

HIGH-GRADE GOLD SYSTEM CONTINUES TO EMERGE AT THE HORSEWELL GOLD **CAMP**

7.9 metres @ 9.7g/t Au at Warmblood & 10 metres @ 6.9g/t Au at Palomino

Highlights:

Warmblood Gold Deposit

- Ongoing diamond drilling at the Warmblood Deposit has continued to intersect high-grade gold mineralisation immediately below the existing shallow resource. Results of this work now include:
 - HWDD042: 7.9 metres @ 9.7g/t Au from 138.5 metres (including 3.2 metres @ 22.0g/t Au)
 - HWDD043: 5.2 metres @ 3.1g/t Au from 171.1 metres (including 2.2 metres @ 7.0g/t Au)
 - HWDD017: 14.4 metres @ 6.0g/t Au from 114 metres (including 7 metres @ 10.6g/t Au)
- The results extend the high-grade mineralisation a further 170 metres down plunge and the mineralisation remains totally open at depth and along strike. Of significance for the resource potential, the deepest intersection is only ~140 metres below surface.
- Additional infill RC and diamond holes have returned the following significant results:
 - HWDD029: 7.4 metres @ 4.9g/t Au from 49.6 metres (including 3 metres @ 10.6g/t Au)
 - HWDD039: 14.6 metres @ 1.5g/t Au from 102.5 metres (including 3.3 metres @ 4.2g/t Au)
 - HWRC329: 6 metres @ 2.5g/t Au from 102 metres
- RC drilling continues to test the 1.4-kilometre, high-grade primary exploration target trend at Warmblood, with deeper diamond drilling planned to follow-up on these results and further test the down-plunge extents. Results will be released to the market in due course.

Palomino Gold Deposit

- Assay results from Palomino have extended the high-grade mineralisation a further 150 metres along strike from the existing resource:
 - HWDD034: 10 metres @ 6.9g/t Au from 170 metres (including 2.1 metres @ 15.1g/t Au)
- Additional RC results have demonstrated that the upper portion of this high grade (+30GM) primary mineralised domain is over 300 metres in strike length, while the oxide footprint is over 700 metres in strike length.
- The deeper portions of the high-grade primary mineralisation remain open at depth, both down plunge and along strike (Figure 3).

+61 (8) 6317 9875

Level 4, 15 Ogilvie Road

Mt Pleasant WA 6153

Introduction

Strickland Metals Limited (ASX:STK) (**Strickland** or the **Company**) is pleased to provide an update on exploration activities at its 100%-owned Horse Well Gold Camp in Western Australia (Figure 1).

The Horse Well Gold Camp continues to emerge as a large-scale gold system consisting of a series of what are now believed to be a network of interconnected mineralised structures. The gold mineralised system has currently been defined over a strike length of 4 kilometres, however, it is clear that the system has strong potential to extend for at least the same distance under transported cover to the north where previous shallow drilling is deemed to be largely ineffective.

The Warmblood and Palomino Gold Deposits are currently the most advanced prospects within the broader Horse Well Gold Camp.

Paul L'Herpiniere, Managing Director of Strickland, said: "These results are very significant, not simply because they are strong intersections in their own right but also because of what they are telling us about the Horsewell camp as a whole. The company has recently made significant progress in understanding the geology of this well mineralised area and, most importantly, now has a clear understanding of the major camp-scale controls on gold mineralisation, as illustrated below. It is exciting to see the interconnected nature of these ore-controlling structures, which is giving us confidence that potentially a very large gold deposit may be emerging at Horsewell. The combined effects of very deep weathering and historically shallow drilling have concealed the magnitude of this opportunity until now. However, the Company's current program of deeper drilling is now confirming multiple high-grade mineralised shoots open at depth. One geological pattern that is well known with Orogenic gold deposits such as this one is that we always see multiple stacked ore-shoots as we drill deeper."

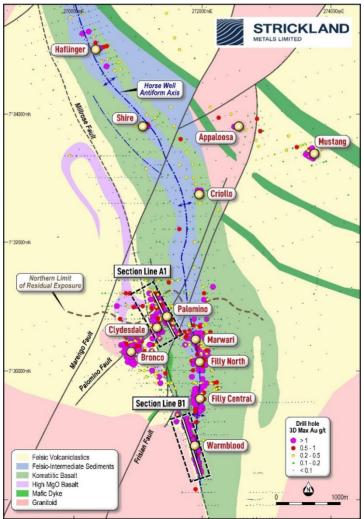


Figure 1: Revised Geological Interpretation highlight the emerging Horse Well Gold Camp. Note continuity of ore-controlling structures and that most known mineralisation is restricted to the area of residual exposure.

Warmblood Gold Deposit

Extensional diamond drilling at the Warmblood Gold Deposit has continued to intersect high-grade gold mineralisation immediately beneath the existing shallow resource. Results of this work now include:

- HWDD042: 7.9 metres @ 9.7g/t Au from 138.5 metres (including 3.2 metres @ 22.0g/t Au)
- HWDD043: 5.2 metres @ 3.1g/t Au from 171.1 metres (including 2.2 metres @ 7.0g/t Au) and
 7.4 metres @ 1.1g/t Au from 203.6 metres
- HWDD017¹: 14.4 metres @ 6.0g/t Au from 114 metres (including 7 metres @ 10.6g/t Au) and
 12.0 metres @ 1.7g/t Au from 144 metres

These intercepts are significant as they extend the high-grade mineralisation a further 170 metres down plunge, amounting to a 250 metres down-plunge extension from the historic Warmblood drilling and current resource area (Figure 3). Importantly, this high-grade mineralisation remains open at depth, both along strike and down dip.

Infill RC and diamond drilling in shallow positions has confirmed and enhanced this part of the deposit. The following results have now been returned:

- HWDD029: 7.4 metres @ 4.9g/t Au from 49.6 metres (including 3 metres @ 10.6g/t Au)
- HWDD039: 14.6 metres @ 1.5g/t Au from 102.5 metres (including 3.3 metres @ 4.2g/t Au)
- HWRC329: 6.0 metres @ 2.5g/t Au from 102 metres
- HWRC330: 5.0 metres @ 2.0g/t Au from 114 metres

RC drilling continues to test the northern extents of this 1.4 kilometre mineralised trend (Figure 2), with deeper diamond drilling planned to follow-up on these results and further define this high-grade primary mineralisation. Results will be released to the marked in due course.

It is important to note that the deepest intersection to date is only 140 metres below surface.

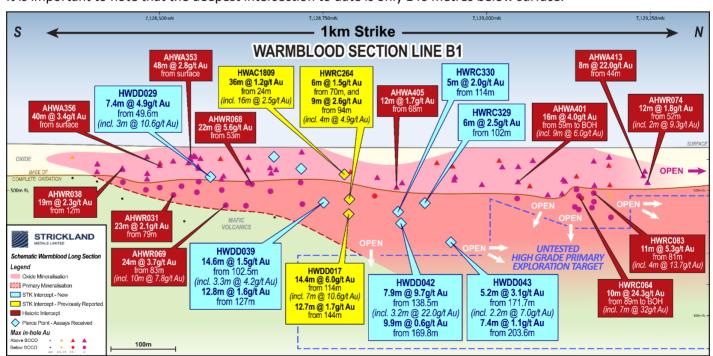


Figure 2: Schematic Warmblood Long Section B1, highlighting the significant high grade assay results received to date

 $^{^{\}mathrm{1}}$ Refer to ASX release dated 30 July 2024.

Palomino

Step-out diamond drilling testing the highly prospective northern extensions of the Palomino Gold Deposit has continued to expand high-grade mineralisation down-plunge (Figure 3). The most recent result is:

HWDD034: 10 metres @ 6.9g/t Au from 170 metres (including 2.1 metres @ 15.1g/t Au)

This high-grade intercept is 150 metres along strike from the current extent of the Palomino resource and demonstrates the continuation of +30GM (Gram x Metre) Au high grade mineralisation within the Palomino structure.

In addition to the down-plunge extension of the primary domain, additional RC drill assay results have extended the oxide mineralisation. Significant intercepts received include:

- HWRC300: 6 metres @ 1.3g/t Au from 7 metres
- HWRC318: 11 metres @ 1.1g/t Au from 101 metres

These intercepts have helped define the upper portion of the high grade (+30GM Au) primary mineralised domain to be over 300 metres in strike length, with the oxide footprint being over 700 metres in strike length.

The deeper portion of the high-grade primary mineralisation remains open at depth, both down plunge and along strike.

Figure 1: Palomino Long Section highlighting the significant gold mineralisation intersected to date

Ongoing Exploration

RC drilling continues to test the northern extents of the Warmblood 1.4 kilometre mineralised trend, with diamond drilling planned to further evaluate the depth potential. Results will be released to the market in due course.

This release has been authorised by the Company's Managing Director Mr Paul L'Herpiniere.

— Ends —

For further information, please contact:

Paul L'Herpiniere Managing Director

Phone: +61 (8) 6317 9875 info@stricklandmetals.com.au stricklandmetals.com.au

Competent Person's Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Richard Pugh who is the Strickland Metals Limited Technical Director, WA and is a current Member of the Australian Institute of Geoscientists (AIG). Mr Richard Pugh has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pugh consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Forward-Looking Statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (Forward-Looking Statements). Forward-Looking Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimates", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production and expected costs. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also Forward Looking Statements.

Persons reading this announcement are cautioned that such statements are only predictions, and that actual future results or performance may be materially different. Forward-Looking Statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as are statements about market and industry trends, which are based on interpretation of current market conditions. Forward-Looking Statements are provided as a general guide only and should not be relied on as a guarantee of future performance.

No representation or warranty, express or implied, is made by Strickland that any Forward-Looking Statement will be achieved or proved to be correct. Further, Strickland disclaims any intent or obligation to update or revise any Forward-Looking Statement whether as a result of new information, estimates or options, future events or results or otherwise, unless required to do so by law.

Appendix A – Significant Intercepts

Table 1 – Warmblood

	Coordinates (MGA94 Zone 51)				Hole	Details				Interce	pt Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWDD017*	271,830	7,128,780	569	RC_DD	72.5	-60	186	114	128.4	14.4	6.0	14.4m @ 6.0g/t Au from 114m
including								115	122	7	10.6	7m @ 10.6g/t Au from 115m
and								144	156.7	12.7	1.7	12.7m @ 1.7g/t Au from 144m
HWDD028	271,917	7,128,493	569	DDH	-68	72.5	139.4	74.7	77	2.3	0.5	2.3m @ 0.5g/t Au from 74.7m
HWDD029	271,902	7,128,568	569	DDH	-68	72.5	109.6	8.6	24	15.4	0.8	15.4m @ 0.8g/t Au from 8.6m
and								27	46	19	0.3	19m @ 0.3g/t Au from 27m
and								49.6	57	7.4	4.9	7.4m @ 4.9g/t Au from 49.6m
including								49.6	52.6	3	10.6	3m @ 10.6g/t Au from 49.6m
and	274.054	7.420.746	5.00	2011	60	72.5	455.0	64	65	1	1.2	1m @ 1.2g/t Au from 64m
HWDD039	271,854	7,128,746	569	DDH	-60	72.5	155.9	28.6	30.4	1.8	1.6	1.8m @ 1.6g/t Au from 28.6m
and								102.5	117	14.6	1.5	14.6m @ 1.5g/t Au from 102.5m
including								102.5	105.8	3.3	4.2	3.3m @ 4.2g/t Au from 102.5m
and								127.2	140	12.8	1.6	12.8m @ 1.6g/t Au from 127.2m
HWDD042	271,792	7,128,852	569	DDH	-60	72.5	222.4	117	121.1	4.1	0.4	4.1m @ 0.4g/t Au from 117m
and								129.6	131	1.4	0.4	1.4m @ 0.4g/t Au from 129.6m
and								138.5	146.4	7.9	9.7	7.9m @ 9.7g/t Au from 138.5m
including								141.8	145	3.2	22.0	3.2m @ 22g/t Au from 141.8m
and								169.8	179.6	9.9	0.6	9.9m @ 0.6g/t Au from 169.8m
HWDD043	271,745	7,128,920	569	DDH	-60	72.5	245.6	171.7	176.9	5.2	3.1	5.2m @ 3.1g/t Au from 171.7m
including								174.7	176.9	2.2	7.0	2.2m @ 7.0g/t Au from 174.7m
and								203.6	211	7.4	1.1	7.4m @ 1.1g/t Au from 203.6m
and								211.5	215	3.5	0.4	3.5m @ 0.4g/t Au from 211.5m
HWRC263*	271,906	7,128,805	569	RC	72.5	-60	94	39	44	5	0.4	5m @ 0.4g/t Au from 39m
HWRC264*	271,868	7,128,792	569	RC	72.5	-60	154	32	36	4	0.4	4m @ 0.4g/t Au from 32m
and								70	76	6	1.5	6m @ 1.5g/t Au from 70m
including								72	74	2	3.6	2m @ 3.6g/t Au from 72m
and								94	103	9	2.6	9m @ 2.6g/t Au from 94m
including								95	99	4	4.9	4m @ 4.9g/t Au from 95m
HWRC265*	271,885	7,128,840	569	RC	72.5	-60	124	53	56	3	3.5	3m @ 3.5g/t Au from 53m

