

ASX ANNOUNCEMENT 26 August 2024

Stavely Minerals - Update on the Stavely Project, Western Victoria

Drilling at the High-Grade Copper Junction Prospect has Commenced

Aircore drilling designed to confirm geometry of high-grade copper mineralisation ahead of deeper diamond drilling

- ➤ Copper-gold-silver lode-style mineralisation intersected previously at Junction includes chalcopyrite, bornite and covellite and is very similar to the mineralisation at the Cayley Lode (9.3Mt at 1.23% Cu, 0.23g/t Au, 7g/t Ag).
- ➤ Historic intercepts at the Junction Prospect include:
 - o 35m at 3.44% Cu and 26g/t Ag from 24m drill depth to end-of-hole (EoH) in TGAC078
 - o 11m at 1.72% Cu and 26g/t Ag from 33m in TGRC087
 - o 6m at 2.15% Cu and 8g/t Ag from 2m and 6m at 3.90% Cu and 26g/t Ag from 28m to EoH in PENP004
 - 6m at 1.52% Cu and 19g/t Ag from 42m, 5m at 1.12% Cu and 10g/t Ag from 62m; and
 6m at 1.77% Cu and 21g/t Ag from 72m to EoH in TGRC110
 - o 6m at 1.65% Cu and 16g/t Ag from 37m in TGRC109
- Aircore drilling at Junction is in progress

Stavely Minerals Limited (ASX Code: **SVY** – "Stavely Minerals") is pleased to advise that aircore drilling at the high-grade copper Junction Lode, located in Stavely Minerals' 100%-owned Stavely Project (Figures 1 and 2), has commenced.

Stavely Minerals Executive Chair and Managing Director, Mr Chris Cairns, said: "We are very keen to finally resolve the structural orientation and geometry of the Junction Prospect given the very attractive grades intercepted in historic drilling. Our intention is that once that orientation is resolved in this round of drilling, we would follow with deeper diamond drilling to add to the Minerals Resources at the Stavely Project.

As previously reported in an announcement to the ASX on 14 May 2024, Junction prospect is located approximately 2 kilometres south of the Cayley Lode Deposit, which hosts a Mineral Resource Estimate of 9.3Mt at 1.23% copper, 0.23g/t gold and 7g/t silver¹ (see Table 1 for Resource category classifications).

¹ Reported in compliance with the JORC Code 2012, see ASX announcement 14 June 2022. Stavely Minerals confirms that there is no new information or data that materially affects the Mineral Resource estimate and that all material assumptions and technical parameters underpinning the estimate in the cited market announcement continue to apply and have not materially changed.

ASX Code: SVY

Shares on issue: 482M Market capitalisation: \$13.5M Cash: \$3.7M (at 30 June 2024)

ABN 33 119 826 907

T: +61 8 9287 7630

E: info@stavely.com.au W: stavely.com.au

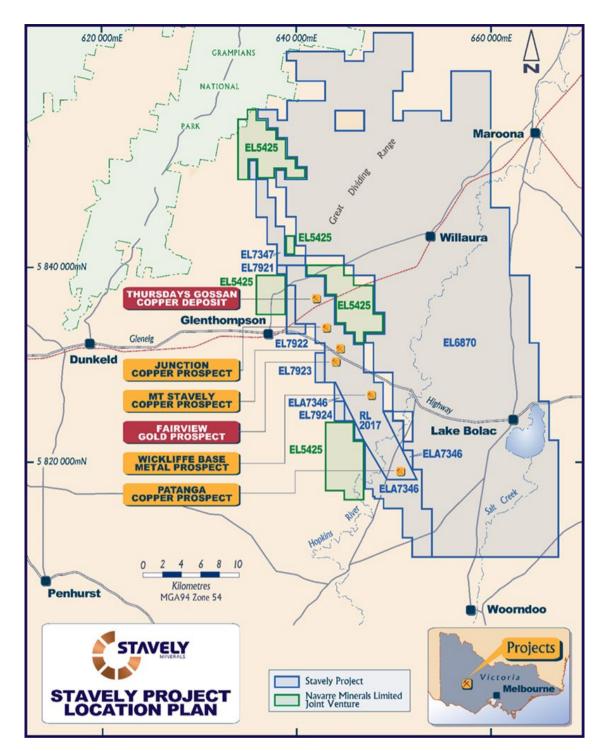


Figure 1. Stavely Project and prospect location map.

While historic drilling at the Junction Prospect returned impressive intercepts, follow-up drilling failed to confirm a consistent structural orientation for the high-grade copper-gold-silver mineralisation.

