

18th September 2024

ASX Release

NEW SILVER MINERALISATION EXTENSIONS DELINEATED OVER KEMPFIELD NW & NE ZONES ALONG STRIKE FROM KEMPFIELD DEPOSIT

High-grade surface rock chips within gossans/baritic lithologies highlight additional drill targets

Argent Minerals Limited (**ASX: ARD**) ("**Argent**" or "**the Company**") is pleased to announce assay results from the rock chip sampling programme which provide further confirmation of outcropping gold-silver-lead-zinc mineralisation outside the defined Resource at its 100%-owned Kempfield Polymetallic Au-Ag-Pb-Zn Project in NSW.

Argent Managing Director Mr Pedro Kastellorizos commented:

"We are delighted that the latest surface assay results have confirmed new mineralised gossan/baritic lithologies within the Kempfield NW and NE Mineralised Zones. These exciting new zones host the same geology and geochemical signatures as the main mineralisation over the Kempfield Deposit. Based on the defined mineralised dimensions, the strike of the mineralised zones surpasses the existing Kempfield JORC Resource area, elevating Kempfield's exploration upside. We are currently drilling these newly defined mineralised zones over Kempfield NW Zone".

Kempfield NW Zone Area

On 27th March 2024, Argent announced the discovery of the Kempfield NW and NE Zones which are considered as potential mineralised extensions of the Kempfield Deposit along strike from Lode 300 Block. High-grade assay results received from the Kempfield NW Zone included silver assays up to **177 g/t Ag, 1.89% Pb** and **1.21% Zn** (*ASX Announcement 27 March 2024: Massive Silver-Base Metal Discovery NE of Kempfield Deposit*). Based on the high-grade mineralisation delineated, a further rock chip sampling program was recently completed by Argent with a view to defining additional potential drill targets over the Kempfield NW Zone.

During the fieldwork programme, 26 rock chip samples were collected from previously untested baritic volcanic units approximately 200m northwest from Lode 300 mineralised block. These types of rock are the key mineralised target lithologies which host the Kempfield Deposit.

A mineralised zone striking over 200m by 40m in width has been delineated which now extends the Kempfield NW zone over **1.97km by an average width of 100m**. This new extension zone yielded **117 g/t Ag** within sample 3001009, **73.4 g/t Ag** in sample 3000996, **66.9 g/t Ag** with **0.19% Cu-Pb-Zn** within sample 3001003 and **53.5 g/t Ag** with **0.19% Cu-Pb-Zn** within sample 3001008.

Figure 1 – Silver mineralisation within ferruginous barite outcrop yielding **117 g/t Ag, & 0.26% Ba** from sample 3001009

Figure 2 – Silver mineralisation within ferruginous sandstone yielding 73.4 g/t Ag, & >1% Ba from sample 3000996

Figure 3 - Kempfield NW and NE Zones highlighting the recent high-grade rock chip results (red colour dots)

The southern area of the Kempfield NW Zone is closely associated with siltstone-barite lithologies.

A mineralised extension known as Kempfield NE Mineralised Zone is **approximately 1 km along strike with an average width of 170m**. During the reconnaissance program 162 rock chips samples were collected in between the Kempfield NW and NE zones and approximately 700m northeast of the Lode 300 mineralised block, testing the northeast extension of the previously delineated extensive gossanous outcrop.

High-grade gold-silver mineralisation in the central portion of the zone included **126** g/t Ag from sample 3000937, **63.5** g/t Ag from sample 3000935 and **2.45** g/t Au & **13.5** g/t Ag from sample 3000940 within barite volcanic/meta-sediment units.

Newly discovered gossanous areas were also delineated approximately 70m northwest of Lode 300. The highgrade rock chip samples were largely associated with outcropping gossans within a barite zone (>500 ppm). These include **71.9 g/t Ag** from sample 3000850, **46.9 g/t Ag** from sample 3001030 and **38.9 g/t Ag** from sample 3001027.

The sample location and summary of high-grade results are illustrated in Figure 1. Table 1 contains location and assay data for all 188 samples collected.

