

ASX ANNOUNCEMENT

RESOURCES LIMITED

17 September 2024

HIGH GRADE ZONES WITHIN BROAD INTERCEPTS OF MINERALISATION RETURNED FROM LORD BYRON DRILLING

HIGHLIGHTS

- The remaining assay results have been received from the ~8,000m Lord Byron infill RC drilling program at the Jasper Hills Gold Project
- The results returned wide zones of gold mineralisation that contain internal sections of high-grade. Intercepts returned at Lord Byron include:
 - o LBRC24049:
 - 26m @ 2.69 g/t Au from 120m, including 3m @ 12.4 g/t from 123m, and
 - 8m @ 3.48 g/t from 28m
 - o LBRC24017:
 - 28m @ 2.77 g/t Au from 153m, including 6m @ 6.00 g/t from 172m
 - o LBRC24012:
 - 29m @ 2.62 g/t Au from 160m, including 1m @ 35.7 g/t from 184m
 - o LBRC24013:
 - 30m @ 1.97 g/t Au from 143m, including 13m @ 3.18 g/t from 143m
 - o LBRC24051:
 - 23m @ 2.24 g/t Au from 67m, including 5m @ 7.03g/t from 83m
 - o LBRC24011:
 - 16m @ 2.01 g/t Au from 140m
 - o LBRC24048:
 - 1m @ 22.2 g/t Au from 121m, and
 - 7m @ 3.32 g/t Au from 132m, and
 - 24m @ 1.04 g/t Au from 144m
 - o LBRC24047:
 - 10m @ 2.31 g/t Au from 109m, and
 - 10m @ 1.01 g/t Au from 132m
- The program forms part of a Reverse Circulation (RC) and Diamond (DD) drill-out at Jasper Hills, which was designed to increase the resource confidence, improve geological understanding and provide geotechnical and metallurgical data.
- Assays for an additional 7 completed diamond holes are still pending. The diamond rig is currently on site at Lord Byron completing the final 6 diamond tails, drilled as extensions to RC pre-collar holes.
- The RC drilling rig is currently finishing the drilling program at the Menzies Gold Project, which is expected to complete in the coming days.

Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce further results from the RC infill drilling at the Lord Byron deposit, part of the 293koz Au Jasper Hills Gold Project. The program was completed to infill the existing mineral resource and increase confidence in the geological interpretation, prior to a planned update to the Mineral Resource Estimate (MRE). A concurrent diamond drilling program is almost complete, providing important geotechnical and metallurgical data, as well as crucial structural and geological information to aid the company's growing understanding of the deposit.

Brightstar's Managing Director, Alex Rovira, commented "These new Lord Byron assays are particularly exciting. The results have shown the wide intervals of great, open pit mineable gold grades, but also contain discrete zones of high-grade, including in some of the deeper holes, at the base of a A\$3,000/oz Au optimised pit shell. These highly encouraging results will feed into updated development studies at the deposit, as outlined in the recent Jasper Hills Scoping Study¹.

With successful RC programs now complete at Fish and Lord Byron, the Jasper Hills project is rapidly advancing. Once the RC assays are received from the Fish deposit, attention will turn to geotechnical and metallurgical testwork utilising the diamond core material produced from the drilling program concluding in the coming weeks.

With the current drilling program ending and both rigs soon demobilising, a short drilling break will allow assays to be returned and geological interpretations to be updated, prior to resource updates across the projects. Drilling will then restart, with a large program being planned at the company's exciting new Sandstone assets set to commence once those transactions complete.

TECHNICAL DISCUSSION

The Lord Byron deposit consists of a 'Main Zone" of mineralisation associated with the northwest-trending Bicentennial Shear Zone. This 100m-wide zone of shearing hosts the bulk of the mineralisation at the deposit. Additional mineralisation is also present in supergene lodes, and as primary gold in banded iron units (BIF) that have been deflected and truncated by the Bicentennial Shear. The RC drilling program at the Lord Byron totals 54 drill holes for ~8,000m of drilling, with all assays now returned.

An additional diamond program is ongoing, totalling 13 holes for 1,700m (including 7 diamond 'tails' drilled as extensions to existing RC drillhole pre-collars). Assays remain outstanding for all diamond holes, with 6 short diamond tails remaining to drill to complete the program.

