West African hits 45m at 7.3 g/t gold below reserves at M1S Unhedged gold mining company West African Resources Limited ('West African' or the 'Company', ASX: WAF) is pleased to report high grade gold mineralisation from recent resource definition diamond drilling within the M1 South ('M1S') Deeps Resource from our Sanbrado Gold Operations ('Sanbrado') in Burkina Faso. ### **Highlights** - Recent diamond drilling confirms geometry and continuity of high-grade mineralisation at M1 South underground - Significant results from infill diamond drilling at M1S include: - 45m at 7.3 g/t gold - 16m at 8.3 g/t gold - 23m at 5.5g/t gold - 20.5m at 5.5g/t gold - Drilling at M1S is ongoing with updated Mineral Resource Estimate and Ore Reserves expected in Q1 2025 ### West African Executive Chairman Richard Hyde commented: "Recent resource definition drilling at the M1 South main zone has intercepted high grade mineralisation of 45m at 7.3 g/t gold including 1.5m at 55.1 g/t gold, and 16m at 8.3 g/t gold including 1m at 108.4 g/t gold. "The infill drilling has confirmed the high-grade and tenor of the resource model and supports our plans to extend mining beneath existing M1 South Ore Reserves. "WAF is on track to produce 4 million ounces over the next decade, with annual production set to peak in 2029 at 473,000 ounces of gold. Our unhedged resources now stand at 12.8 million ounces and Ore Reserves at 6.1Moz of gold."¹ ¹ Refer ASX announcement dated 2 July 2024 titled "WAF Updates Ore Reserves and 10 Year Production Target". ### **M1S Deeps Resource Conversion Drilling** Resource definition diamond drilling is in progress at the M1 South underground, targeting the conversion of the Inferred Mineral Resources to Indicated Mineral Resources between 1600mRL and 1350mRL (700m to 950m below surface) beneath existing Ore Reserves at M1 South (Figure 1). A total of 14 holes for 5,554m have been drilled to date, with today's release reporting results from the first 7 holes (Figure 2). Results from this infill drilling have performed in-line with the current Mineral Resource Estimate (MRE) and have confirmed the continuation of consistent high-grade mineralisation below the 1600mRL. The high-grade mineralisation at M1 South continues to display predictable tenor and geometry with mineralisation aligning exceptionally well with the current interpretation. Results from the resource definition drilling program at M1 South are presented in Table 1 (appended to this announcement) and location plans and representative sections are set out below (Figures 1-2 and Photos 1 - 9). Significant results from the underground drilling program include: - at 108.42 g/t Au & 2.5m at 15.3 g/t Au including 0.5m at 72.3 g/t Au - M1SRD_0232: **18m at 3.6 g/t Au** including **3m** at 15 g/t Au & 8m at 4.6 g/t Au including 1.5m at 19.8 g/t Au - M1SRD 0234: 20.5m at 5.5 g/t Au including 2.5m at 16.5 g/t Au - M1SRD_0238: 7m at 5.7 g/t Au including 1m at 34.6 g/t Au - M1SRD 0230: 16m at 8.3 g/t Au including 1m M1SRD 0231: 23m at 5.5 g/t Au including 4m at 16.4 g/t Au & 2.5m at 10.3 g/t Au including 1m at 20.6 g/t Au - M1SRD_0233: 45m at 7.3 g/t Au including 1.5m at 55.1 g/t Au - M1SRD_0236: 5.5m at 10.2 g/t Au including 1m at 52.6 g/t Au The results to date support future underground gold production from M1 South with the upcoming MRE update expected to deliver an indicated and measured resource in excess of one million ounces gold. The current drilling campaign is scheduled to be completed in late 2024. WAF anticipates that the increase in the Ore Reserve estimate for M1 South from the incorporation of these drilling results will compensate for the depletion of the Ore Reserves from ounces mined to date. Reporting of updated resources, reserves and 10-year production outlook is planned for Q1 2025. Additionally, technical work on the ventilation upgrade at the M1S underground which will allow mining to progress below the current Ore Reserve at 1600mRL (700m below surface) is progressing well. A ventilation study was completed earlier in the year and the preferred supplier to construct the bulk air cooling solution has been selected. Development of a 500m fresh air raise from the M5 exploration drive up to the surface is expected to be completed by late 2025. The ventilation upgrade is expected to be operational by mid-2026. Production at M1 South continues to perform above expectations with a year-to-date mined grade of 8.4 g/t Au exceeding the reserve grade of 7.5 g/t Au. MIS Pits Mis Open Pit Mis Waste Dump Potential M5 South UG Tailings