Figure 4 – Silver-Base metal mineralisation within ferruginous baritic sandstone yielding 126 g/t Ag, 0.23 g/t Au & 0.73% Ba from sample 3000937

Figure 5 – Gold-Silver-Lead mineralisation within ferruginous siltstone with sulphide clast yielding 2.45 g/t Au, 13.5 g/t Ag, 0.14% Pb & 0.66% Ba from sample 3000940

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872 T: +61 8 6311 2818 | E: <u>info@argentminerals.com.au</u> ABN: 89 124 780 276

Figure 6 – Regional Kempfield Project Location Map highlighting surrounding nearby Resources

About the Kempfield Resource Estimation

The Kempfield Silver Deposit Mineral Resource estimate for all categories has been upgraded to **63.7Mt** @ **69.75** g/t silver equivalent for **142.8** million ounces Ag Eq, containing of **65.8Moz silver**, **125,192** oz gold, **207,402t lead & 420,373t zinc** (*ASX Announcement 25 July 2024: Significant Silver Resource Upgrade over Kempfield Deposit*). Table 1 shows the July **2024** Resource Estimation tonnes/grade by Indicated and Inferred categories.

	Table 1 – Kempfield Silver Deposit Mineral Resource Estimate by Classification as at July 2024 (at a >15 g/t Ag cut-off & >0.9% Zn)											
Category	Million Tonnes (Mt)	Volume (m³)	Silver Eq. (g/t)	Silver (g/t)	Gold (g/t)	Lead (%)	Zinc (%)	Million Ounces Silver	Million Ounces Silver Eq.			
Indicated	23.7	8,051,549	79.61	40.04	0.08	0.36	0.67	30.5	60.6			
Inferred	40.0	13,589,739	63.92	27.49	0.05	0.31	0.64	35.4	82.3			
Total	63.7	21,641,287	69.75	32.15	0.06	0.33	0.66	65.8	142.8			

Table 2 is a summary of the updated Kempfield mineral resource as of July 2024 based on the weathering zones, and Table 3 summaries the Mineral Resource by Lodes.

	Table 2 – Kempfield Silver Deposit Mineral Resource Estimate by Weathering Zone as at July 2024												
	(>15 g/t Ag cut-off, Zn 0.9% Zn cut-off)												
				Grade					Contained Me	etal			
Weathering Zone	Million Tonnes (Mt)	Silver Eq. (g/t)	Silver (g/t)	Gold (g/t)	Lead (%)	Zinc (%)	Million Ounces Silver	Thousand Ounces Gold	Thousand tonnes Zinc	Thousand tonnes Lead	Million Ounces Silver Eq.		
Oxide	8.3	45.14	38.48	0.08			10.3	20.9			12.1		
Transitional	8.8	60.27	38.87	0.09	0.38	0.37	11.0	24.6	32.5	33.6	17.1		
Fresh	46.6	75.93	29.75	0.05	0.37	0.83	44.5	79.7	387.9	173.8	113.7		
Total	63.7	69.75	32.15	0.06	0.33	0.66	65.8	125.2	420.4	207.4	142.8		

Table 3 – Kempfield Silver Deposit Mineral Resource Estimate by Lode as at July 2024 (>15 g/t Ag cut-off, >Zn 0.9% cut-off)

Lode	Million Tonnes (Mt)	Silver Eq. (g/t)	Silver (g/t)	Gold (g/t)	Lead (%)	Zinc (%)	Million Ounces Silver	Million Ounces Silver Eq
100	23.9	81.13	31.19	0.12	0.49	0.79	23.9	62.3
200	28.0	66.42	36.03	0.03	0.21	0.57	32.4	59.7
300	11.8	54.62	24.93	0.01	0.26	0.61	9.50	20.8
Total	63.7	69.75	32.15	0.06	0.33	0.66	65.8	142.8

Notes:

1. The silver equivalent formulas were determined using the following metal prices based on a five-year monthly average: US\$22.02/oz silver, US\$1,776.93/oz gold, US\$2,774.16/t zinc, US\$2,066.73/t lead.

 The silver equivalent formulas were determined using different metallurgical recoveries for each weathering zone from test work commissioned by Argent Minerals Limited. For oxide zone metallurgical recoveries of 86% silver and 90% gold. For transitional zone metallurgical recoveries of 86% silver, 67% zinc and 21% lead, 90% gold. For primary zone metallurgical recoveries of 86% silver, 92% zinc and 53% lead, 90% gold.

 The silver equivalent formulas were determined using the metal prices and recoveries listed in Notes 1 & 2 for each weathering zone: Oxide Zone silver equivalent: Ag Eq (g/t) = g/t Ag + g/t Au x 85.4 Transitional Zone silver equivalent: Ag Eq (g/t) = g/t Ag + g/t Au x 85.4 + % Zn x 30.53 + % Pb x 7.13 Primary Zone silver equivalent: Ag Eq (g/t) = g/t Ag + g/t Au x 85.4 + % Zn x 41.92 + % Pb x 17.99

4. In the Company's opinion, the silver, gold, lead and zinc included in the metal equivalent calculations have a reasonable potential to be recovered and sold.

