

Significant Lithium Anomalies in Latest Soil Samples at Padre Paraíso.

HIGHLIGHTS

- <u>Significant lithium Assays</u>: Assay results from 266 soil samples have returned lithium concentrations of up to 140 ppm, exceeding initial expectations.
- <u>Target Areas Identified</u>: lithium anomalies were detected in 2 specific zones, which are now prioritized for further exploration.
- <u>Enhanced Exploration Potential</u>: The results suggest substantial potential for lithium mineralization to be drilled to test for spodumene-bearing pegmatites at depth.

Si6 Metals Limited (**Si6** or **the Company**) (**ASX:SI6**) is pleased to announce that it has received 266 soil sample assay results at its Padre Paraíso lithium prospect in the Lithium Valley, Brazil, where significant anomalous lithium zones have been identified with strong lithium potential. The Padre Paraiso prospect is located ~20km from Sigma Lithum Corp's high purity "Green Lithium" concentrate mine (Grota do Cirilo Project - 85.6Mt measured and indicated resource at 1.4% Li₂O¹) (Figure 1). The high grade anomalous lithium soil zones demonstrate a significant lithium discovery potential within a confirmed and extensive 3km pegmatite corridor.

Details of the Sampling Program:

The soil sampling program was completed in July and covered an area of approximately 237 hectares (2.37km²). The sampling was conducted over a previously identified pegmatite corridor approximately 3km long by 800m wide, where previous surface and auger samples returned strong lithium anomalies up to 401ppm Li_2O^2 . A total of 266 samples were collected on a grid pattern with a spacing of 200m x 50m (Figure 2).

The assay results have identified several zones with elevated lithium values against background. The highest recorded value was 140ppm Li, found in the middle eastern portion of pegmatite corridor.

Geological Context:

The lithium anomalies are concentrated in the Salinas formation zone associated with pegmatite intrusives. This geological setting is conducive to lithium mineralization, typically found in lithium deposits on the Lithium Valley province including Latin Resources' Colina MRE and Sigma's Grota do Cirilo Project.

¹ https://sigmalithiumresources.com/grota-do-cirilo/

² Refer Si6 ASX release 30 May 2024 "3km Pegmatite Discovery in Lithium Valley & Board Change"

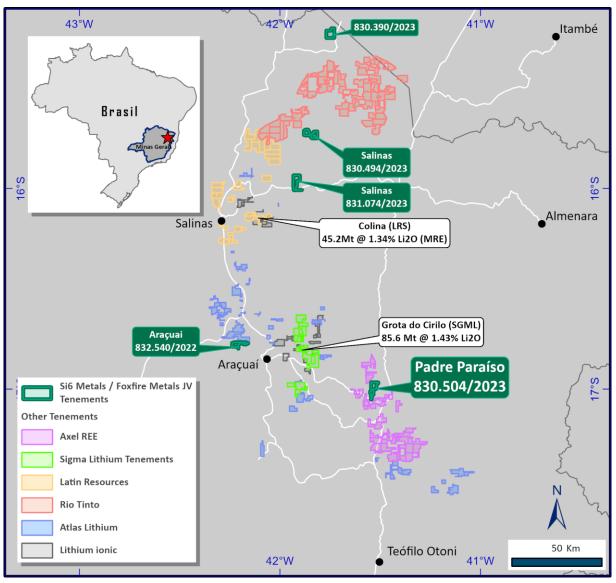


Figure 1: Padre Paraíso project location map

Si6 Chairman Ian Kiers commented:

"We are very encouraged by these initial results, which confirm the presence of significant lithium anomalies within our project area. The combination of high lithium values and favourable geological settings enhances our confidence in the potential of Padre Paraíso to host a substantial lithium resource. Our next steps will focus on expanding and refining our exploration efforts to unlock the full potential of this exciting opportunity".

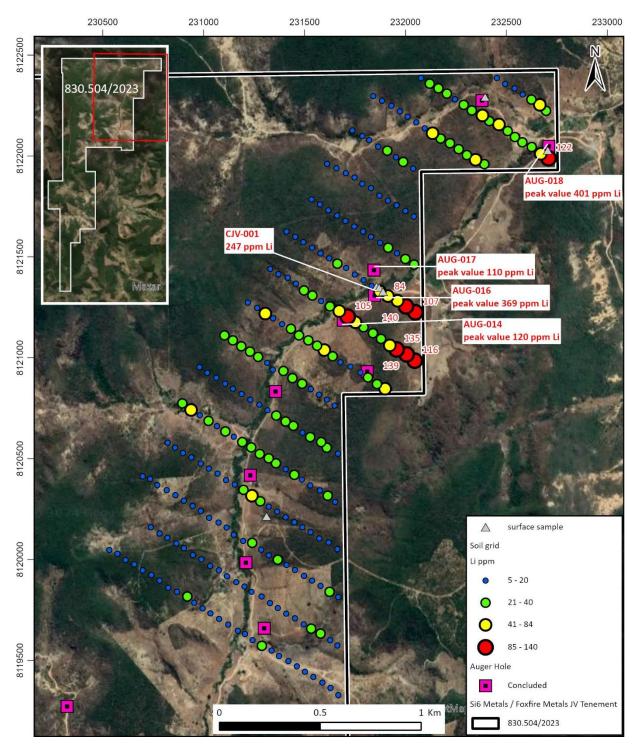


Figure 2: Soil grid Li ppm assay results in the Padre Paraíso prospect and location of auger holes which were drilled on most of the soil traverses to evaluate the geological environment.

