ASX ANNOUNCEMENT

RE⁄LEA\$ED 9 AUGUST 2024

High Grade Lithium at Jaegermeister

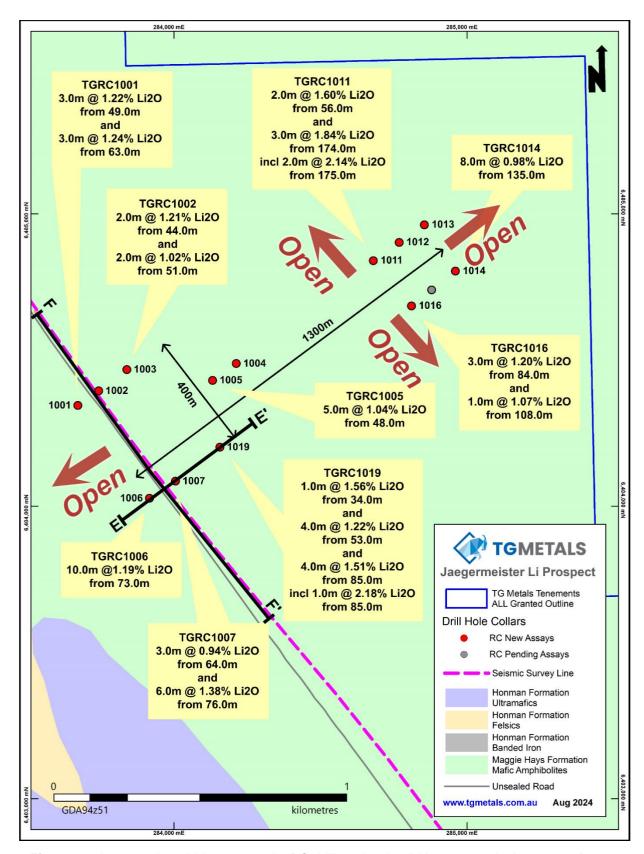
Highlights

- Assays received from maiden Jaegermeister drilling
- High grade lithium pegmatites discovered
- Highest assay result of 2.68% Li₂O
- Jaegermeister demonstrating similar size extent to Burmeister
- Seismic results show potential for additional Jaegermeister pegmatites

TG Metals Limited (**TG Metals** or the **Company**) (ASX:TG6) is pleased to provide results from exploration drilling activities at the Jaegermeister prospect, within the Lake Johnston Li-Ni-Au Project in Western Australia.

Lithium Drilling

Reverse Circulation (RC) drilling at the Jaegermeister lithium prospect has concluded with 19 drillholes completed for a total of 3,472m. The majority of assays have now been received and confirm multiple intersections of spodumene bearing pegmatites with high Li_2O grades and widths up to 10 metres (Figure 1).


Highlighted results (provided in detail in Table A) include -

- 10.0m @ 1.19% Li₂O from 73.0m
 - o including 2.0m @ 2.07% Li₂O from 77.0m
- 6.0m @ 1.38% Li₂O from 76.0m
 - o including 2.0m @ 2.00% Li₂O from 76m
- 3.0m @ 1.22% Li₂O from 49.0m and 3.0m @ 1.24% Li₂O from 63.0m (same hole)
 - \circ including 1.0m @ 2.68% Li₂O from 50m

TG Metals CEO, Mr. David Selfe stated;

"These are outstanding results for the initial drilling on Jaegermeister. It provides confidence that we have at least two areas of high grade lithium mineralization at Lake Johnston and further enhances the potential for a standalone spodumene lithium project for TG Metals. Multiple lithium pegmatites have been defined at Jaegermeister, at relatively shallow depths displaying size characteristics very similar to the nearby large Burmeister deposit. These pegmatites appear to be thickening towards the west, an area that will be a priority target for the next round of drilling at Lake Johnston."

Figure 1 – Jaegermeister lithium pegmatite RC drilling showing lithium pegmatite intercepts. Datum: AMG Zone 51 (GDA94).

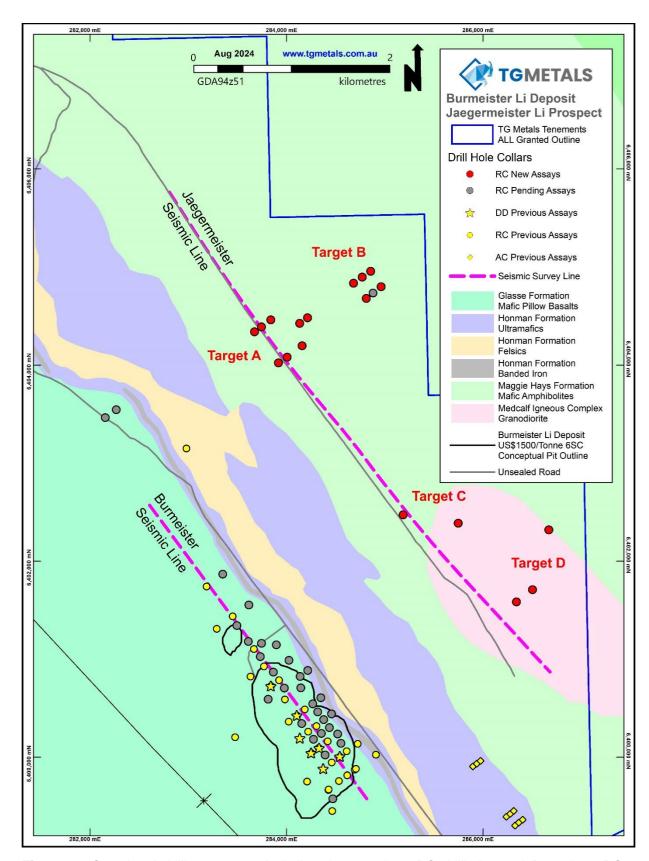
Table A – Significant RC drilling pegmatite intercepts >0.4% Li₂O, downhole widths are approximate to true widths. >0.4% Li₂O<1%Li₂O Green, >1%Li₂O <2%Li₂O Yellow, >2%Li₂O Red

Hole ID	FROM (m)	To (m)	Intercept (m)	Li₂O %
TGRC1001	49.0	52.0	3.0	1.22
	63.0	66.0	3.0	1.24
Including	50.0	51.0	1.0	2.68
TGRC1002	44.0	46.0	2.0	1.21
	51.0	53.0	2.0	1.02
TGRC1005	48.0	53.0	5.0	1.04
TGRC1006	73.0	83.0	10.0	1.19
Including	77.0	79.0	2.0	2.07
TGRC1007	64.0	67.0	3.0	0.94
	76.0	82.0	6.0	1.38
Including	76.0	78.0	2.0	2.00
TGRC1011	56.0	58.0	2.0	1.60
	174.0	177.0	3.0	1.84
Including	175.0	177.0	2.0	2.14
TGRC1014	135.0	143.0	8.0	0.98
Including	135.0	136.0	1.0	2.61
TGRC1016	84.0	87.0	3.0	1.20
	108.0	109.0	1.0	1.07
TGRC1019	34.0	35.0	1.0	1.56
	53.0	57.0	4.0	1.22
	85.0	89.0	4.0	1.51
Including	85.0	86.0	1.0	2.18

Pegmatite Intercepts

This RC drill program tested priority lithium soil targets A, B, C and D (Figure 2).