	Coordinat	es (MGA94 Zo	one 51)		Hole	Details				Interce	ept Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWRC266*	271,855	7,128,704	569	RC	72.5	-60	154	109	110	1	3.2	1m @ 3.2g/t Au from 109m
and								112	114	2	0.7	2m @ 0.7g/t Au from 112m
and								128	130	2	0.5	2m @ 0.5g/t Au from 128m
HWRC275*	271,912	7,128,722	569	RC	72.5	-60	124	4	5	1	0.4	1m @ 0.4g/t Au from 4m
and								37	43	6	4.0	6m @ 4.0g/t Au from 37m
including								38	41	3	7.6	3m @ 7.6g/t Au from 38m
and								62	69	7	1.1	7m @ 1.1g/t Au from 62m
HWRC329	271,817	7,128,902	569	RC	-60	72.5	150	102	108	6	2.5	6m @ 2.5g/t Au from 102m
including								106	108	2	5.0	2m @ 5.0g/t Au from 106m
HWRC330	271,830	7,128,864	569	RC	-60	72.5	162	24	25	1	0.7	1m @ 0.7g/t Au from 24m
and								42	44	2	1.1	2m @ 1.1g/t Au from 42m
and								114	119	5	2.0	5m @ 2.0g/t Au from 114m
HWRC331	271,847	7,128,827	569	RC	-60	72.5	162	23	24	1	0.3	1m @ 0.3g/t Au from 23m
and								87	88	1	0.9	1m @ 0.9g/t Au from 87m
and								101	102	1	0.4	1m @ 0.4g/t Au from 101m
HWRC332	271,931	7,128,771	569	RC	-60	72.5	114					NSR
HWRC333	271,893	7,128,771	569	RC	-60	72.5	126	21	22	1	1.0	1m @ 1.0g/t Au from 21m
and								51	54	3	0.6	3m @ 0.6g/t Au from 51m
and								69	70	1	1.1	1m @ 1.1g/t Au from 69m
HWRC334	271,931	7,128,729	569	RC	-60	72.5	66	35	41	6	1.0	6m @ 1.0g/t Au from 35m
HWRC335	271,919	7,128,683	569	RC	-60	72.5	114	16	30	14	0.3	14m @ 0.3g/t Au from 16m
AHWA351*	271,925	7,128,543	570	AC	360	-90	45	12	20	8	4.4	8m @ 4.4g/t Au from 12m
AHWA352*	271,933	7,128,542	570	AC	360	-90	46	13	14	1	0.4	1m @ 0.4g/t Au from 13m
and								20	28	8	4.8	8m @ 4.8g/t Au from
including								22	25	3	11.3	- 20m, incl. 3m @ 11.3g/t Au
AHWA353*	271,943	7,128,549	570	AC	360	-90	52	0	32	32	3.9	32m @ 3.9g/t Au from
including								0	16	16	6.6	· Om, incl 16m @ 6.6g/t Au
AHWA354*	271,941	7,128,490	571	AC	360	-90	48	12	16	4	0.3	4m @ 0.3g/t Au from 12m
AHWA355*	271,949	7,128,496	571	AC	360	-90	51					NSR
AHWA356*	271,960	7,128,502	571	AC	360	-90	57	0	40	40	3.4	40m @ 3.4g/t Au from
including								28	40	12	9.0	- 0m, incl. 12m @ 9.0g/t Au
AHWA357*	271,968	7,128,505	571	AC	360	-90	68	20	28	8	0.6	8m @ 0.6g/t Au from 20m
AHWA358*	271,978	7,128,513	571	AC	360	-90	66	20	24	4	0.3	4m @ 0.3g/t Au from 20m
AHWA394*	271,837	7,128,956	565	AC	70	-60	69					NSR
AHWA395*	271,807	7,128,948	567	AC	70	-60	72	48	52	4	1.3	4m @ 1.3g/t Au from 48m

	Coordinat	es (MGA94 Zo	one 51)		Hole	Details				Interce	pt Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
AHWA396*	271,788	7,128,944	567	AC	70	-60	68	()				NSR
AHWA397*	271,764	7,128,933	571	AC	65	-60	53					NSR
AHWA398*	271,744	7,128,931	573	AC	70	-60	48					NSR
AHWA399*	271,693	7,128,908	573	AC	70	-60	41					NSR
AHWA400*	271,782	7,129,046	568	AC	70	-60	60	25	44	19	1.7	19m @ 1.7g/t Au from 25m
AHWA401*	271,755	7,129,037	569	AC	70	-60	75	34	35	1	0.7	1m @ 0.7g/t Au from 34m
and							75	60	75	15	4.2	15m @ 4.2g/t Au from 60m
AHWA402*	272,009	7,128,905	568	AC	75	-60	48					NSR
AHWA403*	271,961	7,128,892	567	AC	70	-60	58					NSR
AHWA404*	271,917	7,128,873	570	AC	70	-60	64					NSR
AHWA405*	271,863	7,128,867	567	AC	70	-60	83	68	80	12	1.7	12m @ 1.7g/t Au from 68m
AHWA406*	271,844	7,128,850	567	AC	70	-60	84					NSR
AHWA407*	271,817	7,128,845	565	AC	70	-60	63					NSR
AHWA408*	271,795	7,128,834	567	AC	70	-60	58					NSR
AHWA409*	271,769	7,128,828	570	AC	70	-60	59					NSR
AHWA410*	271,745	7,128,819	571	AC	70	-60	59					NSR
AHWA411*	271,727	7,128,812	571	AC	70	-60	45					NSR
AHWA412*	271,746	7,129,247	566	AC	70	-60	72	36	40	4	1.2	4m @ 1.2g/t Au from 36m
AHWA413*	271,725	7,129,238	565	AC	70	-60	69	44	52	8	22.0	8m @ 22.0g/t Au from
including								44	48	4	43.6	44m. Incl. 4m @ 43.6g/t Au
AHWA414*	271,696	7,129,229	567	AC	70	-60	71					NSR
AHWA415*	271,677	7,129,222	567	AC	70	-60	72					NSR
AHWA416*	271,650	7,129,217	569	AC	70	-60	69					NSR
AHWA417*	271,628	7,129,205	569	AC	70	-60	65					NSR
AHWA418*	271,601	7,129,197	566	AC	70	-60	64					NSR
AHWA419*	271,580	7,129,195	565	AC	70	-60	64	44	52	8	0.7	8m @ 0.7g/t Au from 44m
AHWA420*	271,555	7,129,188	567	AC	70	-60	63					NSR
AHWR012*	271,890	7,128,893	569	RC	70	-60	90	32	36	4	0.5	4m @ 0.5g/t Au from 32m
AHWR013*	271,867	7,128,877	569	RC	70	-60	111	56	68	12	0.7	12m @ 0.7g/t Au from 56m
AHWR014*	271,866	7,128,936	569	RC	70	-60	99	24	32	8	0.5	8m @ 0.5g/t Au from 24m
AHWR015*	271,846	7,128,925	569	RC	70	-60	114	40	48	8	0.4	8m @ 0.4g/t Au from 40m
and								56	60	4	0.4	4m @ 0.4g/t Au from 56m
AHWR016*	271,855	7,128,959	569	RC	70	-60	63	28	36	8	0.4	8m @ 0.4g/t Au from 28m
AHWR017*	271,833	7,128,953	569	RC	70	-60	108	48	56	8	1.6	8m @ 1.6g/t Au from 48m
AHWR018*	271,811	7,128,946	569	RC	70	-60	123					NSR
AHWR019*	271,853	7,129,011	569	RC	70	-60	66					NSR
AHWR020*	271,834	7,129,004	569	RC	70	-60	90					NSR
AHWR021*	271,814	7,128,997	569	RC	70	-60	111					NSR
AHWR022*	271,796	7,128,990	569	RC	70	-60	111	52	56	4	0.4	4m @ 0.4g/t Au from 52m

	Coordinat	es (MGA94 Zo	one 51)		Hole	Details				Interce	pt Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
AHWR023*	271,778	7,128,981	569	RC	70	-60	111	52	56	4	0.5	4m @ 0.5g/t Au from 52m
AHWR024*	271,799	7,129,024	569	RC	70	-60	72	28	36	8	1.9	8m @ 1.9g/t Au from 28m
AHWR025*	271,783	7,129,015	569	RC	70	-60	90	20	24	4	0.6	4m @ 0.6g/t Au from 20m
AHWR026*	271,760	7,129,012	569	RC	70	-60	120					NSR
AHWR027*	271,784	7,129,071	569	RC	70	-60	60	16	24	8	2.3	8m @ 2.3g/t Au from 16m
AHWR028*	271,767	7,129,060	569	RC	70	-60	90					NSR
AHWR029*	271,746	7,129,053	569	RC	70	-60	120	68	76	8	0.4	8m @ 0.4g/t Au from 68m
AHWR030*	271,973	7,128,529	571	RC	249	-54	120	13	36	23	0.5	23m @ 0.5g/t Au from 13m
and								40	45	5	0.8	5m @ 0.8g/t Au from 40m
AHWR031*	271,993	7,128,536	572	RC	256	-54	132	20	21	1	0.7	1m @ 0.7g/t Au from 20m
and								37	41	4	0.3	4m @ 0.3g/t Au from 37m
and								48	49	1	0.3	1m @ 0.3g/t Au from 48m
and								70	102	32	1.7	32m @ 1.7g/t Au from
including								93	101	8	5.5	70m, incl. 8m @ 5.5g/t Au
and								108	109	1	0.5	1m @ 0.5g/t Au from 108m
AHWR032*	271,965	7,128,569	570	RC	250	-54	90	0	7	7	0.4	7m @ 0.4g/t Au from 0m
and								18	43	25	0.6	25m @ 0.6g/t Au from 18m
and								57	62	5	1.1	5m @ 1.1g/t Au from 57m
AHWR033*	271,978	7,128,573	570	RC	250	-55	132	10	12	2	0.3	2m @ 0.3g/t Au from 10m
and								19	61	42	1.1	42m @ 1.1g/t Au from 19m
and								66	68	2	1.0	2m @ 1.0g/t Au from 66m
and								99	112	13	0.4	13m @ 0.4g/t Au from 99m
AHWR034*	271,989	7,128,492	572	RC	249	-56	108	44	47	3	0.5	3m @ 0.5g/t Au from 44m
and								52	55	3	0.7	3m @ 0.7g/t Au from 52m
and								60	63	3	1.1	3m @ 1.1g/t Au from 60m
and								71	87	16	2.7	16m @ 2.7g/t Au from
including								79	86	7	4.6	71m, incl. 7m @ 4.6g/t Au
AHWR035*	272,006	7,128,499	572	RC	250	-55	162					NSR
AHWR038*	271,962	7,128,440	571	RC	71	-60	114	12	30	18	2.4	18m @ 2.4g/t Au from
including								14	19	5	5.1	· 12m, incl. 5m @ 5.1g/t Au
and								38	40	2	6.3	2m @ 6.3g/t Au from 38m
AHWR039*	271,943	7,128,433	571	RC	70	-59	162	33	34	1	0.3	1m @ 0.3g/t Au from 33m
and								38	45	7	1.0	7m @ 1.0g/t Au from 38m
and								58	64	6	0.6	6m @ 0.6g/t Au from 58m
AHWR040*	271,976	7,128,402	572	RC	71	-60	156	18	19	1	0.4	1m @ 0.4g/t Au from 18m