5. Variability of summation may occur due to rounding and refer to Appendices for full details.

This ASX announcement has been authorised for release by the Board of Argent Minerals Limited.

-ENDS-

For further information, please contact:

Pedro Kastellorizos **Managing Director/Chief Executive Officer** Argent Minerals Limited <u>info@argentminerals.com.au</u>

Competent Persons Statement

The information in this report / ASX release that relates to Mineral Resources Estimation is based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resource Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration

ARGENT MINERALS LIMITED Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872 T: +61 8 6311 2818 | E: <u>info@argentminerals.com.au</u> ARN: 89 124 780 276

Targets and Mineral Resources. Mr Gillman is a full-time employee of Odessa Resource Pty Ltd, who specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillam nor Odessa Resource Pty Ltd holds any interest in Argent Minerals Ltd, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this report / ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Pedro Kastellorizos. Mr. Kastellorizos is the Managing Director/CEO of Argent Minerals Limited and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on the information in the form and context in which it appears.

Forward Statement

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, commodity prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in commodity prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

References

For further information please refer to previous ASX announcement from Argent Minerals Ltd

ASX Announcement 2008: Further significant intersections at Kempfield ASX Announcement 2009: Kempfield BJ Zone drilling continues with promising results. ASX Announcement 2009: Argent to Drill Gold Targets at Kempfield ASX Announcement 2009: Significant Results from Kempfield Extension Drilling ASX Announcement 2009: Drilling Results from Kempfield and West Wyalong ASX Announcement 2010: Highest recorded silver grades at Kempfield ASX Announcement 2011: Significant Deep Intersections at Kempfield ASX Announcement 2012: Resource upgrade - Kempfield Silver Project ASX Announcement 2013: Exploration Advances for Kempfield Massive Sulphide Targets ASX Announcement 2013: Resource upgrade - Kempfield Silver Project ASX Announcement 2013: Conductor Targets Identified at Kempfield Silver Project ASX Announcement 2013: Sulphides Intercepted at Kempfield Causeway Target ASX Announcement 2013: Argent Minerals Advances Exploration for Kempfield Massive Sulphide Targets ASX Announcement 2013: Argent Set to Drill Massive Sulphide Targets - Dec Start 2013 ASX Announcement 2014: Geophysics Breakthrough in Kempfield Lead/Zinc Detection ASX Announcement 2014. Kempfield Resource Statement Upgraded to JORC 2012 Standard ASX Announcement 2014. Assays confirm third VMS Len group at Kempfield. ASX Announcement 2015: IP Survey confirms Large Copper Gold Target at Kempfield ASX Announcement 2015: Significant Intersections at Kempfield – Including Copper and High-Grade Gold ASX Announcement 2016: Kempfield Drilling Update ASX Announcement 2016: High grade Zinc Lead Silver and Gold Added to Kempfield ASX Announcement 2016: Diamond Drilling Results in Major Breakthrough at Kempfield ASX Announcement 2017: Significant Ag Pb Zn Intersections

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872 T: +61 8 6311 2818 | E: <u>info@argentminerals.com.au</u>

ASX Announcement 18 March 2018: Significant Kempfield Milestone Achieved Separate Commercial Grade Zinc and Lead Concentrates Produced Substantial Boost to Project Economics ASX Announcement 30 March 2018: Significant Kempfield Resource Update Contained Metal Eq Signal Boost to Economic Potential ASX Announcement 20 April 2022: Pine Ridge Inferred Resource ASX Announcement 13 September 2022: Maiden JORC Resource Over Mt Dudley Prospect ASX Announcement 1 February 2023: High-grade copper confirmed at Gascoyne Copper Project ASX Announcement 1 March 2023: Extensive New High-Grade Silver-Lead-Zinc at Kempfield ASX Announcement 13 April 2023: Further Extensive New High-Grade Mineralisation over Kempfield ASX Announcement 6 September 2023: Updated Mineral Resource Estimate for Kempfield ASX Announcement 29 January 2024: Kempfield Exploration Update ASX Announcement 12 February 2024: Extensive Mineralisation Confirmed over Sugarloaf Prospect ASX Announcement 1 February 2023: High-grade copper confirmed at Gascoyne Copper Project ASX Announcement 1 March 2023: Extensive New High-Grade Silver-Lead-Zinc at Kempfield ASX Announcement 13 April 2023: Further Extensive New High-Grade Mineralisation over Kempfield ASX Announcement 6 September 2023: Updated Mineral Resource Estimate for Kempfield ASX Announcement 29 January 2024: Kempfield Exploration Update ASX Announcement 12 February 2024: Extensive Mineralisation Confirmed over Sugarloaf Prospect ASX Announcement 21 February 2024: Outstanding Gold-Silver Grades Uncovered at Henry Prospect ASX Announcement 28 February 2024: Golden Wattle delivers Gold-Silver-Lead Mineralisation ASX Announcement 18 March 2024: Second Rock Chip Program completed over Kempfield ASX Announcement 27 March 2024: Massive Silver-Base Metal Discovery NE of Kempfield Deposit ASX Announcement 8 April 2024: Massive Silver Mineralisation Delineated at Sugarloaf Hill ASX Announcement 10 April 2024: Completed RC drilling Program over Kempfield ASX Announcement 17 April 2024: High-Grade Gold & Silver Mineralisation at East of Kempfield ASX Announcement 30 April 2024: New Exceptional High-Grade Drill Results over Kempfield ASX Announcement 13 June 2024: Further Silver-Base Metal Mineralisation Hits at Kempfield ASX Announcement 25 July 2024: Significant Silver Resource Upgrade over Kempfield Deposit