The purpose of this combined RC and DD program was to infill the resource within optimised open pit shells, provide material for metallurgical and geotechnical assessment, facilitate an upgrade of the MRE to indicated or better classification, and potentially delineate Ore Reserves in conjunction with the Definitive Feasibility Study.

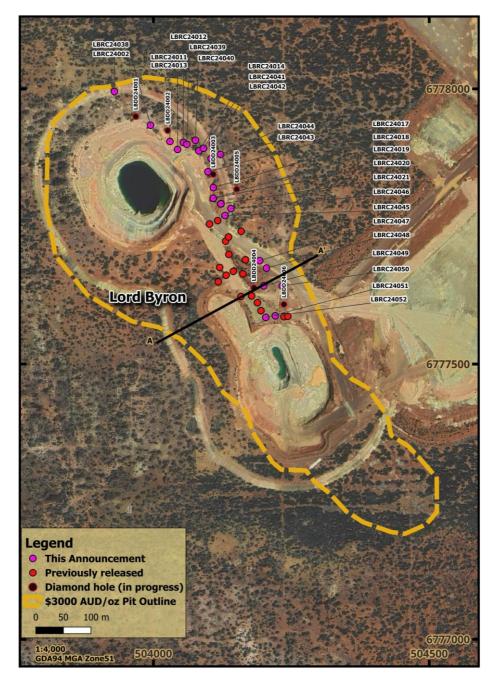


Figure 1 - Plan view map of Lord Byron drill collar locations

Geological Observations

The Lord Byron stratigraphy consists of amphibolite with interbedded BIF layers. Drilling through the main Bicentennial Shear Zone intersected wide zones of shearing associated with significant biotite-silica alteration, quartz veining, and minor disseminated pyrite. The assay results have defined several south-plunging, high-grade shoots in the main zone of mineralisation at the deposit, hosted within the Bicentennial Shear (Figure 3). The strike of the individual shoots varies from 40m to over 160m, within the overall 800m strike of the deposit as a whole.

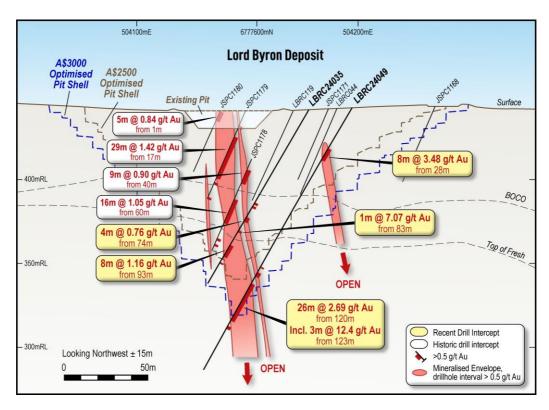


Figure 2 - Cross section showing LBRC24035 and LBRC24049 with mineralised >0.5g/t Au intercepts with reference to A\$2,500/oz and \$3,000/oz conceptual pit shells

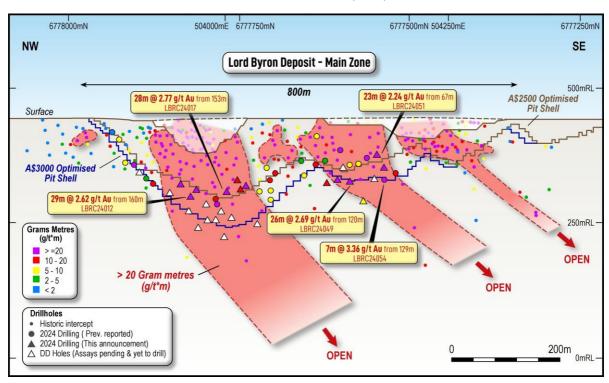


Figure 3 - Long Section of the Lord Byron deposit Main Zone of mineralisation, illustrating the plunging high-grade shoots of +20g/t*metres with reference to A\$2,500/oz and \$3,000/oz conceptual pit shells.

