14.00	<1	31
MPRC0006	14.00	15.00	<1	33
MPRC0006	15.00	16.00	5	24
MPRC0006	16.00	17.00	<1	31
MPRC0006	17.00	18.00	1	31
MPRC0006	18.00	19.00	4	17
MPRC0006	19.00	20.00	<1	51
MPRC0006	20.00	21.00	22	297
MPRC0006	21.00	22.00	25	199
MPRC0006	22.00	23.00	187	1,185
MPRC0007	0.00	1.00	4	46
MPRC0007	1.00	2.00	<1	57
MPRC0007	2.00	3.00	7	177
MPRC0007	3.00	4.00	6	77
MPRC0007	4.00	5.00	2	31
MPRC0007	5.00	6.00	<1	22
MPRC0007	6.00	7.00	<1	19
MPRC0007	7.00	8.00	<1	18
MPRC0007	8.00	9.00	<1	23

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0007	9.00	10.00	<1	31
MPRC0007	10.00	11.00	<]	78
MPRC0007	11.00	12.00	8	26
MPRC0007	12.00	13.00	<]	30
MPRC0007	13.00	14.00	<1	23
MPRC0007	14.00	15.00	<1	25
MPRC0007	15.00	16.00	<1	27
MPRC0007	16.00	17.00	<]	30
MPRC0007	17.00	18.00	1	17
MPRC0007	18.00	19.00	<1	14
MPRC0007	19.00	20.00	1	13
MPRC0007	20.00	21.00	8	22
MPRC0007	21.00	22.00	<1	16
MPRC0007	22.00	23.00	<1	14
MPRC0007	23.00	24.00	2	25
MPRC0007	24.00	25.00	<]	9
MPRC0007	25.00	26.00	1	5
MPRC0007	26.00	27.00	<1	12
MPRC0007	27.00	28.00	7	26
MPRC0007	28.00	29.00	<1	28
MPRC0007	29.00	30.00	<1	41
MPRC0007	30.00	31.00	<1	19
MPRC0007	31.00	32.00	<1	20
MPRC0007	32.00	33.00	<1	33
MPRC0007	33.00	34.00	<1	35
MPRC0007	34.00	35.00	2	29
MPRC0007	35.00	36.00	3	10
MPRC0007	36.00	37.00	4	14
MPRC0007	37.00	38.00	4	81
MPRC0007	38.00	39.00	69	189
MPRC0007	39.00	40.00	2,160	3,514
MPRC0007	40.00	41.00	544	2,022
MPRC0007	41.00	42.00	5,300	11,100
MPRC0007	42.00	43.00	1,920	3,368
MPRC0007	43.00	44.00	37	283
MPRC0007	44.00	45.00	15	75
MPRC0007	45.00	46.00	11	74
MPRC0007	46.00	47.00	19	45
MPRC0007	47.00	48.00	1,180	1,820
MPRC0007	48.00	49.00	298	529
MPRC0007	49.00	50.00	65	44
MPRC0008	0.00	1.00	2	20
MPRC0008	1.00	2.00	<1	73
MPRC0008	2.00	3.00	13	80
MPRC0008	3.00	4.00	3	78
MPRC0008	4.00	5.00	1	31

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0008	5.00	6.00	<]	53
MPRC0008	6.00	7.00	<]	58
MPRC0008	7.00	8.00	2	21
MPRC0008	8.00	9.00	<]	27
MPRC0008	9.00	10.00	4	29
MPRC0008	10.00	11.00	<]	27
MPRC0008	11.00	12.00	5	43
MPRC0008	12.00	13.00	3	27
MPRC0008	13.00	14.00	2	69
MPRC0008	14.00	15.00	<]	61
MPRC0008	15.00	16.00	<]	43
MPRC0008	16.00	17.00	1	47
MPRC0008	17.00	18.00	<]	30
MPRC0008	18.00	19.00	<]	33
MPRC0008	19.00	20.00	1	61
MPRC0008	20.00	21.00	1	39
MPRC0008	21.00	22.00	3	58
MPRC0008	22.00	23.00	<]	16
MPRC0008	23.00	24.00	164	41
MPRC0008	24.00	25.00	5	48
MPRC0008	25.00	26.00	4	48
MPRC0008	26.00	27.00	1	76
MPRC0008	27.00	28.00	30	1,738
MPRC0008	28.00	29.00	2	33
MPRC0008	29.00	30.00	2	33
MPRC0008	30.00	31.00	<]	28
MPRC0008	31.00	32.00	2	40
MPRC0008	32.00	33.00	1	42
MPRC0008	33.00	34.00	5	10
MPRC0008	34.00	35.00	14	77
MPRC0008	35.00	36.00	1	18
MPRC0008	36.00	37.00	<1	22
MPRC0008	37.00	38.00	3	20
MPRC0008	38.00	39.00	2	29
MPRC0008	39.00	40.00	5	18
MPRC0008	40.00	41.00	<1	14
MPRC0008	41.00	42.00	<1	7
MPRC0008	42.00	43.00	<1	31
MPRC0008	43.00	44.00	2	11
MPRC0008	44.00	45.00	1	26
MPRC0008	45.00	46.00	<1	18
MPRC0008	46.00	47.00	<1	14
MPRC0008	47.00	48.00	2	24
MPRC0008	48.00	49.00	<1	28
MPRC0008	49.00	50.00	<1	22
MPRC0008	50.00	51.00	<]	19

Drill Hole	From	То	Au (ppb)	Cu (ppm)
MPRC0008	51.00	52.00	<]	23
MPRC0008	52.00	53.00	<]	24
MPRC0008	53.00	54.00	<]	27
MPRC0008	54.00	55.00	<]	25
MPRC0008	55.00	56.00	<]	30
MPRC0008	56.00	57.00	<]	24
MPRC0008	57.00	58.00	<]	10
MPRC0008	58.00	59.00	1	22
MPRC0008	59.00	60.00	<]	57
MPRC0008	60.00	61.00	<1	14
MPRC0008	61.00	62.00	<]	20
MPRC0008	62.00	63.00	<]	32
MPRC0008	63.00	64.00	<]	25
MPRC0008	64.00	65.00	1	27
MPRC0008	65.00	66.00	290	735
MPRC0008	66.00	67.00	2	128
MPRC0008	67.00	68.00	23	118
MPRC0008	68.00	69.00	313	1,738
MPRC0008	69.00	70.00	10	123
MPRC0008	70.00	71.00	68	168
MPRC0008	71.00	72.00	27	62
MPRC0008	72.00	73.00	3,110	1,697
MPRC0008	73.00	74.00	16	34
MPRC0008	74.00	75.00	16	22
MPRC0008	75.00	76.00	2	20