Figure 3: Rock sample CJV-001 (247 ppm Li – 695 ppm Rb - 107.7 ppm Cs)

Figure 4: Auger hole CJV-AUG-018 with peak value 401 ppm Li

Table 1: Soil samples assay results

SampleID	Easting	Northing	Li ppm	Cs ppm	Rb ppm	К ррт	Mg ppm
CJV-SL-0001	232,709.42	8,121,988.97	122	19.6	244	14,496	2,200
CJV-SL-0002	232,670.68	8,122,010.40	78	13.3	221	19,429	1,512
CJV-SL-0003	232,626.54	8,122,045.27	30	7	193	20,615	1,387
CJV-SL-0004	232,579.79	8,122,067.59	22	3.3	125	15,768	653
CJV-SL-0006	232,542.36	8,122,094.35	28	5.5	123	14,679	510
CJV-SL-0007	232,505.97	8,122,123.78	31	6	91	10,588	431
CJV-SL-0008	232,463.05	8,122,155.35	62	10.8	274	23,436	989
CJV-SL-0009	232,416.14	8,122,173.24	31	6.7	86	8,838	357
CJV-SL-0010	232,380.95	8,122,200.25	49	9.2	202	18,252	478
CJV-SL-0011	232,328.41	8,122,225.71	28	8.3	56	4,695	541
CJV-SL-0012	232,288.94	8,122,253.66	31	5.8	76	8,416	243
CJV-SL-0013	232,245.54	8,122,280.90	16	2.5	84	10,589	262
CJV-SL-0014	232,205.64	8,122,309.51	24	7.3	136	11,932	795
CJV-SL-0015	232,163.96	8,122,335.22	34	17.1	218	16,398	2,400
CJV-SL-0016	232,119.53	8,122,359.23	21	4.4	113	13,244	394
CJV-SL-0017	232,077.41	8,122,386.82	5	2.1	20	2,216	166
CJV-SL-0018	232,038.73	8,121,937.41	5	5.9	34	2,643	336
CJV-SL-0019	231,988.76	8,121,970.10	24	5.2	76	7,157	320
CJV-SL-0021	231,953.08	8,121,993.68	18	2.1	48	5,896	125
CJV-SL-0022	231,909.40	8,122,026.11	21	3.1	101	12,585	272
CJV-SL-0023	231,864.39	8,122,046.02	12	4.5	107	11,540	390
CJV-SL-0024	231,819.64	8,122,078.33	14	2.1	139	24,000	371
CJV-SL-0025	231,785.81	8,122,098.61	5	1.5	131	24,955	232
CJV-SL-0026	231,736.97	8,122,126.55	5	0.8	265	36,202	192
CJV-SL-0027	232,042.27	8,121,462.31	33	11.6	68	4,759	694
CJV-SL-0028	231,998.97	8,121,490.21	30	12.4	59	3,354	917
CJV-SL-0030	231,958.23	8,121,517.93	20	6.5	24	1,627	373
CJV-SL-0031	231,914.62	8,121,544.72	32	4.5	20	1,992	209
CJV-SL-0032	231,873.91	8,121,570.10	5	4.8	12	1,235	208
CJV-SL-0033	231,829.95	8,121,599.33	5	3.9	10	1,162	185
CJV-SL-0034	231,788.91	8,121,625.04	5	3.9	11	1,160	112
CJV-SL-0035	231,745.96	8,121,650.63	5	3.3	12	1,805	149
CJV-SL-0036	231,702.45	8,121,677.97	5	2.8	10	1,145	113
CJV-SL-0037	231,661.08	8,121,704.57	5	2.9	11	1,424	135
CJV-SL-0038	231,617.81	8,121,730.26	5	3.1	15	1,543	174
CJV-SL-0039	231,576.51	8,121,759.85	5	4	22	1,837	227
CJV-SL-0040	231,534.42	8,121,784.22	5	3.3	24	2,407	234
CJV-SL-0041	232,045.84	8,120,985.32	116	26.3	327	20,655	2,534
CJV-SL-0042	232,006.44	8,121,016.04	139	15.3	464	29,412	1,193
CJV-SL-0043	231,956.24	8,121,041.86	135	54.3	264	7,951	3,836
CJV-SL-0045	231,922.31	8,121,062.13	62	10.7	52	3,308	489
CJV-SL-0046	231,878.85	8,121,093.69	38	12.1	60	5,113	491
CJV-SL-0047	231,839.49	8,121,121.64	34	10.7	60	5,297	481
CJV-SL-0048	231,791.70	8,121,150.70	39	9.3	60	3,610	625