Significant historical intercepts at Junction include:

- 35m at 3.44% Cu and 26g/t Ag from 24m drill depth to end of hole (EoH) in TGAC078
- 11m at 1.72% Cu and 26g/t Ag from 33m in TGRC087
- 6m at 2.15% Cu and 8g/t Ag from 2m and 6m at 3.90% Cu and 26g/t Ag from 28m to EoH in PENPO04

- 6m at 1.52% Cu and 19g/t Ag from 42m, 5m at 1.12% Cu and 10g/t Ag from 62m and 6m at 1.77% Cu and 21g/t Ag from 72m to EoH in TGRC110
- 6m at 1.65% Cu and 16g/t Ag from 37m in TGRC109

Given the spatial distribution of the historical drill intercepts and the presence of multiple intercepts in a number of these drill holes, it appears that there may be a number of mineralised structures within the mineralised zone (Figures 2 and 3).

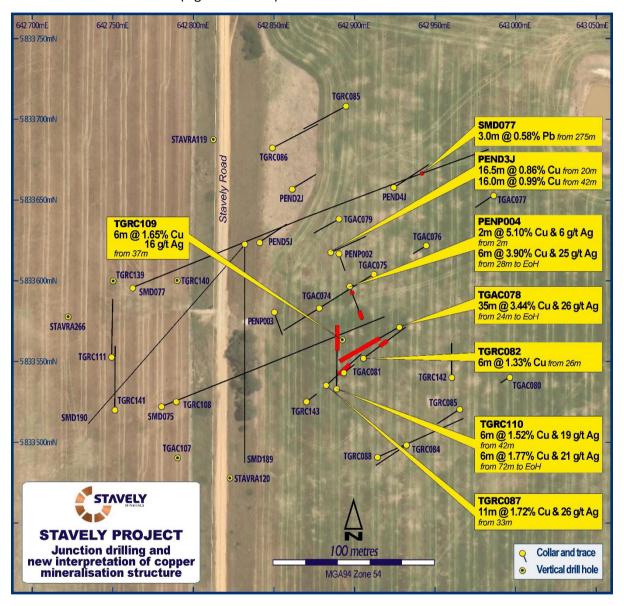


Figure 2. Junction prospect historic drill intercepts..

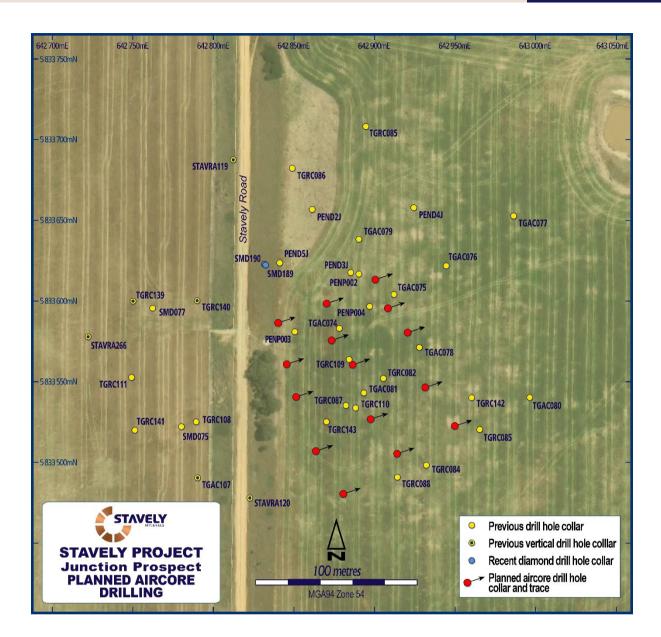


Figure 3. Junction prospect aircore drill plan.

Yours sincerely,

Chris Cairns Executive Chair and Managing Director

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Chris Cairns, a Competent Person who is a Fellow of the Australian Institute of Geoscientists and a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Cairns is a full-time employee of the Company. Mr Cairns is Executive Chair and Managing Director of Stavely Minerals Limited and is a shareholder and option holder of the Company. Mr Cairns has sufficient experience that is relevant to the style of mineralisation and type

of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Cairns consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Previously Reported Information: The information in this report that references previously reported exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or on the ASX website (www.asx.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Authorised for lodgement by Chris Cairns, Executive Chair and Managing Director.