Targets A & B have proven to be well endowed with high grade lithium pegmatites up to 10m in thickness. The results point to a pegmatite system much larger than what has been drilled to date, open in all directions, with an apparent thickening of the pegmatites towards the west (Figure 3).


The discovery drilling at Burmeister initially intersected up to 9m pegmatite widths (ASX announcement 31 October 2023). The first drilling at Jaegermeister producing 10m widths and +2% Li₂O assay intervals is consistent with the initial Burmeister drilling and is a very encouraging indication of a strong lithium pegmatite system.

The pegmatites at Targets A and B have only been tested to shallow depths (relative to the nearby Burmeister deposit), with the deepest pegmatite interval intersected in this campaign being at 202m, with most others at less than 100m depth.

Interpretations suggest there is the potential for the pegmatites identified at Targets A & B to be one and the same. Should this theory be proven with subsequent drilling, Jaegermeister has the potential to be of similar size and scale to Burmeister.

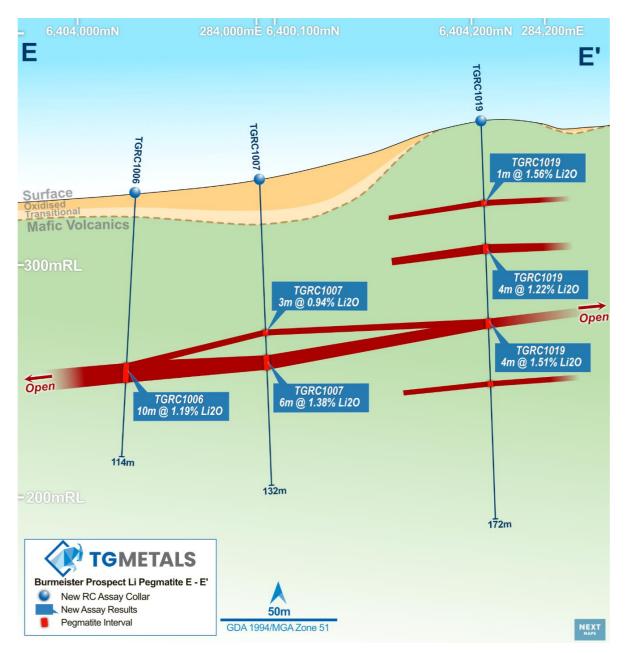
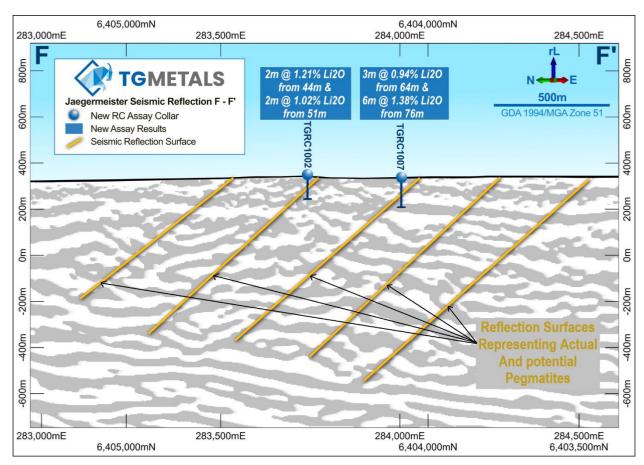

Drilling of Targets C & D intersected granitic lithologies, not previously mapped. This granite/granodiorite may be the source of the lithium soil anomalies that define Targets C & D at surface. Further geochemical analysis and drilling will be required to fully test these targets.

Figure 2 –Completed drilling program including Jaegermeister RC drillholes and Burmeister RC drillholes (assays pending).

Figure 3 –Cross section E-E' through Target A showing lithium pegmatite intercepts in drillholes at Jaegermeister.


Seismic Interpretation

Seismic field data was acquired for two traverse lines over the Burmeister and Jaegermeister trends. Preliminary interpretations of the results are being updated as new drill data is generated. On the Jaegermeister trend the seismic survey successfully detected the pegmatites at Target A, identified by this most recent drilling program (Figure 4).

The Seismic section (Figure 4) shows reflective surfaces and potentially pegmatites continuing to depth beyond 800m below surface. Pegmatite thicknesses cannot be determined from the seismic data, only one surface of the pegmatite can be detected. While drilling is required to determine thickness and grade of the pegmatites, seismic has proven

useful for predicting continuity of pegmatites and other adjacent targets. Multiple possible pegmatite horizons identified by the seismic survey have yet to be drill tested.

Figure 4 –Seismic section F-F' through Target A at Jaegermeister, showing interpreted reflection surfaces analogous to pegmatite intrusives.

Next Steps

Drilling at Lake Johnston has been suspended due to prolonged inclement weather. Drilling will resume at Burmeister when conditions allow. Further flora and fauna surveys will be conducted during spring over the Burmeister deposit and adjacent areas to prepare for resource development.

Drilling results for Burmeister infill drilling and one drillhole at Jaegermeister are pending. Samples have been submitted to the laboratory and assays are expected in the next few weeks.

The next round of drilling will concentrate on testing the down dip, westerly continuance for thickening of the pegmatite, the northern extensions of all pegmatites and the area between A & B to join the pegmatite drillhole intercepts into a single coherent +1500m width.

Metallurgical testwork is ongoing with complete sighter testwork expected to be finalised in September. This work is being conducted on previously drilled and reported Burmeister core. Core drilling at Jaegermeister will be planned after a second round of RC Drilling is conducted

and appropriate twinning hole positions are selected.

Regional reconnaissance exploration will commence at the Tay prospect to the south of Burmeister, Taylor Rocks prospect to the east of Jaegermeister and Wellstead Rock to the east of Burmeister when weather conditions allow.