	Coordinat	es (MGA94 Zo	one 51)		Hole	Details				Interce	pt Details	;
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(,	21	22	1	0.4	1m @ 0.4g/t Au from 21m
and								32	33	1	8.6	1m @ 8.6g/t Au from 32m
and								37	40	3	0.7	3m @ 0.7g/t Au from 37m
AHWR041*	271,955	7,128,395	572	RC	72	-60	126	35	49	14	0.7	14m @ 0.7g/t Au from 35m
AHWR042*	271,983	7,128,362	572	RC	71	-59	156	19	20	1	0.4	1m @ 0.4g/t Au from 19m
and								23	24	1	0.3	1m @ 0.3g/t Au from 23m
AHWR043*	271,923	7,128,549	570	RC	68	-60	39	3	5	2	0.3	2m @ 0.3g/t Au from 3m
and								10	32	22	3.7	22m @ 3.7g/t Au from
including								10	19	9	5.2	- 10m, incl. 9m @ 5.2g/t Au
AHWR044*	271,904	7,128,542	570	RC	68	-60	39	14	32	18	0.9	18m @ 0.9g/t Au from
including								14	17	3	3.7	- 14m, incl. 3m @ 3.7g/t Au
AHWR045*	271,951	7,128,603	569	RC	68	-61	69	12	34	22	0.4	22m @ 0.4g/t Au from 12m
AHWR046*	271,931	7,128,597	569	RC	68	-61	59	19	21	2	0.7	2m @ 0.7g/t Au from 19m
and								24	33	9	0.5	9m @ 0.5g/t Au from 24m
AHWR047*	271,908	7,128,591	570	RC	68	-61	69	14	21	7	1.9	7m @ 1.9g/t Au from
including								15	16	1	10.9	- 14m, incl. 1m @ 10.9g/t Au
and	•							27	36	9	0.3	9m @ 0.3g/t Au from 27m
and								51	56	5	3.2	5m @ 3.2g/t Au from 51m
AHWR048*	271,892	7,128,581	570	RC	68	-65	89	28	39	11	2.3	11m @ 2.3g/t Au from 28m
and								54	80	26	1.8	26m @ 1.8g/t Au from
including								54	60	6	6.5	- 54m, incl. 6m @ 6.5g/t Au
AHWR049*	271,969	7,128,695	569	RC	68	-60	69					NSR
AHWR050*	271,933	7,128,683	569	RC	68	-60	69					NSR
AHWR051*	271,892	7,128,666	569	RC	74	-60	69	20	47	27	1.2	27m @ 1.2g/t Au from
including								35	43	8	3.0	20m, incl. 8m @ 3.0g/t
AHWR052*	271,848	7,128,651	569	RC	68	-60	69					Au NSR
AHWR053*	271,949	7,128,776	569	RC	68	-60	79					NSR
AHWR054*	271,910	7,128,763	569	RC	68	-60	69					NSR
AHWR055*								61	63	2	0.4	
AHWR056*	271,865 271,946	7,128,748 7,128,478	569 571	RC RC	68 73	-60 -60	69 37	61 15	63 20	5	1.1	2m @ 0.4g/t Au from 61m 5m @ 1.1g/t Au from
AHWR057*	271,946	7,128,478	571	RC	73	-60	55	46	49	3	13.6	15m 3m @ 13.6g/t Au from
	271,929	7,120,472	3/1	NC.	/1	-00	55					- 46m, incl. 1m @ 35.4g/t
including								47	48	1	35.4	Au
and	0=:	7.4.2.2.2.2	F-5-					53	55	2	1.3	2m @ 1.3g/t Au from 53m
AHWR058*	271,920	7,128,638	569	RC	72	-60	48	15	26	11	0.5	11m @ 0.5g/t Au from 15m
AHWR059*	271,904	7,128,630	569	RC	70	-61	68	21	42	21	1.0	21m @ 1.0g/t Au from 21m
AHWR060*	271,881	7,128,623	569	RC	71	-61	88	30	32	2	0.4	2m @ 0.4g/t Au from 30m
and								39	41	2	0.6	2m @ 0.6g/t Au from 39m

	Coordinat	tes (MGA94 Z	one 51)		Hole	Details				Interce	pt Details	;
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(111)	65	69	4	1.0	4m @ 1.0g/t Au from 65m
AHWR061*	271,909	7,128,681	569	RC	72	-61	48	21	24	3	0.6	3m @ 0.6g/t Au from 21m
and								28	30	2	0.8	2m @ 0.8g/t Au from 28m
and								32	43	11	1.1	11m @ 1.1g/t Au from 32m
AHWR062*	271,870	7,128,661	569	RC	74	-61	94	43	49	6	2.3	6m @ 2.3g/t Au from 43m
and								57	58	1	4.1	1m @ 4.1g/t Au from 57m
and								70	81	11	1.2	11m @ 1.2g/t Au from 70m
AHWR063*	271,894	7,128,721	569	RC	75	-61	58	24	26	2	0.9	2m @ 0.9g/t Au from 24m
and								54	58	4	2.9	4m @ 2.9g/t Au from 54m to BOH
AHWR064*	271,872	7,128,713	569	RC	76	-60	78	5	7	2	1.4	2m @ 1.4g/t Au from 5m
and								66	68	2	1.8	2m @ 1.8g/t Au from 66m
AHWR065*	271,853	7,128,709	569	RC	77	-61	99					NSR
AHWR066*	271,880	7,128,755	569	RC	74	-60	59					NSR
AHWR067*	271,845	7,128,657	569	RC	71	-60	152					NSR
AHWR068*	271,855	7,128,623	569	RC	71	-60	143	20	21	1	0.5	1m @ 0.5g/t Au from 20m
and								36	37	1	0.6	1m @ 0.6g/t Au from 36m
and								43	46	3	0.6	3m @ 0.6g/t Au from 43m
and								53	75	22	5.6	22m @ 5.6g/t Au from 53m, incl. 4m @ 20.1g/t
including								67	71	4	20.1	Au Au
and								89	92	3	1.6	3m @ 1.6g/t Au from 89m
AHWR069*	271,859	7,128,576	569	RC	67	-60	160	83	107	24	3.7	24m @ 3.7g/t Au from 83m, incl. 10m @ 7.8g/t
including								85	95	10	7.8	Au Au
AHWR070*	271,910	7,128,519	570	RC	67	-60	110	69	77	8	2.7	8m @ 2.7g/t Au from 69m
and								82	92	10	1.1	10m @ 1.1g/t Au from 82m
AHWR071*	271,869	7,128,508	570	RC	67	-60	161					NSR
AHWR072*	271,902	7,128,483	570	RC	71	-60	130	73	81	8	1.8	8m @ 1.8g/t Au from 73m
AHWR073*	271,921	7,128,427	571	RC	71	-60	130	63	72	9	2.2	9m @ 2.2g/t Au from 63m
AHWR074*	271,733	7,129,247	569	RC	71	-60	80	52	57	5	0.4	5m @ 0.4g/t Au from 52m
and								61	63	2	9.3	2m @ 9.3g/t Au from 61m
AHWR075*	271,705	7,129,237	569	RC	71	-60	120					NSR
AHWR101*	271,879	7,128,456	570	RC	63	-60	127					NSR
AHWR102*	271,939	7,128,562	570	RC	69	-61	49	0	1	1	0.3	1m @ 0.3g/t Au from 0m
and								9	23	14	1.2	14m @ 1.2g/t Au from 9m
and								27	43	16	0.8	16m @ 0.8g/t Au from 27m
AHWR103*	271,913	7,128,552	570	RC	73	-61	79	22	44	22	0.7	22m @ 0.7g/t Au from 22m

	Coordinat	tes (MGA94 Z	one 51)		Hole	Details				Interce	pt Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(,	60	64	4	1.5	4m @ 1.5g/t Au from 60m
AHWR104*	271,829	7,128,612	569	RC	67	-61	157	103	107	4	1.6	4m @ 1.6g/t Au from
including								106	107	1	5.2	103m, incl. 1m @ 5.2g/t Au
and								144	145	1	1.9	1m @ 1.9g/t Au from 144m
AHWR105*	271,804	7,128,603	570	RC	67	-61	199					NSR
AHWR106*	271,884	7,128,717	569	RC	71	-61	109	72	73	1	1.8	1m @ 1.8g/t Au from 72m
and								77	78	1	0.3	1m @ 0.3g/t Au from 77m
and								99	109	10	1.5	10m @ 1.5g/t Au from 99m to BOH
HWRC064*	271,726	7,129,129	568	RC	71	-60	99	89	99	10	24.3	10m @ 24.3g/t Au from 89m to BOH
HWRC065*	271,821	7,129,163	568	RC	253	-58	117	92	93	1	0.9	1m @ 0.9g/t Au from 92m
and								96	98	2	0.7	2m @ 0.7g/t Au from 96m
and								101	102	1	0.4	1m @ 0.4g/t Au from 101m
HWRC078*	271,752	7,129,136	568	RC	75	-60	100	51	52	1	0.7	1m @ 0.7g/t Au from 51m
and								78	80	2	0.9	2m @ 0.9g/t Au from 78m
HWRC079*	271,708	7,129,122	568	RC	75	-59	150	105	106	1	0.5	1m @ 0.5g/t Au from 105m
and								110	117	7	1.2	7m @ 1.2g/t Au from 110m
HWRC080*	271,787	7,129,177	568	RC	72	-61	102					NSR
HWRC081*	271,768	7,129,171	568	RC	72	-62	111					NSR
HWRC082*	271,744	7,129,162	568	RC	72	-61	105	68	69	1	1.2	1m @ 1.2g/t Au from 68m
HWRC083*	271,721	7,129,155	568	RC	74	-60	111	22	23	1	2.4	1m @ 2.4g/t Au from 22m
and								81	92	11	5.3	11m @ 5.3g/t Au from 81m
HWRC084*	271,697	7,129,146	568	RC	75	-61	123	113	123	10	0.8	10m @ 0.8g/t Au from 113m to BOH
HWRC085*	271,675	7,129,141	568	RC	73	-60	110	100	101	1	0.8	1m @ 0.8g/t Au from 100m
and								103	104	1	1.0	1m @ 1g/t Au from 103m
HWRC086*	271,808	7,129,132	568	RC	74	-60	99	81	82	1	2.1	1m @ 2.1g/t Au from 81m
HWRC087*	271,786	7,129,124	568	RC	72	-60	99					NSR
HWRC088*	271,764	7,129,116	568	RC	70	-60	105	52	67	15	2.6	15m @ 2.6g/t Au from 52m, incl. 4m @ 8.2g/t
including								57	61	4	8.2	Au
HWRC089*	271,735	7,129,108	568	RC	75	-59	117	71	72	1	0.4	1m @ 0.4g/t Au from 71m
and								83	89	6	3.4	6m @ 3.4g/t Au from 83m
HWRC090*	271,711	7,129,102	568	RC	71	-60	123	59	60	1	4.6	1m @ 4.6g/t Au from 59m
HWRC106*	271,755	7,129,190	568	RC	74	-60	99	31	32	1	0.7	1m @ 0.7g/t Au from 31m
HWRC107*	271,737	7,129,186	568	RC	74	-60	105	68	69	1	0.5	1m @ 0.5g/t Au from 68m
HWRC108*	271,711	7,129,177	568	RC	72	-60	117	16	17	1	1.1	1m @ 1.1g/t Au from 16m

	Coordinat	es (MGA94 Zo	one 51)		Hole	Details				Interce	pt Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and								58	62	4	0.4	4m @ 0.4g/t Au from 58m
HWRC109*	271,789	7,129,100	568	RC	73	-59	99					NSR
HWRC110*	271,766	7,129,092	568	RC	73	-59	99	68	69	1	0.3	1m @ 0.3g/t Au from 68m
HWRC111*	271,743	7,129,083	568	RC	74	-59	105	85	86	1	0.5	1m @ 0.5g/t Au from 85m
and								89	90	1	1.2	1m @ 1.2g/t Au from 89m
HWRC238*	271,673	7,129,115	568	RC	73	-60	240	116	119	3	2.9	3m @ 2.9g/t Au from 116m
and								164	167	3	0.3	3m @ 0.3g/t Au from 164m
and								171	172	1	0.6	1m @ 0.6g/t Au from 171m
HWRC241*	271,682	7,129,170	568	RC	71	-61	227	50	53	3	0.3	3m @ 0.3g/t Au from 50m
and								62	63	1	0.3	1m @ 0.3g/t Au from 62m
and								64	65	1	0.3	1m @ 0.3g/t Au from 64m
and								130	133	3	0.6	3m @ 0.6g/t Au from 130m
HWRC242*	271,735	7,129,030	568	RC	72	-61	250	93	95	2	1.2	2m @ 1.2g/t Au from 93m
and								221	223	2	0.3	2m @ 0.3g/t Au from 221m
HWAC1774*	271,550	7,129,200	572	AC	270	-60	54					NSR
HWAC1775*	271,600	7,129,200	572	AC	270	-60	63					NSR
HWAC1776*	271,650	7,129,200	572	AC	270	-60	65					NSR
HWAC1777*	271,700	7,129,200	572	AC	270	-60	57					NSR
HWAC1778*	271,750	7,129,200	572	AC	270	-60	78					NSR
HWAC1779*	271,800	7,129,200	572	AC	270	-60	68					NSR
HWAC1780*	271,850	7,129,200	572	AC	270	-60	74					NSR
HWAC1781*	271,900	7,129,200	572	AC	270	-60	81					NSR
HWAC1782*	271,950	7,129,200	572	AC	270	-60	89	20	24	4	0.4	4m @ 0.4g/t Au from 20m
HWAC1791*	271,700	7,129,000	572	AC	270	-60	13					NSR
HWAC1792*	271,750	7,129,000	572	AC	270	-60	57					NSR
HWAC1793*	271,800	7,129,000	572	AC	270	-60	64					NSR
HWAC1794*	271,850	7,129,000	572	AC	270	-60	75	64	68	4	1.0	4m @ 1.0g/t Au from 64m
HWAC1795*	271,900	7,129,000	572	AC	270	-60	65					NSR
HWAC1796*	271,950	7,129,000	572	AC	270	-60	70					NSR
HWAC1797*	272,000	7,129,000	572	AC	270	-60	80					NSR
HWAC1806*	271,800	7,128,800	572	AC	270	-60	48					NSR
HWAC1807*	271,850	7,128,800	572	AC	270	-60	56					NSR