For Further Information, please contact:

Stavely Minerals Limited

Phone: 08 9287 7630

Email: <u>info@stavely.com.au</u>

Media Inquiries:

Nicholas Read – Read Corporate

Phone: 08 9388 1474

		Table 1. (Cayley Lode	Initial Mine	eral Resource	estimate			
Resource Material	Resource Category	Cut-off	Tonnes (Mt)	Grade	Cont.	Grade	Cont.	Grade	Cont.
		(Cu %)		(Cu %)	Cu (Mlbs)	(Au g/t)	Au (oz)	(Ag g/t)	Ag (oz)
Primary Mineralisation (OP)	Indicated	0.2	5.87	1.04	134.4	0.23	43,407	7	1,321,074
	Inferred	0.2	1.7	1.3	49	0.2	10,931	9	491,907
Sub-Total Primary OP			7.6	1.1	183	0.2	54,338	7.4	1,808,158
Primary Mineralisation (UG)	Indicated	1.0	-	-		-		-	
, ,	Inferred	1.0	1.7	1.8	69	0.2	10,931	6	327,938
Sub-Total Primary UG			1.7	1.8	69	0.2	10,931	6	327,938
Total Cayley Lode			9.3	1.23	252	0.23	65,000	7.1	2,100,000

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or	The Junction Prospect has predominately been evaluated by shallow aircore and reverse circulation drilling to date.
	industry standard measurement tools appropriate to the minerals under investigation, such	For diamond holes drilled by Stavely Minerals, SMD075 and SMD077 and holes drilled along strike from the Junction Prospect, SMD002 and SMD005 the entire hole has been sampled. PQ quarter core and HQ half core is submitted for analysis. In general 1m samples were sent for analysis.
	instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	For the historical diamond drill holes drilled by Pennzoil, PEND2J and PEND3J samples were only selected where mineralisation was observed, it is unknown whether these were half or full core intervals. PEND4J and PEND5J were not sampled.
		For the North Limited aircore holes 3m composite samples were taken.
		For BCD reverse circulation holes TGRC082-88, TGRC108 – 111 and TGRC139-143, 1 or 2m composite samples were collected . 1m samples were collected from the bulk sample using a riffle splitter to collect a representative sample (of unknown proportion).
		For BCD aircore drilling, 2m composite samples were collected for holes TGAC074, TGAC075, TGAC077, TGAC078, TGAC079 and TGAC107. The sample collection method is unknown.
		BCD aircore holes TGAC076, TGAC080 and TGAC081 were not sampled.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	For Stavely drilling sample representivity was ensured by a combination of Company Procedures regarding quality control (QC) and quality assurance/ testing (QA). Certified standards and blanks were inserted into the assay batches.
Aspects of the determination of mineralisation that are Material to the Public Report - In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m	Diamond Drilling Stavely Minerals drill sampling techniques are considered industry standard for the Stavely work program. For Stavely Minerals diamond, sonic and reverse circulation drill samples were crush to 70% < 2mm, riffle/rotary split off 1kg, pulverize to >85% passing 75 microns to produce a 30g charge for gold analysis and 0.25g charge for multi-element analysis.	

Criteria	JORC Code explanation	Commentary	1					
	samples from which 3 kg	,						
	was pulverised to produce							
	a 30 g charge for fire							
	assay'). In other cases							
	more explanation may be							
	required, such as where there is coarse gold that							
	has inherent sampling							
	problems. Unusual							
	commodities or							
	mineralisation types (e.g.							
	submarine nodules) may warrant disclosure of							
	detailed information.							
Drilling	Drill type (e.g. core, reverse	A summary of	drilling at th	e Junction Pro	ospect by Comp	bany		
techniques	circulation, open-hole	is given below	•		, , , ,			
	hammer, rotary air blast,							
	auger, Bangka, sonic, etc)							
	and details (e.g. core diameter, triple or standard	Company	Drill hole	Number of	Total			
	tube, depth of diamond	Stavely	type DD	holes 4	metres 1876.5			
	tails, face-sampling bit or	Minerals	DD	4	1870.3			
	other type, whether core is	BCD	RC	20	1068			
	oriented and if so, by what	No ab 15 o So d	AC AC	9	299			
	method, etc).	North Limited Pennzoil	DD	3	99.5			
		1	RC	4	131			
		Minerals (SM wireline drilling to prowere routinely diameter is rediamond tails SMD002 was depth of 530.9 SMD005 was depth of 696.4 SMD075 was depth of 244.4 SMD077 was depth of 404.8 Historic North 1993 by contribution Rig". Historical airca Beaconsfield Wallis Drilling Historical reverse resulting to provide the surface of the surf	D prefix hole g mostly using duce oriente y used to ma mostly PQ (to RC drilling orientated a 9m. orientated a 4m. orientated a 4m. orientated a 8m. n Limited ai ractor Luhrs core holes w Gold Mines erse circulati D in 2009.	es) was drilled by PQ bits but ed core. Triple eximise drill of (85mm) or Hg, HQ diameted to -50° toward ext -	Pty Ltd for Stand utilising stand also with some tele tube core bactore recovery. (Q3 (63.5mm). For core is producted as azimuth 208° as azimuth 60° azimuth	dard e HQ rrels Core For ced. to a to a to a d in 8000 d by 9 by were		