Crawford, A. J., 2015a. Petrographic Report – 46 Rocks from Drillholes AKDD178 and AKDD179 on the Kempfield Ag-Barite Deposit, NSW, for Argent Minerals Ltd (Sydney) 24/06/2015. Internal Unpublished Report.

Crawford, A. J., 2015b. Petrographic Report – 17 Rocks from Drillholes AKDD177, AKDD178 and AKDD159, Kempfield Ag-Barite Deposit, NSW, for Argent Minerals Ltd (Sydney) 26/09/2015. Internal Unpublished Report.

David,V. 2013. Geology of the Kempfield silver-barite and base metal (Pb-Zn) Volcanic hosted massive sulphide deposit, Lachlan Orogen, Eastern Australia. AIG Bulletin 55. Mines and Wines 2013.

David, V, 2009. Exploration Licence 7134 Kempfield & Exploration Licence 5748 Kempfield & Exploration Licence 5645 Kempfield Group 2 & PLL 519, Joint Annual Report 2009. Unpublished Company Report.

David, V and Mischler, P, 2013. Exploration Licence 5748, 5645, 7134, 5645, 5645 & PLL 517, 519, 727, 728, Combined Annual Report 2013. Unpublished Company Report.

Edwards, A, McLean, G and Torrey, C, 2001. Exploration Licences EL 5748 & EL 5645 Kempfield & Kempfield Group 2, Annual Report 2001. Unpublished Company Report.

Herrmann, W., 2015. Notes on reconnaissance geological mapping north of Kempfield Quarry Zone – 28/10/2015. Internal Unpublished Report

Table 4: Kempfield NW and NE Project rock chip locations and results

Sample	Easting	Northing	Au	Ag	As	Ва	Cu	Pb	Sb	Zn	Cu/Pb/Zn	
ID	(GDA94)	(GDA94)	g/t	g/t	ppm	ppm	ppm	ppm	ppm	ppm	(ppm)	Description
3000822	709825.39	6260469.58	< 0.01	5.6	483	>10000	35	194	96	64	293	Ferruginous Sandstone
3000823	709822.3	6260472.09	<0.01	2.8	244	>10000	21	265	66	57	343	Ferruginous Sandstone
3000824	709899.88	6260586.89	<0.01	<0.5	12	800	14	32	<5	20	66	Yellow Brown Sandstone
3000825	709908.74	6260585.14	<0.01	<0.5	24	370	79	27	16	288	394	Yellow Brown Siltstone
3000847	709416.81	6259843.09	<0.01	2	77	>10000	11	292	27	138	441	siltstone with numerous sulphide casts
3000848	709420.52	6259860.2	<0.01	0.6	105	4680	16	58	7	355	429	Ferruginous Sandstone
3000849	709439.99	6259844.24	< 0.01	1.3	30	1880	11	80	13	122	213	Ferruginous quartz
3000850	709436.24	6259842.22	0.01	71.9	77	>10000	37	403	98	43	483	Pink baritic Siltstone with minor sulphide casts
3000851	709444.19	6259841.26	0.01	8.3	99	6820	25	673	22	331	1029	Ferruginous siltstone
3000852	709446.21	6259832.01	<0.01	11.9	73	>10000	33	663	32	68	764	Sandstone with sulphide casts
3000853	709457.57	6259822.1	0.01	7.4	124	>10000	50	1260	33	54	1364	siltstone with numerous sulphide casts
3000854	709468.61	6259822.86	0.01	1.2	402	5210	19	107	16	105	231	siltstone with numerous sulphide casts
3000855	709470.82	6259830.58	0.01	0.5	591	3730	33	59	17	381	473	Ferruginous siltstone
3000856	709540.59	6259876.98	0.01	<0.5	15	900	43	91	<5	84	218	Ferruginous siltstone
3000857	709501.27	6259883.51	0.02	7.3	144	8570	131	339	7	747	1217	Gossanous Siltstone
3000858	709497.31	6259884.81	<0.01	9.3	235	8110	35	256	32	431	722	Ferruginous Sandstone
3000859	709494.92	6259881.31	<0.01	3	138	9190	41	114	77	268	423	Ferruginous quartz with mica
3000860	709504.39	6259869.79	0.02	0.8	11	2630	89	94	10	181	364	Ferruginous siltstone
3000861	709525.87	6260045.97	<0.01	<0.5	40	4260	27	61	5	82	170	Ferruginous Sandstone
3000862	709501.16	6259967.28	0.01	7.5	618	7840	42	108	26	691	841	Ferruginous Sandstone with sulphide casts
3000863	709486.54	6259963.83	<0.01	5.8	40	6390	19	951	25	496	1466	Ferruginous Sandstone with sulphide casts
3000864	709497.78	6259939.73	< 0.01	<0.5	150	3060	8	59	8	80	147	ferruginous baritic sandstone
3000865	709504.62	6259934.81	0.01	8.2	285	8230	26	96	6	774	896	Ferruginous Sandstone with sulphide casts
3000866	709545.41	6259897.74	<0.01	<0.5	17	630	22	21	9	59	102	siltstone with minor sulphide casts
3000867	709718	6259917.46	<0.01	<0.5	9	230	18	10	<5	11	39	Ferruginous quartz with sulphide casts
3000868	709725.19	6259932.84	<0.01	<0.5	21	1120	31	13	<5	53	97	Ferruginous siltstone with sulphide casts