	Coordinat	es (MGA94 Zo	one 51)		Hole I	Details				Interce	pt Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWAC1808*	271,900	7,128,800	572	AC	270	-60	64					NSR
HWAC1809*	271,950	7,128,800	572	AC	270	-60	87	24	60	36	1.2	36m @ 1.2g/t Au from 24m, incl. 16m @ 2.5g/t
including								32	48	16	2.5	Au
HWAC1810*	272,000	7,128,800	572	AC	270	-60	69					NSR

Table 2 – Palomino

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWDD001*	271,495	7,130,870	568	DDH	252	-62	213.0	127.9	129.4	1.4	1.3	1.4m @ 1.3g/t Au from 127.9m
and								133.4	147	13.7	6.3	13.7m @ 6.3g/t Au from 133.4m
including								133.9	136.9	3	20.0	3m @ 20g/t Au from 133.9m
HWDD002*	271,494	7,130,895	568	DDH	252	-62	201.0	14.2	17	2.9	0.9	2.9m @ 0.9g/t Au from 14.2m
and	-							19.0	19.7	0.7	1.7	0.7m @ 1.7g/t Au from 19.0m
and								144.7	161.6	17	10.6	17m @ 10.6g/t Au from 144.7m
including								150.1	153.6	3.5	15.0	3.5m @ 15g/t Au from 150.1m
HWDD004*	271,274	7,130,918	565	RC_DD	72.5	-60	293.5	52.0	56.0	4.0	1.8	4m @ 1.8g/t Au from 52m
and								166.2	167.9	1.6	3.1	1.6m @ 3.1g/t Au from 166.2m
including								166.9	167.9	0.9	5.1	0.9m @ 5.1g/t Au from 166.9m
and								182.2	183.9	1.7	0.9	1.7m @ 0.9g/t Au from 182.2m
and								222.1	236.9	14.9	3.9	14.9m @ 3.9g/t Au from 222.1m
including								222.1	224.5	2.4	10.9	2.4m @ 10.9g/t Au from 222.1m
and								230.8	234.6	3.7	5.9	3.7m @ 5.9g/t Au from 230.8m
and								252.0	253.0	1.0	0.9	1m @ 0.9g/t Au from 252m
HWDD006	271,250	7,130,994	565	RC_DD	72.5	-60	341.1	149.5	150.0	0.6	1.6	0.6m @ 1.6g/t Au from 149.5m
and								178.8	179.3	0.5	0.8	0.5m @ 0.8g/t Au from 178.79m
and								232.4	233.5	1.1	2.8	1.1m @ 2.8g/t Au from 232.4m
and								240.0	242.0	2.0	0.8	2m @ 0.8g/t Au from 240m
and								254.0	256.0	2.0	1.1	2m @ 1.1g/t Au from 254m
and								329.6	330.2	0.6	0.4	0.6m @ 0.4g/t Au from 329.6m
HWDD007	271,209	7,131,023	565	RC_DD	72.5	-60	342.0	146.5	147.0	0.5	0.4	0.5m @ 0.4g/t Au from 146.5m
and								150.5	151.0	0.5	0.5	0.5m @ 0.5g/t Au from 150.5m

^{*}Previously announced or historic results.

A cutoff of 0.3g/t Au was applied to each significant intercept with a maximum internal dilution of 3 metres.