Storage Facility Water Storage Facility Mine Services Area ProcessPlant Gatehouse Figure 1: Sanbrado Gold Operation Layout Photo 2: M1SRD_0233 drill core with assays (249.60m- 254.20m) Photo 3: M1SRD_0233 drill core with assays (254.20m - 258.75m) Photo 4: M1SRD_0233 drill core with assays (258.75m - 263.55m) Photo 5: M1SRD_0233 drill core with assays (263.55m - 268.20m) Photo 6: M1SRD_0233 drill core with assays (268.20m - 272.80m) Photo 7: M1SRD_0233 drill core with assays (272.80m - 277.50m) Photo 8: M1SRD_0233 drill core with assays (277.50m - 282.10m) Photo 9: M1SRD_0233 drill core with assays (282.10m - 286.75m) Figure 2: Long Section of M1 South Underground This announcement was authorised for release by Mr Richard Hyde, Executive Chairman and CEO. Further information is available at www.westafricanresources.com #### For further information, contact: Richard Hyde Executive Chairman and CEO Ph: 08 9481 7344 Email: info@westafricanresources.com Nathan Ryan Investor Relations Ph: 0420 582 887 ### **Competent Person's Statement** Information in this announcement that relates to exploration results is based on, and fairly represents, information and supporting documentation prepared by Mr Richard Hyde, an employee and Director of the Company. Mr Hyde is a Member of the Australian Institute of Geoscientists and of the Australian Institute of Mining and Metallurgy. Mr Hyde has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('JORC Code 2012'). Mr Hyde has reviewed the contents of this announcement and consents to the inclusion in this announcement of all technical statements based on his information in the form and context in which they appear. #### **Forward Looking Information** This announcement contains "forward-looking information" including information relating to the Company's future production impacting its financial or operating performance. All statements in this announcement, other than statements of historical fact, that address events or developments that the Company expects to occur are "forward-looking statements". Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by the words "anticipates", "does not anticipate", "believes", "estimates", "expects", "does not expect", "intends", "plans", "potential", "scheduled", "forecast", "budget", "projects", and similar expressions, or that events or conditions "will", "would", "may", "could", "should" or "might" occur. All such forward-looking statements are based on the opinions and estimates of the relevant management as of the date the statements are made and are subject to important risk factors and uncertainties, many of which are beyond the Company's ability to control or predict. Forward-looking statements are necessarily based on estimates and assumptions that are inherently subject to known and unknown risks, uncertainties and other factors that may cause actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking statements. Should one or more of these risks and uncertainties materialise, or should underlying assumptions prove incorrect, actual results, level of activity, performance or achievements may vary materially from those described in the forward-looking information. The Company cannot and does not give any assurance that the results, performance or achievements expressed or implied by the forward-looking information contained in this announcement will actually occur. The Company's forward-looking information is based on the reasonable beliefs, expectations and opinions of the relevant management on the date the statements are made and the Company does not assume any obligation to update or revise forward-looking information if circumstances or management's beliefs, expectations or opinions change, or to publish prospective financial information in the future, regardless of whether new information, future events or any other factors affect the information contained in this announcement, except where required by applicable law. For the reasons set out above, investors are cautioned not to place undue reliance on forward-looking information. For additional information, please refer to WAF's financial statements and other filings all of which are filed on the ASX at www.asx.com.au and the Company's website www.westafricanresources.com. #### **Mineral Resources, Ore Reserves and Production Targets** The Company's estimate of Ore Reserves and the production target for the Sanbrado Project (including the Toega Deposit) and the Company's estimate of Mineral Resources for the Company and its subsidiaries are set out in the