Note: mineralisation hosted in BIF lodes or Supergene lodes are not shown on this long section

Table 1 – Significant Intercepts (>0.5g/t Au) for the Lord Byron RC drilling

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
		41	42	1	0.54	1m @ 0.54g/t from 41m	0.54
LBRC24002		46	51	5	0.77	5m @ 0.77g/t from 46m	3.85
		56	57	1	3.52	1m @ 3.52g/t from 56m	3.52
		107	108	1	0.84	1m @ 0.84g/t from 107m	0.84
		121	122	1	0.56	1m @ 0.56g/t from 121m	0.56
LBRC24011		135	136	1	1.03	1m @ 1.03g/t from 135m	1.03
LBRC24011		140	156	16	2.01	16m @ 2.01g/t from 140m	32.2
		161	166	5	0.50	5m @ 0.50g/t from 161m	2.5
		170	171	1	4.70	1m @ 4.70g/t from 170m	4.7
		125	126	1	0.60	1m @ 0.6g/t from 125m	0.6
		141	142	1	2.36	1m @ 2.36g/t from 141m	2.36
LBRC24012		153	154	1	0.63	1m @ 0.63g/t from 153m	0.63
		160	189	29	2.62	29m @ 2.62g/t from 160m	76.0
	including	184	185	1	35.7	1m @ 35.7g/t from 184m	35.7
		127	130	3	0.97	3m @ 0.97g/t from 127m	2.91
LBRC24013		143	173	30	1.97	30m @ 1.97g/t from 143m	59.1
LBRC24013	including	143	156	13	3.18	13m @ 3.18g/t from 143m	41.3
		177	179	2	1.81	2m @ 1.81g/t from 177m	3.62
LBRC24014		0	1	1	0.56	1m @ 0.56g/t from 0m	0.56
LBNC24014		66	75	9	1.40	9m @ 1.40g/t from 66m	12.6
		147	148	1	0.62	1m @ 0.62g/t from 147m	0.62
		153	181	28	2.77	28m @ 2.77g/t from 153m	77.6
LBRC24017	including	172	178	6	6.00	6m @ 6.00g/t from 172m	36.0
		196	199	3	0.87	3m @ 0.87g/t from 196m	2.61
		213	214	1	0.59	1m @ 0.59g/t from 213m	0.59
		131	136	5	0.81	5m @ 0.81g/t from 131m	4.05
LBRC24018		150	163	13	1.18	13m @ 1.18g/t from 150m	15.3
		169	178	9	1.28	9m @ 1.28g/t from 169m	11.5
		120	121	1	0.70	1m @ 0.70g/t from 120m	0.7
		130	131	1	0.55	1m @ 0.55g/t from 130m	0.55
LBRC24019		136	143	7	2.02	7m @ 2.02g/t from 136m	14.1
		150	156	6	2.36	6m @ 2.36g/t from 150m	14.2
		175	176	1	0.62	1m @ 0.62g/t from 175m	0.62

