ASX ANNOUNCEMENT

27 August 2024

Early Regional Exploration Success at Wallbrook Gold Project

- Broad and high-grade near surface gold assay results received from the recently completed 239 hole / 9,467 metre regional aircore drill program
- ✓ Highlight results include:
 - o 8m @ 2.93 g/t Au (within 28m @1.05g/t Au) from 28 metres Target MC2.1
 - o 8m @ 2.33 g/t Au (within 14m @1.37g/t Au to EOH) from 32 metres Target MC2.1
 - o 4m @ 2.88 g/t Au (within 24m @0.83g/t Au) from 32 metres Target MC2.1
 - o 8m @ 2.16 g/t Au (within 36m @0.65g/t Au) from 36 metres Target MC2.1
 - o 8m @ 1.55 g/t Au (within 20m @0.77g/t Au) from 52 metres Target MC2.1
 - o 2m @ 4.28 g/t Au (within 6m @ 1.60 g/t Au) from 24 metres Target MC5.1
- ✓ In addition to strong headline results, anomalous footprints have been identified at 3 of the 4 regional targets tested
- ✓ Results demonstrate the strong regional exploration opportunity at the Wallbrook Gold Project, with the Company focusing on high quality shallow discoveries
- ✓ A second aircore program has been scheduled to commence in mid-September to follow up on and expand the footprint of Target 2.1, whilst testing two additional priority regional targets

Nexus Minerals Limited (ASX: NXM) (Nexus or the Company) is pleased to announce that it has received gold assay results from its recently completed regional aircore (AC) program at the Wallbrook Gold Project in the north-eastern goldfields region of WA. The AC drilling program was designed to systematically assess four shallow priority regional targets in line with the Company's exploration strategy. Broad and high-grade results demonstrate the ongoing exploration opportunity at Wallbrook and continues to validate the Company exploration strategy which focusses on delivering material near surface discoveries at Wallbrook.

Nexus Managing Director Andy Tudor commented "Receiving initial strong results from the regional aircore program is another positive milestone for the Company's exploration effort on the project. As a first pass drilling and mapping tool to receive such strong results from this program represents a great achievement for our exploration team and demonstrates the ability for Wallbrook to deliver additional gold discoveries.

We will continue to use first pass aircore drilling to test the 18 high priority regional targets identified and will then rank the targets for follow-up drilling. The Company will test additional regional targets with the next 10,000m aircore program scheduled to commence in mid-September. We look forward to sharing updates through a busy second half of 2024 as the Wallbrook gold project continues to progress on multiple fronts".

Program Summary

The regional AC drilling program was planned over four high priority targets at the Wallbrook Gold Project, including target MC2.1, MC5.1, MC1.4, and MC4.2. The targets were selected for their potential to host near-surface gold mineralisation with sufficient scale to materially build on the project ounce portfolio.

A total of 239 drill holes for 9,467 metres were completed across all targets. Drill holes were four metre composite sampled across the entire hole, with samples submitted for gold analysis. The final metre of each hole is currently subject to multi-element litho-geochemical analysis to improve internal target vectoring. All gold assays have now been received and an initial review has been completed by Company geologists.

Drilling at target MC2.1 has identified strong widths and grades with significant potential to extend well beyond the currently identified footprint. Targets MC5.1 and MC1.4 have a footprint of anomalous gold values which will be ranked along with all targets once completed – and may present future reverse circulation (RC) drill targets. Preparations are now being made for a second follow-up AC drill program scheduled to commence in mid-September, to both expand the footprint at target MC2.1 and test additional targets.

Results from each of the four recent targets are discussed below and tabled in Appendix 1.