SampleID	Easting	Northing	Li ppm	Cs ppm	Rb ppm	K ppm	Mg ppm
CJV-SL-0049	231,752.70	8,121,175.67	79	36.1	257	10,440	2,546
CJV-SL-0050	231,712.92	8,121,203.17	105	46.6	290	12,042	3,630
CJV-SL-0051	231,672.49	8,121,231.33	52	23	222	16,294	2,091
CJV-SL-0052	231,624.98	8,121,254.86	33	2.7	107	16,291	389
CJV-SL-0054	231,581.60	8,121,280.88	18	5.4	86	6,898	746
CJV-SL-0055	231,538.73	8,121,308.24	35	10.1	176	11,360	1,187
CJV-SL-0056	231,497.91	8,121,333.18	23	10.2	90	4,044	956
CJV-SL-0057	231,456.67	8,121,367.09	5	3.4	16	1,715	138
CJV-SL-0058	231,417.17	8,121,396.92	5	2.5	11	1,609	117
CJV-SL-0059	231,371.14	8,121,413.71	5	2.1	10	1,501	112
CJV-SL-0060	231,329.56	8,121,440.09	13	2.2	11	1,714	102
CJV-SL-0061	231,648.14	8,120,762.84	18	4.7	14	1,483	136
CJV-SL-0062	231,610.25	8,120,792.59	19	4.1	13	1,937	130
CJV-SL-0063	231,570.83	8,120,816.88	16	4.1	14	1,918	118
CJV-SL-0064	231,531.48	8,120,844.28	17	5.8	22	1,998	159
CJV-SL-0065	231,488.19	8,120,871.30	27	5.6	37	3,580	193
CJV-SL-0066	231,440.00	8,120,898.36	32	3.2	83	9,449	120
CJV-SL-0067	231,394.78	8,120,933.99	34	4.9	108	11,464	325
CJV-SL-0069	231,342.17	8,120,940.18	13	4	122	14,521	608
CJV-SL-0070	231,315.40	8,120,974.94	15	6.9	117	13,614	591
CJV-SL-0071	231,270.38	8,121,004.48	31	11.8	153	13,685	837
CJV-SL-0072	231,229.33	8,121,030.86	33	15.4	449	25,086	5,230
CJV-SL-0073	231,186.06	8,121,056.54	25	3	136	20,845	717
CJV-SL-0074	231,143.91	8,121,085.90	25	2.3	125	22,076	721
CJV-SL-0075	231,102.68	8,121,110.28	31	2.4	184	32,409	940
CJV-SL-0076	231,652.46	8,120,285.86	17	4.6	21	2,143	211
CJV-SL-0078	231,614.57	8,120,316.16	25	3.2	11	1,668	119
CJV-SL-0079	231,575.33	8,120,342.56	12	2.4	8	1,597	102
CJV-SL-0080	231,528.67	8,120,367.10	18	2.4	9	1,476	50
CJV-SL-0081	231,486.32	8,120,395.79	14	2.6	10	1,560	145
CJV-SL-0082	231,449.89	8,120,419.57	26	3.1	13	1,549	50
CJV-SL-0083	231,406.26	8,120,448.02	15	5.5	19	1,572	165
CJV-SL-0084	231,357.61	8,120,477.29	21	5.8	47	4,667	272
CJV-SL-0085	231,322.24	8,120,501.97	34	15.3	187	10,944	1,336
CJV-SL-0086	231,277.63	8,120,523.88	40	6.3	107	13,679	369
CJV-SL-0087	231,236.08	8,120,556.34	33	6.4	124	13,264	808
CJV-SL-0088	231,190.46	8,120,582.33	29	2	61	9,951	152
CJV-SL-0089	231,149.42	8,120,608.16	20	3.9	82	12,741	311
CJV-SL-0090	231,107.00	8,120,633.96	26	3.6	56	8,414	297
CJV-SL-0091	231,065.62	8,120,661.45	20	2.9	43	6,381	200
CJV-SL-0093	231,023.52	8,120,686.71	25	2.8	180	27,526	636
CJV-SL-0094	230,980.54	8,120,714.61	16	2.3	122	18,295	572
CJV-SL-0095	230,936.83	8,120,741.40	74	24.3	429	24,295	3,086
CJV-SL-0096	230,893.68	8,120,774.06	23	2.7	200	34,456	525
CJV-SL-0097	231,667.48	8,119,814.45	15	2.6	197	33,547	548