Hole ID	From	То	Drilled	Au	Interval	Gram-
Hole ID	(m)	(m)	Interval (m)	(g/t)	inter var	metres
	128	129	1	0.50	1m @ 0.5g/t from 128m	0.5
LBRC24020	131	133	2	0.64	2m @ 0.64g/t from 131m	1.28
	138	160	22	1.44	22m @ 1.44g/t from 138m	31.7
LBRC24021	148	161	13	0.58	13m @ 0.58g/t from 148m	7.54
LBRC24038	91	93	2	0.67	2m @ 0.67g/t from 91m	1.34
LBRC24038	116	117	1	2.77	1m @ 2.77g/t from 116m	2.77
LBRC24039	124	129	5	1.21	5m @ 1.21g/t from 124m	6.05
LDNC24059	137	138	1	0.69	1m @ 0.69g/t from 137m	0.69
LBRC24040	40	44	4	0.57	4m @ 0.57g/t from 40m	2.28
LBRC24041	88	92	4	0.51	4m @ 0.51g/t from 88m	2.04
	44	48	4	1.44	4m @ 1.44g/t from 44m	5.76
	112	116	4	0.94	4m @ 0.94g/t from 112m	3.76
100004040	174	175	1	1.37	1m @ 1.37g/t from 174m	1.37
LBRC24042	181	182	1	0.82	1m @ 0.82g/t from 181m	0.82
	196	200	4	0.57	4m @ 0.57g/t from 196m	2.28
	211	212	1	0.60	1m @ 0.60g/t from 211m	0.60
	52	56	4	0.56	4m @ 0.56g/t from 52m	2.24
	120	124	4	0.71	4m @ 0.71g/t from 120m	2.84
	174	175	1	0.63	1m @ 0.63g/t from 174m	0.63
LBRC24043	182	183	1	0.57	1m @ 0.57g/t from 182m	0.57
	187	188	1	0.52	1m @ 0.52g/t from 187m	0.52
	201	212	11	2.08	11m @ 2.08g/t from 201m	22.9
LBRC24044	166	167	1	1.27	1m @ 1.27g/t from 166m	1.27
	146	154	8	1.19	8m @ 1.19g/t from 146m	9.52
LBRC24045	164	168	4	0.68	4m @ 0.68g/t from 164m	2.72
LBRC24046	167	172	5	1.05	5m @ 1.05g/t from 167m	5.25
	69	70	1	0.64	1m @ 0.64g/t from 69m	0.64
	76	78	2	3.14	2m @ 3.14g/t from 76m	6.28
	97	99	2	0.76	2m @ 0.76g/t from 97m	1.52
LBRC24047	109	119	10	2.31	10m @ 2.31g/t from 109m	23.1
	132	142	10	1.01	10m @ 1.01g/t from 132m	10.1
	151	153	2	2.47	2m @ 2.47g/t from 151m	4.94
	170	171	1	3.06	1m @ 3.06g/t from 170m	3.06
	100	101	1	0.91	1m @ 0.91g/t from 100m	0.91
LBRC24048	121	122	1	22.2	1m @ 22.2g/t from 121m	22.2

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
		132	139	7	3.32	7m @ 3.32g/t from 132m	23.2
		144	168	24	1.04	24m @ 1.04g/t from 144m	25.0
		28	36	8	3.48	8m @ 3.48g/t from 28m	27.8
		109	110	1	0.57	1m @ 0.57g/t from 109m	0.57
		113	116	3	0.65	3m @ 0.65g/t from 113m	1.95
LBRC24049		120	146	26	2.69	26m @ 2.69g/t from 120m	70.0
	including	123	126	3	12.4	3m @ 12.4g/t from 123m	37.1
		150	152	2	0.68	2m @ 0.68g/t from 150m	1.36
		186	188	2	1.25	2m @ 1.25g/t from 186m	2.5
		20	24	4	0.52	4m @ 0.52g/t from 20m	2.08
		48	49	1	1.78	1m @ 1.78g/t from 48m	1.78
LBRC24050		74	75	1	0.64	1m @ 0.64g/t from 74m	0.64
		174	175	1	1.46	1m @ 1.46g/t from 174m	1.46
		180	190	10	0.73	10m @ 0.73g/t from 180m	7.3
LBRC24051		67	90	23	2.24	23m @ 2.24g/t from 67m	51.5
LBNC24051	including	83	88	5	7.03	5m @ 7.03g/t from 83m	35.2
LBRC24052		0	4	4	0.89	4m @ 0.89g/t from 0m	3.56
LBKC24U5Z		103	115	12	1.78	12m @ 1.78g/t from 103m	21.4
Note: All holes I	nit mineralisat	ion >0.5g/t	Au. Highligh	nted cells are >1	0 gram x m	etres	

Table 2 – Lord Byron 2024 Reverse Circulation collar information Holes located on tenements M39/262 and M39/185. Grid coordinates shown in MGA94 Zone 51.

Hole ID	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
LBRC24001	503948	6778002	444	230	-60	95	Previously Reported
LBRC24002	503929	6777995	443	230	-60	72	This ASX Announcement
LBRC24003	503913	6777987	443	230	-60	48	Previously Reported
LBRC24004	503882	6777946	441	230	-60	42	Previously Reported
LBRC24005	503860	6777915	440	230	-60	70	Previously Reported
LBRC24006	503905	6777945	441	230	-60	48	Previously Reported
LBRC24007	503941	6777963	442	230	-60	96	Previously Reported
LBRC24008	503944	6777948	442	230	-60	110	Previously Reported
LBRC24009	503979	6777939	442	230	-60	150	Previously Reported
LBRC24010	503996	6777934	442	230	-54	170	Previously Reported
LBRC24011	504030	6777905	442	230	-56	180	This ASX Announcement