Appendix 1

Table C – Drill hole collar table Jaegermeister RC drillholes

Hole ID	Hole	Easting	Northing	RL	EOH (m)	Azimuth	Dip
Tiole 15	Туре	GDA94 (m)	GDA94 (m)	(mASL)	LOTT (III)	Azimidtii	J.p
TGRC0066	RC	286337.000	6401593.000	334.660	200.00	235.00	-85.00
TGRC0067	RC	286501.000	6401717.000	336.148	198.00	235.00	-85.00
TGRC0068	RC	285183.910	6402480.770	334.377	270.00	235.00	-85.00
TGRC1001	RC	283671.240	6404347.515	336.293	204.00	239.00	-83.00
TGRC1002	RC	283742.197	6404397.416	342.955	102.00	241.50	-83.50
TGRC1003	RC	283838.523	6404470.163	345.606	162.00	236.00	-84.00
TGRC1004	RC	284212.077	6404490.749	349.743	163.00	58.00	-83.00
TGRC1005	RC	284130.933	6404433.421	347.477	162.00	67.00	-83.00
TGRC1006	RC	283915.529	6404030.281	330.640	114.00	229.00	-84.00
TGRC1007	RC	284004.634	6404088.892	336.638	132.00	53.00	-84.00
TGRC1011	RC	284679.884	6404842.838	364.064	204.00	236.00	-84.00
TGRC1012	RC	284767.888	6404905.079	369.953	207.00	56.50	-83.50
TGRC1013	RC	284853.868	6404965.279	372.320	192.00	79.00	-84.00
TGRC1014	RC	284960.000	6404807.000	389.148	198.00	90.00	-85.00
TGRC1015	RC	284879.000	6404743.000	379.268	198.00	90.00	-85.00
TGRC1016	RC	284810.000	6404688.000	373.325	198.00	90.00	-85.00
TGRC1017	RC	285745.000	6402395.000	337.351	198.00	90.00	-85.00
TGRC1018	RC	286667.000	6402328.000	343.898	198.00	90.00	-85.00
TGRC1019	RC	284156.000	6404205.000	361.761	172.00	90.00	-85.00

Table D – Full RC assay results & lithology (NSI = no significant interval)

Hole ID	FROM (m)	To (m)	Li₂O%	Lithology
TGRC0066	0.0	200.0	NSI	Target D
TGRC0067	0.0	198.0	NSI	Target D
TGRC0068	0.0	270.0	NSI	Target C
TGRC1001	47.000	48.000	0.07	Mafic
TGRC1001	48.000	49.000	0.10	Mafic
TGRC1001	49.000	50.000	0.46	Mafic/Peg
TGRC1001	50.000	51.000	2.68	Pegmatite
TGRC1001	51.000	52.000	0.51	Pegmatite
TGRC1001	52.000	53.000	0.14	Peg/Mafic
TGRC1001	53.000	54.000	0.20	Mafic
TGRC1001	54.000	55.000	0.12	Mafic
TGRC1001	55.000	56.000	0.10	Mafic
TGRC1001	60.000	61.000	0.09	Mafic
TGRC1001	61.000	62.000	0.08	Mafic
TGRC1001	62.000	63.000	0.10	Mafic
TGRC1001	63.000	64.000		Pegmatite
TGRC1001	64.000	65.000	1.68	Pegmatite
TGRC1001	65.000	66.000	0.93	Pegmatite
TGRC1001	66.000	67.000	0.18	Mafic
TGRC1001	67.000	68.000	0.11	Mafic
TGRC1001	104.000	105.000	0.02	Mafic
TGRC1001	105.000	106.000	0.03	Mafic
TGRC1001	106.000	107.000	0.03	Mafic
TGRC1001	107.000	108.000	0.03	Mafic
TGRC1002	39.000	40.000	0.07	Mafic
TGRC1002	40.000	41.000	0.08	Mafic
TGRC1002	41.000	42.000	0.06	Mafic
TGRC1002	42.000	43.000	0.09	Mafic
TGRC1002	43.000	44.000	0.17	Mafic
TGRC1002	44.000	45.000	0.56	Pegmatite
TGRC1002	45.000	46.000	1.86	Pegmatite
TGRC1002	46.000	47.000	0.35	Mafic
TGRC1002	47.000	48.000	0.13	Mafic
TGRC1002	48.000	49.000	0.14	Mafic
TGRC1002	49.000	50.000	0.21	Mafic
TGRC1002	50.000	51.000	0.21	Mafic
TGRC1002	51.000	52.000	0.97	Pegmatite
TGRC1002	52.000	53.000	1.07	Pegmatite
TGRC1002	53.000	54.000	0.14	Mafic
TGRC1002	54.000	55.000	0.07	Mafic
TGRC1002	55.000	56.000	0.07	Mafic
TGRC1002	95.000	96.000	0.08	Mafic
TGRC1002	96.000	97.000	0.09	Mafic
TGRC1002	97.000	98.000	0.12	Mafic
TGRC1002	98.000	99.000	0.11	Mafic
TGRC1002	99.000	100.000	0.10	Mafic

 Level 2, Suite 3
 T: +61 8 6211 5099

 West Perth WA 6005
 W: www.tgmetals.com.au

Table D - Continued

Hole ID	FROM (m)	To (m)	Li₂O%	Lithology
TGRC1003	39.000	40.000	0.06	Mafic
TGRC1003	Mafic			
TGRC1003	41.000	42.000	0.07	Mafic
TGRC1003	42.000	43.000	0.20	Peg/Mafic
TGRC1003	43.000	44.000	0.76	Pegmatite
TGRC1003	44.000	45.000	0.08	Mafic/Peg
TGRC1003	45.000	46.000	0.08	Mafic
TGRC1003	46.000	47.000	0.10	Mafic
TGRC1003	47.000	48.000	0.09	Mafic
TGRC1004	40.000	41.000	0.07	Mafic
TGRC1004	41.000	42.000	0.07	Mafic
TGRC1004	42.000	43.000	0.10	Mafic
TGRC1004	43.000	44.000	0.12	Mafic
TGRC1004	44.000	45.000	0.10	Mafic
TGRC1004	45.000	46.000	0.10	Mafic
TGRC1004	46.000	47.000	0.22	Mafic/Peg
TGRC1004	47.000	48.000	0.17	Mafic/Peg
TGRC1004	48.000	49.000	0.11	Mafic
TGRC1004	49.000	50.000	0.08	Mafic
TGRC1004	50.000	51.000	0.07	Mafic
TGRC1004	51.000	52.000	0.06	Mafic
TGRC1004	52.000	53.000	0.06	Mafic
TGRC1004	53.000	54.000	0.06	Mafic
TGRC1004	54.000	55.000	0.06	Mafic
TGRC1004	55.000	56.000	0.07	Mafic
TGRC1004	56.000	57.000	0.07	Mafic
TGRC1004	57.000	58.000	0.10	Mafic
TGRC1004	58.000	59.000	0.14	Mafic
TGRC1004	59.000	60.000	0.34	Mafic/Peg
TGRC1004	60.000	61.000	0.38	Pegmatite
TGRC1004	61.000	62.000	0.52	Pegmatite
TGRC1004	62.000	63.000		Mafic/Peg
TGRC1004	63.000	64.000	0.12	Mafic
TGRC1004	64.000	65.000	0.19	Mafic
TGRC1004	71.000	72.000	0.07	Mafic
TGRC1004	72.000	73.000	0.10	Mafic
TGRC1004	73.000	74.000	0.08	Mafic
TGRC1004	74.000	75.000	0.09	Mafic
TGRC1004	75.000	76.000	0.08	Mafic