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	ot Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(111)	154.0	155.8	1.8	0.6	1.8m @ 0.6g/t Au from 154m
and	_							161.8	162.5	0.7	0.8	0.7m @ 0.8g/t Au from 161.8m
and	_							268.0	269.0	1.0	0.5	1m @ 0.5g/t Au from 268m
and	_							307.0	310.0	3.0	1.0	3m @ 1g/t Au from 307m
and	_							320.0	321.0	1.0	0.6	1m @ 0.6g/t Au from 320m
HWDD008	271,384	7,130,709	567	RC_DD	72.5	-60	256.6	175.0	177.0	2.0	0.5	2m @ 0.5g/t Au from 175m
HWDD009*	271,397	7,130,783	567	DDH	72.5	-60	174.0	19.5	20	0.5	1.0	0.5m @ 1.0g/t Au from 19.5m
and	_							49	55.6	6.4	0.5	6.4m @ 0.5g/t Au from 49m
and	_							61.3	67	6.7	0.5	6.7m @ 0.5g/t Au from 61.3m
and	_							68.9	73.5	4.6	0.4	4.6m @ 0.4g/t Au
and								80	83	3	0.4	from 68.9m 3m @ 0.4g/t Au from
and								103.6	123.9	20.3	1.9	80m 20.3m @ 1.9g/t Au
including								109	116	7	4.7	from 103.6m 7m @ 4.7g/t Au from
HWDD011*	271,310	7,130,929	565	DDH	72.5	-60	213.0	148	168	20	1.8	109m 20m @ 1.8g/t Au from
HWDD020	271,368	7,130,751	567	RC_DD	72.5	-60	249.0	146	148.5	2.5	0.4	148m 2.5m @ 0.4g/t Au
and								171	172.9	1.9	0.7	from 146m 1.9m @ 0.7g/t Au
and	_							180.2	190	9.8	1.1	from 171m 9.8m @ 1.1g/t Au
and	_							193	195	2	0.7	from 180.2m 2m @ 0.7g/t Au from
HWDD021	271,330	7,130,738	566	RC_DD	252	-60	186	91	97	6	1.0	193m 6m @ 1.0g/t Au from 91m
and	_							102	104	2	0.5	2m @ 0.5g/t Au from 102m
and	_							112	124.1	12.1	0.8	12.1m @ 0.8g/t Au from 112m
and	_							128	133	5	1.0	5m @ 1g/t Au from 128m
and	_							124	151	9	0.7	9m @ 0.7g/t Au from 124m
and	_							163	165.8	2.8	1.0	2.8m @ 1.0g/t Au from 163m
HWDD023	271,317	7,130,861	566	RC	252	-60	100					NSR
HWDD024	271,281	7,130,962	565	RC_DD	72.5	-60	267.0	24	29.2	5.2	0.6	5.2m @ 0.6g/t Au from 24m
and								150.9	151.7	0.8	3.3	0.8m @ 3.3g/t Au from 150.9m
and								170	177.8	7.8	0.4	7.8m @ 0.4g/t Au from 170m
and								180.9	183.5	2.6	0.4	2.6m @ 0.4g/t Au from 180.9m
and								199.8	201.9	2.1	3.5	2.1m @ 3.5g/t Au from 199.8m
including								201.3	201.9	0.6	6.9	0.6m @ 6.9g/t Au from 201.3m
HWDD025	271,147	7,131,087	563	DDH	72.5	-60	423.1	345	351	6	2.3	6m @ 2.3g/t Au from 345m
including								347	348.5	1.5	7.0	1.5m @ 7.0g/t Au from 347m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWDD026*	271,425	7,130,825	565	DDH	73	-60	84	45	64	19	3.0	19m @ 3.0g/t Au from 45m
including	•							58	61	3	12.0	3m @ 12.0g/t Au from 58m
HWDD027	271,367	7,130,807	567	DDH	73	-60	207	90.8	93	2.2	2.1	2.2m @ 2.1g/t Au from 90.8m
and	•							97	98	1	0.6	1m @ 0.6g/t Au from 97m
and	•							122	123	1	2.4	1m @ 2.4g/t Au from 122m
and	•							138.6	145.5	6.9	1.7	6.9m @ 1.7g/t Au from 138.6m
and								151	151.5	0.5	0.8	0.5m @ 0.8g/t Au from 151m
and								162	162.5	0.5	1.0	0.5m @ 1.0g/t Au from 162m
HWDD030	271,179	7,131,097	565	DDH	73	-60	328	65.2	72.7	7.6	1.0	7.6m @ 1.0g/t Au from 65.2m
and								146.5	147.3	0.7	0.5	0.7m @ 0.5g/t Au from 146.5m
and								154.2	155.2	1	0.4	1m @ 0.4g/t Au from
and								199.5	200	0.5	1.0	154.2m 0.5m @ 1.0g/t Au from 199.5m
and								202.5	203.5	1	1.2	1m @ 1.2g/t Au from 202.5m
and								205	205.5	0.5	2.0	0.5m @ 2.0g/t Au from 205m
and								210	210.5	0.5	0.5	0.5m @ 0.5g/t Au from 210m
and								326	327	1	1.3	1m @ 1.3g/t Au from 326m
HWDD031	271,218	7,131,109	565	DDH	73	-60	321	12	13.6	1.6	0.4	1.6m @ 0.4g/t Au from 12m
and								34	35	1	0.9	1m @ 0.9g/t Au from 34m
and								49	50.2	1.2	0.7	1.2m @ 0.7g/t Au from 49m
and								62.4	64	1.6	0.4	1.6m @ 0.4g/t Au from 62.4m
and								68.3	69.4	1.1	1.3	1.1m @ 1.3g/t Au from 68.3m
and								106	107	1	1.0	1m @ 1.0g/t Au from 106m
and								110.5	111	0.5	0.9	0.5m @ 0.9g/t Au from 110.5m
and								117.5	118.8	1.3	0.4	1.3m @ 0.4g/t Au from 117.5m
and								123.4	126	2.6	0.3	2.6m @ 0.3g/t Au from 123.4m
and								128	130	2	0.3	2m @ 0.3g/t Au from
and								132	133	1	0.5	128m 1m @ 0.5g/t Au from
and								198	198.7	0.7	3.3	132m 0.7m @ 3.3g/t Au from 198m
and								218.7	222	3.3	0.3	from 198m 3.3m @ 0.3g/t Au from 218.7m
and								230	232	2	1.5	from 218.7m 2m @ 1.5g/t Au from
and								256	257.9	1.9	0.4	230m 1.9m @ 0.4g/t Au
and								258.8	259.7	0.9	0.8	from 256m 0.9m @ 0.8g/t Au
and								273.5	275	1.5	0.7	from 258.8m 1.5m @ 0.7g/t Au from 273.5m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWDD032	271,249	7,131,078	567	DDH	73	-60	249	49	50	1	1.3	1m @ 1.3g/t Au from 49m
and	•							54	56	2	3.2	2m @ 3.2g/t Au from 54m
and								131	132	1	0.5	1m @ 0.5g/t Au from 131m
and	•							140	140.8	0.8	0.7	0.8m @ 0.7g/t Au from 140m
and								141.8	147	5.2	1.0	5.2m @ 1.0g/t Au from 141.8m
and								166.3	175.5	9.2	1.0	9.2m @ 1.0g/t Au from 166.3m
and								177	179	2	0.5	2m @ 0.5g/t Au from 177m
and								182	183	1	0.7	1m @ 0.7g/t Au from 182m
and								195	199	4	1.9	4m @ 1.9g/t Au from 195m
including								195.9	197	1.1	4.2	1.1m @ 4.2g/t Au from 195.9m
HWDD033	271,280	7,131,046	567	DDH	73	-60	204	53.75	54.3	0.6	0.7	0.6m @ 0.7g/t Au from 53.75m
and								90	91.2	1.2	1.5	1.2m @ 1.5g/t Au from 90m
and								99.2	110.6	11.4	0.3	11.4m @ 0.3g/t Au from 99.2m
and								102	103	1	0.6	1m @ 0.6g/t Au from 102m
and								108	108.75	0.75	0.7	0.75m @ 0.7g/t Au from 108m
and								118.5	124	5.5	0.4	5.5m @ 0.4g/t Au from 118.5m
and								144	148	4	1.3	4m @ 1.3g/t Au from 144m
and								161.2	173.5	12.3	1.3	12.3m @ 1.3g/t Au from 161.2m
including								168	171.5	3.5	3.2	3.5m @ 3.2g/t Au from 168m
HWDD034	271,273	7,131,001	567	DDH	73	-60	255	42	43.2	1.2	1.4	1.2m @ 1.4g/t Au from 42m
and								89.6	90.5	0.9	0.5	0.9m @ 0.5g/t Au from 89.6m
and								129	135.1	6.1	0.3	6.1m @ 0.3g/t Au from 129m
and								154	155	1	0.9	1m @ 0.9g/t Au from 154m
and								161	165.1	4.1	0.3	4.1m @ 0.3g/t Au from 161m
and								170	180	10	6.9	10m @ 6.9g/t Au from 170m
including								171.9	174	2.1	15.1	2.1m @ 15.1g/t Au from 171.9m
HWDD035	271,242	7,131,033	567	DDH	73	-60	264	118.8	120.5	1.7	0.6	1.7m @ 0.6g/t Au from 118.8m
and								229	231	2	0.8	2m @ 0.8g/t Au from 229m
and								233.1	238	4.9	1.1	4.9m @ 1.1g/t Au from 233.1m
and								243.3	245.9	2.6	3.7	2.6m @ 3.7g/t Au from 243.3m
and								254	256	2	0.5	2m @ 0.5g/t Au from 254m
HWRC254*	271,350	7,130,942	567	RC	72.5	-60	136.0	22	31	9	2.4	9m @ 2.4g/t Au from 22m
and								76	97	21	1.0	21m @ 1.0g/t Au from 76m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth	Depth from (m)	Depth To (m)	Intercept Width	Grade (g/t)	Grade Summary/ Comments
HWRC255*	271,319	7,130,974	566	RC	72.5	-60	(m) 172.0	62	64	(m) 2	0.4	2m @ 0.4g/t Au from 62m
and								83	85	2	0.5	2m @ 0.5g/t Au from 83m
and								111	138	27	0.8	27m @ 0.8g/t Au from 111m
including								111	114	3	1.8	3m @ 1.8g/t Au from 111m
including								134	136	2	2.8	2m @ 2.8g/t Au from 134m
and								141	142	1	0.4	1m @ 0.4g/t Au from 141m
HWRC256D*	271,330	7,130,873	566	RC_DD	72.5	-60	225.0	161.4	172	10.6	7.5	10.6m @ 7.5g/t Au from 161.4m
including								165.9	168.9	3	21.2	3m @ 21.2g/t Au from 165.9m
HWRC257*	271,312	7,131,013	567	RC	72.5	-60	202.0	68	80	12	0.5	12m @ 0.5g/t Au from 68m
and								108	129	21	1.2	21m @ 1.2g/t Au from 108m
including								113	117	4	2.0	4m @ 2.0g/t Au from 113m
including								126	129	3	2.7	3m @ 2.7g/t Au from 126m
HWRC258*	271,330	7,130,935	567	RC	72.5	-60	202.0	123	143	20	1.4	20m @ 1.4g/t Au from 123m
including								133	137	4	4.9	4m @ 4.9g/t Au from 133m
HWRC294*	271,406	7,130,895	567	RC	72.5	-60	100.0	37	51	14	2.8	14m @ 2.8g/t Au from 37m
including								37	46	9	4.2	9m @ 4.2g/t Au from 37m
HWRC295*	271,358	7,130,912	567	RC	72.5	-60	124.0	37	41	4	0.9	4m @ 0.9g/t Au from 37m
and								79	95	16	2.4	16m @ 2.4g/t Au from 79m
including								88	95	7	5.1	7m @ 5.1g/t Au from 88m
HWRC290	271,003	7,131,566	561	RC	72.5	-60	148.0					NSR
HWRC291	271,126	7,131,440	561	RC	72.5	-60	154.0					NSR
HWRC292	271,070	7,131,420	561	RC	72.5	-60	202.0					NSR
HWRC293	271,406	7,130,895	568	RC	72.5	-60	100.0	96	100	4	0.3	4m @ 0.3g/t Au from 96m
HWRC296	271,376	7,130,922	568	RC	72.5	-60	100.0	51	52	1	0.6	1m @ 0.6g/t Au from 51m
and								62	65	3	1.0	3m @ 1g/t Au from 62m
and								71	72	1	5.2	1m @ 5.2g/t Au from 71m
HWRC297	271,392	7,130,958	567	RC	72.5	-60	76.0	24	25	1	0.4	1m @ 0.4g/t Au from 24m
HWRC298	271,371	7,130,951	567	RC	72.5	-60	100.0	60	61	1	1.1	1m @ 1.1g/t Au from 60m
and								66	70	4	0.3	4m @ 0.3g/t Au from 66m
HWRC299	271,357	7,130,990	567	RC	72.5	-60	100.0	51	62	11	0.7	11m @ 0.7g/t Au from 51m
HWRC300	271,351	7,131,025	566	RC	72.5	-60	100.0	7	13	6	1.3	6m @ 1.3g/t Au from 7m
HWRC301	271,319	7,131,058	565	RC	72.5	-60	124.0	31	33	2	1.4	2m @ 1.4g/t Au from 31m
and								48	49	1	0.6	1m @ 0.6g/t Au from 48m
and								61	67	6	1.0	6m @ 1.0g/t Au from 61m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
HWRC302	271,257	7,131,246	563	RC	72.5	-60	156.0			(,		NSR
HWRC303	271,218	7,131,234	563	RC	72.5	-60	150.0	92	96	4	0.5	4m @ 0.5g/t Au from 92m
HWRC304	271,280	7,131,169	564	RC	72.5	-60	114.0	84	92	8	0.5	8m @ 0.5g/t Au from 84m
HWRC305	271,243	7,131,156	563	RC	72.5	-60	174.0	16	20	4	0.4	4m @ 0.4g/t Au from 16m
and								148	152	4	0.3	4m @ 0.3g/t Au from 148m
and								164	168	4	0.5	4m @ 0.5g/t Au from 164m
and								173	174	1	0.4	1m @ 0.4g/t Au from 173m
HWRC306	271,324	7,131,098	565	RC	72.5	-60	78.0					NSR
HWRC313	271,702	7,130,502	565	RC	72.5	-60	126.0	80	88	8	0.3	8m @ 0.3g/t Au from 80m
and								104	112	8	0.6	8m @ 0.6g/t Au from 104m
HWRC314	271,570	7,130,585	567	RC	72.5	-60	120.0	24	32	8	1.5	8m @ 1.5g/t Au from 24m
and								36	38	2	0.3	2m @ 0.3g/t Au from 36m
HWRC315	271,532	7,130,573	567	RC	72.5	-60	138.0					NSR
HWRC316	271,558	7,130,623	569	RC	72.5	-60	114.0	16	20	4	2.0	4m @ 2g/t Au from 16m
and								28	32	4	0.4	4m @ 0.4g/t Au from 28m
HWRC317	271,520	7,130,611	569	RC	72.5	-60	150.0	83	88	5	0.5	5m @ 0.5g/t Au from 83m
HWRC318	271,488	7,130,643	565	RC	72.5	-60	156.0	101	112	11	1.0	11m @ 1.0g/t Au from 101m
HWRC319	217,526	7,130,655	565	RC	72.5	-60	102.0					NSR
HWRC320	217,337	7,131,064	565	RC	72.5	-60	78.0	33	34	1	0.4	1m @ 0.4g/t Au from 33m
HWRC321	271,230	7,130,809	565	RC	72.5	-60	132.0	38	39	1	0.6	1m @ 0.6g/t Au from 38m
and								55	74	19	1.1	19m @ 1.1g/t Au from 55m
including								71	74	3	3.9	3m @ 3.9g/t Au from 71m
AHWA170*	271,534	7,130,721	565	AC	252	-60	64.0	15	18	3	0.7	3m @ 0.7g/t Au from 15m
and								36	64	28	2.0	28m @ 2.0g/t Au from 36m
AHWR007*	271,494	7,131,051	567	AC	247.5	-60	264.0	236	237	1	0.8	1m @ 0.8g/t Au from 236m
and								250	264	14	0.8	14m @ 0.8g/t Au from 250m to BOH
AHWR008*	271,448	7,131,148	566	AC	247.5	-60	303.0	270	279	9	0.9	9m @ 0.9g/t Au from 270m
AHWR010*	271,505	7,131,169	566	AC	247.5	-60	361.0	163	164	1	1.8	1m @ 1.8g/t Au from 163m
and								344	352	8	3.7	8m @ 3.7g/t Au from 344m
including								347	350	3	8.2	3m @ 8.2g/t Au from 347m
AHWR092*	271,503	7,130,710	568	AC	71.9	-60	56.0	24	32	8	2.3	8m @ 2.3g/t Au from 24m
AHWR093*	271,480	7,130,703	568	AC	71.2	-60	85.0	20	21	1	0.5	1m @ 0.5g/t Au from 20m
and								23	24	1	0.8	1m @ 0.8g/t Au from 23m
and								28	29	1	4.0	1m @ 4.0g/t Au from 28m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							` '	41	60	19	1.3	19m @ 1.3g/t Au from 41m
AHWR094*	271,464	7,130,752	568	AC	75.1	-60	85.0	6	60	54	3.0	54m @ 3.0g/t Au from 6m
including								27	35	8	8.6	8m @ 8.6g/t Au from 27m
including								45	50	5	7.4	5m @ 7.4g/t Au from 45m
AHWR095*	271,442	7,130,745	568	AC	73.8	-60	120.0	42	45	3	0.3	3m @ 0.3g/t Au from 42m
and								81	103	22	3.6	22m @ 3.6g/t Au from 81m
AHWR096*	271,447	7,130,799	568	AC	73.8	-60	79.0	6	50	44	3.0	44m @ 3.0g/t Au from 6m
including								32	37	5	12.2	5m @ 12.2g/t Au from 32m
AHWR097*	271,418	7,130,789	568	AC	68.7	-60	139.0	23	38	15	0.4	15m @ 0.4g/t Au from 23m
and								48	52	4	0.8	4m @ 0.8g/t Au from 48m
and								72	88	16	3.9	16m @ 3.9g/t Au from
AHWR098*	271,371	7,130,775	568	AC	69.8	-60	199.0	117	118	1	0.6	72m 1m @ 0.6g/t Au from
and								121	122	1	0.4	117m 1m @ 0.4g/t Au from
and								132	143	11	0.4	121m 11m @ 0.4g/t Au from
and								174	187	13	1.0	132m 13m @ 1.0g/t Au from 174m
and								192	199	7	0.3	7m @ 0.3g/t Au from
AHWR099*	271,346	7,130,800	568	AC	69.5	-60	229.0	124	126	2	0.4	192m to BOH 2m @ 0.4g/t Au from 124m
and								159	166	7	0.4	7m @ 0.4g/t Au from 159m
and								213	224	11	2.0	11m @ 2.0g/t Au from 213m
AHWR100*	271,343	7,130,845	566	AC	69.5	-60	229.0	173	184	11	2.3	11m @ 2.3g/t Au from 173m
including								176	177	1	6.2	1m @ 6.2g/t Au from 176m
HWAC1321*	271,350	7,131,200	572	AC	270	-60	87.0	38	41	3	0.4	3m @ 0.4g/t Au from 38m
and								69	70	1	0.4	1m @ 0.4g/t Au from
HWAC1348*	271,400	7,131,000	572	AC	270	-60	61.0	34	35	1	1.6	69m 1m @ 1.62g/t Au from
and								20	21	1	1.0	34m 1m @ 1.0g/t Au from
and								24	28	4	0.7	20m 4m @ 0.7g/t Au from
and								33	39	6	0.7	24m 6m @ 0.7g/t Au from
HWAC1380*	271500	7130800	572	AC	270	-60	69.0	0	3	3	0.4	33m 3m @ 0.4g/t Au from
and								14	17	3	0.4	0m 3m @ 0.4g/t Au from
and								20	22	2	0.5	14m 2m @ 0.5g/t Au from
and								25	64	39	6.1	20m 39m @ 6.1g/t Au from
including								45	52	7	22.2	25m 7m @ 22.2g/t Au from
HWAC1438*	271,600	7,130,600	572	RC	270	-60	57.0	28	52	24	0.9	45m 24m @ 0.9g/t Au from 28m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
including								35	37	2	6.5	2m @ 6.5g/t Au from 35m
HWDH001*	271,491	7,130,791	568	DD	257	-60	108.0	0	11	11	0.5	11m @ 0.5g/t Au from 0m
and								17	19	2	0.5	2m @ 0.5g/t Au from 17m
and								65	66	1	0.3	1m @ 0.3g/t Au from 65m
and								70	82	12	1.7	12m @ 1.7g/t Au from
and								87	89	2	0.3	70m 2m @ 0.3g/t Au from
HWDH002*	271,515	7,130,800	568	DD	252	-60	120.0	24	25	1	0.7	87m 1m @ 0.7g/t Au from
and								32	33	1	1.5	24m 1m @ 1.5g/t Au from
and								41	42	1	0.6	32m 1m @ 0.6g/t Au from
and								54	57	3	0.3	41m 3m @ 0.3g/t Au from
and								101	102	1	0.8	54m 1m @ 0.8g/t Au from
and								106	108	2	0.4	101m 2m @ 0.4g/t Au from
and								114	118	4	1.2	106m 4m @ 1.2g/t Au from
HWRC006*	271,526	7,130,745	568	RC	252	-60	120.0	24	58	34	2.2	114m 34m @ 2.2g/t Au from
and	·							83	84	1	1.5	24m 1m @ 1.5g/t Au from
and								89	90	1	0.5	83m 1m @ 0.5g/t Au from
and								95	98	3	0.3	89m 3m @ 0.3g/t Au from
and								102	103	1	0.4	95m 1m @ 0.4g/t Au from
HWRC007*	271,550	7,130,753	568	RC	252	-60	120.0	79	80	1	0.4	102m 1m @ 0.3g/t Au from
	2/1,550	7,130,733	300	NC.	232	-60	120.0					79m
and								84	99	15	2.3	15m @ 2.3g/t Au from 84m
HWRC008*	271,482	7,130,787	568	RC	252	-60	120.0	0	3	3	0.4	3m @ 0.4g/t Au from 0m
and								31	65	34	1.9	34m @ 1.9g/t Au from 31m
and								98	105	7	0.3	7m @ 0.3g/t Au from 98m
HWRC009*	271,504	7,130,795	568	RC	252	-60	120.0	0	2	2	0.8	2m @ 0.8g/t Au from 0m
and								26	105	79	1.9	79m @ 1.9g/t Au from 26m
HWRC010*	271,528	7,130,804	568	RC	252	-60	120.0	39	41	2	0.3	2m @ 0.3g/t Au from 39m
and								51	52	1	0.4	1m @ 0.4g/t Au from 51m
and								54	55	1	0.3	1m @ 0.3g/t Au from 54m
and								114	120	6	0.9	6m @ 0.9g/t Au from 114m to BOH
HWRC011*	271,492	7,130,842	568	RC	252	-60	120.0	5	6	1	0.5	1m @ 0.5g/t Au from
and								40	41	1	0.5	5m 1m @ 0.5g/t Au from
and								44	73	29	1.3	40m 29m @ 1.3g/t Au from
and								80	83	3	0.3	44m 3m @ 0.3g/t Au from 80m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	ot Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(,	90	96	6	1.2	6m @ 1.2g/t Au from 90m
and								110	111	1	0.5	1m @ 0.5g/t Au from 110m
and								115	116	1	1.4	1m @ 1.4g/t Au from 115m
HWRC016*	271,453	7,130,881	568	RC	252	-60	117.0	16	36	20	5.1	20m @ 5.1g/t Au from 16m
including								24	28	4	16.1	4m @ 16.1g/t Au from 24m
HWRC017*	271,476	7,130,889	568	RC	252	-60	120.0	45	46	1	0.3	1m @ 0.3g/t Au from 45m
and								62	64	2	0.4	2m @ 0.4g/t Au from 62m
and	-							75	76	1	0.3	1m @ 0.3g/t Au from 75m
and	-							83	87	4	1.9	4m @ 1.9g/t Au from 83m
HWRC019*	271,467	7,130,834	568	RC	252	-60	120.0	6	16	10	1.4	10m @ 1.4g/t Au from 6m
and	-							28	29	1	0.5	1m @ 0.5g/t Au from 28m
and	-							92	96	4	0.6	4m @ 0.6g/t Au from 92m
HWRC021*	271,554	7,130,808	568	RC	252	-60	201.0	42	43	1	0.8	1m @ 0.8g/t Au from 42m
and	-							160	162	2	1.3	2m @ 1.3g/t Au from 160m
and	-							174	178	4	1.7	4m @ 1.7g/t Au from 174m
HWRC023*	271,571	7130765	568	RC	252	-60	171.0	152	163	11	2.7	11m @ 2.7g/t Au from 152m
and	-							167	168	1	0.3	1m @ 0.3g/t Au from 167m
HWRC024*	271,535	7,130,698	568	RC	252	-60	120.0	2	9	7	0.4	7m @ 0.4g/t Au from 2m
and	-							26	46	20	5.0	20m @ 5.0g/t Au from 26m
and	-							82	83	1	0.3	1m @ 0.3g/t Au from 82m
HWRC025*	271,558	7,130,706	568	RC	252	-60	120.0	13	19	6	2.0	6m @ 2.0g/t Au from 13m
and	-							36	37	1	0.3	1m @ 0.3g/t Au from 36m
and	-							85	88	3	4.1	3m @ 4.1g/t Au from 85m
HWRC027*	271599	7,130,666	568	RC	252	-60	120.0	100	102	2	0.5	2m @ 0.5g/t Au from 100m
HWRC030*	271,434	7,130,929	568	RC	252	-60	117.0	26	59	33	0.5	33m @ 0.5g/t Au from 26m
and	-							99	100	1	0.3	1m @ 0.3g/t Au from 99m
HWRC031*	271,459	7,130,936	568	RC	252	-60	120.0	105	109	4	3.4	4m @ 3.4g/t Au from 105m
and								119	120	1	1.2	1m @ 1.2g/t Au from 119m to BOH
HWRC034*	271,463	7,130,884	568	RC	252	-60	99.0	41	43	2	0.7	2m @ 0.7g/t Au from 41m
and								61	67	6	1.9	6m @ 1.9g/t Au from 61m
HWRC036*	271,459	7,130,857	568	RC	252	-60	117.0	10	20	10	1.9	10m @ 1.9g/t Au from 10m
and								111	117	6	0.3	6m @ 0.3g/t Au from 111m to BOH
HWRC037*	271,484	7,130,864	568	RC	252	-60	120.0	20	21	1	0.4	111m to BOH 1m @ 0.4g/t Au from 20m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(,	53	57	4	0.4	4m @ 0.4g/t Au from 53m
and								63	67	4	0.3	4m @ 0.3g/t Au from 63m
and								89	106	17	4.6	17m @ 4.6g/t Au from 89m
including								97	104	7	10.2	7m @ 10.2g/t Au from 97m
HWRC038*	271,478	7,130,840	568	RC	252	-60	135.0	27	32	5	1.8	5m @ 1.8g/t Au from 27m
and								37	38	1	0.6	1m @ 0.6g/t Au from 37m
and								41	48	7	0.6	7m @ 0.6g/t Au from 41m
and								67	68	1	0.4	1m @ 0.4g/t Au from 67m
and								75	78	3	1.0	3m @ 1g/t Au from 75m
and								81	83	2	0.4	2m @ 0.4g/t Au from 81m
and	-							108	110	2	2.6	2m @ 2.6g/t Au from 108m
HWRC039*	271,503	7,130,844	568	RC	252	-60	141.0	35	36	1	1.2	1m @ 1.2g/t Au from 35m
and	-							113	115	2	0.7	2m @ 0.7g/t Au from 113m
and	-							120	131	11	3.9	11m @ 3.9g/t Au from 120m
HWRC042*	271,496	7,130,814	568	RC	252	-60	117.0	42	112	70	1.3	70m @ 1.3g/t Au from 42m
HWRC045*	271,471	7,130,783	568	RC	252	-60	120.0	9	32	23	0.8	23m @ 0.8g/t Au from 9m
and								36	49	13	0.8	13m @ 0.8g/t Au from 36m
and								83	94	11	0.3	11m @ 0.3g/t Au from 83m
HWRC047*	271,489	7,130,763	568	RC	252	-60	123.0	0	38	38	2.8	38m @ 2.8g/t Au from 0m
including								13	18	5	17.1	5m @ 17.1g/t Au from 13m
and								40	41	1	0.3	1m @ 0.3g/t Au from 40m
and								77	86	9	0.3	9m @ 0.3g/t Au from 77m
HWRC048*	271,514	7,130,768	568	RC	252	-60	129.0	29	93	64	1.7	64m @ 1.7g/t Au from 29m
and								110	112	2	0.5	2m @ 0.5g/t Au from 110m
and								119	122	3	0.4	3m @ 0.4g/t Au from 119m
HWRC049*	271,538	7,130,776	568	RC	252	-60	129.0	40	42	2	0.6	2m @ 0.6g/t Au from 40m
and								50	53	3	0.7	3m @ 0.7g/t Au from 50m
and								90	129	39	2.9	39m @ 2.9g/t Au from 90m
including								111	119	8	12.5	8m @ 12.5g/t Au from 111m
HWRC051*	271,532	7,130,718	568	RC	252	-60	123.0	0	14	14	3.9	14m @ 3.9g/t Au from 0m
and								24	31	7	8.3	7m @ 8.3g/t Au from 24m
and								40	63	23	5.8	23m @ 5.8g/t Au from 40m
and								77	78	1	0.7	1m @ 0.7g/t Au from 77m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and							(,	85	89	4	0.3	4m @ 0.3g/t Au from 85m
HWRC052*	271,553	7,130,728	568	RC	252	-60	123.0	90	101	11	0.4	11m @ 0.4g/t Au from 90m
HWRC053*	271,547	7,130,705	568	RC	252	-60	129.0	4	5	1	0.3	1m @ 0.3g/t Au from 4m
and								19	20	1	0.3	1m @ 0.3g/t Au from 19m
and								57	58	1	0.5	1m @ 0.5g/t Au from 57m
HWRC056*	271,574	7,130,658	568	RC	252	-60	99.0	44	46	2	0.4	2m @ 0.4g/t Au from 44m
HWRC058*	271,588	7,130,610	568	RC	252	-60	108.0					NSR
HWRC059*	271,611	7,130,619	568	RC	252	-60	123.0	69	79	10	1.0	10m @ 1.0g/t Au from 69m
HWRC061*	271,627	7,130,571	568	RC	252	-60	135.0	47	48	1	0.6	1m @ 0.56g/t Au from 47m
HWRC063*	271,440	7,130,720	568	RC	252	-60	168.0	42	49	7	5.8	7m @ 5.8g/t Au from 42m
and								104	114	10	1.5	10m @ 1.5g/t Au from 104m
HWRC135*	271,486	7,130,855	568	RC	252	-60	131.0	75	78	3	0.6	3m @ 0.6g/t Au from 75m
and								94	110	16	0.8	16m @ 0.8g/t Au from 94m
and								120	123	3	0.8	3m @ 0.8g/t Au from 120m
HWRC136*	271,508	7,130,780	568	RC	252	-60	107.0	0	4	4	0.4	4m @ 0.4g/t Au from 0m
and								11	13	2	0.5	2m @ 0.5g/t Au from 11m
and								21	24	3	0.6	3m @ 0.6g/t Au from 21m
and								40	59	19	1.5	19m @ 1.5g/t Au from 40m
and								76	89	13	0.9	13m @ 0.9g/t Au from 76m
HWRC137*	271,310	7,130,703	568	RC	252	-60	119.0	4	11	7	0.3	4m @ 0.3g/t Au from 4m
and								16	23	7	1.1	7m @ 1.1g/t Au from 16m
and								36	50	14	1.7	14m @ 1.7g/t Au from 36m
HWRC138*	271,345	7,130,713	568	RC	252	-60	119.0	50	59	9	0.7	9m @ 0.7g/t Au from 50m
and								62	66	4	0.3	4m @ 0.3g/t Au from 62m
and								76	91	15	1.4	15m @ 1.4g/t Au from 76m
including								76	81	5	2.3	5m @ 2.3g/t Au from 76m
and								105	107	2	0.3	2m @ 0.3g/t Au from 105m
and								117	118	1	0.4	1m @ 0.4g/t Au from 117m
HWRC152*	271,466	7,130,912	568	RC	252	-60	185.0	70	74	4	0.7	4m @ 0.7g/t Au from 70m
and								86	118	32	0.7	32m @ 0.7g/t Au from 86m
and								173	177	4	0.6	4m @ 0.6g/t Au from 173m
and								183	185	2	1.7	2m @ 1.7g/t Au from 183m to BOH
HWRC155*	271,505	7,130,872	568	RC	252	-60	185.0	34	35	1	0.5	1m @ 0.5g/t Au from 34m