Criteria	JORC Code explanation	Commentary				
Drill sample recovery	Method of recording and assessing core and chip	Diamond core recoveries for Stavely Minerals holes were logged and recorded in the database.				
	sample recoveries and results assessed.	Core recovery for SMD002 averaged 98%, SMD005 averaged 99%, SMD075 averaged 97% and SMD077 averaged 99%.				
		Recoveries were not documented for Pennzoil or North Limited holes.				
		For BCD percussion drilling, wet drilling and sampling conditions is often mentioned and is likely to have affected all drill holes. However, data and information is not available.				
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Stavely Minerals diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against the depth given on the core blocks and rod counts are routinely carried out by the driller. Triple tube core barrels were routinely used to maximise drill core recovery.				
	NAME of the construction of the construction	No details are available for the historical drill holes.				
	Whether a relationship exists between sample	There are no issues with Stavely Minerals diamond core sample recovery at the Junction Prospect.				
	recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	For BCD drilling, wet drilling and sampling conditions is often mentioned and is likely to have affected all drill holes. However, data and information is not available for assessing the effect these conditions have on grade. No details are available for the other historical drill holes.				
Logging	Whether core and chip	For Stavely Minerals drilling geological logging of samples				
Logging	samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	followed Company and industry common practice. Qualitative logging of samples including, but not limited to, lithology, mineralogy, alteration, veining and weathering. Diamond core logging included additional fields such as structure and geotechnical parameters. Magnetic Susceptibility measurements were taken for each 1m diamond core interval. All historical drill holes were geologically logged.				
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	For all diamond drilling by Stavely Minerals, logging is quantitative, based on visual field estimates. Systematic photography of the core in the wet and dry form was completed.				
	, , , , ,	For all historic drilling logging is quantitative, based on visual field estimates.				
	The total length and percentage of the relevant intersections logged.	For Stavely Minerals diamond Drilling, detailed core logging, with digital capture, was conducted for 100% of the core by Stavely Minerals' on-site geologist at the Company's core shed near Glenthompson. Historical holes have been logged in their entirety.				
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	For Stavely Minerals diamond drilling quarter core for the PQ diameter diamond core and half core for the HQ diameter core was sampled on site using a core saw.				
preparation		For historical holes, sub-sampling is not well documented. Holes drilled by BCD and North Limited the majority of the hole was sampled in 1-2m intervals. For Pennzoil diamond holes, samples were only selected where mineralisation was observed, it is unknown whether these were half or full				

Criteria	JORC Code explanation	Commentary
		core intervals. For Pennzoil reverse circulation holes 2m composite samples were collected.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	For BCD holes reverse circulation drill holes, 1-2m composite samples were collected from the bulk sample using a riffle splitter to collect a representative sample (of unknown proportion).
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	For the Stavely Minerals drilling the Company procedures were followed to ensure sub-sampling adequacy and consistency. These included, but were not limited to, daily work place inspections of sampling equipment and practices. No details of sample preparation are given for the historical drilling.
	Quality control procedures adopted for all subsampling stages to maximise representivity of samples.	For diamond drilling by Stavely Minerals, blanks and certified reference materials are submitted with the samples to the laboratory as part of the quality control procedures. Blanks were inserted – 1 per 40 samples outside the strongly mineralised zone and 1 in 10 samples within the strongly mineralised zone. Standards were inserted – 1 per 20 samples outside the strongly mineralised zone and 1 in 10 samples within the strongly mineralised zone and 1 in 10 samples within the strongly mineralised zone. For historical holes no QAQC procedures have been recorded.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	For diamond drilling by Stavely Minerals at the Junction Prospect no second – half core sampling was conducted.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	For the Stavely Minerals drilling the sample sizes are considered to be appropriate to correctly represent the sought mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Stavely Minerals core samples were analysed by multielement ICPAES Analysis - Method ME-ICP61. A 0.25g sample is pre-digested for 10-15 minutes in a mixture of nitric and perchloric acids, then hydrofluoric acid is added and the mixture is evaporated to dense fumes of perchloric (incipient dryness). The residue is leached in a mixture of nitric and hydrochloric acids, the solution is then cooled and diluted to a final volume of 12.5mls. Elemental concentrations are measured simultaneously by ICP Atomic Emission Spectrometry. This technique approaches total dissolution of most minerals and is considered an appropriate assay method for porphyry copper-gold systems.
		This technique is a four- acid digest with ICP-AES or AAS finish. The drill core was also analysed for gold using Method Au-AA23. Up to a 30g sample is fused at approximately 1,100°C with alkaline fluxes including lead oxide. During the fusion process lead oxide is reduced to molten lead