SampleID	Easting	Northing	Li ppm	Cs ppm	Rb ppm	Кррт	Mg ppm
CJV-SL-0098	231,623.46	8,119,840.24	23	3.2	27	2,343	194
CJV-SL-0099	231,579.72	8,119,869.02	17	4.2	22	1,634	198
CJV-SL-0100	231,536.75	8,119,896.04	17	3.8	13	1,376	126
CJV-SL-0102	231,496.60	8,119,919.33	5	4.4	17	1,150	161
CJV-SL-0103	231,452.64	8,119,948.55	5	2.8	15	1,276	117
CJV-SL-0104	231,409.93	8,119,972.58	15	14.2	85	3,351	1,122
CJV-SL-0105	231,367.72	8,119,998.73	21	6.7	43	3,305	320
CJV-SL-0106	231,322.25	8,120,020.73	13	6.2	48	4,289	292
CJV-SL-0107	231,284.60	8,120,048.37	19	18.7	111	5,396	1,113
CJV-SL-0108	231,240.05	8,120,082.35	32	13.8	174	23,329	464
CJV-SL-0109	231,196.34	8,120,092.52	5	6	37	3,215	312
CJV-SL-0110	231,150.03	8,120,122.49	12	15.8	134	12,295	1,112
CJV-SL-0111	231,113.34	8,120,158.12	5	4.8	84	13,017	413
CJV-SL-0112	231,073.17	8,120,183.18	15	4.5	88	13,216	423
CJV-SL-0113	231,027.26	8,120,206.84	13	8.7	157	20,173	1,040
CJV-SL-0114	230,984.74	8,120,239.73	12	6.8	147	12,050	1,901
CJV-SL-0115	230,945.10	8,120,264.58	5	5.2	101	10,191	1,042
CJV-SL-0117	230,902.45	8,120,291.60	14	4	37	3,057	365
CJV-SL-0118	230,859.70	8,120,318.51	13	2.4	30	3,450	200
CJV-SL-0119	230,817.48	8,120,344.65	5	2.2	30	3,496	181
CJV-SL-0120	230,770.92	8,120,369.08	5	1.8	29	3,698	174
CJV-SL-0121	230,734.83	8,120,399.95	12	2.1	32	3,639	182
CJV-SL-0122	230,698.23	8,120,411.88	5	2.8	46	4,699	245
CJV-SL-0123	231,667.22	8,119,328.88	5	2.4	29	2,615	152
CJV-SL-0124	231,629.15	8,119,364.49	5	2.3	31	2,774	150
CJV-SL-0126	231,587.81	8,119,389.65	5	2.4	38	3,607	171
CJV-SL-0127	231,543.01	8,119,418.31	5	2.5	49	4,546	180
CJV-SL-0128	231,501.44	8,119,444.13	11	2.6	61	7,757	191
CJV-SL-0129	231,461.24	8,119,471.07	11	2.3	70	8,475	214
CJV-SL-0130	231,420.11	8,119,496.12	5	2.8	66	7,490	286
CJV-SL-0131	231,373.01	8,119,521.09	5	4.5	74	6,188	653
CJV-SL-0132	231,336.31	8,119,549.96	10	3.4	123	15,973	566
CJV-SL-0133	231,289.03	8,119,572.28	24	3.3	105	12,365	466
CJV-SL-0134	231,242.54	8,119,599.91	13	3.9	141	15,485	693
CJV-SL-0135	231,204.20	8,119,631.31	14	3.4	121	14,402	588
CJV-SL-0136	231,168.83	8,119,647.47	5	1.4	102	16,216	475
CJV-SL-0137	231,121.88	8,119,677.64	5	2.8	92	13,253	465
CJV-SL-0138	231,077.29	8,119,706.19	14	3.1	64	8,930	377
CJV-SL-0139	231,034.00	8,119,733.43	5	2.9	47	5,724	225
CJV-SL-0141	230,994.04	8,119,758.05	5	2.6	60	8,194	278
CJV-SL-0142	230,953.72	8,119,786.32	12	1.5	144	25,791	678
CJV-SL-0143	230,918.37	8,119,817.31	27	2.4	228	38,086	1,508
CJV-SL-0144	230,867.90	8,119,839.58	5	3.5	155	21,130	759
CJV-SL-0145	230,825.33	8,119,860.52	13	3.9	145	13,388	822
CJV-SL-0146	230,781.82	8,119,896.05	5	3.7	121	15,116	671

SampleID	Easting	Northing	Li ppm	Cs ppm	Rb ppm	К ррт	Mg ppm
CJV-SL-0147	230,740.98	8,119,922.99	5	4.2	81	6,903	510
CJV-SL-0148	230,697.20	8,119,947.12	5	4.8	77	4,469	381
CJV-SL-0150	230,656.02	8,119,975.38	5	3.8	46	2,749	293
CJV-SL-0151	230,613.32	8,119,997.97	5	2.5	25	1,609	171
CJV-SL-0152	230,573.18	8,120,029.01	5	3.1	44	3,078	250
CJV-SL-0153	230,532.46	8,120,046.87	13	3.9	144	14,995	704
CJV-SL-0156	231,663.32	8,119,574.10	16	3.3	300	37,790	267
CJV-SL-0157	231,626.86	8,119,600.32	10	3.1	235	28,144	369
CJV-SL-0158	231,579.25	8,119,632.49	27	7.1	369	38,074	1,161
CJV-SL-0159	231,533.32	8,119,657.36	31	5.6	292	33,397	1,008
CJV-SL-0160	231,495.95	8,119,679.92	12	7.9	106	10,720	528
CJV-SL-0161	231,451.79	8,119,708.91	5	3.8	14	1,295	179
CJV-SL-0162	231,408.45	8,119,731.28	5	5.4	23	1,675	228
CJV-SL-0163	231,367.70	8,119,759.87	5	6.7	40	3,895	369
CJV-SL-0165	231,328.40	8,119,783.62	5	9.2	100	8,814	629
CJV-SL-0166	231,287.37	8,119,816.86	5	9.7	130	16,854	641
CJV-SL-0167	231,237.84	8,119,840.26	5	6	61	5,060	628
CJV-SL-0168	231,201.38	8,119,866.47	17	2.2	75	12,319	256
CJV-SL-0169	231,162.01	8,119,887.45	5	3	85	12,898	380
CJV-SL-0170	231,114.64	8,119,916.73	5	2.2	125	22,608	378
CJV-SL-0171	231,074.72	8,119,947.00	13	2.5	91	15,191	499
CJV-SL-0172	231,032.15	8,119,967.72	5	3.7	85	11,520	374
CJV-SL-0174	230,988.58	8,120,000.04	13	3.8	126	17,709	714
CJV-SL-0175	230,946.84	8,120,022.87	18	3.1	135	19,301	797
CJV-SL-0176	230,902.40	8,120,056.29	5	3	44	5,243	253
CJV-SL-0177	230,864.26	8,120,080.05	5	3.6	51	6,410	274
CJV-SL-0178	230,820.02	8,120,106.94	5	5.9	123	15,072	702
CJV-SL-0179	230,781.16	8,120,129.25	5	2.5	201	34,094	1,097
CJV-SL-0180	230,737.51	8,120,159.47	5	1.5	196	36,005	569
CJV-SL-0185	231,663.04	8,120,051.36	19	8.6	52	2,798	446
CJV-SL-0186	231,619.04	8,120,084.46	16	7.4	49	3,008	424
CJV-SL-0187	231,572.76	8,120,103.90	16	8.6	51	3,141	450
CJV-SL-0189	231,530.26	8,120,135.69	5	5.1	31	3,076	217
CJV-SL-0190	231,489.46	8,120,159.30	5	5	21	1,793	196
CJV-SL-0191	231,449.18	8,120,184.59	5	6.5	24	1,656	232
CJV-SL-0192	231,406.55	8,120,210.17	5	4.7	22	2,209	178
CJV-SL-0193	231,364.33	8,120,237.09	5	3.6	31	3,157	170
CJV-SL-0194	231,322.02	8,120,262.35	5	3.7	57	7,860	180
CJV-SL-0195	231,280.98	8,120,288.73	23	4.6	99	10,547	475
CJV-SL-0196	231,238.21	8,120,316.52	44	8.3	166	16,931	977
CJV-SL-0198	231,197.88	8,120,345.24	40	9.3	163	14,602	1,498
CJV-SL-0199	231,153.97	8,120,371.14	5	3.4	52	7,399	279
CJV-SL-0200	231,111.16	8,120,393.62	14	2.7	48	7,745	190
CJV-SL-0201	231,069.61	8,120,426.19	18	2.7	59	11,079	245
CJV-SL-0202	231,025.93	8,120,450.32	5	2.3	36	5,740	1,708