	Coordinat	es (MGA94 Zoi	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and								140	165	25	3.8	25m @ 3.8g/t Au from 140m
including								154	160	6	13.6	6m @ 13.6g/t Au from 154m
and								180	181	1	0.4	1m @ 0.4g/t Au from 180m
and								184	185	1	0.3	1m @ 0.3g/t Au from 184m to BOH
HWRC156*	271,528	7,130,879	568	RC	252	-60	233.0	112	113	1	0.6	1m @ 0.6g/t Au from 112m
and								206	216	10	2.1	10m @ 2.1g/t Au from 206m
and								220	223	3	0.3	3m @ 0.3g/t Au from 220m
HWRC157*	271,524	7,130,854	568	RC	252	-60	179.0	173	178	5	1.1	5m @ 1.1g/t Au from 173m
HWRC160*	271,559	7,130,785	568	RC	252	-60	201.0	7	10	3	1.0	3m @ 1.0g/t Au from 7m
and								39	41	2	0.3	2m @ 0.3g/t Au from 39m
and	•							68	69	1	0.9	1m @ 0.9g/t Au from 68m
and	•							72	73	1	0.8	0m @ 0.8g/t Au from 72m
and	•							88	89	1	0.3	1m @ 0.3g/t Au from 88m
and	•							98	99	1	0.3	1m @ 0.3g/t Au from 98m
and								182	188	6	2.6	6m @ 2.6g/t Au from 182m
HWRC162*	271,590	7,130,769	568	RC	252	-60	203.0					NSR
HWRC165*	271,594	7,130,747	568	RC	252	-60	203.0	104	105	1	0.5	1m @ 0.47g/t Au from 104m
HWRC166*	271,595	7,130,719	568	RC	252	-60	209.0					NSR
HWRC229*	271,492	7,130,948	568	RC	252	-60	280.0	16	18	2	0.3	2m @ 0.3g/t Au from 16m
and								165	176	11	3.0	11m @ 3g/t Au from 165m
including								168	172	4	6.8	4m @ 6.8g/t Au from 168m
and								219	221	2	0.5	2m @ 0.5g/t Au from 219m
HWRC231*	271,574	7,130,893	568	RC	252	-60	323.0	87	92	5	0.3	5m @ 0.3g/t Au from 87m
and								98	103	5	0.4	5m @ 0.4g/t Au from 98m
HWRC239*	271,530	7,130,959	568	RC	252	-60	330.0	243	247	4	2.4	4m @ 2.4g/t Au from 243m
including	•							245	246	1	8.1	1m @ 8.1g/t Au from 245m
and	•							296	297	1	0.3	1m @ 0.3g/t Au from 296m
and								306	308	2	0.4	2m @ 0.4g/t Au from 306m
and								312	314	2	2.3	2m @ 2.3g/t Au from 312m
HWRC249*	271,462	7,131,044	568	RC	252	-60	287.0	143	161	18	1.8	18m @ 1.8g/t Au from 143m
including								144	146	2	7.0	2m @ 7.0g/t Au from 144m
and								189	190	1	2.3	1m @ 2.3g/t Au from 189m
PLRC001*	271,419	7,131,027	568	RC	250	-60	150.0	74	99	25	0.6	25m @ 0.6g/t Au from 74m