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872

T: +61 8 6311 2818 | E: info@argentminerals.com.au

Sample	Easting	Northing	Au	Ag	As	Ва	Cu	Pb	Sb	Zn	Cu/Pb/Zn	
ID	(GDA94)	(GDA94)	g/t	g/t	ppm	ppm	ppm	ppm	ppm	ppm	(ppm)	Description
3000869	709730.21	6259937.84	0.01	<0.5	7	540	29	13	<5	24	66	Ferruginous quartz with mica
3000870	709688.32	6259886.39	<0.01	<0.5	<5	400	13	46	<5	7	66	Ferruginous quartz
3000871	709912.85	6260999.38	0.03	0.5	<5	570	41	24	6	410	475	Ferruginous Siltstone with minor quartz
3000872	709920.04	6261006.1	<0.01	3.7	28	6060	249	1155	<5	1210	2614	Yellow Brown ferruginous quartz
3000873	709933.04	6261003.04	<0.01	4.6	35	7570	268	1525	<5	1420	3213	Gossan
3000874	709922.81	6260992.83	0.03	4.3	6	650	305	603	8	616	1524	Ferruginous quartz breccia
3000875	709922.9	6260988.61	0.01	<0.5	11	270	71	77	9	182	330	Ferruginous Siltstone with quartz
3000876	709940.47	6260978.25	<0.01	<0.5	<5	640	99	71	11	683	853	Ferruginous Siltstone
3000877	710024.27	6260949.99	0.01	<0.5	34	1430	152	133	<5	102	387	Gossanous siltstone
3000878	710017.51	6260925.28	0.03	<0.5	22	580	93	135	21	317	545	Ferruginous siltstone
3000879	709988.29	6260936.58	0.01	0.9	<5	1100	37	16	<5	123	176	Ferruginous quartz
3000880	709923.48	6260968.63	0.01	1.1	10	750	114	135	6	107	356	Ferruginous Siltstone with quartz
3000881	709891.46	6260983.1	<0.01	<0.5	12	310	61	12	5	155	228	Ferruginous Siltstone with quartz
3000882	709882.79	6261010.36	< 0.01	<0.5	48	390	89	408	<5	214	711	Ferruginous Siltstone
3000883	709862.77	6260993.26	<0.01	<0.5	18	410	41	68	<5	111	220	Ferruginous Siltstone
3000884	709906.34	6261002.18	< 0.01	0.9	22	1650	67	70	<5	316	453	Ferruginous Sandstone
3000885	710054.22	6261237.27	0.01	<0.5	8	650	31	30	<5	75	136	Ferruginous Sandstone with sulphide casts
3000886	710074.01	6261239.39	0.01	<0.5	19	470	45	64	5	117	226	Yellow Brown Sandstone
3000887	710073.27	6261248.17	<0.01	<0.5	9	440	32	22	<5	53	107	Ferruginous Siltstone
3000888	710102.39	6261244.75	<0.01	<0.5	<5	30	20	17	<5	78	115	Yellow Brown ferruginous quartz
3000889	710120.23	6261255.46	<0.01	<0.5	10	270	28	85	18	376	489	Ferruginous quartz
3000890	710307.75	6261308.14	<0.01	<0.5	5	2240	5	26	<5	14	45	Bucky quartz
3000891	710092.54	6261327.53	<0.01	<0.5	13	160	65	48	5	114	227	Ferruginous quartz
3000892	710074.55	6261260.02	<0.01	<0.5	18	150	69	55	5	111	235	Yellow Brown ferruginous quartz
3000893	710032.06	6261232.55	0.01	<0.5	73	420	118	22	13	195	335	Ferruginous Siltstone
3000894	709996.13	6261200.16	0.01	<0.5	89	560	22	94	7	188	304	Ferruginous Sandstone with sulphide casts
3000895	709815.52	6260859.04	<0.01	<0.5	11	730	53	34	8	341	428	Ferruginous Siltstone