Criteria	JORC Code explanation	Commentary
		which acts as a collector for gold. When the fused mass is cooled the lead separates from the impurities (slag) and is placed in a cupel in a furnace at approximately 900°C. The lead oxidizes to lead oxide, being absorbed by the cupel, leaving a bead (prill) of gold, silver (which is added as a collector) and other precious metals. The prill is dissolved in aqua regia with a reduced final volume. Gold content is determined by flame AAS using matrix matched standards. For samples which are difficult to fuse a reduced charge may be used to yield full recovery of gold. This technique approaches total dissolution of most minerals and is considered an appropriate assay method for detecting gold mineralisation.
		Information on assaying details for historic holes are not well documented, the following information was gathered from previous annual technical reports:
		 Pennzoil: A base metal suite was assayed via AAS (digestion not specified) including Ag, Cu, Pb and Zn. Au was assayed via fire assay. North Limited: A base metal suite (Cu, Ni, Pb & Zn) was assayed via Mixed Acid digest, AAS detection (ICP-OES for CRAE) and Au was assayed via fire assay. BCD: A base metal suite (Ag, As, Co, Cu, Cr, Fe, Mn, Ni, Pb, S & Zn)by aqua regia digest ICP-OES methods and repeated assays for samples returning greater than 5000ppm Cu by Mixed Acid Digest ICP-OES detection. Au was assayed via fire assay.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable to this report.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Laboratory QAQC for Stavely Minerals drilling involved insertion of CRM (Certified Reference Materials), duplicates and blanks. The analytical laboratory provides their own routine quality controls within their own practices. The results from their own validations were provided to Stavely Minerals. Results from the CRM standards and the blanks gives confidence in the accuracy and precision of the assay data returned from ALS. For historical holes no QAQC procedures have been recorded.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Stavely Minerals Managing Director, the Technical Director or the Geology Manager – Victoria have visually verified significant intersections in the diamond core for holes drilled by Stavely Minerals.

Criteria	JORC Code explanation	Commentary
		The chip trays with samples from the BCD AC and RC drilling have also been inspected and the mineralised intervals verified.
	The use of twinned holes.	No twinned holes have been drilled.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	For Stavely Minerals drilling primary data was collected for drill holes using the OCRIS logging template on Panasonic Toughbook laptop computers using lookup codes. The information was sent to a database consultant for validation and compilation into a SQL database. All primary assay data is received from the laboratory as electronic data files that are imported into the sampling database with verification procedures in place. Digital copies of Certificates of Analysis are stored on the server which is backed up daily. Data is also verified on import into mining related software. No details are available for historical drilling.
	Discuss any adjustment to assay data.	No adjustments or calibrations were made to any assay data used in this report.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral	For the Stavely Minerals diamond drilling, the drill collar location was pegged before drilling and surveyed using Garmin handheld GPS to accuracy of +/- 3m. Collar surveying was performed by Stavely Minerals' personnel. There is no location metadata for historic Pennzoil, North Limited or BCD holes.
	Resource estimation. Specification of the grid system used.	The grid system used is GDA94, zone 54.
	Quality and adequacy of topographic control.	For Stavely Minerals exploration, the RL was recorded for each drill hole location from the DGPS. Accuracy of the DGPS is considered to be within 1m.
Data spacing and	Data spacing for reporting of Exploration Results.	The drill holes are variably spaced. A collar plan with the drill hole locations is presented in the body of the report.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The Junction Prospect has not been sufficiently drilled to produce a Mineral Resource.
	Whether sample compositing has been applied.	For Stavely Minerals diamond core for the entire hole is sampled. For diamond core PQ quarter core and HQ half core was submitted for analysis. Sample intervals were in general 1m.
		Historical Pennzoil diamond holes were selectively sampled with composite samples varying from 1 to 16m.
		Historical RC drill holes with the prefix PENP were drilled by Pennzoil of Australia and two metre composite samples were assayed for Au, Ag, Cu, Pb and Zn.