	Coordinat	es (MGA94 Zor	ne 51)		Hole	Details				Intercep	t Details	
HoleID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments
and								121	131	10	0.4	10m @ 0.4g/t Au from 121m

*Previously announced or historic result
A cutoff of 0.3g/t Au was applied to each significant intercept with a maximum internal dilution of 3 metres.

Appendix B

JORC Table 1 – Warmblood – Palomino

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Alloy Resources The Warmblood prospect was first discovered by Alloy Resources Ltd in 2011 (please refer to ASX announcements 9 June 2011 and 22 June 2011), with the completion of 101 air core holes, testing extensions to the Filly SW prospect returning significant oxide gold mineralisation. Aircore drilling was completed by Raglan Drilling and were completed to blade refusal, usually at saprock or fresh bedrock to an average depth of 66 metres. This reconnaissance drilling was carried out a widely spaced pattern of 200 metres by 400 metres, with drill samples composited over 4 metre intervals and assays for gold down to 0.001ppm or 1ppb Au. Any gold values greater than 0.05ppm Au in the 4 metre composite were considered to be significant warrant follow up drilling. Drilling samples were transported by trailer to Wiluna, where they were placed in bulka bags and shipped to Perth via Toll-Ipec for assay. The drilling samples were analysed by ALS-Chemex in Perth. All samples and blind standards were analysed for gold using 30g fire assay and ICP-AES finish (range 0.001-10ppm Au). Assays greater than 10ppm were analysed using the AA25 methos, but only standard samples were above this level. The initial RC program at Warmblood was carried out by Easternwell Drilling. RC samples were split directly from the cyclone into 2kg bags for every metre drilled. Samples were assayed as 4 metre composites. For all 4 metre composite samples which returned greater than 0.5g/t Au, 1 metre samples were collected from the original 'split' one metre samples and assayed.

Criteria	JORC Code explanation	Commentary
		Alloy Resources & Doray Minerals Ltd (JV)
		From 2013 to 2021 exploration work was undertaken by Alloy Resources and Doray Minerals Ltd under the pre-existing JV agreement. The details regarding RC sampling from this work is outlined below:
		Reverse circulation (RC) percussion drill chips collected through a cyclone and cone splitter at 1m intervals.
		Spitter was cleaned regularly during drilling.
		Splitter was cleaned and levelled at the end of each hole.
		Mineralisation determined qualitatively through rock type, sulphide and quartz content and intensity of alteration.
		 Mineralisation determined quantitatively via assay (aqua-regia digest followed by ICP-MS for multi-element data and 25g Fire Assay and AAS determination for gold at 1m intervals). RC samples pulverized to 75 pm
		 All samples analysed by aqua-regia digest followed by ICP-MS for multi- element data and 25g Fire Assay and AAS determination for gold at 1 m intervals.
		Strickland Metals Ltd
		Diamond Drilling
		 Diamond coring was undertaken predominantly as HQ sizing, with PQ utilized to maximise recovery, where required, particularly within saprolite and clay zones.
		Triple-tubing was utilised throughout to maximise recovery.
		Diamond core samples were collected at geologically-defined intervals, with a minimum sample length of 0.5m and a maximum of 1.2m.

Criteria	JORC Code explanation	Commentary
		 Core samples were cut using an automated variable-speed diamond saw with half core, weighing approximately 3kg, submitted for analysis.
		 OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		 Density measurements were collected as per Water Displacement Method 3 (Lipton, 2001) with paraffin wax coatings used for oxide and porous samples. Selected core samples were 0.1 – 0.2 m in size. Aluminium cylinders of 0.1 and 0.2 m in length, with known mass and density were measured at regular intervals at a ratio of 1:20, as a reference material. Duplicate sample weights were measured in fresh rock at a ratio of 1:20.
		 Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 meter were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.
		RC Drilling
		• 2-3 kg samples were split from dry 1 m bulk samples. The sample was initially collected from the cyclone in an inline collection box, with independent upper and lower shutters. Once the full metre was drilled to completion, the drill bit was lifted off the bottom of the hole, creating a gap between samples; ensuring the entirety of the 1 m sample was collected, and over-drilling did not occur. When the gap of air entered the collection box, the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, dropping the sample under gravity over a cone splitter.
		 Two even 2 – 3 kg duplicate sample splits, from the A- and B-chutes of the splitter, were collected at the same time for each metre, with the remaining reject bulk sample being collected in labelled green bags directly below the cyclone, minimising external contamination.

Criteria	JORC Code explanation	Commentary
		 Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and green bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.
		 Green bags were then placed in neat lines on the ground, with tops folded over to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work.
		• In mineralised zones, the original A-chute sample split was sent to the laboratory for analysis. In non-mineralised 'waste' zones, a 4 m composite scoop sample was collected from the green bags and the A-chute bag retained on site for follow up analysis test work. All composite intervals over 0.1 g/t Au were resampled at 1 m intervals using the original A-chute bag from the cyclone splitter.
		 QA samples were inserted at a combined ratio of 1:20 throughout. Field duplicates were collected at a 1:40 ratio from the B-chute of the cone splitter at the same time as the original sample was collected from the A- chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		• The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Dual air-vibrators on the cyclone transfer box were utilised, when necessary, to aid sample throughput. Vibrators were placed on opposite sides of the cyclone and perpendicular to the chutes to avoid vibration-induced splitting bias.

Criteria	JORC Code explanation	Commentary
		 Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 meter were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Historic Drilling The original Eagle Mining RAB program was completed by Kennedy Drilling. Eagle Mining engaged with Drillex to undertake the Reverse Circulation drilling. In 2019 Alloy Resources undertook Reverse Circulation Drilling with an 120mm bit. Strickland Metals Ltd Diamond Drilling Diamond Drilling was undertaken by Terra Drilling using a truck-mounted KWL1600 drill rig. Diamond coring was undertaken predominantly as HQ sizing, with PQ utilised to maximise recoveries where necessary. Triple-tubing was utilised to maximise recovery. REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole. Boart Longyear Orientation tools were used for core orientation.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	 RC Drilling RC drilling was undertaken by Ranger Drilling, using a truck-mounted Hydco 350RC Rig with a 1350 cfm @ 500 psi on-board compressor, a 1150 cfm onboard Booster, and a truck-mounted Sullair 900 cfm @ 350 psi Auxiliary Compressor. RC holes were drilled with a 5 ½" hammer.
		 REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multishot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH). RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Strickland Metals Ltd Diamond Drilling Diamond core samples are considered dry. Triple-tubing and the appropriate drill tube diameter was selected (PQ, HQ, or NQ) depending on ground competency to maximise sample recovery. Sample recovery is recorded every run (average run length of 3m) and is generally above 98%, except for in very broken ground. Core was cut in half, with the same half of the core submitted to the laboratory for analysis. From the collection of recovery data, no identifiable bias exists.

Criteria	JORC Code explanation	Commentary
		 PC Drilling During the RC sample collection process, the original and duplicate cone split samples, and green bag reject bulk samples were weighed to test for bias and sample recoveries. The majority of this work was undertaken in ore zones. Once drilling reached fresh rock, a fine mist of water was used to suppress dust and limit loss of fines through the cyclone chimney. At the end of each metre, the bit was lifted off the bottom of hole to separate each metre drilled. The majority of samples were of good quality, with ground water having minimal effect on sample quality or recovery. From the collection of recovery data, no identifiable bias exists. Historic Drilling RC drill chip recoveries recorded at the time of logging and stored in the database. Sample splitter was cleaned at the end of each rod to ensure no sample hang-ups have occurred. Sample bag weights are recorded and in general were approximately 3kg. Wet samples due to excess ground water were noted when present. As sample recoveries were generally very high, there is no known relationship between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	Logging was both qualitative and quantitative in nature.
		Diamond Drilling
		 Diamond core was geotechnically logged at 1cm resolution; recording recovery, RQD, orientation confidence, joint density, joint sets, joint asperity and fill mineralogy.
		Core trays were photographed wet and dry.
		 Structural measurements were collected utilizing the IMDEX IQ-Logger 2, with reference measurements taken at the start of each logging session and every 20 measurements throughout the drill hole to ensure instrument calibration and data quality.
		RC Drilling
		RC chips were washed, logged and a representative sub-sample of the 1 m drill sample retained in reference chip trays for the entire length of a hole.
		Reference chip trays were photographed wet and dry.
		Historic Drilling
		Aircore holes were logged qualitatively and chip trays photographs were taken across all metre intervals.
		 RC Holes were logged to a level of detail to support future mineral resource estimation: lithology; alteration; mineralization; geotechnical (Diamond core only); structural.
		Qualitative: lithology, alteration, foliation
		Quantitative: vein percentage; mineralization (sulphide) percentage;
		All holes logged for the entire length of hole.
		All RC holes were chipped and archived.

Sub-sampling techniques and sample preparation

- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/secondhalf sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.

Strickland Metals Ltd

Diamond Drilling

- Diamond core samples were collected at geologically defined intervals, with a minimum sample length of 0.5m and maximum of 1.2m.
- Samples were cut using an automated variable-speed diamond saw.
- Core was cut in half, with the same half of the core submitted to the laboratory for analysis.
- Diamond core samples are considered dry.
- Triple-tubing and the appropriate drill tube diameter was selected (PQ, HQ, or NQ) depending on ground competency to maximise sample recovery.
- Sample recovery is recorded every run (average run length of 3m) and is generally above 98%, except for in very broken ground.
- Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10
 Magnetic Susceptibility meter, were used to aid geological interpretation.
 Core was analysed at 1m intervals for 60 seconds (3 x 20 second beams)
 utilising an Olympus Vanta pXRF instrument. CRMs were tested at regular
 intervals at a ratio of 1:20.

RC Drilling

- RC samples were split from dry, 1m bulk sample via a cone splitter directly from the cyclone.
- Weighing of calico and reject green samples to determine sample recovery compared to theoretical sample recovery, and check sample bias through the splitter.
- Field duplicates collected from the B-chute of the splitter through the entire hole at the same time as the original sample collection from the A-chute.