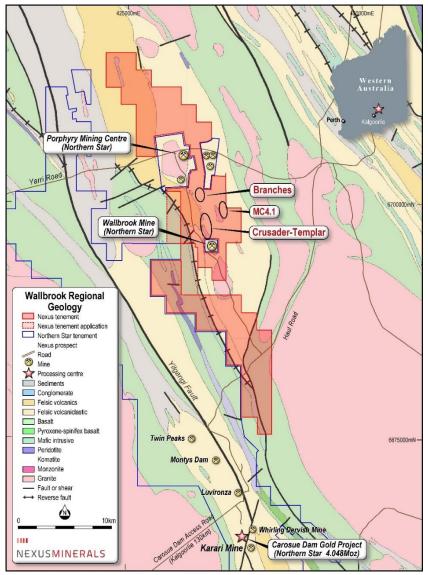


Figure 1: Nexus Wallbrook Gold Project Location, Australia

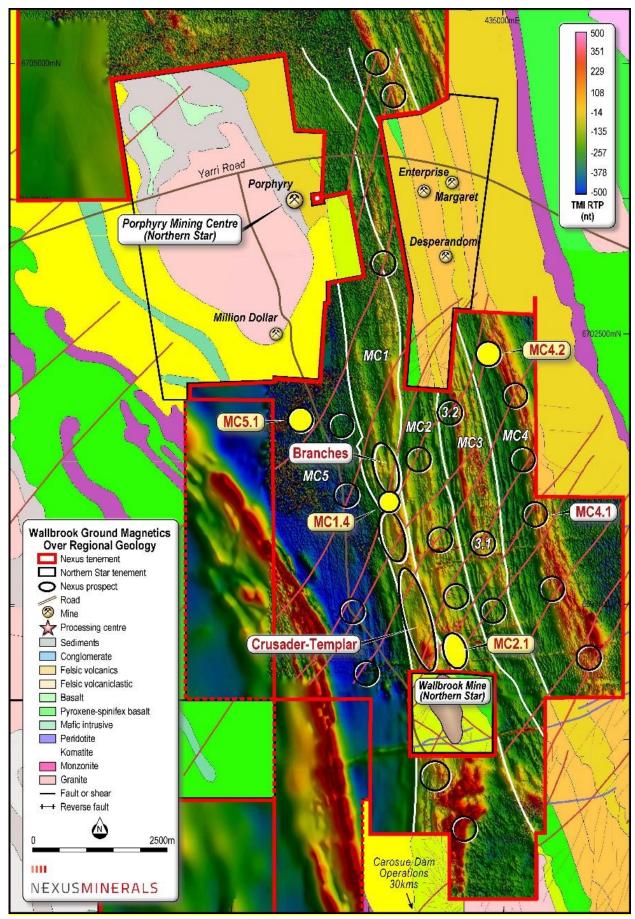


Figure 2: Nexus Wallbrook Regional Target Locations

NEXUSMINERALS

Site ID	Prospect	Easting	Northing	Elevation	Depth	Azimuth	Dip	From	То	Interval	g/t Au
NMWBAC24-344	MC2.1	433816	6696291	379	103	-55	90	102	103 (EOH)	1	0.79
NMWBAC24-345	MC2.1	433797	6696290	379	80	-55	90	12	16	4	0.46
								64	76	12	0.82
							inc.	64	68	4	1.58
NMWBAC24-346	MC2.1	433773	6696290	379	72	-55	90	36	48	12	0.69
							inc.	40	44	4	1.03
NMWBAC24-347	MC2.1	433750	6696292	379	78	-55	90	52	56	4	0.73
NMWBAC24-348	MC2.1	433733	6696292	379	75	-55	90	56	60	4	0.56
NMWBAC24-354	MC2.1	433830	6696387	379	57	-55	90	40	44	4	0.57
NMWBAC24-355	MC2.1	433779	6696386	379	64	-55	90	32	56	24	0.83
							inc.	52	56	4	2.88
NMWBAC24-374	MC2.1	433848	6697244	376	50	-55	90	32	50 (EOH)	18	0.50
							inc.	49	50 (EOH)	1	1.06
NMWBAC24-382	MC2.1	433692	6697243	375	47	-55	90	46	47 (EOH)	1	0.77
NMWBAC24-403	MC2.1	433755	6696386	379	56	-55	90	40	44	4	1.00
NMWBAC24-405	MC2.1	433680	6696386	379	83	-55	90	52	72	20	0.77
							inc.	64	72	8	1.55
NMWBAC24-406	MC2.1	433775	6696378	379	60	-55	90	40	48	8	0.77
							inc.	40	44	4	1.32
								59	60 (EOH)	1	1.20
NMWBAC24-408	MC2.1	433808	6696341	379	106	-55	90	32	44	12	0.45
								40	44	4	1.11
NMWBAC24-412	MC2.1	433689	6696338	379	69	-55	90	56	60	4	0.86
NMWBAC24-414	MC2.1	433912	6696433	379	47	-55	90	8	12	4	2.13
NMWBAC24-415	MC2.1	433892	6696435	379	59	-55	90	0	8	8	0.48
NMWBAC24-416	MC2.1	433874	6696435	379	75	-55	90	36	72	36	0.65
							inc.	40	48	8	2.16
NMWBAC24-417	MC2.1	433855	6696434	379	77	-55	90	56	64	8	0.47
NMWBAC24-420	MC2.1	433792	6696436	379	46	-55	90	32	46 (EOH)	14	1.37
							inc.	32	40	8	2.33
NMWBAC24-425	MC2.1	433880	6696487	378	58	-55	90	28	32	4	0.95
NMWBAC24-426	MC2.1	433861	6696489	378	56	-55	90	28	56	28	1.05
							inc.	32	40	8	2.93
NMWBAC24-430	MC2.1	433747	6696492	378	62	-55	90	52	62	10	0.88
							inc.	52	56	4	1.48
NMWBAC24-431	MC2.1	433702	6696485	378	82	-55	90	16	20	4	0.67
NMWBAC24-433	MC2.1	433671	6696520	378	83	-55	270	72	76	4	1.36
NMWBAC24-436	MC2.1	433788	6696341	379	66	-55	90	40	48	8	0.63
NMWBAC24-539	MC1.4	433355	6699814	372	52	-55	90	32	36	4	0.50
NMWBAC24-552	MC5.1	431400	6700897	364	31	-55	270	24	30	6	1.60
							inc	28	30	2	4.28
NMWBAC24-563	MC5.1	431360	6701098	364	57	-55	270	32	36	4	0.63
NMWBAC24-572	MC5.1	431381	6701111	364	51	-55	272	48	51 (EOH)	3	0.58
							inc.	50	51 (EOH)	1	1.43

Table 1: Nexus Wallbrook Aircore Results – Significant Intercepts (>0.4 g/t Au)

Target MC2.1

Target MC2.1 was comprised of two initial target zones situated immediately north of the Wallbrook Gold Mine (Northern Star Resources), representing a potential extension of geology hosting this resource. Historical exploration had indicated the presence of gold mineralisation with mapped characteristics synonymous with the Crusader-Templar deposit. A total of 97 drill holes for 4,463 metres were completed at target MC2.1. Highlight results include,

- 8m @ 2.93 g/t Au (within 28m @1.05g/t Au) from 28 metres
- 8m @ 2.33 g/t Au (within 14m @1.37g/t Au to EOH) from 32 metres
- 4m @ 2.89 g/t Au (within 24m @0.83g/t Au) from 32 metres
- 8m @ 2.16 g/t Au (within 36m @0.65g/t Au) from 36 metres
- 8m @ 1.55 g/t Au (within 20m @0.77g/t Au) from 52 metres

The weathering profile at MC2.1 averaged roughly 50 metres downhole, deepening to 70 metres around some mineralised zones in the south. The weathering profile shallowed considerably in the northern zone to approximately 15 metres. The host lithology was broadly identified and logged as intermediate volcanic/volcaniclastic lithologies with hematised felsic porphyry intrusions. Alteration of the lithologies comprised mainly of hematite and chlorite-sericite. Quartz veining was common throughout the prospect area with quartz-goethite being observed in the saprolite and broadly correlated with higher gold grades. This geology is similar to that observed at neighboring deposits, including the Crusader-Templar deposit.

The results and geology at MC2.1 present a compelling exploration opportunity beginning just 250 metres east of the existing Crusader-Templar Mineral Resource and extending over one kilometre along strike. Given the quality of the exploration success and opportunity to rapidly increase scale, Nexus is prioritizing progressing to a second aircore program planned to commence in mid-September with permitting already in place.

Figure 3: NMWBAC24-428: 8m @ 2.93 g/t Au (from 32m) within 28m @1.05g/t Au (from 28m)

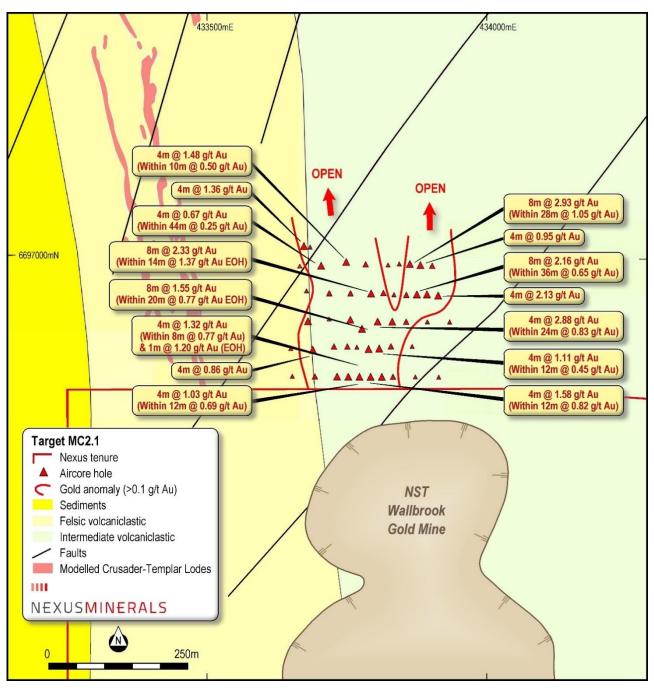


Figure 4: Target 2.1 Map with Results

Target MC5.1

Target MC5.1 is situated immediately south along strike form the nearby Million Dollar Gold Mine (Northern Star Resources). The target was selected due to the observed structural complexity, including a series of NNE–SSW trending faults traversing the target, offering potential conduits for mineralizing fluids. A total of 31 drill holes for 1,280 metres were completed at target MC5.1.

The weathering profile at MC5.1 varied from 25 metres in the south, deepening to roughly 40 metres in the north. Geology is dominated by an intermediate volcanic lithology with a felsic/intermediate intrusive unit and granite unit rarely observed. Occasional trace to weak hematite and silicification of the lithological units was noted through the prospect. Quartz veining is present throughout the prospect.