Criteria	JORC Code explanation	Commentary
		Historical aircore drill holes with the prefix STAVRA were drilled by North Limited and three metre composite samples were assayed for Au, Cu, Pb and Zn.
		For historical aircore holes TGAC002 to TGAC125 approximately the top 15 to 16 metres was not sampled, after that one metre intervals samples were taken for the remainder of the holes.
		For BCD aircore holes two metre composite samples were collected and for the RC holes one meter samples were collected. The aircore and RC was assayed for Au, Ag, As, Co, Cu, Fe, Ni, Pb, S and Zn.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The Junction Prospect is still at a reconnaissance drilling stage.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	There is insufficient drilling data to date at the Junction Prospect to demonstrate continuity of mineralised domains and determine if any orientation sampling bias can be identified in the data.
Sample security	The measures taken to ensure sample security.	For Stavely Minerals drill samples in closed poly-weave bags are delivered by Stavely personnel to Ararat or Ballarat from where the samples were couriered by a reputable transport company to ALS Laboratory in either Orange, NSW or Adelaide, SA. At the laboratory, samples are stored in a locked yard before being processed and tracked through sample preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No review of the sampling technique or data has been conducted for drilling at the Junction Prospect.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary					
Mineral	Type, reference	Stavely Project					
tenement and land tenure status	name/number, location and ownership including agreements or material issues with third parties	The Stavely Project comprises RL2017, EL6870, EL7347, EL7921, EL7922, EL7923 and EL7924. Stavely Minerals hold 100% ownership of the Stavely Project tenements.					
	such as joint ventures, partnerships, overriding	The mineralisation at Thursday's Gossan is situated within retention licence RL2017.					
	royalties, native title interests, historical sites, wilderness or national park and environmental settings.	EL4556, which was largely replaced by RL2017 was purchased by Stavely Minerals (formerly Northern Platinum) from BCD Resources Limited in May 2013. RL2017 was granted on the 8 th May 2020 and expires on the 7 th May 2030. A Section 31 Deed and a Project Consent Deed has been signed between Stavely Minerals Limited and the Eastern Maar Native Title Claim Group for RL2017.					
		EL6870 was granted on the 30 August 2021 and expires on the 29 August 2026. A Section 31 Deed and a Project Consent Deed has been signed between Stavely Minerals Limited and the Eastern Maar Native Title Claim Group for EL6870.					
		EL7347 was granted on the 17 th June 2022 for a period of 5 years. EL7921 was granted on the 15 th September 2022 for a period of 5 years. EL7922, EL7923 and EL7924 were granted on the 29 th September 2022 for a period of 5 years. These 5 tenements do not cover crown land and are not subject to Native Title.					
		Black Range Joint Venture					
		The Black Range Joint Venture comprises exploration licence 5425 and is an earn-in and joint venture agreement with Navarre Minerals Limited. Stavely Minerals earned 83% equity in EL5425 in December 2022. EL5425 was granted on 18 December 2021 and expires on the 17 December 2027.					
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All the exploration licences and the retention licence are in good standing and no known impediments exist.					
Exploration	Acknowledgment and	Stavely Project & Black Range Joint Venture					
done by other parties	appraisal of exploration by other parties.	The Mt Stavely belt has been explored since the late 1960's, including programmes undertaken by mineral exploration companies including WMC, Duval, CRA Exploration, BHP, and North Limited. Exploration activity became focused on Thursday's Gossan and the Junction prospects following their discovery by Pennzoil of Australia Ltd in the late 1970s. North Limited continued to focus on Thursday's Gossan in the 1990s.					
		Exploration activity became focused on Thursday's Gos and the Junction prospects following their discovery Pennzoil of Australia Ltd in the late 1970s. North Lim					

Criteria	JORC Code explanation	Commentary
		including 10m of 0.74% Cu from 43m from a supergene- enriched zone containing chalcocite.
		The tenement was optioned to CRA Exploration between 1995 and 1997. CRAE drilled several deep diamond drill holes into Thursday's Gossan, including DD96WL10, which intersected 186m from 41m of 0.15% Cu and DD96WL11, which intersected 261.7m from 38.3m of 0.13% Cu. EL4556 was further explored by Newcrest Operations Limited under option from New Challenge Resources Ltd between 2002 and 2004. Their main focus was Thursday's Gossan in order to assess its potential as a porphyry copper deposit. One of their better intersections came from drill hole VSTD01 on the northern edge of the deposit which gave 32m at 0.41 g/t Au and 0.73% Cu from 22m in supergene-enriched material.
		The Stavely Project was optioned to Beaconsfield Gold Mines Pty Ltd in 2006 who flew an airborne survey and undertook an extensive drilling programme focused on several prospects including Thursday's Gossan. One of their diamond drill holes at Thursday's Gossan, SNDD001, encountered zones with quartz-sulphide veins assaying 7.7m at 1.08 g/t Au and 4.14% Cu from 95.3m and 9.5m at 0.44 g/t Au and 2.93% Cu from 154.6m along silicified and sheared contacts between serpentinite and porphyritic intrusive rocks.
		Once Beaconsfield Gold Mines Pty Ltd had fulfilled their option requirements, title of EL4556 passed to their subsidiary company, BCD Metals Pty Ltd, who undertook a gravity survey and extensive drilling at prospects including Thursday's Gossan. They also commissioned a maiden Mineral Resource estimate for Thursday's Gossan. All work conducted by previous operators at Thursday's Gossan is considered to be of a reasonably high quality.
		The Junction Prospect forms the largest (1,200m x 500m) and highest tenor soil auger copper anomaly identified in the Stavely Project area. The anomaly is located 3.5km SSE of the Cayley Lode along a sub-cropping portion of the Stavely Volcanic Belt. Pennzoil drilled 5 diamond holes and 4 RC holes in the late 1970's and early 1980's. PENP004 returned 2m @ 5.10% Cu & 6g/t Ag from 2m and 6m @3.90% Cu & 25g/t Ag from 28m to EoH. In 1993 North Limited drilled 3 aircore holes at the vicinity of the Junction Prospect. These holes did not return any anomalous intercepts.
		In 2008 and 2009 BCD drilled 9 AC holes and 16 RC holes At the Junction Prospect. RC drilling methods were required where the ground conditions were too hard for AC methods. Drilling targeted a sub-circular copper soil anomaly and the previously drilled intersection in PENP004. Drill spacing was on a nominal spacing of 30x60m. Best results include 35m @ 3.69% Cu (TGAC078) and 12m @ 1.61% Cu (TGRC087). Peak results are listed