Table D - Continued

Hole ID	FROM (m)	To (m)	Li₂O%	Lithology
TGRC1005	32.000	33.000	0.17	Mafic
TGRC1005	33.000	0.14	Mafic	
TGRC1005	34.000	35.000	0.21	Mafic
TGRC1005	35.000	36.000	0.10	Mafic
TGRC1005	44.000	45.000	0.07	Mafic
TGRC1005	45.000	46.000	0.07	Mafic
TGRC1005	46.000	47.000	0.06	Mafic
TGRC1005	47.000	48.000	0.06	Mafic
TGRC1005	48.000	49.000	0.93	Pegmatite
TGRC1005	49.000	50.000	1.22	Pegmatite
TGRC1005	50.000	51.000	0.13	Mafic
TGRC1005	51.000	52.000	1.00	Pegmatite
TGRC1005	52.000	53.000	1.92	Pegmatite
TGRC1005	53.000	54.000	0.38	Mafic
TGRC1005	54.000	55.000	0.10	Mafic
TGRC1005	55.000	56.000	0.08	Mafic
TGRC1005	84.000	85.000	0.07	Mafic
TGRC1005	85.000	86.000	0.07	Mafic
TGRC1005	100.000	101.000	0.09	Felsic
TGRC1005	101.000	102.000	0.08	Felsic
TGRC1005	102.000	103.000	0.12	Felsic
TGRC1005	103.000	104.000	0.12	Felsic
TGRC1005	104.000	105.000	0.12	Felsic
TGRC1005	105.000	106.000	0.12	Felsic
TGRC1005	106.000	107.000	0.16	Felsic
TGRC1005	107.000	108.000	0.19	Felsic
TGRC1005	108.000	109.000	0.19	Felsic
TGRC1005	109.000	110.000	0.15	Felsic
TGRC1005	110.000	111.000	0.08	Felsic
TGRC1005	111.000	112.000	0.17	Felsic
TGRC1005	112.000	113.000	0.14	Felsic
TGRC1005	113.000	114.000	0.13	Felsic
TGRC1005	114.000	115.000	0.10	Felsic
TGRC1005	115.000	116.000	0.13	Mafic
TGRC1005	116.000	117.000	0.10	Mafic
TGRC1005	117.000	118.000	0.08	Mafic
TGRC1005	118.000	119.000	0.12	Mafic
TGRC1005	119.000	120.000	0.08	Mafic

Table D - Continued

Table D - Continued Hole ID FROM (m) To (m) Li₂O%				Lithology
TGRC1006	40.000	41.000	_	Mafic
TGRC1006	41.000	42.000		Mafic
TGRC1006	42.000	43.000		Mafic/Peg
TGRC1006	43.000	44.000		Mafic
TGRC1006	71.000	72.000		Mafic
TGRC1006	72.000	73.000		Mafic
TGRC1006	73.000	74.000		Pegmatite
TGRC1006	74.000	75.000		Pegmatite
TGRC1006	75.000	76.000		Pegmatite
TGRC1006	76.000	77.000		Pegmatite
TGRC1006	77.000	78.000		Pegmatite
TGRC1006	78.000	79.000		Pegmatite
TGRC1006	79.000	80.000		Pegmatite
TGRC1006	80.000	81.000		Pegmatite
TGRC1006	81.000	82.000		Pegmatite
TGRC1006	82.000	83.000		Peg/Mafic
TGRC1006	83.000	84.000	0.22	Mafic
TGRC1006	95.000	96.000	0.11	Mafic
TGRC1006	96.000	97.000	0.10	Mafic
TGRC1006	97.000	98.000	0.09	Mafic
TGRC1006	98.000	99.000	0.10	Mafic
TGRC1007	64.000	65.000	0.48	Mafic
TGRC1007	65.000	66.000	1.23	Pegmatite
TGRC1007	66.000	67.000	1.13	Pegmatite
TGRC1007	67.000	68.000	0.21	Mafic/Peg
TGRC1007	68.000	69.000	0.13	Mafic
TGRC1007	69.000	70.000	0.12	Mafic
TGRC1007	70.000	71.000	0.08	Mafic
TGRC1007	71.000	72.000	0.07	Mafic
TGRC1007	72.000	73.000	0.06	Mafic
TGRC1007	73.000	74.000		Mafic
TGRC1007	74.000	75.000	0.14	Mafic
TGRC1007	75.000	76.000	0.14	Mafic
TGRC1007	76.000	77.000	1.46	Pegmatite
TGRC1007	77.000	78.000		Pegmatite
TGRC1007	78.000	79.000		Pegmatite
TGRC1007	79.000	80.000		Pegmatite
TGRC1007	80.000	81.000		Pegmatite
TGRC1007	81.000	82.000		Pegmatite
TGRC1007	82.000	83.000		Mafic
TGRC1007	83.000	84.000		Mafic
TGRC1007				Mafic
	112.000	113.000		
TGRC1007	113.000	114.000	0.04	Mafic