Figure 5: NMWBAC24-552: 2m @ 4.28 g/t Au (from 28m) within 6m @ 1.60 g/t Au (from 24m)

The AC drilling program successfully mapped out an anomalous zone of interest with intercepts of up to 2m at 4.28 g/t Au (within 6m at 1.60 g.t Au) from 24 metres (NMWBAC24-552). The original targeting rational for MC5.1 remains relevant, with further ranking and assessment requiring a future reverse circulation (RC) drilling campaign.

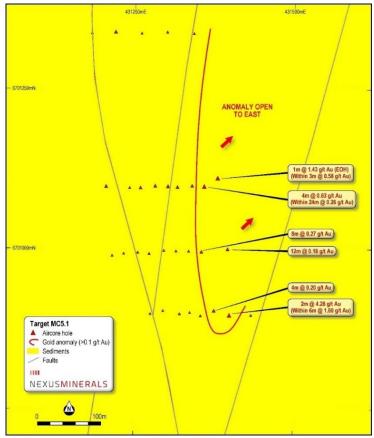


Figure 6: Target MC5.1 Map with results

Target MC1.4

Target MC1.4 is a known area of increased porphyry dyke activity, geological units which are implicated in controlling gold mineralisation at the Crusader-Templar deposit. In addition to this there is a major NW-SE trending structure with multiple splays providing a potential pathway for hydrothermal fluids. A total of 42 drill holes for 2,183 metres were completed at target MC1.4.

Alteration and geology at MC1.4 are indicative of the peripheries of a mineralising system with scale potential. The gold anomaly is currently mapped over 500 metres of strike (open to the north and south) and up to 200 metres in width. Further work may include extensional AC drilling and RC drilling of specific geological features.

The weathering profile at MC1.4 was roughly 25 metres deep, getting deeper in the centre of the planned lines through anomalism. The main host lithology is an intermediate volcanic/volcaniclastics with intrusive felsic porphyry dykes similar to those observed at the Crusader-Templar deposit. Hematite and chlorite-sericite alteration is common and pervasive throughout the prospect with sericite-rutile alteration observed on the boundaries of an intrusive units or shear zones. Quartz veining is observed throughout the prospect area with quartz-goethite veining mainly confined to the saprolite zones.

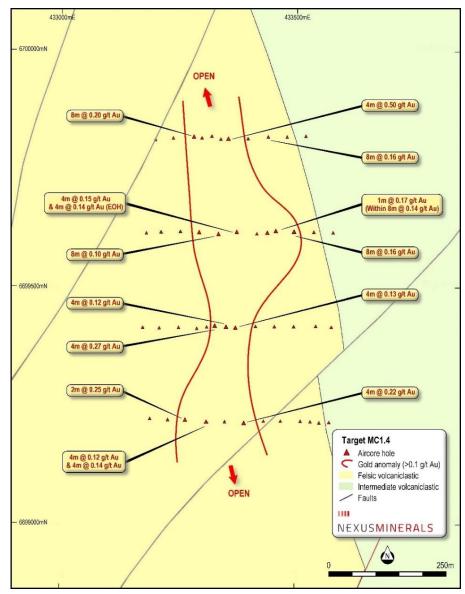
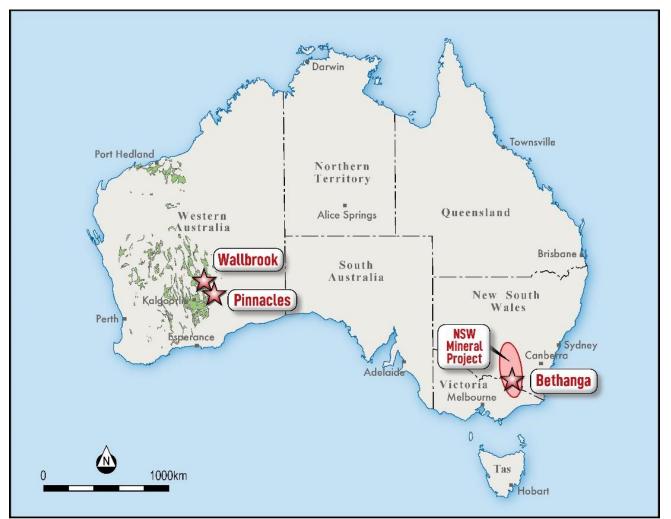


Figure 7: Target MC1.4 Map with results


Target MC4.2

Target MC4.2 is situated on the boundary between iron-rich and iron-poor intermediate packages with a series of NE-SW faults. Disruption in magnetic signature suggests zone of magnetic destruction due to hydrothermal activity. A total of 69 drill holes for 1,541 metres were completed at target MC4.2.

Target MC4.2 was characterised by a very shallow weathering profile of roughly 10 metres depth. Geology was varied, ranging from intermediate volcanic/volcaniclastics to mafic volcanics. Felsic porphyry dykes, intermediate intrusive, and small number of granitic intercepts were observed. Evidence of shearing to the west of the prospect is present and is more dominant in the south. Hematite and chlorite-sericite alteration is observed but is generally moderate to weak. The most common veins present throughout the prospect are quartz veins with carbonate and gypsum veins being less common.

Drilling at target MC4.2 failed to identify zones of interest worthy of follow-up within the area tested.

This announcement is authorised for release by Mr Andy Tudor, Managing Director, Nexus Minerals Limited.

About Nexus

Figure 8: Nexus Project Locations, Australia

Nexus is actively exploring for gold deposits on its highly prospective tenement package in the Eastern Goldfields of Western Australia. In Western Australia, the consolidation of the highly prospective Wallbrook Gold Project by the amalgamation of existing Nexus tenements with others acquired, will advance these gold exploration efforts. Nexus holds a significant land package of highly prospective geological terrane within a major regional structural corridor and is exploring for gold deposits.

Nexus Minerals' tenement package at the Wallbrook Gold Project commences immediately to the north of Northern Star's multi-million ounce Carosue Dam mining operations, and current operating Karari and Whirling Dervish underground gold mines.

In addition to this, the Company has expanded its existing project portfolio with the addition of the recently granted tenure over 15,000km² of Gold, Copper and Critical Mineral prospective ground in NSW, and the Bethanga Porphyry Copper-Gold project in Victoria.

Nexus is actively investing in new exploration techniques to refine the targeting approach for their current and future tenements.

- Ends – Enquiries Mr Andy Tudor, Managing Director Mr Paul Boyatzis, Non-Executive Chairman Contact Phone: 08 9481 1749 Website <u>www.nexus-minerals.com</u> ASX Code NXM

The information in the report to which this statement is attached that relates to Mineral Resources based upon information compiled by Mr Paul Blackney, a Competent Person who is a member of the Australian Institute of Geoscientists. Mr Blackney is a full-time employee of Snowden Optiro, consultants to Nexus Minerals Limited. Mr Blackney has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Blackney consents to the inclusion in the report of matters based on his information in the form and context in which it appears.

The Exploration Target estimate has been prepared by Mr Andy Tudor, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Tudor is the Managing Director and full-time employee of Nexus Minerals Limited. Mr Tudor has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Tudor consents to the inclusion in the release of the matters based on his information in the form and context in which it appears.