Criteria	JORC Code explanation	Comme	ntary						
		in the table below. Mineralisation was predominantly observed in the oxide zone as chalcocite & covellite sulphides with minor malachite. Limited drilling in the frest zone remained a drill target. Drilling by BCD at the Junction Prospect was terminated early due to landholder access issues.							
		Hole ID	MGA East (m)	MGA N (m)	Depth From (m)	Significant Intersections	Total Depth (m)		
		TGAC078	642927	5833571	2 24	10m @ 2.18% Cu 35m @ 3.69% Cu	59		
		TGRC082	642905	5833552	26	13m @ 1.07% Cu	61		
		TGRC087	642882	5833535	33	12m @ 1.61% Cu	76		
					73	1m @ 1.13% Cu			
		TGRC109	642784	5833563	37 42	6m @ 1.65% Cu 6m @ 1.52% Cu	65		
		TGRC110	642788	5833533	60	7m @ 0.93% Cu	78		
					71	7m @ 1.59% Cu			
		TGRC139	642750	5833600	3	1m @ 1.26% Cu	49		
		and SMI Junction northern magnetic anomaly intercept g/t Au fro of the mauger ge	D005 app Prospect end of clow annu coincide ded a high om 332m.	roximately t. SMD002 the magr llus and a c nt with th -grade zor SMD005 w ligh which al anomaly	500m was netic h copper e mag ne of 5 vas des is coi	amond holes along strike designed to igh surrounde soil/auger geo gnetic high. m @ 1.38% Co igned to targe ncident with to	from the test the ed by a chemical SMD002 tu & 0.25 tithe core he peak/		
	In 2020 Stavely Minerals drilled diamond hol and SMD077 at the Junction Prospect. These drilled at an orientation of 060 degrees and did the presence of the high-grade copper in history holes. SMD077 intersected 3m @ 0.58% Pb From a more recent interpretation it would appropriate the mineralised states.								
Geology	Deposit type, geological setting and style of mineralisation.	The Stav Mount S volcanic Complex	vely Project Stavely Vo arc rocks c, by sha n of porp	ct and Blac olcanic Co s, such at llow level	k Rang mplex the M porph	pint Venture ge JV are locat (MSVC). Into lount Stavely yries can lea gold ± moly	rusion of Volcanic d to the		

Criteria	JORC Code explanation	Commen	tary						
		structural	ly dislo	cated a	by Cayley and rotated nnugal Belt	segment			
		Stavely F	Project	t					
		Thursday	y's Go	ssan Pr	ospect				
		The Thursday's Gossan prospect is located in the Stavely Volcanic Complex (MSVC). Intrusion of varc rocks, such at the Mount Stavely Volcanic Compshallow level porphyries can lead to the format porphyry copper ± gold ± molybdenum deposits. The Thursday's Gossan Chalcocite deposit (Toconsidered to be a supergene enrichment of porphyry-style copper mineralisation. Mineralisation-characterised by chalcopyrite, covellite and characterised by alteration assemblage. Copper mineral is within a flat lying enriched 'blanket' of overall dimenof 4 kilometres north-south by up to 1.5 kilometres west by up to 60 metres thick with an average thick approximately 20 metres commencing at an average below surface of approximately 30 metres. The north circa 60%) of the Mineral Resources reside within the mineral resources reside within the state of the mineral resource of the mineral resources reside within the state of the mineral resourc							
		The mineralisation at the Cayley Lode at the Thurso Gossan prospect is associated with high-grade, structucontrolled copper-gold-silver mineralisation along ultramafic contact fault.							
			syster	n with co	n area host opper-gold i				
		Junction	Droer	oct					
			•		ia prodom	ingtoly u	adorloin	by a	
		The Junction Prospect is predominately underlain by package of sandstone and siltstone with some day porphyry. Trace to locally we quartz+carbonate+sulphide+base metal veining with intersected in SMD077. In the aircore drilling mineralisat was predominantly observed in the oxide zone chalcocite-covellite sulphides with minor malachite.							
Drill hole	A summary of all								
Information	information material to the understanding of the	11-1-15	Hole		6.1	5			
	exploration results including	Hole ID	Туре	Max Depth	Grid	East	North	_RL	
	a tabulation of the following	PEND2J	DD	26	MGA94_54	642861.1	5833657	289.21	
	information for all Material	PEND3J	DD	72	MGA94_54	642885.1	5833618	290.48	
	drill holes:	PEND4J	DD	60.1	MGA94_54	642924.1	5833658	289.94	
	easting and northing of the	PEND5J	DD	42.6	MGA94_54	642841.1	5833624	287.88	
	drill hole collar	PENP001	RC	31	MGA94_54	643088.1	5833536	286	
	elevation or RL (Reduced	PENP002	RC	28	MGA94_54	642890.1	5833617	289.92	
	Level – elevation above sea	PENP003	RC	38	MGA94_54	642850.1	5833581	288.79	