SampleID	Easting	Northing	Li ppm	Cs ppm	Rb ppm	Кррт	Mg ppm
CJV-SL-0203	230,984.68	8,120,476.03	5	2.3	19	2,503	433
CJV-SL-0204	230,939.33	8,120,506.01	5	2.2	35	5,005	294
CJV-SL-0205	230,898.01	8,120,528.51	5	2.5	48	6,638	259
CJV-SL-0206	230,858.79	8,120,554.36	10	2.8	64	8,581	287
CJV-SL-0207	230,821.29	8,120,578.24	11	1.9	182	27,374	588
CJV-SL-0209	231,665.05	8,120,524.88	14	4.8	22	1,943	187
CJV-SL-0210	231,610.65	8,120,554.30	28	4.6	25	2,048	185
CJV-SL-0211	231,581.64	8,120,581.61	23	3.5	22	1,690	163
CJV-SL-0213	231,527.60	8,120,607.38	21	2.5	15	1,262	111
CJV-SL-0214	231,488.75	8,120,628.69	14	3.3	18	1,581	122
CJV-SL-0215	231,445.06	8,120,662.12	21	3.6	29	2,329	146
CJV-SL-0216	231,406.63	8,120,684.00	40	20.3	180	8,796	1,944
CJV-SL-0217	231,359.04	8,120,714.17	31	7.9	100	6,222	867
CJV-SL-0218	231,316.30	8,120,739.97	20	6.1	92	6,945	784
CJV-SL-0219	231,275.87	8,120,768.24	19	2.9	60	8,796	229
CJV-SL-0220	231,230.69	8,120,792.69	15	2.3	30	4,075	156
CJV-SL-0222	231,188.35	8,120,820.71	11	3.4	41	4,970	223
CJV-SL-0223	231,144.21	8,120,847.16	15	2.5	31	4,260	171
CJV-SL-0224	231,105.43	8,120,871.91	13	4	46	4,026	328
CJV-SL-0225	231,062.43	8,120,900.81	15	4	84	9,398	309
CJV-SL-0226	231,017.88	8,120,926.04	16	4.8	100	9,911	464
CJV-SL-0227	230,978.75	8,120,953.22	12	4.1	117	13,519	482
CJV-SL-0228	231,899.50	8,120,846.91	54	10.5	80	4,386	545
CJV-SL-0229	231,859.03	8,120,869.98	38	9.3	46	3,027	391
CJV-SL-0230	231,813.44	8,120,902.06	21	6	27	2,452	190
CJV-SL-0231	231,777.31	8,120,927.50	14	5	23	2,045	175
CJV-SL-0232	231,726.75	8,120,956.20	18	5.3	18	1,597	159
CJV-SL-0233	231,677.77	8,120,978.38	19	4.9	21	1,601	178
CJV-SL-0234	231,640.10	8,121,007.24	23	10.2	39	2,422	417
CJV-SL-0235	231,597.51	8,121,037.47	44	13.5	143	9,567	771
CJV-SL-0237	231,561.54	8,121,059.27	33	13.6	222	15,415	963
CJV-SL-0238	231,518.46	8,121,086.07	32	18.8	228	12,735	1,489
CJV-SL-0239	231,472.96	8,121,111.28	27	5.6	253	30,951	1,172
CJV-SL-0240	231,432.27	8,121,142.87	22	4.7	97	9,826	415
CJV-SL-0241	231,389.24	8,121,166.35	15	5.2	49	4,604	249
CJV-SL-0242	231,344.74	8,121,195.89	14	7	58	2,975	586
CJV-SL-0243	231,305.43	8,121,219.75	55	27.6	451	14,633	6,684
CJV-SL-0244	231,264.49	8,121,246.79	17	6.2	129	6,700	1,425
CJV-SL-0246	231,218.97	8,121,272.90	13	2.4	28	2,839	220
CJV-SL-0247	232,049.26	8,121,225.10	107	26.7	217	11,583	1,673
CJV-SL-0248	232,002.11	8,121,253.95	140	19.1	366	20,257	1,014
CJV-SL-0249	231,961.57	8,121,282.55	61	10.4	134	10,802	386
CJV-SL-0250	231,913.22	8,121,305.18	84	24.5	223	14,153	1,460
CJV-SL-0251	231,873.60	8,121,328.26	66	16.3	187	11,177	1,152
CJV-SL-0252	231,832.75	8,121,356.20	18	3	114	13,776	574