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872

T: +61 8 6311 2818 | E: info@argentminerals.com.au

Sample	Easting	Northing	Au	Ag	As	Ва	Cu	Pb	Sb	Zn	Cu/Pb/Zn	
ID	(GDA94)	(GDA94)	g/t	g/t	ppm	ppm	ppm	ppm	ppm	ppm	(ppm)	Description
3000896	709823.32	6260863.76	0.01	<0.5	42	560	34	44	8	204	282	Ferruginous Siltstone
3000897	709823.92	6260857.53	<0.01	<0.5	22	1130	26	86	<5	446	558	Ferruginous Siltstone
3000898	709830.51	6260870.59	<0.01	<0.5	9	720	135	31	6	490	656	Ferruginous Siltstone
3000899	709845.58	6260864.93	< 0.01	<0.5	<5	60	19	17	<5	179	215	Ferruginous quartz
3000900	709847.9	6260864.99	0.01	<0.5	12	850	60	94	16	338	492	Ferruginous Siltstone with quartz
3000901	709855.81	6260862.04	<0.01	<0.5	5	1220	36	31	6	105	172	Ferruginous Sandstone with sulphide casts
3000902	709864.3	6260860.63	<0.01	<0.5	17	110	185	225	5	682	1092	Ferruginous quartz
3000903	709909.07	6260827.25	0.01	0.5	24	1580	85	166	5	285	536	Ferruginous Siltstone/Sandstone with sulphide casts
3000904	709929.28	6260836.13	0.01	<0.5	14	940	82	49	<5	187	318	Ferruginous mudstone
3000905	709935.49	6260832.11	0.01	<0.5	24	1910	145	72	<5	185	402	Ferruginous mudstone
3000906	709943.79	6260834.59	0.02	<0.5	<5	500	76	134	8	93	303	Ferruginous Sandstone
3000907	709858.2	6260882.3	<0.01	<0.5	5	1130	27	39	9	85	151	Ferruginous Sandstone
3000908	709801.96	6260705.88	0.01	4.1	70	3550	147	917	7	328	1392	Ferruginous Siltstone
3000909	709808.34	6260709.74	0.01	<0.5	12	620	85	115	20	421	621	Ferruginous Siltstone
3000910	709795.94	6260722.99	<0.01	<0.5	22	1240	127	89	<5	135	351	Ferruginous Siltstone
3000911	709766.65	6260747.82	0.03	<0.5	32	800	32	26	6	87	145	Ferruginous Siltstone
3000912	709761.46	6260730.75	< 0.01	<0.5	18	900	23	32	<5	113	168	Ferruginous Sandstone with sulphide casts
3000913	709778.39	6260712.84	<0.01	<0.5	8	40	14	10	<5	79	103	Ferruginous quartz
3000914	709643.91	6260615.04	0.01	0.6	11	1380	54	116	6	610	780	Ferruginous Siltstone
3000915	709646.86	6260618.64	0.01	<0.5	10	1100	58	275	8	623	956	Ferruginous Sandstone
3000916	709638.82	6260602.17	0.01	1.6	84	1340	38	32	12	1190	1260	Ferruginous Siltstone with quartz
3000917	709650.41	6260611.24	<0.01	<0.5	29	1930	32	30	<5	392	454	Yellow Brown Sandstone with sulphide casts
3000918	709654.04	6260595.07	0.01	<0.5	231	1690	168	175	6	354	697	Ferruginous greywacke with sulphide casts
3000919	709656.31	6260588.59	<0.01	<0.5	32	1860	71	40	7	355	466	Ferruginous greywacke with sulphide casts
3000920	709659.87	6260586.07	0.01	<0.5	57	1640	80	104	6	353	537	Yellow Brown Sandstone with sulphide casts
3000921	709658.59	6260587.09	0.02	0.9	17	3750	32	233	<5	279	544	Ferruginous quartz
3000922	709664.49	6260585.41	<0.01	<0.5	32	700	27	99	12	299	425	Ferruginous Siltstone