Table D - Continued

Hole ID	FROM (m)	To (m)	Li₂O%	Lithology
TGRC1011	52.000	53.000		Mafic
TGRC1011	53.000	54.000		Mafic
TGRC1011	54.000	55.000		Mafic
TGRC1011	55.000	56.000		Mafic
TGRC1011	56.000	57.000		Pegmatite
TGRC1011	57.000	58.000		Pegmatite
TGRC1011	58.000	59.000		Peg/Mafic
TGRC1011	59.000	60.000		Peg/Mafic
TGRC1011	60.000	61.000		Mafic
TGRC1011	61.000	62.000		Mafic
TGRC1011	62.000	63.000		Mafic
TGRC1011	63.000	64.000		Mafic
TGRC1011	88.000	89.000		Mafic
TGRC1011	89.000	90.000		Mafic/Peg
TGRC1011	90.000	91.000		Mafic
TGRC1011	91.000	92.000		Mafic
TGRC1011	168.000	169.000		Mafic
TGRC1011	169.000	170.000		Mafic
TGRC1011	170.000	171.000		Mafic
TGRC1011	171.000	172.000		Mafic
TGRC1011	172.000	173.000	0.23	Mafic
TGRC1011	173.000	174.000	0.24	Mafic/Peg
TGRC1011	174.000	175.000		Pegmatite
TGRC1011	175.000	176.000	2.27	
TGRC1011	176.000	177.000	2.00	Pegmatite
TGRC1011	177.000	178.000	0.23	Mafic
TGRC1011	178.000	179.000	0.17	Mafic
TGRC1011	179.000	180.000	0.15	Mafic
TGRC1012	76.000	77.000	0.05	Mafic
TGRC1012	77.000	78.000	0.07	Mafic
TGRC1012	78.000	79.000	0.50	Pegmatite
TGRC1012	79.000	80.000	0.05	Mafic/Peg
TGRC1012	80.000	81.000	0.03	Mafic/Peg
TGRC1012	81.000	82.000	0.10	Mafic/Peg
TGRC1012	82.000	83.000	0.03	Mafic/Peg
TGRC1012	83.000	84.000	0.09	Mafic
TGRC1012	190.000	191.000	0.09	Mafic
TGRC1012	191.000	192.000	0.10	Mafic
TGRC1012	196.000	197.000	0.11	Mafic
TGRC1012	197.000	198.000	0.08	Mafic
TGRC1012	198.000	199.000		Mafic
TGRC1012	199.000	200.000		Mafic/Peg
TGRC1012	200.000	201.000		Mafic
TGRC1012	201.000	202.000		Mafic/Peg
TGRC1012	202.000	203.000		Pegmatite
TGRC1012	203.000	204.000		Peg/Mafic
TGRC1012	204.000	205.000		Mafic
TGRC1012 TGRC1012	205.000 206.000	206.000 207.000		Mafic Mafic

Level 2, Suite 3 28 Ord Street

West Perth WA 6005

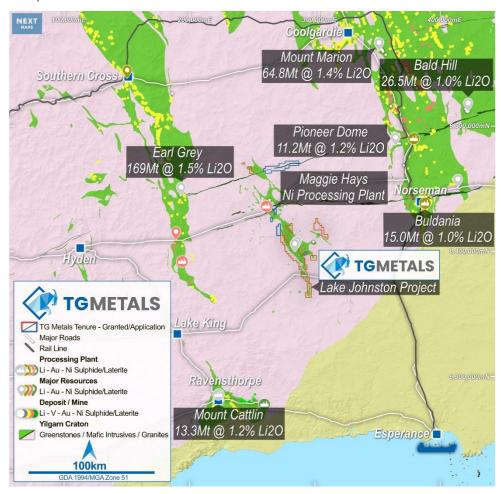
Table D - Continued

Hole ID	FROM (m)	To (m)	Li₂O%	Lithology
TGRC1013	94.000	95.000	0.07	Mafic
TGRC1013	95.000	96.000	0.06	Mafic
TGRC1013	100.000	101.000	0.08	Mafic
TGRC1013	101.000	102.000	0.15	Mafic
TGRC1013	102.000	103.000	0.95	Pegmatite
TGRC1013	103.000	104.000	0.11	Peg/Mafic
TGRC1013	104.000	105.000	0.05	Mafic
TGRC1013	105.000	106.000	0.16	Mafic
TGRC1013	106.000	107.000	0.16	Mafic
TGRC1013	107.000	108.000	0.15	Mafic
TGRC1013	108.000	109.000	0.12	Mafic
TGRC1014	112.000	113.000	0.06	Mafic
TGRC1014	113.000	114.000	0.07	Mafic/Qtz
TGRC1014	114.000	115.000	0.08	Mafic
TGRC1014	115.000	116.000	0.07	Mafic
TGRC1014	132.000	133.000	0.10	Mafic
TGRC1014	133.000	134.000	0.09	Mafic
TGRC1014	134.000	135.000	0.10	Mafic
TGRC1014	135.000	136.000	2.61	Pegmatite
TGRC1014	136.000	137.000	0.63	Pegmatite
TGRC1014	137.000	138.000	0.35	Mafic/Peg
TGRC1014	138.000	139.000	0.44	Mafic/Peg
TGRC1014	139.000	140.000	0.63	Pegmatite
TGRC1014	140.000	141.000	1.35	Pegmatite
TGRC1014	141.000	142.000	0.95	Pegmatite
TGRC1014	142.000	143.000	0.86	Pegmatite
TGRC1014	143.000	144.000	0.15	Peg/Mafic
TGRC1014	144.000	145.000	0.10	Mafic
TGRC1014	145.000	146.000	0.09	Mafic
TGRC1014	146.000	147.000	0.07	Mafic
TGRC1014	147.000	148.000	0.06	Mafic
TGRC1015	102.000	103.000	Pending	Peg/Mafic
TGRC1015	103.000	104.000	Pending	Mafic
TGRC1015	104.000	105.000	Pending	Mafic
TGRC1015	105.000	106.000	Pending	Pegmatite
TGRC1015	106.000	107.000	Pending	Pegmatite
TGRC1015	107.000		Pending	Pegmatite
TGRC1015	108.000	109.000	Pending	Pegmatite
TGRC1015	120.000	121.000	Pending	Peg/Mafic
TGRC1015	121.000	122.000	Pending	Mafic
TGRC1015	122.000	123.000	Pending	Pegmatite
TGRC1015	123.000	124.000	Pending	Peg/Mafic