Hole ID	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
LBRC24012	504054	6777903	443	230	-56	205	This ASX Announcement
LBRC24013	504044	6777890	442	220	-55	180	This ASX Announcement
LBRC24014	504082	6777887	445	230	-58	90	This ASX Announcement
LBRC24015	504093	6777868	443	231	-55	210	Previously Reported
LBRC24016	504093	6777867	443	230	-59	198	Previously Reported
LBRC24017	504099	6777849	443	230	-55	230	This ASX Announcement
LBRC24018	504109	6777821	443	230	-57	210	This ASX Announcement
LBRC24019	504108	6777801	443	245	-55	180	This ASX Announcement
LBRC24020	504109	6777801	443	235	-55	180	This ASX Announcement
LBRC24021	504122	6777791	442	230	-60	190	This ASX Announcement
LBRC24022	504102	6777754	442	230	-60	138	Previously Reported
LBRC24023	504117	6777761	442	230	-60	162	Previously Reported
LBRC24024A	504131	6777723	442	255	-60	144	Previously Reported
LBRC24025	504136	6777731	442	206	-58	150	Previously Reported
LBRC24026	504159	6777741	444	230	-57	90	Previously Reported
LBRC24027	504137	6777699	442	230	-60	120	Previously Reported
LBRC24028	504120	6777675	441	230	-60	24	Previously Reported
LBRC24029	504118	6777649	441	230	-60	60	Previously Reported
LBRC24030	504132	6777661	441	230	-60	24	Previously Reported
LBRC24031	504145	6777668	441	230	-60	24	Previously Reported
LBRC24032	504167	6777689	442	230	-60	144	Previously Reported
LBRC24033	504162	6777664	441	230	-60	126	Previously Reported
LBRC24034	504163	6777626	441	230	-55	90	Previously Reported
LBRC24035	504178	6777624	441	230	-60	120	Previously Reported
LBRC24036	504189	6777611	441	230	-63	130	Previously Reported
LBRC24037	504195	6777597	440	230	-60	114	Previously Reported
LBRC24038	503995	6777934	442	230	-62	120	This ASX Announcement
LBRC24039	504061	6777899	443	230	-60	139	This ASX Announcement
LBRC24040	504076	6777907	444	230	-60	162	This ASX Announcement
LBRC24041	504091	6777892	444	230	-60	201	This ASX Announcement
LBRC24042	504107	6777900	444	230	-60	213	This ASX Announcement
LBRC24043	504105	6777873	443	230	-60	219	This ASX Announcement
LBRC24044	504122	6777881	443	230	-60	180	This ASX Announcement
LBRC24045	504130	6777770	444	228	-62	200	This ASX Announcement

Hole ID	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
LBRC24046	504141	6777782	443	228	-61	216	This ASX Announcement
LBRC24047	504193	6777688	444	230	-60	192	This ASX Announcement
LBRC24048	504205	6777674	444	230	-56	186	This ASX Announcement
LBRC24049	504200	6777642	443	230	-60	195	This ASX Announcement
LBRC24050	504233	6777642	445	230	-56	216	This ASX Announcement
LBRC24051	504204	6777585	441	220	-56	132	This ASX Announcement
LBRC24052	504221	6777588	441	220	-56	158	This ASX Announcement
LBRC24053	504237	6777586	440	210	-55	150	Previously Reported
LBRC24054	504244	6777587	440	230	-57	156	Previously Reported

Next Steps

Brightstar will advise the market of further drilling progress, including assay results and geological interpretations when they are completed.

The ~30,000m RC and DD drilling programs at the Menzies and Jasper Hills Gold Project are nearing completion, which were designed to advance the projects through the definitive feasibility study workstreams currently underway, and in the case of the Jasper Hills project areas, to support the potential near-term development of open pit and underground mining operations.