SampleID	Easting	Northing	Li ppm	Cs ppm	Rb ppm	K ppm	Mg ppm
CJV-SL-0253	231,791.99	8,121,385.24	5	3.7	36	2,392	530
CJV-SL-0254	231,748.69	8,121,412.70	5	4.2	52	3,480	902
CJV-SL-0255	231,705.88	8,121,444.26	15	6.4	89	5,277	747
CJV-SL-0256	231,662.64	8,121,467.07	26	7.4	159	12,376	857
CJV-SL-0257	231,622.35	8,121,492.46	5	2.1	10	1,095	126
CJV-SL-0258	231,579.72	8,121,517.83	5	3.4	13	1,645	159
CJV-SL-0259	231,537.38	8,121,545.96	5	3.1	11	1,129	218
CJV-SL-0261	231,494.84	8,121,572.65	5	3.3	11	1,213	156
CJV-SL-0262	231,453.26	8,121,599.14	5	4.7	16	1,282	253
CJV-SL-0263	231,409.86	8,121,625.93	5	4	19	1,139	194
CJV-SL-0264	232,041.25	8,121,699.59	5	4.3	17	1,089	243
CJV-SL-0265	232,000.19	8,121,726.97	5	3.1	12	1,189	119
CJV-SL-0266	231,956.04	8,121,754.86	5	2.8	10	1,055	104
CJV-SL-0267	231,912.79	8,121,778.23	5	3.8	19	1,820	132
CJV-SL-0268	231,871.24	8,121,802.72	13	2.2	18	1,832	120
CJV-SL-0270	231,830.05	8,121,840.28	5	3.9	37	2,722	800
CJV-SL-0271	231,787.03	8,121,862.76	5	14.4	162	7,895	1,217
CJV-SL-0272	231,746.90	8,121,892.81	15	16.9	302	20,507	1,875
CJV-SL-0273	231,705.05	8,121,914.97	5	5.8	160	19,105	629
CJV-SL-0274	231,657.20	8,121,940.27	11	7.2	229	21,488	1,036
CJV-SL-0275	231,611.21	8,121,961.49	5	4.2	119	11,841	408
CJV-SL-0276	232,391.39	8,121,959.21	32	13.8	146	14,485	1,086
CJV-SL-0277	232,347.31	8,121,981.12	49	26.6	297	19,113	8,775
CJV-SL-0278	232,304.17	8,122,004.82	23	8.4	126	10,603	774
CJV-SL-0279	232,264.70	8,122,033.22	24	10.6	162	9,038	1,196
CJV-SL-0280	232,220.30	8,122,063.43	21	4.8	57	5,068	353
CJV-SL-0281	232,174.72	8,122,086.21	39	15	219	14,137	1,495
CJV-SL-0282	232,134.10	8,122,112.15	51	9	307	30,000	893
CJV-SL-0283	232,094.77	8,122,137.78	15	4.2	57	4,611	509
CJV-SL-0285	232,053.70	8,122,166.38	5	3.3	107	14,011	348
CJV-SL-0286	232,010.28	8,122,195.17	5	5.6	181	15,914	1,566
CJV-SL-0287	231,971.37	8,122,220.69	5	2.2	128	18,638	309
CJV-SL-0288	231,930.74	8,122,248.07	5	4	238	32,064	1,300
CJV-SL-0289	231,884.39	8,122,272.72	5	2.6	290	43,533	633
CJV-SL-0290	231,841.13	8,122,296.97	5	2.7	170	20,923	292
CJV-SL-0291	232,697.46	8,122,223.68	29	6	116	12,858	421
CJV-SL-0292	232,665.75	8,122,253.50	57	10.3	336	29,721	1,867
CJV-SL-0294	232,623.65	8,122,279.65	22	17.1	175	11,802	1,667
CJV-SL-0295	232,581.44	8,122,305.02	5	6.1	42	3,403	331
CJV-SL-0296	232,540.24	8,122,334.95	5	4.8	35	3,328	222
CJV-SL-0297	232,493.92	8,122,357.05	5	3.8	35	3,442	199
CJV-SL-0298	232,452.95	8,122,386.54	5	4.5	49	4,507	451

This announcement has been authorised for release by the Board of Si6 Metals Ltd.