Table D - Continued

Hole ID	FROM (m)	To (m)	Li₂O%	Lithology
TGRC1016	80.000	81.000	0.05	Mafic
TGRC1016	81.000	82.000	0.07	Mafic
TGRC1016	82.000	83.000	0.08	Mafic
TGRC1016	83.000	84.000	0.08	Mafic
TGRC1016	84.000	85.000	0.94	Peg/Mafic
TGRC1016	85.000	86.000	1.70	Pegmatite
TGRC1016	86.000	87.000	0.95	Pegmatite
TGRC1016	87.000	88.000	0.06	Peg/Mafic
TGRC1016	88.000	89.000	0.08	Mafic
TGRC1016	89.000	90.000	0.07	Mafic/Peg
TGRC1016	90.000	91.000	0.03	Mafic/Peg
TGRC1016	91.000	92.000	0.28	Peg/Mafic
TGRC1016	92.000	93.000	0.17	Mafic
TGRC1016	93.000	94.000	0.09	Mafic
TGRC1016	94.000	95.000	0.09	Mafic
TGRC1016	105.000	106.000	0.06	Mafic
TGRC1016	106.000	107.000	0.07	Mafic
TGRC1016	107.000	108.000	0.18	Pegmatite
TGRC1016	108.000	109.000	1.07	Pegmatite
TGRC1016	109.000	110.000	0.16	Mafic
TGRC1016	110.000	111.000	0.08	Mafic
TGRC1016	111.000	112.000	0.08	Mafic
TGRC1016	112.000	113.000	0.10	Mafic
TGRC1016	113.000	114.000	0.08	Mafic
TGRC1016	114.000	115.000	0.10	Mafic
TGRC1016	115.000	116.000	0.12	Mafic
TGRC1016	116.000	117.000	0.29	Peg/Mafic
TGRC1016	117.000	118.000	0.12	Mafic
TGRC1016	118.000	119.000	0.11	Mafic
TGRC1016	119.000	120.000	0.11	Mafic
TGRC1016	148.000	149.000	0.11	Mafic
TGRC1016	149.000	150.000	0.12	Mafic
TGRC1016	150.000	151.000	0.14	Mafic
TGRC1016	151.000	152.000	0.19	Peg/Mafic
TGRC1016	152.000	153.000	0.20	Mafic
TGRC1016	153.000	154.000	0.15	Mafic
TGRC1016	154.000	155.000	0.11	Mafic
TGRC1017	92.000	93.000	0.00	Granodiorite
TGRC1017	93.000	94.000	0.00	Granodiorite
TGRC1017	94.000	95.000	0.01	Granodiorite
TGRC1017	95.000	96.000	0.00	Granodiorite

Table D - Continued


Hole ID	FROM (m)	To (m)	Li ₂ O%	Lithology
TGRC1018	95.000	96.000	0.00	Mafic
TGRC1019	32.000	0.26	Mafic	
TGRC1019	33.000	0.28	Mafic	
TGRC1019	34.000	35.000	1.56	Pegmatite
TGRC1019	35.000	36.000	0.17	Peg/Mafic
TGRC1019	36.000	37.000	0.16	Mafic
TGRC1019	37.000	38.000	0.10	Mafic
TGRC1019	38.000	39.000	0.07	Mafic
TGRC1019	39.000	40.000	0.06	Mafic
TGRC1019	48.000	49.000	0.18	Mafic
TGRC1019	49.000	50.000	0.14	Mafic
TGRC1019	50.000	51.000	0.16	Mafic
TGRC1019	51.000	52.000	0.10	Mafic
TGRC1019	52.000	53.000	0.14	Mafic
TGRC1019	53.000	54.000	1.73	Peg/Mafic
TGRC1019	54.000	55.000	0.74	Mafic/Peg
TGRC1019	55.000	56.000	0.46	Mafic/Peg
TGRC1019	56.000	57.000	1.94	Pegmatite
TGRC1019	57.000	58.000	0.41	Mafic/Peg
TGRC1019	58.000	59.000	0.16	Mafic
TGRC1019	59.000	60.000	0.12	Mafic
TGRC1019	60.000	61.000	0.10	Mafic
TGRC1019	61.000	62.000	0.05	Mafic
TGRC1019	83.000	84.000	0.09	Mafic
TGRC1019	84.000	85.000	0.22	Mafic
TGRC1019	85.000	86.000	2.18	Pegmatite
TGRC1019	86.000	87.000	1.70	Pegmatite
TGRC1019	87.000	88.000	1.13	Pegmatite
TGRC1019	88.000	89.000		Pegmatite
TGRC1019	89.000	90.000	0.24	Mafic
TGRC1019	100.000	101.000	0.15	Mafic
TGRC1019	101.000	102.000	0.13	Mafic
TGRC1019	109.000	110.000	0.18	Mafic
TGRC1019	110.000	111.000	0.15	Mafic
TGRC1019	111.000	112.000	0.29	Mafic
TGRC1019	112.000	113.000		Mafic
TGRC1019	113.000	114.000	0.50	Pegmatite
TGRC1019	114.000	115.000	0.21	Mafic
TGRC1019	115.000	116.000	0.08	Mafic
TGRC1019	128.000	129.000	0.08	Mafic
TGRC1019	129.000	130.000	0.09	Mafic

ı

About TG Metals

TG Metals is an ASX listed company focused on exploring for lithium, nickel and gold at its wholly owned Lake Johnston Project in the stable jurisdiction of Western Australia. The Lake Johnston Project, Figure 5, hosts the Burmeister high grade lithium deposit, Jaegermeister lithium pegmatites and several surrounding lithium prospects. Burmeister is in proximity to four lithium processing plants and undeveloped deposits.

Figure 5 – Lake Johnston Project Location. Simplified Geology with regional lithium deposit locations Datum: AMG Zone 51 (GDA94).

Authorised for release by TG Metals Board of Directors.

Contact

Mr David Selfe
Chief Executive Officer

Email: info@tgmetals.com.au

Investor RelationsEvy Litopoulous

ResolvelR

Email: evy@resolveir.com

Competent Person Statement

Information in this announcement that relates to exploration results, exploration strategy, exploration targets, geology, drilling and mineralisation is based on information compiled by Mr David Selfe who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Selfe has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities that he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Selfe has consented to the inclusion in this presentation of matters based on their information in the form and context in which it appears.

Forward Looking Statements

This announcement may contain certain statements that may constitute "forward looking statements". Such statements are only predictions and are subject to inherent risks and uncertainties, which could cause actual values, results, performance achievements to differ materially from those expressed, implied or projected in any forward looking statements.

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)" and similar expressions are intended to identify forwardlooking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

The Company believes that it has a reasonable basis for making the forward-looking Statements in the presentation based on the information contained in this and previous ASX announcements.