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872

T: +61 8 6311 2818 | E: info@argentminerals.com.au

Sample	Easting	Northing	Au	Ag	As	Ва	Cu	Pb	Sb	Zn	Cu/Pb/Zn	
ID	(GDA94)	(GDA94)	g/t	g/t	ppm	ppm	ppm	ppm	ppm	ppm	(ppm)	Description
3000923	709660.92	6260553.75	<0.01	9.5	57	2820	160	789	<5	388	1337	Gossanous siltstone
3000924	709661.53	6260548.07	0.01	0.9	5	1280	32	78	<5	218	328	Ferruginous Sandstone
3000925	709657.7	6260546.38	<0.01	2	77	500	90	91	7	474	655	Ferruginous Sandstone
3000926	709657.72	6260539.18	<0.01	0.9	13	910	87	73	9	468	628	Yellow Brown Sandstone
3000927	709660.3	6260538.12	<0.01	18.6	20	>10000	88	460	<5	1115	1663	Ferruginous Sandstone
3000928	709662.61	6260529.42	<0.01	1.5	126	3440	69	308	<5	681	1058	Ferruginous quartz with mica
3000929	709705.01	6260506.73	0.1	2.2	50	9380	36	165	40	98	299	Ferruginous Sandstone
3000930	709707.78	6260502.12	0.06	61.1	74	>10000	67	179	70	245	491	Barite
3000931	709705.4	6260494.97	0.09	39.4	22	2120	42	134	117	185	361	Barite Outcrop
3000932	709705.4	6260494.97	0.05	40.4	32	9830	29	263	255	152	444	Barite Outcrop
3000933	709714.3	6260495.33	0.29	34.1	488	6180	267	416	128	95	778	Cherty Siltstone with sulphide casts
3000934	709717.9	6260494.8	0.03	1.8	31	5840	73	81	9	42	196	Ferruginous siltstone with sulphide casts
3000935	709724.28	6260515.07	0.26	63.6	10	6820	17	1045	207	162	1224	Ferruginous Sandstone with quartz
3000936	709729.32	6260512.41	0.04	0.6	62	3210	18	55	18	26	99	Pink sandstone
3000937	709722.3	6260517.67	0.23	126	5	7320	16	457	91	146	619	Baritic Sandstone
3000938	709700.71	6260483.86	0.03	3.3	6	2280	11	76	21	28	115	Ferruginous Sandstone with sulphide casts
3000939	709699.49	6260487.44	0.03	8.2	7	6570	25	196	10	16	237	Ferruginous Sandstone with sulphide casts
3000940	709699.62	6260476.56	2.45	13.5	8	6640	54	1435	51	67	1556	Ferruginous Siltstone with sulphide casts
3000941	709664.54	6260503.85	0.02	1.2	<5	1580	35	114	10	445	594	Ferruginous Siltstone with quartz
3000942	709661.01	6260494.5	0.01	2.8	<5	2750	44	126	<5	453	623	Ferruginous Siltstone
3000943	709662.08	6260492.7	0.01	0.7	<5	1210	23	41	5	271	335	Ferruginous Siltstone with quartz
3000944	709649.89	6260507.61	<0.01	3.3	30	6130	68	277	5	1270	1615	Ferruginous Siltstone with quartz
3000945	709649.21	6260506.29	0.01	3.3	42	4870	69	157	<5	1320	1546	Ferruginous Siltstone
3000946	709627.72	6260535.73	<0.01	1	14	630	22	59	<5	964	1045	Ferruginous Siltstone
3000947	709637.98	6260652.56	0.01	0.6	145	2080	14	60	6	229	303	Ferruginous Sandstone with sulphide casts
3000948	709608.31	6260610.05	0.01	1	547	2270	19	91	13	249	359	Ferruginous Siltstone with sulphide casts
3000949	709635.11	6260623.45	0.01	3.1	35	480	23	143	14	127	293	Ferruginous Siltstone with sulphide casts