Criteria	JORC Code explanation	Commer	itary					
	level in metres) of the drill	DEMINO	n.c	24	MC104 54	642007.4	5022507	200.44
	hole collar dip and azimuth of the hole down hole length and interception depth hole length.	PENPO04	RC	34	MGA94_54	642897.1	5833597	288.41
		SMD075 SMD077	DD	244.4 404.8	MGA94_54 MGA94_54	642780 642762	5833522 5833595	291
					_			
		STAVRA119	AC	39	MGA94_54	642812.1	5833688	285.8
		STAVRA120	AC	33.5	MGA94_54	642822.1	5833478	288.89
		STAVRA266	AC	27	MGA94_54	642722.1	5833578	284.61
		TGAC074	AC	38	MGA94_54	642878	5833583	288.67
		TGAC075	AC	51	MGA94_54	642912 642944	5833604	288.47
			AC		MGA94_54		5833622	
		TGAC077	AC	21	MGA94_54	642986	5833653	285.67
		TGAC078	AC	59	MGA94_54	642927	5833571	289.67
		TGAC079	AC	35	MGA94_54	642890	5833638	290.27
		TGAC080	AC	8	MGA94_54	642996	5833540	287.76
		TGAC081	AC	12	MGA94_54	642893	5833543	288.88
		TGAC107	AC	58	MGA94_54	642790	5833490	288.41
		TGRC082	RC	61	MGA94_54	642905	5833552	289.09
			RC	37	MGA94_54	642965	5833520	288.69
		TGRC084	RC	43	MGA94_54	642932	5833498	288.95
		TGRC085	RC	49 67	MGA94_54	642894	5833708	288.42
		TGRC087	RC RC	76	MGA94_54 MGA94_54	642849 642882	5833682 5833535	288.75
		TGRC088	RC	91	MGA94_54	642914	5833491	288.84
		TGRC108	RC	60	MGA94_54	642789	5833525	287.45
		TGRC109			_	642784	5833563	
		TGRC110	RC RC	65 78	MGA94_54 MGA94_54	642788	5833533	285.34 287.06
		TGRC111	RC	72	MGA94_34 MGA94_54	642749	5833552	285.4
		TGRC139	RC	49	MGA94_54	642750	5833600	283.85
		TGRC140	RC	55	MGA94_54	642790	5833600	284.37
		TGRC141	RC	79	MGA94_54	642750	5833520	287.3
		TGRC142	RC	49	MGA94_54	642960	5833540	289.57
		TGRC143	RC	6	MGA94_54	642870	5833525	288.56
		SMD005	DD	696.4	MGA94_54	643681	5833768	292
		SMD002	DD	530.9	MGA94_54	643549	5833804	270
	If the exclusion of this				ormation ha			270
	information is justified on							
	the basis that the information is not Material							
	and this exclusion does not							
	detract from the							
	understanding of the report,							
	the Competent Person							
	should clearly explain why this is the case.							
	10 1.10 0000.							

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts	High-grade mineralisation exploration all copper/ and or gold intervals considered to be significant have been reported with subjective discretion. No top-cutting of high-grade assay results have been applied, nor was it deemed necessary for the reporting of significant intersections. In reporting exploration results, length weighted averages
	incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	are used for any non-uniform intersection sample lengths. Length weighted average is (sum product of interval x corresponding interval grade %) divided by sum of interval length.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Assumptions used for reporting of metal equivalent values are clearly stated.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	There is insufficient drilling data to date to demonstrate continuity of mineralised domains and determine the relationship between mineralisation widths and intercept lengths.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Refer to the Tables and Figures in the text.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in the text. A plan view of the drill hole collar locations is included.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All copper and gold values considered to be significant have been reported. Some subjective judgement has been used.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All relevant exploration data is shown on figures and discussed in the text.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Diamond drilling has been planned to test the new interpretation of the copper mineralised structure at the Junction Prospect.