The Company is not aware of any new information or data that materially affects the information included in this ASX release, and the Company confirms that, to the best of its knowledge, all material assumptions and technical parameters underpinning the exploration results in this release continue to apply and have not materially changed.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC C	ode explanation	Commentary
Sampling techniques	specif to the sonde	e and quality of sampling (eg cut channels, random chips, or fic specialised industry standard measurement tools appropriate minerals under investigation, such as down hole gamma as, or handheld XRF instruments, etc). These examples should be taken as limiting the broad meaning of sampling.	Drilling: Reverse Circulation (RC) drill cuttings were bagged and labelled every metre interval. A calico sample per metre was collected directly from the cone splitter, with the remainder of the drill cutting placed in a labelled green plastic bag. Only metre interval samples logged as 'pegmatite' were analysed for lithium mineralisation. The intervals logged as 'mafic/ultramafic' were later composite sampled (4m interval) in the field using a spear. These samples have been submitted to the lab for assay (low priority).
			Seismic: The seismic 2D reflection survey was completed by Ultramag Geophysics Pty Ltd (Ultramag) using Lightning eVibe 1200N instrument and picked up by Stryde wireless receiver sensors.
		de reference to measures taken to ensure sample representivity ne appropriate calibration of any measurement tools or systems	Calico samples (representative of the meter interval drilled) logged as pegmatite were submitted for assay to Jinning Laboratories Pty Ltd (Jinning Laboratories). Sample blanks of bought yellow sand were inserted at every 50 th sample interval. TG Metals Limited purchased 4 x lithium standards from Geostats Pty Ltd which were placed in the sequence at every 25 th sample interval. Duplicate RC sampling will be completed once assay results have been received. These samples will be selected based on grade range to cover the areas of mineralisation. Duplicate RC samples will be split from the remainder of the drill cutting (the contents of the green bag) and the calico duplicate sample to be sent to Jinning Laboratories for assay. Jinning Laboratories included and reported their own lithium standards, blanks and pulp duplicates at rates compliant to industry standards.
	•	ts of the determination of mineralisation that are Material to ublic Report.	Certified Laboratory assays – Jinning Laboratories Pty Ltd

-			
Criteria		ORC Code explanation	Commentary
	•	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	The RC rig used was fitted with a cone splitter (industry standard) from which a representative 2-3kg sample of the drilling interval was collected directly from the rig via a chute. The remainder of the drill material for the metre interval was collected and placed in a labelled green bag (with hole id and sample interval). All RC samples submitted to the laboratory listed in Table D of the report were sorted, dried, and pulverized to less than 75 microns. All samples were analysed using Sodium Peroxide Fusion and ICP-OES analytical process where 0.25g of sample was fused in a furnace (~650 deg) with Sodium Peroxide in a nickel crucible. The melt was dissolved in dilute hydrochloric acid and the solution analysed. This process provides complete dissolution of minerals including silicates. It should be noted that volatiles can be lost at high fusion temperatures.
Drilling techniques	•	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	All samples for assay were obtained from a RC Rig owned and operated by Raglan Drilling Pty Ltd (Raglan).
Drill sample recovery	•	Method of recording and assessing core and chip sample recoveries and results assessed.	RC samples were collected directly from the RC rig passing through the cyclone and industry standard fitted cone splitter. A labelled calico bag was attached to a shoot at the base of the cyclone and splitter to collect a 12% split of the metre interval (drill cutting) to achieve a 3kg representative sample for assay. The remainder of the drill cutting (metre interval) was collected in labelled 600 x 900 mm green bag, placed on the ground in order of depth (drilled interval). The volume of RC drill cuttings recovered was visually checked by the supervising geologist and driller to ensure consistent relative volumes were obtained for each metre interval. The estimated value (recovery) was recorded on the geological log sheet as good, moderate or poor. Poor recoveries were immediately dealt with in the field with the

Criteria	JORC Code explanation	Commentary
		supervising geologist and driller to remedy.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Sample recoveries recorded were consistent and 'good' (representative of the drilling interval) during the RC drill program. Damp/Wet and poor sample return was encountered at depths where significant water was intersected. Raglan experienced drillers were able to manage water with auxiliary air pressure and holes were terminated if the driller was unable to suppress water in the sample.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	An industry standard cone splitter was fitted to the base of the cyclone of the RC rig with shoots configured to collect a 3kg representative sample for assay and remainder collected in labelled green bag. Cone splitters are widely used as literature and studies (AusIMM publication) found to provide the best split in terms of particle size distribution, with no apparent size bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	A portion of the RC drill cutting of the metre interval was placed into a chip tray for geological logging and for future reference. Clay intervals in regolith were not sieved, however any remnant rock/hard material were sieved and washed for identification. TG Metals Limited geological logging system recognizes: Recognises fresh rock vs regolith. Is both qualitative and quantitative. Industry and geological standards were followed recording every detail observed. Every interval (m) drilled was logged. 20m interval Chip trays were labelled and used to store a small representative sample for future reference.
Sub- sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	N/A
techniques	If non-core, whether riffled, tube sampled, rotary split, etc and	Every RC metre drilled was collected via a cone splitter fitted to the RC

Criteria	JORC Code explanation	Commentary
and sample preparation	whether sampled wet or dry.	drill rig. A calico sample of approx. 12% of the drilling metre interval was obtained directly from the chute of the cone splitter. The remainder of the drill cutting was collected and placed directly in a labelled industry standard green bag.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Splitting of RC sample was done directly off the RC rig using an industry standard fitted cone splitter attached to bottom of the cyclone. The sample weight was checked to ensure 2-3kg representative sample was collected for the drilling interval (m).
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	The cone splitter was checked and cleaned after every metre drilled to ensure no sample build up had occurred. All sample return from the metre interval was collected directly into the calico and green bag.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Duplicate sampling will be completed after initial assay results have been received. Sample duplicates will cover intervals of mineralisation to ensure adequate grade bins are achieved for QAQC checks, statistics and grade variability. These samples will be split in the field using the contents of collected drilling interval retained in the green bag.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample size was considered appropriate for the lithology.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Jinning Laboratories is a Certified Analytical Laboratory. Samples analysed for 21 multielement Sodium Peroxide Fusion and ICP-OES analytical process were fused in a furnace (~ 650 °C) with sodium peroxide in a nickel crucible. The melt was dissolved in dilute hydrochloric acid and the solution analysed. This process provides complete dissolution of most minerals, including silicates. Volatile elements were lost at the high fusion temperatures. Jinning Laboratories recommended this analytical process for lithium mineralisation based on internal studies and external academic research.