announcement titled "WAF Resource, Reserve and 10 year production update 2024" released on 28 February 2024. The Company confirms it is not aware of any new information or data that materially affects the information included in that announcement (except as set out below in relation to Kiaka) and that all material assumptions and technical parameters underpinning the estimates of Mineral Resources for the Company and its subsidiaries and Ore Reserves for the Sanbrado Project and all the material assumptions underpinning the production target and forecast financial information derived from it continue to apply and have not materially changed. The Company's estimates of Ore Reserves and the production target for the Kiaka Project are set out in the announcement titled "Kiaka Feasibility Update Delivers 4.8Moz Gold Ore Reserve 20 Year Mine Life" released on 2 July 2024. The Company confirms it is not aware of any new information or data that materially affects the information included in that announcement and that all material assumptions and technical parameters underpinning the estimate of Ore Reserves for the Kiaka Project and all the material assumptions underpinning the production target for the Kiaka Project and the forecast financial information derived from it continue to apply and have not materially changed. | Table 1 M1 South Resource Definition | | | | | | | | | | | | |---------------------------------------|---------------------------------|-------|----------|--------|--------|-----------|-----------|-----------|-----------|----------|----------| | Significant Intercepts > 0.4 g/t | | | | | | | | | | | | | Hole ID | From | То | Interval | Au g/t | Dip | Azi | ЕОН | Easting | Northing | RL | Prospect | | M1SRD_0229 | M1SRD_0229 No Significant Assay | | | -39.3 | 207.32 | 414 | 741766.13 | 1337262 | 1736.85 | M1 South | | | M1SRD_0230 | 244 | 246.5 | 2.5 | 15.28 | -41.9 | 215.25 | 339.5 | 741765.83 | 1337262.1 | 1736.77 | M1 South | | M1SRD_0230 | 251 | 260 | 9 | 1.61 | | | | | | | | | M1SRD_0230 | 272 | 283 | 11 | 2.08 | | | | | | | | | M1SRD_0230 | 293 | 309 | 16 | 8.34 | | | | | | | | | M1SRD_0231 | 246 | 250 | 4 | 1.70 | -44.55 | 222.88 | 370 | 741765.58 | 1337262.2 | 1736.55 | M1 South | | M1SRD_0231 | 262 | 264.5 | 2.5 | 10.29 | | | | | | | | | M1SRD_0231 | 269 | 274.5 | 5.5 | 1.03 | | | | | | | | | M1SRD_0231 | 279 | 302 | 23 | 5.54 | | | | | | | | | M1SRD_0232 | 147 | 150 | 3 | 1.00 | -43.92 | 230.06 | 360 | 741765.44 | 1337262.4 | 1736.57 | M1 South | | M1SRD_0232 | 260 | 278 | 18 | 3.61 | | | | | | | | | M1SRD_0232 | 285 | 293 | 8 | 4.64 | | | | | | | | | M1SRD_0233 | 235 | 239 | 4 | 0.93 | -44.6 | 238.16 | 330 | 741765.02 | 1337262.5 | 1736.31 | M1 South | | M1SRD_0233 | 245 | 290 | 45 | 7.27 | | | | | | | | | M1SRD_0234 | 257.5 | 278 | 20.5 | 5.51 | -44.43 | 246.55 | 359 | 741764.88 | 1337262.8 | 1736.73 | M1 South | | M1SRD_0235 | Assays Pending | | | | -49.19 | 242.86 | 480 | 741819.34 | 1337355.6 | 1721.96 | M1 South | | M1SRD_0236 | 228 | 232 | 4 | 0.46 | -45.4 | 254.08 | 327 | 741764.45 | 1337263.1 | 1736.39 | M1 South | | M1SRD_0236 | 237.5 | 243 | 5.5 | 10.20 | | | | | | | | | M1SRD_0236 | 250.5 | 259.5 | 9 | 0.99 | | | | | | | | | M1SRD_0237 Assays Pending | | | -50.33 | 252.49 | 483.2 | 741819.09 | 1337355.9 | 1721.79 | M1 South | | | | M1SRD_0238 | 235 | 242 | 7 | 5.72 | -45.98 | 264.5 | 363 | 741764.3 | 1337263.4 | 1736.28 | M1 South | | M1SRD_0239 | M1SRD_0239 Assays Pending | | | | -48.1 | 224.06 | 477 | 741819.92 | 1337355.1 | 1722.2 | M1 South | | M1SRD_0240 Assays Pending | | | | -37.25 | 248.64 | 321 | 741757.69 | 1337268 | 1737.05 | M1 South | | | M1SRD_0244 Assays Pending | | | | -47.22 | 230.64 | 489 | 741820.23 | 1337355.4 | 1721.04 | M1 South | | | M1SRD_0246 | M1SRD_0246 Assays Pending | | | -49.46 | 238.66 | 441 | 741819.63 | 1337355.6 | 1722.29 | M1 South | | - All reported intersections from the drilling program are assayed at either 0.5m or 1m intervals. - Sample preparation and fire assay conducted by Intertek Site Laboratory. Assayed by 50g fire assay with AAS finish. - Mineralised intervals for drilling reported with a maximum of 4 m of internal dilution of less than 0.4g/t gold. No top cut applied. - QA/QC protocol: one blank, one standard and one duplicate are inserted for every 17 samples (3 QA/QC within every 20 samples). # Appendix 1: JORC Table 1 Sanbrado # Section 1 Sampling Techniques and Data | Criteria | JORC Code Explanation | Commentary | |--------------------------------|--|---| | Sampling
Techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | ■ The area of the M1 resource was drilled using Reverse Circulation (RC) and Diamond drillholes (DD) on a nominal 25 m x 20 m grid spacing. A total of 2,138 DC and DT holes (226,310 m) and 2,198 RC holes (89,640 m) were drilled by WAF between 2015 and 2024. A total of 23 RC holes (3,060 m) and 7 DD holes (1,199 m) were drilled by Channel Resources (CHU) in 2010-2012. Surface holes were angled towards 020°, 045°, 180° or 225° magnetic at declinations of between -50° and -60°, to optimally intersect the mineralised zones. ■ All RC samples were weighed to determine recoveries. WAF and CHU RC samples were split and sampled at 1 m and 2 m intervals respectively using a three-tier riffle splitter or a cyclone mounted rotary cone splitter. Diamond core is a combination of HQ, NQ2 and NQ3 sizes and all Diamond core was logged for lithological, alteration, geotechnical, density and other attributes. In addition, WAF Diamond core was logged for structural attributes. Half-core and whole core sampling was completed at 0.5m, 1 m and 1.5 m intervals for WAF and CHU respectively. The majority of underground diamond drilling was whole core sampled. QAQC procedures were completed as per industry standard practices (i.e., certified standards, blanks and duplicate sampling were sent with laboratory sample dispatches). ■ CHU RC samples were dispatched to Abilab Burkina SARL (ALS Laboratory Group) in Ouagadougou. CHU DD samples were dispatched to SGS Burkina Faso SA (SGS) in Ouagadougou and WAF RC and DD samples were dispatched to BIGS Global Burkina SARL (BIGS) in Ouagadougou until July 2017. As a result of slow turnaround, samples from the WAF drilling programs were collected and submitted to SGS since July 2017. Up to the 17th December 2018, a total of 235 AC samples, 4,184 RC samples, and 24,747 DC samples (all excluding QAQC samples) have been submitted to SGS. From 2020 onwards, all samples are processed at the Sanbrado onsite laboratory which is managed by Intertek. The Diamond core samples were crushed, dried and pulver | | Drilling Techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air
blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple
or standard tube, depth of diamond tails, face-sampling bit or other
type, whether core is oriented and if so, by what method, etc.). | ■ Diamond drilling in the resource area comprises NQ2, NQ3 or HQ sized core. RC depths range from 13 m to 204 m and DD depths range from 49.5 m to 1000.8 m. WAF Diamond core was oriented using a combination of orientation spear with >50 % of orientations rated as "confident", Reflex ACT II system and Coretell® ORIshot orientation system. RC and AC drilling within the resource area comprises 5.5 inch and 4.5 inch diameter face sampling hammer and aircore blade drilling. | | Drill Sample
Recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Diamond core and RC recoveries are logged and recorded in the database. Overall recoveries are >90 % for the diamond core and >70 % for the RC; there are no core loss issues or significant sample recovery problems. A technician is always present at the rig to monitor and record recovery. Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the drillers. RC samples were visually checked for recovery, moisture and contamination. | | | | • The resource is defined by DD and RC drilling, which have high sample
recoveries. No relationship between sample recovery and grade have been
identified at the project. The consistency of the mineralised intervals and
density of drilling is considered to preclude any issue of sample bias due to
material loss or gain. | | Logging | Whether core and chip samples have been geologically and
geotechnically logged to a level of detail to support appropriate
Mineral Resource estimation, mining studies and metallurgical
studies. Whether logging is qualitative or quantitative in nature. Core (or
costean, channel, etc.) photography. | Geotechnical logging was carried out on all diamond drillholes for recovery,
RQD and number of defects (per interval). Information on structure type,
dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill
material is stored in the structure/geotechnical table of the database. For
Underground Diamond Drilling, detailed Geotech logging is only performed
on select holes. | | | ■ The total length and percentage of the relevant intersections logged. | Logging of diamond core and RC samples recorded lithology, mineralogy, mineralisation, structural (WAF DD only), weathering, alteration, colour and other features of the samples. Core was photographed in both dry and wet form. All drilling has been logged to standard that is appropriate for the category of Resource which is being reported. | | Sub-Sampling