References

1. Refer Brightstar Resources ASX announcement dated 25 March 2024 "Jasper Hills Scoping Study"

This ASX announcement has been approved by the Managing Director on behalf of the board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira

Managing Director

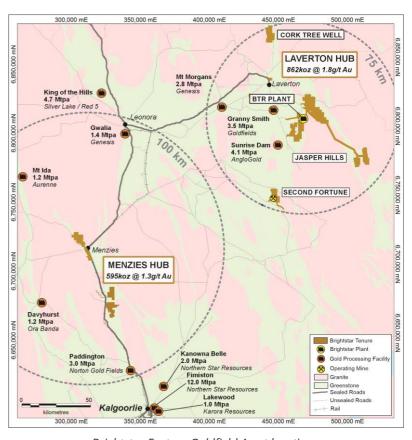
Email: alex@brightstarresources.com.au

Investor Relations

Lucas Robinson

Phone: +61 408 228 889

Email: lucas@corporatestorytime.com



ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is a Perthbased gold exploration and development company listed on the Australian Securities Exchange (ASX: BTR).

In May 2023, Brightstar completed a merger with Kingwest Resources Limited via a Scheme of Arrangement, which saw the strategic integration of Kingwest's Menzies Gold Project into the Company, with the Selkirk Mining JV at Menzies pouring first gold in March 2024 generating \$6.5M profit to Brightstar.

In June 2024, Brightstar finalised the offmarket takeover of unlisted WA-based gold mining company Linden Gold Alliance Limited which saw Brightstar transition to being an owner-operator at the underground Second Fortune Gold Mine located south of Layerton.

Brightstar Eastern Goldfield Asset locations

Hosted in the prolific Eastern Goldfields of Western Australia and ideally located proximal to significant regional infrastructure and suppliers, Brightstar holds a significant **JORC Mineral Resource of 28.7Mt @ 1.6g/t Au for 1.45Moz Au** across the portfolio.

Importantly, Brightstar owns the Brightstar processing plant (currently on care and maintenance), a 60-man accommodation camp and non-processing infrastructure, located 30km SE of Laverton and within 75km of +850koz Au of JORC Resources within the Laverton Hub including access to key haul road infrastructure.

With a proven strategy of resource growth across its portfolio, Brightstar is aggressively drilling to expand and develop its mineral resource inventory in the Tier-1 gold district of the Eastern Goldfields with the view to becoming a substantial ASX gold producer.

Table 3 - Consolidated JORC Resources of Laverton & Menzies Hubs

Location		М	easure	t	In	dicated			Inferred			Total	
	Au Cut-off (g/t)	Kt	g/t Au	Koz	Kt	g/t Au	Koz	Kt	g/t Au	Koz	Kt	g/t Au	Koz
Alpha	0.5	623	1.6	33	374	2.1	25	455	3.3	48	1,452	2.3	106
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	-	1	3,036	1.6	157	3,501	1.3	146	6,537	1.4	303
Lord Byron	0.5	453	1.8	26	1,141	1.6	58	2,929	1.7	160	4,523	1.7	244
Fish	0.6	26	7.7	6	149	5.8	28	51	4.3	7	226	5.7	41
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	17	16.9	9	78	8.2	21	71	12.3	28	165	10.9	58
Total – Laverton		1,464	2.0	93	5,369	1.8	319	8,121	1.7	449	14,953	1.8	862
Lady Shenton System (Pericles, Lady Shenton, Stirling)	0.5	-	-	-	2,770	1.3	119	4,200	1.3	171	6,970	1.2	287
Yunndaga	0.5	-	-	-	1,270	1.3	53	2,050	1.4	90	3,320	1.3	144
Yunndaga (UG)	2.0	-	-	-	-	-	-	110	3.3	12	110	3.3	12
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System (Warrior, Lady Harriet, Bellenger)	0.5	ı	-	ı	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	145	1.2	6	470	1.0	16	615	1.1	21
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	1	-	-	-	100	1.7	6	100	1.7	6
Total – Menzies		-	-	-	4,872	1.4	214	8,898	1.3	383	13,770	1.3	595
Total – BTR		1,464	2.0	94	10,242	1.6	533	17,019	1.5	832	28,723	1.6	1,457

Refer Note 1 below. Note some rounding discrepancies may occur.

Pericles, Lady Shenton & Stirling consolidated into Lady Shenton System; Warrior, Lady Harriet & Bellenger consolidated into Lady Harriet System.