Contacts

For further information, please contact:

Ian Kiers Non-Executive Chairman info@si6metals.com

About Si6

Si6 is a supply-critical metals and minerals explorer with base and precious metals project in the Limpopo Mobile Belt in Botswana, a district known for hosting major nickel and copper producing operations. The Company's portfolio contains an advanced Ni-Cu-Co-PGE resource at Maibele North and drilled high-grade Cu-Ag discoveries at Airstrip and Dibete. It currently hosts a resource of 2.4Mt @ 0.72% Ni and 0.21% Cu + PGMs + Co + Au.

Si6 has a joint venture to acquire 70% of all future exploration projects in Brazil and 50% in 10 licences for rare earth elements, lithium, gold, base and precious metals in Brazil, including licences in the "Lithium Valley" and Poços de Caldas in the state of Minas Gerais, globally known as prolific lithium and rare earth elements districts respectively. The Company also owns 70% of the Pimenta Project, a potential large-scale REE project in eastern Minas Gerais.

Si6 also owns 100% of the Monument Au-Ni project located near Laverton in Western Australia. This project currently has a JORC-compliant (2012) Inferred resource of 3.257 Mt @ 1.4 g/t for 154,000 ounces Au. (inferred resources calculated by CSA Global in 2021 to JORC 2012 compliance using a 0.5 g/t cut-off grade; see 2 August 2021 ASX announcement "Mineral Resources Estimate declared for Monument Gold Project "for further information).

Competent Persons Statement

The information in this report that relates to Exploration Targets and Exploration Results is based on recent and historical exploration information compiled by Dr Paul Woolrich, who is a Competent Person and a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Dr Woolrich has sufficient experience that is relevant to the style of mineralisation and the type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for the reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Woolrich consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Disclaimer

ASX:Si6

In relying on the above mentioned ASX announcement and pursuant to ASX Listing Rule 5.23.2, the Company confirms that it is not aware of any new information or data that materially affects the information included in the above announcement. No exploration data or results are included in this document that have not previously been released publicly. The source of all data or results have been referenced.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Si6's mineral properties, planned exploration program(s) and other statements that

are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements. All of such statements are subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

Appendix 1 - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	s section apply to all succeeding sections. JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Collection of soil samples of approximately 2 kg at 0.5 m depth from the top of surface were logged and bagged to send to SGS for sample preparation and assaying. Collection of soil sample was using a post - hole digger down to a depth of 0.5m Each soil sample was logged in the field and main features recorded on the data base. Location of sample was carried out using a GPS system with this location also stored on the database.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Not Applicable - No drilling was undertaken on this soil sampling programme. The previous auger drilling was completed in the previous field trip and was reported in a company release dated 21June 2024
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Not Applicable - No drilling was undertaken on this field visit.
	- Whether a relationship exists between sample recovery and grade and whether sample bias may have	

	occurred due to preferential loss/gain	
	offline/coarse material.	
- <u>-</u> -		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or 	 Each auger sample was logged in the field and the main visual features were recorded in the database. Sample recovery in the auger drilling was recorded and the composition of the interval recorded in the logs. These auger logs are comprehensive and are detailed in the earlier report on the project release to the market on 21June 2014
	costean, channel, etc) photography.	
	- The total length and percentage of the relevant intersections logged.	
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are 	 Soil samples were submitted to SGS-GEOSOL laboratory located in Vespasiano, Minas Gerais state, Brazil. Samples preparation comprise: Drying at 105° C Crushing 90% < 2mm Homogenization and splitting with Jones splitter. Pulverization: The 250 to 300g sub-sample was pulverized using a steel mill until 90% of the sample particles achieved a fineness below 200 mesh.
	appropriate to the grain size of the	
Quality of	material being sampled. - The nature, quality and	1 blank sample and 1 field duplicate sample were
assay data	appropriateness of the assaying and	inserted by the company into each 25 sample
and laboratory	laboratory procedures used and whether the technique is considered	sequence of the soil samples.
tests	partial or total.	Standard laboratory QA/QC procedures were
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, 	followed, including inclusion of standard, duplicate and blank samples. The assay technique used was Sodium Peroxide Fusion ICP OES / ICP MS (SGS code ICM90A). Elements analyzed at ppm levels as shown below $\frac{Ce 0.1 - 10,000}{Er 0.05 - 1,000} \frac{Dy 0.05 - 1,000}{Ed 0.05 - 1,000} \frac{Ce 0.05 - 1,000}{Er 0.05 - 1,000} \frac{10000}{Er 0.05 - 1,000} \frac{1000}{Er 0.05 - 1,000} $
	duplicates, external laboratory checks)	Sm 0.1 – 1,000 Tb 0.05 – 1,000