The information in this release that relates to Exploration Results, Mineral Resources or Ore Reserves is based on, and fairly represents, information and supporting documentation, prepared, compiled or reviewed by Mr Adam James, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr James is the Exploration Manager and full-time employee of Nexus Minerals Limited. Mr James has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr James consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. The results are available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

FORWARD LOOKING AND CAUTIONARY STATEMENTS. Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future earnings, cash flow, costs and financial performance. Forward looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "predict", "foresee", "proposed", "aim", "target", "opportunity", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this report are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements may be affected by a range of variables that could cause actual results to differ from estimated results and may cause the Company's actual performance and financial results in future periods to materially differ from any projections of future performance or results expressed or implied by such forward-looking statements. So, there can be no assurance that actual outcomes will not materially differ from these forwardlooking statements.

No Ore Reserves have currently been defined on the Pinnacles or Wallbrook tenements. There has been insufficient exploration and technical studies to estimate an Ore Reserve and it is uncertain if further exploration and/or technical studies will result in the estimation of an Ore Reserve. The potential for the development of a mining operation and sale of ore from the Pinnacles or Wallbrook tenements has yet to be established.

	Indicated			Inferred			TOTAL	
Tonnes (kt)	Au grade (g/t)	Au ounces (koz)	Tonnes (kt)	Au grade (g/t)	Au ounces (koz)	Tonnes (kt)	Au grade (g/t)	Au ounces (koz)
2,460	1.8	140	3,210	1.6	164	5,670	1.7	304

Crusader-Templar Mineral Resource Summary (0.4g/t cut-off) (rounding errors may occur)

Northern Star Ltd Carosue Dam Resource Table as at 31/3/2024

	Ν	Aeasure	d	Ir	ndicated		1	nferred		Tota	l Resour	rces
NST Attributable	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
Inclusive of Reserve	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)
Carosue Dam												
Surface	2,489	1.6	129	17,061	1.8	998	6,559	1.7	356	26,109	1.8	1,483
Underground	6,992	2.9	656	14,752	2.6	1,222	6,282	3.0	514	28,026	2.8	2,392
Stockpiles	6,996	1.5	167	-	-	-	-	-	-	6,996	1.5	167
Gold in Circuit	-	-	6	-	-	-		-	-	-	-	6
Sub-total Carosue Dam	16,476	1.8	958	31,814	2.2	2,220	2,841	2.4	870	61,131	2.1	4,048

Northern Star Ltd Carosue Dam Reserve Table as at 31/3/2024

		Proved	1		Probable		Total Reserve			
NST Attributable Reserve	Tonnes (000's)	Grade (gpt)	Ounces (000's)	Tonnes (000's)	Grade (gpt)	Ounces (000's)	Tonnes (000's)	Grade (gpt)	Ounces (000's)	
Carosue Dam										
Surface	-	-	-	6,535	1.8	381	6,535	1.8	381	
Underground	3,407	3.0	333	2,870	3.1	283	6,277	3.1	616	
Stockpiles	6,996	1.5	167	-	-	-	6,996	0.7	167	
Gold in Circuit	-	-	6	-	-	-	-	-	6	
Sub-total Carosue Dam	10,403	1.5	506	9,405	2.2	663	19,809	1.8	1,170	

NEXUSMINERALS

Appendix 1 Wallbrook Regional Aircore Drill Results

Site ID	Prospect	Easting	Northing	Elevation	Depth	Azimuth	Dip	From	То	Interval	g/t Au
NMWBAC24-341	MC2.1	433917	6696291	379	62	-55	88		N	SI	
NMWBAC24-342	MC2.1	433876	6696289	379	72	-55	90		N	SI	
NMWBAC24-343	MC2.1	433834	6696290	379	93	-55	90	0	12	12	0.33
								76	88	12	0.25
NMWBAC24-344	MC2.1	433816	6696291	379	103	-55	90	0	4	4	0.11
								12	16	4	0.11
								64	76	12	0.17
								102	103 (EOH)	1	0.79
NMWBAC24-345	MC2.1	433797	6696290	379	80	-55	90	0	4	4	0.19
								12	16	4	0.46
								36	40	4	0.18
								64	76	12	0.82
							inc.	64	68	4	1.58
NMWBAC24-346	MC2.1	433773	6696290	379	72	-55	90	36	48	12	0.69
							inc.	40	44	4	1.03
NMWBAC24-347	MC2.1	433750	6696292	379	78	-55	90	32	36	4	0.23
								52	56	4	0.73
NMWBAC24-348	MC2.1	433733	6696292	379	75	-55	90	56	60	4	0.56
								68	75 (EOH)	7	0.13
NMWBAC24-349	MC2.1	433698	6696291	379	52	-55	90	44	52 (EOH)	8	0.11
NMWBAC24-350	MC2.1	433657	6696287	379	40	-55	90		N	SI	
NMWBAC24-351	MC2.1	433937	6696387	379	36	-55	90		N	SI	
NMWBAC24-352	MC2.1	433894	6696388	379	57	-55	90		N	SI	
NMWBAC24-353	MC2.1	433858	6696387	379	53	-55	90	32	53	21	0.22
NMWBAC24-354	MC2.1	433830	6696387	379	57	-55	90	40	44	4	0.57
NMWBAC24-355	MC2.1	433779	6696386	379	64	-55	90	32	56	24	0.83
							inc.	52	56	4	2.88
NMWBAC24-356	MC2.1	433896	6697390	376	13	-55	90		N	SI	
NMWBAC24-357	MC2.1	433876	6697390	376	14	-55	90		N	SI	
NMWBAC24-358	MC2.1	433856	6697390	376	27	-55	90		N	SI	
NMWBAC24-359	MC2.1	433836	6697390	376	31	-55	90	24	28	4	0.20
NMWBAC24-360	MC2.1	433816	6697390	376	45	-55	90	4	8	4	0.12
NMWBAC24-361	MC2.1	433796	6697390	376	44	-55	90		N	SI	
NMWBAC24-362	MC2.1	433776	6697390	376	42	-55	90	36	41	5	0.12
NMWBAC24-363	MC2.1	433736	6697390	375	47	-55	90		N	SI	
NMWBAC24-364	MC2.1	433716	6697390	375	34	-55	90		N	SI	
NMWBAC24-365	MC2.1	433696	6697390	375	39	-55	90		N	SI	
NMWBAC24-366	MC2.1	433675	6697392	375	48	-55	90		N	SI	
NMWBAC24-367	MC2.1	433655	6697393	375	38	-55	90		N	SI	
NMWBAC24-368	MC2.1	433637	6697393	375	29	-55	90		N	SI	
NMWBAC24-369	MC2.1	433617	6697396	374	36	-55	95		N	SI	
NMWBAC24-370	MC2.1	433576	6697397	374	40	-55	90		N	SI	
NMWBAC24-371	MC2.1	433559	6697398	374	46	-55	84		N	SI	
NMWBAC24-372	MC2.1	433890	6697242	376	26	-55	90	20	25	5	0.20