Techniques and | If core, whether cut or sawn and whether quarter, half or all core
taken. | Core was cut in half onsite using a CM core cutter. All samples were
collected from the same side of the core. | | Sample Preparation | If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. | RC samples were collected on the rig using a three tier splitter or a cyclone mounted rotary cone splitter. All samples were dry. The sample preparation for all samples follows industry standard practice. The samples were dispatched to the laboratory (as per section 'Sampling | | Criteria | JORC Code Explanation | Commentary | |--|---|---| | | Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Techniques') where they were crushed, dried and pulverised to produce a sub sample for analysis. Sample preparation involved oven drying, coarse crushing, followed by total pulverisation LM2 grinding mills to a grind size of 90 % passing 75 microns. ■ Field QC procedures involve the use of certified reference material as assay standards, blanks and duplicates. The insertion rate of these averaged 3:20. ■ Field duplicates were taken on 1 m and 2 m composites for WAF and CHU RC samples respectively, using a riffle splitter. ■ The sample sizes are considered to be appropriate to correctly represent the style of mineralisation, the thickness and consistency of the intersections. | | Quality of Assay
Data and
Laboratory Tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | The laboratory used an aqua regia digest followed by fire assay with an AAS finish for gold analysis. No geophysical tools were used to determine any element concentrations used in this Resource Estimate. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 90 % passing 75 micron was being attained. Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and duplicates as part of the in house procedures. Certified reference materials, having a good range of values, were inserted blindly and randomly. Results highlight that sample assay values are accurate and that contamination has been contained. Repeat or duplicate analysis for samples reveals that precision of samples is within acceptable limits. For Diamond core, one blank and one standard is inserted every 18 core samples and no duplicates. For RC samples, one | | Verification of
Sampling and
Assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | ■ The CP has visually verified significant intersections in diamond core and RC drilling as part of the Resource Estimation process. ■ Four RC holes were twinned by RC holes and two further RC holes were twinned by diamond holes (all drilled by WAF) at the M1 prospect. Results returned from the twins were consistent with original holes. ■ Primary data was collected using Max Geo Logchief Software on Toughbook™ laptop computers. The information was validated on-site by the Company's database technicians and then merged and validated into an SQL database by the company's database manager. ■ The results confirmed the initial intersection geology. ■ No adjustments or calibrations were made to any assay data used in this estimate. | | Location of Data
Points | Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | All drillholes have been located by DGPS in UTM grid WGS84 Z30N for surface drilling and Leica Total Station for underground drilling. WAF Surface DD downhole surveys were completed at least every 24 m and at the end of hole using a Reflex gyro downhole survey tool. CHU DD downhole surveys were completed every 3 m with a Reflex EZ-Trac survey tool and CHU RC holes were surveyed every 5 m using a GYRO Smart survey instrument. WAF UG DD downhole surveys were conducted every 3m on the completion of the hole by a reflex ez-gyro instrument. A TN14 azimuth alignment was used for hole setup and azimuth reference. The grid UTM Zone 30 WGS 84 was used. Ground DGPS, Real time topographical survey and a drone survey was used for topographic control. | | Data Spacing and
Distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | The nominal drillhole spacing is 25 m (northwest) by 20 m (northeast) for the M1 prospect. The mineralised domains have demonstrated sufficient continuity in both geology and grade to support the definition of Inferred and Indicated Mineral Resources as per the guidelines of the 2012 JORC Code. | | Orientation of Data
in Relation to
Geological
Structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | The majority of the surface data is drilled to either magnetic 045° or 225° orientations at M1 which is orthogonal/perpendicular to the orientation of the mineralised trend. For the underground drilling, fan drilling was employed from specific underground locations with holes designed to optimally intercept mineralisation wherever possible. The bulk of the drilling is almost perpendicular to the mineralised domains. Structural logging based on oriented core indicates that the main mineralisation controls are largely perpendicular to drill direction. No orientation based sampling bias has been identified in the data at this point. | | Sample Security | ■ The measures taken to ensure sample security. | Chain of custody is managed by WAF. Prior to 2020, Samples are stored on site and delivered by WAF personnel to BIGS or SGS laboratories in Ouagadougou for sample preparation. From 2020, All samples were processed at the Sanbrado Intertek laboratory which is located within the security parameter of the Sanbrado process plant. Whilst in storage, they are kept under guard in a locked yard. Tracking sheets are used to track the progress of batches of samples. | | | | | | Criteria | JORC Code Explanation | Commentary | |----------|-----------------------|---| | | | issues were highlighted. During 2012 AMEC completed a site visit and data review as part of the NI43-101 report dated 29 July 2012. No material issues were noted. The CP is employed by WAF and is based at the Sanbrado site. | # Section 2 Reporting of Exploration Results | Criteria | JORC Code Explanation | Commentary | | | |---|---|---|--|--| | Mineral Tenement
and Land Tenure
Status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | ■ The Company, through its subsidiaries (collectively referred to as 'West African') owned 100 % of the Tanlouka exploration permit (Arrêté No 2013 000128/MCE/SG/DGMG) which covered 115 km² and was valid until 27 January 2016. In October 2015, West African applied for an exploitation permit for Sanbrado which covers an area of 26 km² in the south eastern corner of the Tanlouka exploration permit area. The exploitation permit was granted in January 2017 for a period of 6 years. In November 2023 West African submitted an application to renew the Sanbrado exploitation permit. The Sanbrado exploitation permit was renewed by ministerial decree in April 2024 (Decret No 2024 – 0460/PRES-TRANS/PM /MEMC/MEFP/MEEA du 16/04/2024). West African also applied for the Manesses II exploration permit which covers the residual area of the expired Tanlouka permit. This exploration permit was granted on 4 March 2024 (Arrêté N2024/118/MEMC/SG/DGCM). | | | | | | • All permits granted to West African are for gold. All fees in respect of the permits referred to above have been paid and the permits are valid and up to date with the Burkinabe authorities. The Mining Code of Burkina Faso requires the payment of gross production royalties to the government as follows: 3 % up to \$1000/oz; 4% up to \$1300/oz; 5% up to \$1500/oz; 6% up to \$1700/oz; 6.5% up to \$2000/oz; and >\$2000/oz 7 %. An additional 1% community development levy is also payable to the Burkina Faso government. | | | | Exploration Done
by Other Parties | Acknowledgment and appraisal of exploration by other parties. | Exploration activities on the original Tanlouka permit by previous workers
have included geological mapping, rock and chip sampling, geophysical
surveys, geochemical sampling and drilling, both reverse circulation and
core. This work was undertaken by Channel Resources personnel and thei
consultants from 1994 until 2012. | | | | Geology | Deposit type, geological setting and style of mineralisation. | ■ The project is located within a strongly arcuate volcano-sedimentary northeast-trending belt that is bounded to the east by the Tiébélé-Dori-Markoye Fault, one of the two major structures subdividing Burkina Faso into three litho-tectonic domains. The geology of the Tanlouka area is characterised by metasedimentary and volcanosedimenatry rocks, intruded by mafic, diorite and granodiorite intrusions. The Mankarga prospect area (M1, M3 and M5) is characterised by a sedimentary pile which is mostly composed of undifferentiated pelitic and psammitic metasediments as well as volcanosedimentary units. This pile has been intruded by a variably porphyritic granodiorite, overprinted by shearing and mylonites in places, and is generally parallel to sub-parallel with the main shear orientation. In a more regional context, the sedimentary pile