Criteria	J(ORC Code explanation	Commentary
	•	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Drilling: North seeking downhole Gyro was used to obtain hole drift orientation. The tool was calibrated as per operating procedure. Downhole data was recorded every 5m and provided to TG Metals Limited in digital format to be uploaded into TG Metals database by the supervising geologist.
			Seismic: Stryde node receivers were placed at 10m spacing and transmitter (source) spacing of 10m over the 9km of the line survey. Each data point was measured for a total of 30 second sweep duration at 6-96Hz at each source point.
	•	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	TG Metals Limited inserted a sand blank at every 50th sample and bought lithium standards at every 25th interval for samples submitted. Jinning Laboratory included their own lithium standards, blanks and replicates at rates compliant to industry standards. These were reported and uploaded into TG Metals database for QA/QC reporting.
Verification of sampling and	•	The verification of significant intersections by either independent or alternative company personnel.	Significant assay intersections were determined by the presence logged (visual) spodumene and >1.0% Li ppm assay results.
and assaying	•	The use of twinned holes.	No twinned holes were drilled during the RC program.
	•	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All primary geological logging was recorded in the field on paper and later entered into an MS Excel spreadsheet. Assay data was reported and emailed in MS Excel format. Survey data, collar pick up and downhole survey also emailed and provided in MS Excel format. All these files were loaded into TG Metals Limited Micromine database for validation. Any errors were investigated and fixed prior to reporting. Data is retained as a flat table in the Micromine Database. The original MS Excel spreadsheets have been retained and saved in TG Metals server. Micromine and server backups are completed weekly.
	•	Discuss any adjustment to assay data.	All reported assay data was imported into the TG Metals Limited

Criteria	J	ORC Code explanation	Commentary
			Micromine Database. No adjustments were made to the data.
Location of data points	•	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drilling: The location of each hole, as drilled, was recorded at the collar at ground level with a Garmin Montana 750i Handheld GPS. Accuracy is +/- 3m. Satellite coverage was checked every recording to ensure accuracy. Downhole surveys were completed by Raglan using downhole Gyro at every 5m to record any deviations post drilling. The digital data obtained has been uploaded into TG Metals Micromine Database.
			Seismic: All stations were located, and data collection points recorded using Ultramag DGPS survey equipment.
	•	Specification of the grid system used.	The field datum used was MGA_GDA94, Zone 51. All maps in this report are referenced to GDA94 when merged with Geophysics data.
	•	Quality and adequacy of topographic control.	Regional Topographic Control was captured using an airborne imagery and LIDAR survey conducted by TG Metals in April 2023. Z level (aka rL) was projected to this surface and updated in the TG Metals Limited collar file. GPS z level is only used outside of this surface.
Data spacing and	•	Data spacing for reporting of Exploration Results.	The drill spacing was a nominal 50m across strike and between 100m - 200m along strike.
distribution	•	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The current spacing is not sufficient for a Mineral Resource Estimate (MRE).
	•	Whether sample compositing has been applied.	Intervals logged as 'mafic/ultramafic' were 4m composite sampled. These results are pending and not yet reported.
Orientation of data in	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering	The pattern was rotated to ensure the long axis (200m) was along strike, while the short axis (100-50m) was across strike of the targeted

Criteria	J	ORC Code explanation	Commentary
relation to geological		the deposit type.	mafic/pegmatite areas.
structure	•	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling was angled 80-85 degrees to allow for the use of a downhole imaging tool to map any in-situ structures and orientation – to be completed. No sampling bias was assumed.
Sample security	•	The measures taken to ensure sample security.	Calico bags were placed for each metre interval on top of the labelled green bag containing the remainder of the drill cutting. Samples were collected by an experienced field assistant referring to sample sheet prepared by the supervising geologist. Calicos were checked and re-tied as required before placing into a labelled polyweave (not exceeding 5 calicos per polyweave). Each polyweave bag was cable tied and placed placed into bulka bag on a TG Metals Limited owned tandem trailer. The trailer and samples were driven direct from the drill site to the lab by a TG Metals Limited staff member.
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	Standards and blanks were cross checked against expected values to look for variances of greater than 2 standard deviations.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral Tenement	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	The reported drilling and results were located on exploration tenement E63/1997, 100% owned and operated by TG Metals Limited. This area is under ILUA legislation, and the claimants are the Ndadju people whom TG Metals has a Heritage Protection Agreement in place. The area is also within PNR 84, a proposed nature reserve since 1982.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	At the time of reporting there are no known impediments to obtaining a license to operate in the area other than those listed, and TG Metals Limited tenements are in good standing.

Criteria	JO	RC Code explanation	Commentary
Exploration Done by Other Parties	•	Acknowledgement and appraisal of exploration by other parties.	Exploration in the area previously concentrated on nickel and gold by Maggie Hays Nickel, LionOre International, Norilsk and White Cliff Nickel.
Geology	•	Deposit type, geological setting and style of mineralisation.	The deposit type sought is to be Lithium-Cesium-Tantalum (LCT) spodumene bearing pegmatite. LCT mineralised pegmatites within the Yilgarn Craton are commonly low lying intrusives hosted in ultramafic/mafic greenstone sequences of upper greenschist/amphibolite metamorphic facies.
Drillhole Information	•	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length.	Refer to tables and maps in the body text.
Data Aggregation Methods	•	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	None used. All assays reported as received.
	•	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation should be shown in detail.	Aggregate intervals for significant intercepts may include 1m intervals of lower grade material than the cutoff where that interval is bounded top and bottom by higher grade material above cutoff grade and the overall weighted average grade does not drop below the cutoff grade.
	•	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None used.
Relationship Between	•	If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.	The initial RC exploration drilling tested the soil anomalies and based drill orientation on regional geological/structural trends.

Criteria	JORC Code explanation	Commentary
Widths and Intercept Widths		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	Map of the processed data is provided in the body text.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reporting used a grade cutoff of $0.5\%~\text{Li}_2\text{O}$ for significant mineralisation. Results below this, unless in an extension into a "low Grade zone" are not reported.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No historical drilling was available, only non-disturbing ground exploration – open file GSWA regional geophysics and surface soil geochemistry completed by TG Metals Limited in 2023 (regional) and 2024 (infill).
Further Work	The Nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large scale step-out drilling.	Step out drilling from the RC holes drilled will occur in several phases at TG Metals Limited lithium prospect, Jaegermeister. This will ensure that most drilling is centered around significant mineralisation avoiding 'waste drilling'. RC drilling is considered to be effective for locating and defining LCT pegmatite mineralisation.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Map of the processed data is provided in the body text.