Site ID	Prospect	Easting	Northing	Elevation	Depth	Azimuth	Dip	From	То	Interval	g/t Au
NMWBAC24-373	MC2.1	433870	6697242	376	32	-55	90	24	31	7	0.26
NMWBAC24-374	MC2.1	433848	6697244	376	50	-55	90	32	50 (EOH)	18	0.50
							inc.	49	50 (EOH)	1	1.06
NMWBAC24-375	MC2.1	433831	6697243	376	13	-55	90		N	SI	
NMWBAC24-376	MC2.1	433812	6697244	376	10	-55	90		N	SI	
NMWBAC24-377	MC2.1	433792	6697242	376	14	-55	90		N	SI	
NMWBAC24-377	MC2.1	433772	6697245	376	20	-55	90		N	SI	
NMWBAC24-379	MC2.1	433754	6697242	376	23	-55	90	20	22	2	0.10
NMWBAC24-379	MC2.1	433733	6697243	376	24	-55	90		I N		
NMWBAC24-380	MC2.1	433710	6697246	375	40	-55	90		N		
	MC2.1	433692	6697243	375	47	-55	90	46	47 (EOH)	1	0.77
NMWBAC24-382	MC2.1	433675	6697249	375	51	-55	90	20	32	12	0.16
NMWBAC24-383	MC2.1	433646	6697242	375	33	-55	90	20	N:		0.10
NMWBAC24-384	MC2.1	433639	6697244	375	36	-55	90		N		
NMWBAC24-385	MC2.1	433959	6697091	377	12	-55	90	4	8		0.20
NMWBAC24-386	MC2.1 MC2.1	433942	6697091	377	5	-55	90	4	o 5 (EOH)		0.20
NMWBAC24-387	MC2.1	433921	6697093	377	15	-55	90	4	N:		0.20
NMWBAC24-388			6697093						N		
NMWBAC24-389	MC2.1	433903		377	15	-55	90	0			0.47
NMWBAC24-390	MC2.1	433882	6697095	376	3	-55	90	2	3 (EOH)	1	0.17
NMWBAC24-391	MC2.1	433862	6697094	376	15	-55	90		N		
NMWBAC24-392	MC2.1	433843	6697092	376	27	-55	90		N		
NMWBAC24-393	MC2.1	433822	6697095	376	9	-55	90		N		
NMWBAC24-394	MC2.1	433806	6697095	376	5	-55	90		N		
NMWBAC24-395	MC2.1	433787	6697096	376	19	-55	90		N		
NMWBAC24-396	MC2.1	433772	6697098	376	19	-55	90		N	SI	
NMWBAC24-397	MC2.1	433747	6697095	376	33	-55	90		N	SI	
NMWBAC24-398	MC2.1	433701	6697095	376	38	-55	90		N	SI	
NMWBAC24-399	MC2.1	433931	6697238	377	9	-55	90		N	SI	
NMWBAC24-400	MC2.1	433914	6697238	377	13	-55	90		N	SI	
NMWBAC24-401	MC2.1	433760	6697391	375	34	-55	90		N	SI	
NMWBAC24-402	MC2.1	433600	6697394	374	42	-55	90		N	SI	
NMWBAC24-403	MC2.1	433755	6696386	379	56	-55	90	16	20	4	0.22
								40	44	4	1.00
NMWBAC24-404	MC2.1	433717	6696388	379	65	-55	90		N	SI	
NMWBAC24-405	MC2.1	433680	6696386	379	83	-55	90	52	72	20	0.77
							inc.	64	72	8	1.55
NMWBAC24-406	MC2.1	433775	6696378	379	60	-55	90	0	4	4	0.11
								40	48	8	0.77
							inc.	40	44	4	1.32
								59	60 (EOH)	1	1.20
NMWBAC24-407	MC2.1	433829	6696342	379	98	-55	90	68	72	4	0.14
								80	84	4	0.26
NMWBAC24-408	MC2.1	433808	6696341	379	106	-55	90	32	44	12	0.45
							<u> </u>	40	44	4	1.11
	MC2.1	433769	6696341	379	61	-55	90		I N		I