Quality Control Procedures

- Approximately 3kg of sample was submitted to ALS, Perth WA for analysis
 via 50g fire assay with an ICP-AES finish (method code: Au-ICP22). Samples
 that over-ranged are subsequently analysed by 50g fire assay and
 gravimetric finish (method code: Au-GRA22).
- Ore zones were additionally analysed via 250g Photon Assay (method code: Au-PA01).
- Detection limits of utilised methods:

Method	Unit	Lower	Upper
		Limit	Limit
Au-ICP22	ppm	0.001	10
Au-GRA22	ppm	0.01	100
Au-PA01	ppm	0.03	350

- Sample duplicates (DUP) were inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material.
- OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
- The total combined QAQC (DUPs and CRMs) to sample ratio through ore zone material was 1:10. For waste zones the combined QAQC to sample ratio was 1:20.
- Field Duplicates and CRMs were submitted to the lab using unique Sample IDs.
- For Fire Assay, all samples were sorted, dried at 105°C and weighed prior to crushing to 2mm. Crushed samples were then split and pulverised to 75μm, with a QC specification of ensuring >85% passing < 75μm. 50g of pulverised

sample was then analysed for Au by fire assay and ICP-AES (low-grade) or gravimetric (ore-grade) finish.

• Sample size and preparation is appropriate for the grain size of the sample material.

Historic Alloy Resources RC Drilling

- RC chips were cone split every metre, sampled dry where possible and wet when excess ground water could not be prevented. Sample condition (wet, dry or damp) was recorded at the time of logging.
- Where mineralization was unlikely, the samples were composited by spear sampling – four x 1 metre subsamples combined to approximately 3kg and submitted for assay.
- The entire ~3kg RC sample was pulversised to 75um (85% passing). This is considered best practice and is standard throughout the industry.
- Pulp duplicates taken at the pulverizing stage and selective repeats conducted at the laboratories discretion.
- Duplicate samples were taken every 50th sample.
- Sample size is appropriate for the grain size of the sample material.

Historic Pulp Multi Element Assay

Historic pulp samples from Warmblood were stored at the STK warehouse in sealed carboard boxes that were labelled with the key lab job number from the historic gold only Fire Assay analysis. The lab job number was referenced with the existing drill database to determine each representative hole ID. The samples/holes requiring multi-element analysis were then subsequently placed in new cardboard boxes with new sample submission numbers and sent to ALS laboratory in Perth for full four-acid multi element analysis – code MS61.

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Strickland Metals Ltd

Diamond Drilling

- Sample duplicates (DUP) were inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material.
- OREAS certified reference material (CRM) was inserted at a ratio of 1:20
 throughout sampling of ore zones, and 1:40 throughout sampling of waste
 material. The grade ranges of the CRMs were selected based on grade
 populations and economic grade ranges. The reference material type was
 selected based on the geology, weathering, and analysis method of the
 sample.
- The total combined QAQC (DUPs and CRMs) to sample ratio through ore zone material was 1:10. For waste zones the combined QAQC to sample ratio was 1:20.
- Field Duplicates and CRMs were submitted to the lab using unique Sample IDs.
- ALS, Perth WA conduct CRM analysis and laboratory check assays at a combined ratio of 1:25 samples as part of standard laboratory QAQC protocols.
- Blank quartz 'flushes' were inserted into the sample sequence throughout high-grade ore zones. After each high-grade sample (usually determined by the presence of visible gold) is crushed, a quartz flush is crushed. A second quartz flush is run after each sample is pulverised, prior to the quartz crush flush undergoing pulverisation. In total, two quartz flushes are conducted (one for each preparation stage) for each suspected high-grade sample to determine the level of potential contamination across samples.
- No bias or contamination is seen across samples.
- Core was analysed at 1m intervals for 60 seconds (3 x 20 second beams) utilising an Olympus Vanta pXRF instrument. CRMs were tested at regular intervals at a ratio of 1:20. Olympus Vanta pXRF instruments cannot accurately measure elemental Au and whole-suite elemental data are not

considered appropriate for reporting. pXRF data are used as a guide for logging only.

RC Drilling

- 2-3 kg samples were split from dry 1 m bulk samples. The sample was initially collected from the cyclone in an inline collection box, with independent upper and lower shutters. Once the full metre was drilled to completion, the drill bit was lifted off the bottom of the hole, creating a gap between samples; ensuring the entirety of the 1 m sample was collected, and over-drilling did not occur. When the gap of air entered the collection box, the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, dropping the sample under gravity over a cone splitter.
- Two even 2 3 kg duplicate sample splits, from the A- and B-chutes of the splitter, were collected at the same time for each metre, with the remaining reject bulk sample being collected in labelled green bags directly below the cyclone, minimising external contamination.
- Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and green bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.
- Green bags were then placed in neat lines on the ground, with tops folded over to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work.
- In mineralised zones, the original A-chute sample split was sent to the laboratory for analysis. In non-mineralised 'waste' zones, a 4 m composite scoop sample was collected from the green bags and the A-chute bag retained on site for follow up analysis test work. All composite intervals over 0.1 g/t Au were resampled at 1 m intervals using the original A-chute bag from the cyclone splitter.
- QA samples were inserted at a combined ratio of 1:20 throughout. Field

duplicates were collected at a 1:40 ratio from the B-chute of the cone splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.

- The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Dual air-vibrators on the cyclone transfer box were utilised, when necessary, to aid sample throughput. Vibrators were placed on opposite sides of the cyclone and perpendicular to the chutes to avoid vibration-induced splitting bias.
- Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 meter were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.

Historic Eagle Mining Drilling

 Samples were analysed for Au by single stage mix and grind preparation, with an aqua-regia digest and AAS finish to 0.02ppm. Repeats (approximately 10%) were fire assays to a detection limit of 0.01ppm. All samples were sent to Australian Assay Laboratories (AAL) in Boulder, WA.

Historic Alloy Resources RC Drilling

- Fire assay was used and is a total digest technique.
- Certified reference material standards, 1 in every 50 samples.
- Blanks: a lab barren quartz flush is requested following a predicted highgrade sample (i.e., visible gold).
- Lab: Random pulp duplicates were taken on average 1 in every 10 samples.

		Accuracy and precision levels have been determined to be satisfactory after analysis of these QAQC samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	
		No adjustments were made to any of the assay data. This data is now managed and hosted by Mitchell River Group.

Intercepts are reported as composites of individual 1m assay results from a

Reported intercepts include internal waste averaging 3m.

cut-off of 0.5g/t Au.

Location of	of • Accuracy and quality of surveys used to locate drill holes (collar and down-	Strickland Metals Ltd
data points	 hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The grid system used was MGA94 Zone 51 and drillhole collar position surveyed using a Garmin GPSMAP 64 (+/- 3m accuracy).
		 REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used fo downhole dip and azimuth calculation, with multishot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken a end-of-hole (EOH).
		RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole.
		Boart Longyear Orientation tools were used for core orientation.
		Historic Alloy Resources RC Drilling
		 Collars: surveyed with GPS with expected relative accuracy of approximatel 2-3m.
		Downhole: surveyed with in-rod reflex Gyro tool continuously.
		Holes are located in MGA94 zone 51.
		Estimated RL's were assigned during the drilling.
	Strickland has engaged with an independent surveyor to pick up and locate al collars that have not been subject to a DGPS pick-up.	
Data spacing	Data spacing for reporting of Exploration Results.	Historic Drilling
and distribution	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Holes were drilled on a variable collar spacing of approximately 40m acros the bulk of the Palomino resource estimate with up to 80 to 100 metro spacings in the northern part (down-plunge extent) of Palomino.

• Whether sample compositing has been applied.

		Strickland Metals Ltd
		Diamond Drilling at Palomino is located between existing 40m-spaced historic drill holes, to achieve 20m x 20m spacing within the Mineral Resource.
		Assay results show good continuity of grade and width of intercepts between STK and Historic drill holes, both along strike, down-dip and down-plunge.
		The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised horizon to support the classification of the Mineral Resources reported.
		Intercepts are reported as composites of individual 1m assay results from a cut-off of 0.5g/t Au.
		Reported intercepts include internal waste averaging 3m.
Orientation of data in relation to geological structure • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type of the relationship between the drilling orientation and the orientation of known in the property of the relationship between the drilling orientation and the orientation of known introduced a sampling bias, the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between the drilling orientation and the orientation of known in the relationship between	Based on the drilling completed to date, the orientation (both dip and plunge) of mineralisation is based on numerical Au assay values and confirmed by structural data collected from Strickland Metals' diamond drilling. The exicetation of primary primary licetion is consequently control. Oxide	
	should be assessed and reported if material.	 The orientation of primary mineralisation is approximately vertical. Oxide mineralisation is approximately flat. STK-drilling has been completed at -60 degrees and perpendicular to the strike of mineralisation to avoid the introduction of bias to results.
		Drilling intercepts are reported as down-hole width.
Sample security	The measures taken to ensure sample security.	Strickland Metals Ltd
security		Chain of Custody of digital data was managed by Strickland Metals Ltd.
		 All samples were bagged in tied numbered calico bags, grouped into larger polyweave bags and cabled-tied. Polyweave bags were placed into larger Bulky Bags with a sample submission sheet and tied shut. Delivery address details were written on the side of the bag.

		 Sample material was stored on site and, when necessary, delivered to the assay laboratory by Strickland Metals personnel and a nominated courier (DFS). Thereafter, laboratory samples were controlled by the nominated laboratory. Sample collection was controlled by digital sample control files and hard-copy ticket books.
		The data was originally maintained by Eagle Mining Corporation and forwarded to Normandy Jundee Operation
		 All DRM historic samples were selected, cut and bagged in a tied numbered calico bag, grouped into larger polyweave bags and cable tied. Polyweave bags were placed into larger Bulky Bags with a sample submission Doray Minerals Ltd, 21st October 2015 Criteria JORC Code explanation Commentary sheet and tied shut. Consignment note and delivery address details were written on the side of the bag and delivered to Toll Express in Meekatharra. The bags were delivered directly to MinAnalytical in Canning Vale, WA who are NATA accredited for compliance with ISO/IEC17025:2005. All Alloy Resources historic samples were assayed by ALS Laboratories (Perth) using Aqua Regia (2012 AC program) and Fire Assay with ICP_MS finish (RC programs) to detection limits of 0.01 and 0.001ppm respectively.
Audits or	The results of any audits or reviews of sampling techniques and data.	Strickland Metals Ltd
reviews		All assay data is audited and reviewed by Mitchell River Group (MRG), with weekly performance meetings held between Strickland Personnel and the Database Manager at MRG.
		The multi-element geochemistry from the historic drill pulps was reviewed by Dr Nigel Brand (Geochemical Services Pty Ltd), who determined the key pathfinder element suite.

Historic Drilling
 Performance meetings held between a DRM and MinAnalytical representative were conducted monthly. QAQC data were reviewed with each assay batch returned, and on regular monthly intervals (trend analysis).

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Warmblood and Palomino are located on 100% owned STK tenure (tenement ID) E69/1772. L11 Capital Pty Ltd holds a 1% gross revenue royalty over the above tenure.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration prior to Strickland in the region was conducted by Eagle Mining and Great Central Mines Ltd. Drilling included shallow RAB and RC drilling that was completed in the mid – 1990s, all of which had been sampled, assayed, and logged and records held by the Company. This early work, including aeromagnetic data interpretation, was focused on gold and provided anomalous samples which was the focus of this period of exploration.
Geology	Deposit type, geological setting and style of mineralisation.	Palomino and Warmblood are Archean aged gold prospects with common host rocks and structures related to mesothermal orogenic gold mineralisation as found throughout the Yilgarn Craton of Western Australia.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	 Historic gold intercepts have been compiled, with a summary of all information documented in Appendix A – Table 1 and Table 2. Historic drill holes relating to the re-assay of existing pulps for multi-element pathfinder geochemistry.

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	o dip and azimuth of the hole	
	 down hole length and interception depth 	
	o hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such 	No top-cuts have been applied when reporting results.
		A cut-off of 0.3g/t Au was applied for all significant gold assay results.
methous		The following values were deemed anomalous for the key pathfinder The following values were deemed anomalous for the key pathfinder The following values were deemed anomalous for the key pathfinder The following values were deemed anomalous for the key pathfinder
		element suite associated with the gold mineralisation at Warmblood:
		o >0.4ppm Bi
	aggregations should be shown in detail.	○ >10ppm W
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	○ >0.4ppm Ag
Relationship	These relationships are particularly important in the reporting of Exploration Output Description Output	The orientation of primary mineralisation is approximately vertical. Oxide The orientation of primary mineralisation is approximately vertical. Oxide
between mineralisation	Results.	mineralisation is approximately flat. STK-drilling has been completed at -60 degrees and perpendicular to the strike of mineralisation to avoid the
widths and intercept	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	introduction of bias to results. Drilling intercepts are reported as down-hole width.
lengths	If it is not known and only the down hole lengths are reported, there should	widti.
	be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts Appropriate maps and sections (with scales) and tabulations of intercepts	Please refer to the main body of text.
	should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and	
	appropriate sectional views.	

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All Au assays are presented in the appendix to this announcement for clarity. Representative higher-grade intervals have been presented in the text and section.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	the text.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Continued RC and diamond drilling along strike and down plunge to determine the overall economic potential of each target area.