Note 1: This Announcement contains references to Brightstar's JORC Mineral Resources, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, and "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

Competent Person Statement - Exploration

The information presented here relating to exploration of the Menzies, Laverton and Jasper Hills Gold Project areas are based on information compiled by Mr Edward Keys, MAIG. Mr Keys is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Keys is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX 1: JORC CODE, 2012 EDITION - TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Brightstar Resources Drilling – hole prefix LBRC24

Table 4 – Sampling Techniques & Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 supergene gold deposits have been utilised throughout the BTR campaign. BTR RC holes were sampled using 4m composite spear samples or 1 metre cone-split samples. Diamond samples are collected at geologically defined intervals and cut using an automated core saw. Half core samples are submitted for analysis. Brightstar samples were submitted to Bureau Veritas Laboratory in Kalgoorlie where the entire sample was pulverised, split and assayed by fire assay using a 50-gram charge.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core 	hammer and surveyed using a Axis Champ gyroscopic survey tool.

	is oriented and if so, by what method, etc).	BTR Diamond drilling is drilled by Topdrill utilising a Sandvik DE840 drill rig. HQ and NQ diameter drill core was obtained. In areas of unconsolidated ground, triple tube configuration was used to maximise core recovery. All drill core was oriented (where possible), using the Axis Champ Ori system.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recovery was qualitatively assessed and recorded by comparing drill chip volumes (sample bags) for individual meters. Sample depths were cross-checked every rod (6m). The cyclone was regularly cleaned to ensure no material build up and sample material was checked for any potential downhole contamination. Wet samples were recorded, although the majority of the samples were dry. In the CP's opinion the drilling sample recoveries/quality are acceptable and are appropriately representative for the style of mineralisation. No grade versus sample recovery biases, or biases relating the loss or gain of fines have been identified in BTR's drilling. For diamond core, sample recovery is recorded for every drill run, with intervals of core loss accurately logged.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC holes were logged on one metre intervals at the rig by the geologist from drill chips. Logging was recorded directly into LogChief computer software. Diamond core is logged to specific geological intervals Detailed geological logging includes the lithology, alteration, veining and mineralisation of the drill chips or core. Structural measurements are also taken from oriented drill core. Logging is both quantitative and qualitative in nature, depending on the feature. 100% of BTR drilling is geologically logged.

Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	RC drilling single 1 metre splits were automatically taken at the
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether	 time of drilling by a cone splitter attached to the cyclone. For interpreted non-mineralised areas, 4 metre composite samples were collected from the drill rig by spearing each 1m collection bag. The 4 metre composites were submitted for assay. Composite samples returning grade >0.1g/t were resampled as 1m cone-split samples For interpreted mineralised areas, the 1 metre splits were bagged on the static cyclone splitter on the RC rig. QAQC samples (blanks and standards) were submitted for all samples at a rate of 1:25 Duplicate samples were taken over selected interpreted mineralised intervals to determine if sampling is representative. Sample preparation comprised industry standard oven drying, crushing, and pulverisation to less than 75 microns. Homogenised pulp material was used for assaying. Internal certified laboratory QAQC is undertaken including check samples, blanks and internal standards. Samples volumes were typically 1.0-4.0 kg and are considered to be of suitable size for the style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 1m and 4m composite samples were assayed by 50g Fire Assay by Bureau Veritas Laboratory, Perth for gold. Laboratory QC involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, bulk pulverised, standards) are monitored and were within acceptable limits. ~5% standards were inserted to check on precision of laboratory results.

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections have been reviewed by several company personnel. Data storage was captured electronically onsite using a standard set of templates, before uploading to a cloud-based server and imported into an externally managed Datashed geological database. No data was adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill collar locations were initially surveyed using a hand-held GPS, accurate to within 3-5m. All RC and DD holes are routinely surveyed by differential GPS (DGPS) once drilling is complete, although this has not yet occurred for recently completed holes given that the program has not been finished. Some historic drill collars have existing DGPS surveys The grid system used is MGA94 Zone 51. All reported coordinates are referenced to this grid. The site topography utilised a DTM from 2020 with accuracy <1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes are variably spaced. The current Lord Byron RC and diamond program is planned to infill the spacing to 20m x 20m No sample compositing of field samples has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The relationship between the drilling orientation and the orientation of mineralised structures is not considered to have introduced a sampling bias. Most holes have been drilled perpendicular to the main orientation of mineralisation. No drilling orientation related sampling bias has been identified at the project.
Sample security	The measures taken to ensure sample security.	Samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected samples