Site ID	Prospect	Easting	Northing	Elevation	Depth	Azimuth	Dip	From	То	Interval	g/t Au
NMWBAC24-410	MC2.1	433747	6696340	379	62	-55	90	8	12	4	0.18
NMWBAC24-411	MC2.1	433726	6696338	379	68	-55	90	48	52	4	0.15
NMWBAC24-412	MC2.1	433689	6696338	379	69	-55	90	56	60	4	0.86
NMWBAC24-412	MC2.1	433650	6696339	379	44	-55	90		N:	SI	
NMWBAC24-413	MC2.1	433912	6696433	379	47	-55	90	8	12	4	2.13
NMWBAC24-415	MC2.1	433892	6696435	379	59	-55	90	0	8	8	0.48
NMWBAC24-415	MC2.1	433874	6696435	379	75	-55	90	0	4	4	0.16
NINIVIDAC24-410								36	72	36	0.65
							inc.	40	48	8	2.16
NMWBAC24-417	MC2.1	433855	6696434	379	77	-55	90	32	40	8	0.24
NWWDAC24-417								56	64	8	0.47
NMWBAC24-418	MC2.1	433833	6696434	379	51	-55	90		N		
NMWBAC24-418	MC2.1	433814	6696437	379	41	-55	90	0	4	4	0.15
NIVIVIBAC24-419								36	40	4	0.20
	MC2.1	433792	6696436	379	46	-55	90	0	4	4	0.14
NMWBAC24-420		1007.02	0000100	0.0	10	00		32	46 (EOH)	14	1.37
							inc.	32	40	8	2.33
	MC2.1	433755	6696436	379	62	-55	90	32	36	4	0.19
NMWBAC24-421	102.1	400700	0000400	5/5	02	-00	50	44	52	8	0.15
	MC2.1	433717	6696436	379	80	-55	90	44	48	4	0.20
NMWBAC24-422	10102.1	433717	0090430	579	00	-55	90	79	80	4	0.10
	MC2.1	433676	6696440	379	86	-55	90	79	0		0.22
NMWBAC24-423	MC2.1	433901	6696486		43	-55	90 90	0	8	8	0.19
NMWBAC24-424	MC2.1	433880	6696487	378 378	43 58	-55	90 90	0	0 4	0 4	0.19
NMWBAC24-425	10102.1	433000	0090407	370	50	-00	90	28		4	
									32		0.95
	MC2.4	400064	6606480	270	50	55	00	56	57	1	0.18
NMWBAC24-426	MC2.1	433861	6696489	378	56	-55	90	28	56	28	1.05
	M00.4	4000.40	0000400	070			inc.	32	40	8	2.93
NMWBAC24-427	MC2.1	433842	6696489	378	33	-55	90		N		
NMWBAC24-428	MC2.1	433822	6696487	378	26	-55	90		N		0.40
NMWBAC24-429	MC2.1	433782	6696488	378	33	-55	90	0	4	4	0.10
	1400.4	40.07.47	0000400	070				28	33	5	0.35
NMWBAC24-430	MC2.1	433747	6696492	378	62	-55	90	0	4	4	0.20
								32	44	12	0.31
								52	62	10	0.88
		10.77.7					inc.	52	56	4	1.48
NMWBAC24-431	MC2.1	433702	6696485	378	82	-55	90	16	60	44	0.25
							inc.	16	20	4	0.67
NMWBAC24-432	MC2.1	433664	6696484	378	83	-55	90		N	1	
NMWBAC24-433	MC2.1	433671	6696520	378	83	-55	270	72	76	4	1.36
NMWBAC24-434	MC2.1	433682	6696518	378	57	-55	270		N		
NMWBAC24-435	MC2.1	433866	6696346	379	72	-55	90		N		-
NMWBAC24-436	MC2.1	433788	6696341	379	66	-55	90	40	48	8	0.63
								56	66 (EOH)	10	0.22
NMWBAC24-437	MC2.1	433982	6697087	377	14	-55	90		N	SI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Azimuth	Dip	From To Interval g/t Au
NMWBAC24-438	MC4.2	435014	6701869	384	8	-55	90	NSI
NMWBAC24-439	MC4.2	434975	6701871	383	21	-55	90	NSI
NMWBAC24-440	MC4.2	434936	6701871	383	17	-55	90	NSI
NMWBAC24-441	MC4.2	434892	6701872	382	24	-55	90	NSI
NMWBAC24-442	MC4.2	434856	6701872	382	21	-55	90	NSI
NMWBAC24-443	MC4.2	434815	6701870	381	23	-55	90	NSI
NMWBAC24-444	MC4.2	434772	6701870	381	17	-55	90	NSI
NMWBAC24-445	MC4.2	435002	6702019	384	8	-55	90	NSI
NMWBAC24-446	MC4.2	434964	6702023	383	7	-55	90	NSI
NMWBAC24-447	MC4.2	434924	6702019	382	6	-55	90	NSI
NMWBAC24-448	MC4.2	434880	6702019	381	12	-55	90	NSI
NMWBAC24-449	MC4.2	434842	6702021	381	24	-55	90	NSI
NMWBAC24-450	MC4.2	434800	6702020	380	20	-55	90	NSI
NMWBAC24-451	MC4.2	434764	6702023	380	18	-55	90	NSI
NMWBAC24-452	MC4.2	434721	6702023	380	23	-55	90	NSI
NMWBAC24-453	MC4.2	434689	6702021	380	18	-55	90	NSI
NMWBAC24-454	MC4.2	434909	6702173	383	14	-55	90	NSI
NMWBAC24-455	MC4.2	434867	6702170	382	7	-55	90	NSI
NMWBAC24-456	MC4.2	434830	6702169	382	6	-55	90	NSI
NMWBAC24-457	MC4.2	434791	6702168	381	20	-55	90	NSI
NMWBAC24-458	MC4.2	434749	6702169	381	19	-55	90	NSI
NMWBAC24-459	MC4.2	434709	6702168	383	12	-55	90	NSI
NMWBAC24-460	MC4.2	434669	6702168	383	31	-55	90	NSI
NMWBAC24-461	MC4.2	434628	6702165	383	23	-55	90	NSI
NMWBAC24-462	MC4.2	434863	6702316	383	24	-55	90	NSI
NMWBAC24-463	MC4.2	434825	6702319	383	24	-55	90	NSI
NMWBAC24-464	MC4.2	434798	6702320	383	21	-55	90	NSI
NMWBAC24-465	MC4.2	434785	6702319	383	24	-55	90	NSI
NMWBAC24-466	MC4.2	434706	6702317	383	29	-55	90	NSI
NMWBAC24-467	MC4.2	434744	6702319	383	24	-55	90	NSI
NMWBAC24-468	MC4.2	434666	6702318	383	20	-55	90	NSI
NMWBAC24-469	MC4.2	434624	6702320	383	30	-55	90	NSI
NMWBAC24-470	MC4.2	434583	6702322	383	26	-55	90	NSI
NMWBAC24-471	MC4.2	434882	6702470	383	12	-55	90	NSI
NMWBAC24-472	MC4.2	434845	6702471	383	31	-55	90	NSI
NMWBAC24-473	MC4.2	434801	6702474	383	26	-55	90	NSI
NMWBAC24-474	MC4.2	434762	6702473	383	28	-55	90	NSI
NMWBAC24-475	MC4.2	434729	6702472	383	30	-55	90	NSI
NMWBAC24-476	MC4.2	434684	6702472	383	24	-55	90	NSI
NMWBAC24-477	MC4.2	434642	6702471	383	34	-55	90	NSI
NMWBAC24-478	MC4.2	434607	6702471	383	31	-55	90	NSI
NMWBAC24-479	MC4.2	435001	6702619	383	36	-55	90	NSI
NMWBAC24-480	MC4.2	434960	6702619	384	35	-55	90	NSI
NMWBAC24-481	MC4.2	434919	6702619	384	25	-55	90	NSI
NMWBAC24-482	MC4.2	434902	6702621	384	6	-55	90	NSI
	1	1	1	1	1	1	1	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Azimuth	Dip	From	То	Interval	g/t Au
NMWBAC24-483	MC4.2	434881	6702621	384	21	-55	90		N	SI	
NMWBAC24-484	MC4.2	434839	6702621	383	39	-55	90		Ν	SI	
NMWBAC24-485	MC4.2	434799	6702621	383	5	-55	90	0	4	4	0.28
NMWBAC24-486	MC4.2	434760	6702620	383	10	-55	90		N	SI	
NMWBAC24-487	MC4.2	434719	6702619	383	36	-55	90		N	SI	
NMWBAC24-488	MC4.2	434784	6702469	383	20	-55	90		N	SI	
NMWBAC24-489	MC4.2	434763	6702316	383	26	-55	90		N	SI	
NMWBAC24-490	MC4.2	434726	6702318	383	22	-55	90		N	SI	
NMWBAC24-490	MC4.2	434645	6702318	383	16	-55	90		N	SI	
NMWBAC24-491	MC4.2	434607	6702315	383	29	-55	90	28	29 (EOH)	1	0.20
NMWBAC24-492	MC4.2	434563	6702319	381	29	-55	90		, ,	SI	
NMWBAC24-495	MC4.2	434690	6702170	381	12	-55	90		N	SI	
NMWBAC24-494	MC4.2	434861	6702019	381	18	-55	90			SI	
	MC4.2	434819	6702021	381	19	-55	90			SI	
NMWBAC24-496	MC4.2	434779	6702023	380	11	-55	90			SI	
NMWBAC24-497	MC4.2	434741	6702024	380	38	-55	90			SI	
NMWBAC24-498	MC4.2 MC4.2	434834	6701871	382	11	-55	90			SI	
NMWBAC24-499	MC4.2 MC4.2	434794	6701871	381	24	-55	90			SI	
NMWBAC24-500	MC4.2	433551	6699214	374	50	-55	90			SI	
NMWBAC24-501	MC4.2 MC4.2	433572	6699214 6699215	374	23	-55	90			SI	
NMWBAC24-502	MC4.2 MC4.2	433532	6699216	373	19	-55	90			SI	
NMWBAC24-503				374	29		90 90			SI	
NMWBAC24-504	MC4.2	433511 433469	6699217		29	-55 -55	90 90			SI	
NMWBAC24-505	MC4.2		6699217	373						-	
NMWBAC24-506	MC4.2	433433	6699217	373	71	-55	90		IN	SI	
NMWBAC24-507	MC1.4	433391	6699213	372	55	-55	90	48	52	4	0.22
NMWBAC24-508	MC1.4	433350	6699215	372	54	-55	90		N	SI	
NMWBAC24-509	MC1.4	433311	6699215	371	72	-55	90	48	52	4	0.12
								56	60	4	0.14
NMWBAC24-510	MC1.4	433266	6699219	371	107	-55	90	104	106	2	0.25
NMWBAC24-511	MC1.4	433229	6699219	371	135	-55	90		N	SI	
NMWBAC24-512	MC1.4	433191	6699221	370	52	-55	90		Ν	SI	
NMWBAC24-513	MC1.4	433576	6699416	375	32	-55	90		Ν	SI	
NMWBAC24-514	MC1.4	433543	6699418	374	36	-55	90		N	SI	
NMWBAC24-515	MC1.4	433496	6699417	373	23	-55	90		Ν	SI	
NMWBAC24-516	MC1.4	433455	6699417	373	35	-55	90		N	SI	
NMWBAC24-517	MC1.4	433415	6699417	373	60	-55	90		N	SI	
NMWBAC24-518	MC1.4	433372	6699414	372	57	-55	90	32	36	4	0.13
NMWBAC24-519	MC1.4	433328	6699418	372	61	-55	90	44	48	4	0.27
NMWBAC24-520	MC1.4	433290	6699412	371	20	-55	90		N	SI	
NMWBAC24-521	MC1.4	433251	6699414	371	55	-55	90		N	SI	
NMWBAC24-521	MC1.4	433210	6699413	371	36	-55	90			SI	
NMWBAC24-522	MC1.4	433175	6699414	371	52	-55	90			SI	
NMWBAC24-525	MC1.4	433579	6699616	375	11	-55	90			SI	
	MC1.4	433538	6699617	375	36	-55	90			SI	
NMWBAC24-525			0000017	0.0							