	and whether acceptable levels of	Th 0.1 – 1,000 Tm 0.05 – 1,000
	accuracy (ie lack of bias) and	U 0.05 – 10,000 Y 0.05 – 1,000
	precision have been established.	Yb 0,1 – 1,000
		The sample preparation and assay techniques used
		are industry standard and provide total analysis.
		The SGS laboratory used for assays is ISO 9001 and
Marifiantian	The meriliestice of similiant	14001 and 17025 accredited.
Verification of	- The verification of significant intersections by either independent or	Apart from the routine QA/QC procedures by the
sampling	alternative company personnel.	Company and the laboratory, there was no other independent or alternative verification of sampling and
and		assaying procedures.
assaying	- The use of twinned holes.	No twinned holes were used at this stage
		Primary data collection follows a structured protocol,
	- Documentation of primary data, data	with standardized data entry procedures ensure that
	entry procedures, data verification,	any issues are identified and rectified. All data is
	data storage (physical and electronic)	stored both in physical forms, such as hard copies and
	protocols.	electronically, in secure databases with regular
	- Discuss any adjustment to assay	backups.
	data.	
Location	- Accuracy and quality of surveys used	soil sample locations located with
of data	to locate drill holes (collar and down-	hand-held GPS (+/- 5m) using the following Datum:-
points	hole surveys), trenches, mine	 Datum SIRGAS2000 UTM 24S
	workings and other locations used in	
	Mineral Resource estimation.	
	- Specification of the grid system	
	used.	
	- Quality and adequacy of topographic	
Data	control.	
Data spacing and	- Data spacing for reporting of Exploration Results.	 Soil samples were collected at 0.5m depth using a Post Hole digger. The samples were
distribution	Exploration Results.	taken on a 200x50m grid pattern.
	- Whether the data spacing, and	The data spacing and distribution are
	distribution is sufficient to establish the	considered to be insufficient to establish the
	degree of geological and grade	degree of geological and grade continuity.
	continuity appropriate for the Mineral	However the data spacing will be adequate to
	Resource and Ore Reserve estimation	define anomalous lithium zones that will be
	procedure(s) and classifications applied.	targeted by follow up soil sampling and drilling
		later this year.
	- Whether sample compositing has	Sample compositing has not been applied.
	been applied.	
Orientation	- Whether the orientation of sampling	The location and depth of the sampling is appropriate
of data in	achieves unbiased sampling of	for the deposit type.
relation to	possible structures and the extent to	
geological structure	which this is known, considering the	No relationship between mineralization and drilling
SUUCIUIE	deposit type.	orientation is known at this stage. Additional follow up
	- If the relationship between the drilling	testing of the soil and auger sample results will aid to define the structural trend in the Lithium mineralisation
	orientation and the orientation of key	and assist in targeting deeper drilling to test the main
	mineralised structures is considered to	pegmatite zones for lithium mineralisation.
	have introduced a sampling bias, this	
	should be assessed and reported if	
	material.	

-		
Sample	- The measures taken to ensure	Samples were collected by field personnel and
security	sample security.	carefully packed in labelled raffia bags. Once
		packaged, the samples were transported by
		contracted freight company directly to the SGS-
		GEOSOL facility in Vespasiano, Minas Gerais state.
		The samples were secured during transportation to
		ensure no tampering, contamination, or loss. Chain of
		custody was maintained from the field to the
		laboratory, with proper documentation accompanying
		each batch of samples to ensure transparency and
		traceability of the entire sampling process.
Audits or	- The results of any audits or reviews	As of the current reporting date, no external audits or
reviews	of sampling techniques and data.	review have been conducted on the sampling
		techniques, assay data, or results obtained from this
		work. However, internal processes and checks were
		carried out consistently to ensure the quality and
		reliability of the data.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.)

CRITERIA	JORC Code Explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	All samples were acquired from the below tenement which is 50% owned by Si6 Metals via a joint venture agreement with Foxfire Metals Pty Ltd. ANM 830.504/2023 Area: 1,647.08 hectares Status: Exploration Licence
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	No known exploration for REE and lithium has been carried out on the exploration licence area. No known exploration for other minerals is known over the licence area.
Geology	- Deposit type, geological setting and style of mineralisation.	The lithium deposits of the Lithium Valley lie primarily within the Neoproterozic Aracuai Fold Belt which consists largely of metamorphosed sediments and volcanics which have been intruded by younger Neoproterozoic I-type granites and Neoproterozoic to Cambrian age peraluminous S-type granites commonly referred to as G1 to G5.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea 	The drill coordinates for the auger drilling carried out in Padre Paraiso in June 2024 are reported in Si6 release dated 21 June 2024 together with a summary of the assay data. All auger holes were drilled vertically. Auger holes were sampled every metre as shown in the Report dated 21 June 2024. Downhole length is also documented in the 21 June 2024 Report together with collar coordinates and depth of hole.

	· · · · · · · · · · · · · · · · · · ·	
	 level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. - If the exclusion of this information is 	See Si6 report data 21 June 2024 (released to the market) indicate auger samples collected every 1m and assayed every metre.
	justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No weighted average or cutoff grades used for new soil samples reported in this announcement.
	- Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Mineralisation orientation is not known at this stage. The downhole depths in the auger drilling are reported, however true widths are not known at this stage. Target drilling will commence in the next period focussing on targeting the pegmatite intrusive at depths below the weathered zone.
	- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Downhole lengths of auger samples are known however the true width of the mineralised core is not known at this stage.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Maps and tables of the soil sample location and target location are inserted. Auger drill results and assays for the individual samples are shown in the tabulated data in Si6's release to the market on 21 June 2024
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not	Highlights of the mineralised Intercepts are reported in the body of the text with available results from every

	practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	drill hole drilled in the period reported in Table 1 for balanced reporting.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other significant exploration data has been acquired by the Company.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further exploration is planned later this year to focus on defining the extent of the main pegmatite body in the project area and to focus on drilling this intrusive at regular intervals along the established grid. Initially focus will be on testing the pegmatite at various RLs below the surface to determine if the pegmatite body is weathered in the upper part of the regolith. This will focus our exploration on certain levels in the pegmatite intrusive that are not weathered (and hopefully retaining their original lithium mineralisation, (e.g spodumene)