16

BRIGHTSTAR RESOURCES LIMITED

		were bagged, they were transported to Kalgoorlie by company personnel or trusted contractors for assaying with Bureau Veritas Despatch and consignment notes were delivered and checked for discrepancies.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and data has been reviewed internally by company personnel

SECTION 2 REPORTING OF EXPLORATION RESULTS

Table 5 – Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 M38/185 Lord Byron 987.45 Ha M38/162 Lord Byron 307.2 Ha M38/138 Fish 945.55 Ha M38/139 Fish 945.14 Ha All are granted tenements with no known impediments to obtaining a licence to operate
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Jasper Hills Project has had numerous drilling campaigns undertaken by third parties contributing to the 2022 MRE Lord Byron AngloGold, 2001-2004 Crescent Gold, 2005-2012 Focus, 2013-2015 Sons of Gwalia, 1987, 1996-1999 Western Mining Corporation, 1988, 1989, 200 Fish Crescent Gold, 2005-2012

			Western Mining Corporation, 1988, 1989, 2000
Geology	Deposit type, geological setting and style of mineralisation.	•	The Lord Byron deposit is hosted within a thick sequence of amphibolite and interbedded chert/BIF. There are 3 zones of mineralization, the supergene zones, the central zone with a North-West strike and southern zone with a North strike. The Fish deposit is an orogenic style Archaean lode gold deposit hosted by a series of narrow quartz-magnetite-amphibole BIFs with coarse granoblastic texture, interbedded with amphibolite derived from basalt and dolerite The Gilt Key deposit is an orogenic style Archaean lode gold deposit. The stratigraphy is mafic volcanic rock (greenstone) with interbedded banded iron formation
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information of all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	or •	The relevant data for drillholes reported in this announcement is provided in the body of the announcement Data for historical collars referenced in this announcement is provided in tables within the announcement
Data aggregation methods	In reporting Exploration Results, weighting averaging technique maximum and/or minimum grade truncations (eg cutting of high grade and cut-off grades are usually Material and should be stated.		Assay results reported here have been length weighted. Significant intercepts are reported above 0.5g/t with a maximum consecutive interval of internal dilution (<0.5g/t) of 2m.

	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	•	No metal equivalent calculations were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	•	True widths are not confirmed at this time although all drilling is planned close to perpendicular to interpreted strike of the target lodes at the time of drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	Refer to figures in this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	Results from all drill holes in the program have been reported and their context discussed.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	•	No other exploration data is reported here.

Further work	The nature and scale of planned further work (eg tests for lateral extensions Additional drilling is being planned and if successful, further
	or depth extensions or large-scale step-out drilling). mineral resource estimates will be calculated.
	Diagrams clearly highlighting the areas of possible extensions, including
	the main geological interpretations and future drilling areas, provided this

APPENDIX 2: Hole details for historic holes displayed on cross-section in this announcement

information is not commercially sensitive.

Hole ID	Hole Type	Easting	Northing	RL	EOH (m)	Dip	Azi	From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Notes
								1	6	5	0.84	
JSPC1180	RC	504137	6777587	440	60	-60	272	9	10	1	0.68	
								9	11	2	0.53	
								17	46	29	1.42	
JSPC1179	RC	504157	6777587	440	60	-60	272	49	50	1	0.57	
								58	60	2	0.58	
								27	28	1	0.7	
JSPC1178	RC	504178	6777587	440	100	-60	272	40	49	9	0.90	

								60 87	76 88	16 1	1.05 0.96	
								91	92	1	0.93	
								98	99	1	2.38	
								67	75	8	0.92	
LBRC119	RC	504174	6777610	441	105	-60	270	80	81	1	1.91	
								87	102	15	1.77	
JSPC1171	RC	504187	6777627	442	60	-60	270					NSI
LBRC044	RC	504194	6777627	442	138	-60	272	102	130	28	1.13	
JSPC1168	RC	504236	6777668	443	60	-60	270					NSI