Site ID	Prospect	Easting	Northing	Elevation	Depth	Azimuth	Dip	From	То	Interval	g/t Au
NMWBAC24-526	MC1.4	433496	6699618	374	40	-55	90	20	28	8	0.16
NMWBAC24-527	MC1.4	433457	6699619	373	51	-55	90	20	28	8	0.14
								50	51 (EOH)	1	0.17
NMWBAC24-528	MC1.4	433417	6699613	372	52	-55	90		N	SI	
NMWBAC24-529	MC1.4	433374	6699617	372	60	-55	90	59	60	1	0.11
NMWBAC24-530	MC1.4	433335	6699612	372	59	-55	90	12	16	4	0.15
								44	48	4	0.14
								58	59 (EOH)	1	0.39
NMWBAC24-531	MC1.4	433294	6699616	372	51	-55	90	40	48	8	0.10
NMWBAC24-532	MC1.4	433254	6699617	372	34	-55	90		N	SI	
NMWBAC24-533	MC1.4	433213	6699616	371	25	-55	90		N	SI	
NMWBAC24-534	MC1.4	433182	6699614	371	26	-55	90		N	SI	
NMWBAC24-535	MC1.4	433520	6699820	375	41	-55	90		N	SI	
NMWBAC24-536	MC1.4	433480	6699818	374	44	-55	90		N	SI	
NMWBAC24-537	MC1.4	433440	6699818	373	31	-55	90		N	SI	
NMWBAC24-538	MC1.4	433397	6699814	372	52	-55	90		N	SI	
NMWBAC24-539	MC1.4	433355	6699814	372	52	-55	90	32	36	4	0.50
NMWBAC24-540	MC1.4	433320	6699819	371	71	-55	90		N	SI	
NMWBAC24-541	MC1.4	433282	6699818	371	80	-55	90	24	32	8	0.20
NMWBAC24-542	MC1.4	433238	6699815	371	71	-55	90		N	SI	
NMWBAC24-543	MC1.4	433200	6699811	371	51	-55	90		N	SI	
NMWBAC24-544	MC1.4	433339	6699813	371	66	-55	90		N	SI	
NMWBAC24-545	MC1.4	433299	6699815	371	62	-55	90		N	SI	
NMWBAC24-546	MC1.4	433439	6699615	372	58	-55	90	24	28	4	0.19
NMWBAC24-547	MC1.4	433352	6699416	372	53	-55	90	24	28	4	0.12
NMWBAC24-548	MC1.4	433311	6699415	372	64	-55	90		N	SI	
	MCE 1	404076	6700900	262	24	55	270		NI	01	
NMWBAC24-549	MC5.1	431276	6700899	363	34	-55	270		N		
NMWBAC24-550	MC5.1	431322	6700899	363	30	-55	270		N		
NMWBAC24-551	MC5.1	431355	6700896	363	28	-55	270	24	20 N	r	1.60
NMWBAC24-552	MC5.1	431400	6700897	364	31	-55	270	24 28	30 30	6 2	1.60 4.28
	MC5.1	431434	6700897	364	25	-55	inc 270	20	N		4.20
NMWBAC24-553	MC5.1	431234	6700993	364	38	-55	270		N		
NMWBAC24-554	MC5.1	431234	6700993	364	34	-55	270		N		
NMWBAC24-555	MC5.1	431274	6700993	364	39	-55	270		N		
NMWBAC24-556	MC5.1	431310	6700996	364	43	-55	270	28	36	8	0.27
NMWBAC24-557	MC5.1	431397	6701000	364	41	-55	270	20		12	0.18
NMWBAC24-558			-						36		
NMWBAC24-559	MC5.1 MC5.1	431206	6701098 6701096	364 364	45	-55 -55	270	40	44 N	4	0.10
NMWBAC24-560		431243	-		49		270	20		r	0.24
NMWBAC24-561	MC5.1	431283	6701099	364	40	-55	270	28	39	11	0.21
NMWBAC24-562	MC5.1	431318	6701097	364	45	-55	270	36	40	4	0.26
NMWBAC24-563	MC5.1	431360	6701098	364	57	-55	270	32	56	24	0.26
	MOLA	401400	6704007	26.4	70	55	inc.	32	36	4	0.63
NMWBAC24-564	MC5.1	431183	6701337	364	72	-55	270		N	51	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Azimuth	Dip	From	То	Interval	g/t Au
NMWBAC24-565	MC5.1	431220	6701339	364	54	-55	270	32	36	4	0.34
NMWBAC24-566	MC5.1	431261	6701337	364	53	-55	270		Ν	SI	
NMWBAC24-567	MC5.1	431301	6701339	364	41	-55	270		N	SI	
NMWBAC24-568	MC5.1	431343	6701337	364	40	-55	270		Ν	SI	
NMWBAC24-569	MC5.1	431260	6701096	364	51	-55	270	40	51 (EOH)	11	0.12
NMWBAC24-570	MC5.1	431303	6701098	364	45	-55	270	36	40	4	0.19
NMWBAC24-571	MC5.1	431341	6701099	364	42	-55	270	36	42 (EOH)	6	0.11
NMWBAC24-572	MC5.1	431381	6701111	364	51	-55	272	48	51 (EOH)	3	0.58
							inc.	50	51 (EOH)	1	1.43
NMWBAC24-573	MC5.1	431216	6700990	364	36	-55	270		N	SI	
NMWBAC24-574	MC5.1	431256	6700995	364	45	-55	270		N	SI	
NMWBAC24-575	MC5.1	431297	6700998	364	34	-55	270		N	SI	
NMWBAC24-576	MC5.1	431336	6700997	364	35	-55	270		N	SI	
NMWBAC24-577	MC5.1	431296	6700904	364	34	-55	270		Ν	SI	
NMWBAC24-578	MC5.1	431338	6700901	364	34	-55	270		Ν	SI	
NMWBAC24-579	MC5.1	431376	6700904	364	34	-55	270	16	20	4	0.20