appears "wedged" between regional granites and granodiorites. The alteration mineralogy varies from chloritic to siliceous, albitic, calcitic and sericite-muscovite. Gold mineralisation in the project area is mesothermal orogenic in origin and structurally controlled. The project area is interpreted to host shear zone type quartz-vein gold mineralisation. Observed gold mineralisation at the Mankarga prospects appears associated with quartz vein and veinlet arrays, silica, sulphide and carbonate-albite, tourmaline-biotite alteration. Gold is free and is mainly associated with pyrrhotite, pyrite, minor chalcopyrite and arsenopyrite disseminations and stringers. | | | | Drillhole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Significant intercepts that form the basis of this Resource Estimate have been released to the ASX in previous announcements (available on the WAF website) with appropriate tables incorporating Hole ID, Easting, Northing, Dip, Azimuth, Depth and Assay Data. Appropriate maps and plans also accompany this Resource Estimate announcement. A complete listing of all drillhole details is not necessary for this report which describes the M1 South Underground Mineral Resource and in the Competent Person's opinion the exclusion of this data does not detract from the understanding of this report. | | | | Data Aggregation
Methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used | All intersections are assayed on 1 meter or 0.5 meter intervals. No top cuts
have been applied to exploration results. Mineralised intervals are reported
with a maximum of 4 m of consecutive internal dilution of less than 0.4 g/t
Au. Mineralised intervals are reported on a weighted average basis. | | | | Criteria | JORC Code Explanation | Commentary | | | |---|---|---|--|--| | | for such aggregation should be stated and some typical examples of
such aggregations should be shown in detail. | | | | | | The assumptions used for any reporting of metal equivalent values
should be clearly stated. | | | | | Relationship
Between | These relationships are particularly important in the reporting of
Exploration Results. | • The orientation of the mineralised zone has been established and the
majority of the drilling was planned in such a way as to intersect
mineralisation in a perpendicular manner or as close as practicable.
Topographic limitations were evident for some holes and these were drilled
from less than ideal orientations. However, where possible, earthworks
were carried out in order to accomplish drill along optimum orientations. | | | | Mineralisation
Widths and
Intercept Lengths | If the geometry of the mineralisation with respect to the drillhole
angle is known, its nature should be reported. | | | | | | • If it is not known and only the downhole lengths are reported, there
should be a clear statement to this effect (e.g. 'downhole length, true
width not known'). | | | | | Diagrams | Appropriate maps and sections (with scales) and tabulations of
intercepts should be included for any significant discovery being
reported These should include, but not be limited to a plan view of
drillhole collar locations and appropriate sectional views. | The appropriate plans and sections have been included in the body of this document. | | | | Balanced Reporting | Where comprehensive reporting of all Exploration Results is not
practicable, representative reporting of both low and high grades
and/or widths should be practiced to avoid misleading reporting of
Exploration Results. | All grades, high and low, are reported accurately with "from" and "to"
depths and "hole identification" shown. | | | | Other Substantive
Exploration Data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Detailed metallurgical test work has been carried out as part of the original Sanbrado FS. Test work shows that the ore is amenable to conventional crushing, grinding and CIL processing. LOM recoveries have been determined to be 92.9 %. The Sanbrado process plant was commissioned in 2020. Operating results from the process plant have been in line with predicted recoveries outline in the FS study. | | | | Further Work | The nature and scale of planned further work (e.g. tests for lateral
extensions or depth extensions or large-scale step-out drilling). | A program of dedicated metallurgical and geotechnical drillholes has been
completed. | | | | | Diagrams clearly highlighting the areas of possible extensions,
including the main geological interpretations and future drilling areas,
provided this information is not commercially sensitive. | | | |