Appendix A 27/08/2024

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 The sampling was carried out using Aircore Drilling (AC). AC chips provide representative samples for analysis. Sampling was carried out in accordance with Nexus Minerals protocols and QAQC procedures which Nexus considers to be industry best practice. AC holes were drilled to refusal, with 1m samples collected in buckets through a cyclone and upended on the ground in rows of 10m. All samples had 4 consecutive 1m samples composited to form a 4m composite sample which was sent to the laboratory for analysis. The bottom of hole sample was collected as a 1m sample and sent to the laboratory for analysis. All 4m composite samples were pulverized at the laboratory to -75um, to produce a 50g charge for gold Fire Assay with ICP finish. All 1m bottom of hole samples were pulverized at the laboratory to -75um, to produce a 50g charge for gold Fire Assay with ICP finish and four acid digest multi element (48 elements + 12 rare earth elements) analysis undertaken on the sample pulps by the laboratory.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	An AC drilling rig was used to undertake the AC drilling and collect the samples. Drilling was completed using a 3.5 inch (90mm) diameter bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples.	 All samples were dry with no significant ground water encountered. No sample bias is believed to have occurred during the sampling process. AC face sampling bits and dust suppression were used to minimise sample loss. Average AC metre sample weight recovered was 10kg with

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	minimal variation between samples.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All AC chip samples were geologically logged by Nexus Minerals geologists, using the approved Nexus Minerals logging code. Logging of AC chips: Lithology, mineralogy, alteration, mineralisation, colour, weathering and other characteristics as observed. All AC samples (except clays) were wet sieved. All AC holes and all metres were geologically logged.
Sub-	If core, whether cut or sawn and whether quarter, half or all core taken.	AC holes were drilled to refusal, with 1m samples collected in buckets
sampling techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	through a cyclone and upended on the ground in rows of 10m. All samples had 4 consecutive 1m samples composited to form a 4m composite sample which was sent to the laboratory for analysis. The bottom of hole sample was collected as a 1m sample and sent to the laboratory for analysis.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	For composite samples four consecutive metres were sampled using an aluminium scoop which penetrates the entire sample with multiple slices taken from multiple angles to ensure a representative sample is collected. These are combined to produce a 4m composite sample of 2-3kg.
		All samples submitted for analysis were dry.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Samples were prepared at an accredited laboratory in either Perth or Kalgoorlie. Samples were dried, and the whole sample pulverized to 85% passing 75um, with a sub-sample of ~200g retained. A nominal 50g was used for analysis. This is best industry practice.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Duplicate composite scoop field samples were collected at 1:25 samples.
		Sampling methods and company QAQC protocols are best industry practice.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate for the material being sampled and the sample size being submitted for analysis.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were analysed at an accredited laboratory in either Perth or Kalgoorlie. 4m and 1m samples were analysed for gold using Fire Assay technique with ICP finish. This method is considered appropriate for the material being assayed. The method provides a near total digestion of

Criteria	JORC Code explanation	Commentary
laboratory tests		the material. This method is considered appropriate for the material being assayed. The method provides a near total digestion of the material.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their	No other geophysical tools, spectrometers etc. were used in this drill program.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Nexus Minerals protocol provides for Certified Reference Material (Standards and Blanks) to be inserted at a rate of 4 standards and 4 blanks per 100 samples. Field duplicates are inserted at a rate of 1 per 25 samples.
Verification of sampling	The verification of significant intersections by either independent or alternative company personnel.	Results and significant intersections were verified by the Exploration Manager.
and assaying	The use of twinned holes.	No twin holes were drilled as part of this program.
assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field logging is carried out on a laptop computer. Data is submitted electronically to the database manager in Perth. Assay files are received electronically from the laboratory and added to the database. All data is managed by the database geologist.
	Discuss any adjustment to assay data.	No adjustment to assay data has occurred.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole locations were determined using a handheld GPS, with an accuracy of 3m. Drill holes were lined up using a sighting compass – no down hole surveys were completed.
	Specification of the grid system used.	Grid projection is GDA94 Zone51.
	Quality and adequacy of topographic control.	The drill hole collar RL is allocated from a handheld GPS.
		Accuracy is +/- 3m.
Data spacing and	Data spacing for reporting of Exploration Results.	AC drilling took place at the MC1.4, MC2.1, MC4.2 and MC5.1 Prospects.
distribution	Whether the data spacing and distribution is sufficient to establish the	This release refers to these prospects results only.
	degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is not sufficient to establish the degree of geological and grade continuity appropriate for any Mineral Resource and Ore Reserve estimation procedure(s) and classifications to be applied.
	Whether sample compositing has been applied.	Yes as stated above.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of the drill lines is considered to be roughly perpendicular to the strike of the regional structures controlling the mineralisation (0 degrees).
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	AC holes were drilled -55 degrees towards 090 degrees for prospects MC1.4, MC2.1 and MC4.2, and -55 degrees towards 270 degrees for prospect MC5.1.
		The relationship between the drilling orientation and the orientation of key mineralised structures is not considered to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	For the AC drilling program pre-numbered calico bags were placed into green plastic bags, sealed and transported to the laboratory in Kalgoorlie by company personnel or established transport company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All sampling, logging, assaying and data handling techniques are considered to be industry best practice.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	AC drilling was undertaken on tenements E31/1160, E31/1108, M31/190, and M31/231. Tenure is held by Nexus 100%
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	There are no other known material issues with the tenements. The tenements are in good standing with the Western Australian Mines Department (DMP).

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	In the areas targeted, the tenements have been subject to minimal prior exploration activities.
Geology	Deposit type, geological setting and style of mineralisation.	Gold mineralisation in the Wallbrook area is known to be closely associated with quartz +/- pyrite and brick-red coloured haematitic alteration of high level porphyry intrusives and their volcanic / sedimentary host rocks.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to ASX announcements for full tables.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No top cuts have been applied to the reported assay results. No aggregate intercepts incorporate short lengths of high grade result and longer lengths of low grade results. No metal equivalent values were reported.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisatio n widths and	These relationships are particularly important in the reporting of Exploration Results.	The orientation of the drill lines is considered to be roughly perpendicular to the strike of the regional structures controlling the mineralisation (0 degrees). Holes were drilled -60 degrees towards 090 or 270 degrees.

Criteria	JORC Code explanation	Commentary
intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	All reported intersections are down-hole length – true width not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the maps included in the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Clearly stated in body of release
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data to be reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Post full assessment of recent drill results and integration with existing data sets, future work programs may include Aircore drilling and/or RC/Diamond drilling to follow up on the results received from this drill program.