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872

T: +61 8 6311 2818 | E: info@argentminerals.com.au

Sample	Easting	Northing	Au	Ag	As	Ва	Cu	Pb	Sb	Zn	Cu/Pb/Zn	
ID	(GDA94)	(GDA94)	g/t	g/t	ppm	ppm	ppm	ppm	ppm	ppm	(ppm)	Description
3000950	709636.24	6260623.87	0.01	<0.5	19	220	10	36	<5	50	96	Ferruginous Siltstone
3000951	709607.04	6261197.17	<0.01	<0.5	21	210	16	21	8	1165	1202	Gossanous siltstone
3000952	709610.11	6261198.1	<0.01	<0.5	24	200	14	21	20	685	720	Gossanous siltstone with sulphide casts
3000953	709617.16	6261202.5	<0.01	<0.5	55	490	94	124	45	1685	1903	Ferruginous greywacke with sulphide casts
3000954	709626.71	6261211.06	<0.01	1.2	15	340	9	12	13	18	39	Cherty Siltstone with sulphide casts
3000955	709742.11	6260542.09	0.03	1.7	733	410	60	264	159	61	385	Ferruginous Sandstone
3000956	709757.56	6260553.29	0.02	<0.5	106	4630	55	106	7	270	431	Ferruginous greywacke with sulphide casts
3000957	709753.97	6260562.91	<0.01	0.5	13	4630	6	43	<5	19	68	Bleached white sandstone
3000958	709755.85	6260572.64	0.03	2.1	523	380	86	171	113	54	311	Ferruginous Sandstone with sulphide casts
3000959	709756.07	6260570.19	0.02	0.8	181	3280	10	110	21	33	153	Bleached white sandstone with sulphide casts
3000960	709749.54	6260564.12	0.09	<0.5	585	5080	66	150	15	353	569	Ferruginous Sandstone
3000961	709738.46	6260523.42	0.01	7.5	58	9320	87	417	50	468	972	Ferruginous Sandstone with sulphide casts
3000962	709718.34	6260489.13	0.03	0.9	1575	7650	54	180	16	329	563	Ferruginous Sandstone with sulphide casts
3000963	709612.18	6260398.15	0.01	<0.5	38	2690	65	95	7	315	475	Ferruginous Siltstone
3000964	709277.89	6259981.51	<0.01	2.8	127	>10000	18	92	46	18	128	Bleached Siltstone with sulphide casts
3000965	709295.05	6260011.86	0.04	29.7	292	>10000	13	59	82	37	109	Pink sandstone
3000966	709305.89	6260003.31	<0.01	1.8	177	1980	40	92	96	469	601	Ferruginous Sandstone
3000967	709323.06	6259894.74	<0.01	4.5	308	3890	138	70	112	3850	4058	Gossan
3000968	709332.22	6259907.08	<0.01	23.2	153	>10000	264	435	47	1700	2399	Gossan with bleached siltstone
3000969	709316.55	6259881.13	<0.01	25.1	125	>10000	195	34	68	1225	1454	Gossanous Siltstone
3000970	709257.03	6259993.28	<0.01	13.1	160	>10000	20	28	79	52	100	Pink Greywacke
3000971	709265.37	6260010.52	0.09	5	35	3250	28	817	226	303	1148	Baritic cherty sandstone
3000972	709266.86	6260010.93	0.03	7	25	3000	17	727	76	1490	2234	Barite
3000973	709223.71	6259902.7	0.01	<0.5	19	4760	17	29	7	213	259	Pink siltstone
3000974	709230.38	6259902.33	0.03	1	67	2620	10	165	92	100	275	Ferruginous Siltstone with sulphide casts
3000975	709230.89	6259900.21	<0.01	<0.5	12	2970	7	18	6	28	53	Ferruginous quartz
3000976	709261.6	6259944.58	<0.01	1	290	1660	12	275	29	23	310	Ferruginous Sandstone

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872

T: +61 8 6311 2818 | E: info@argentminerals.com.au

Sample	Easting	Northing	Au	Ag	As	Ва	Cu	Pb	Sb	Zn	Cu/Pb/Zn	
ID	(GDA94)	(GDA94)	g/t	g/t	ppm	ppm	ppm	ppm	ppm	ppm	(ppm)	Description
3000978	709273.75	6259982.6	0.04	1.6	20	4860	21	63	35	32	116	Ferruginous Sandstone
3000979	709258.33	6259985.38	0.56	1.1	66	1840	60	609	885	358	1027	Ferruginous Siltstone with sulphide casts
3000980	709246.18	6259980.54	0.03	<0.5	107	5010	48	200	20	464	712	Yellow brown ferruginous siltstone
3000981	709258.14	6259959.52	0.02	1	16	2480	11	67	22	43	121	Siltstone
3000982	709257.8	6259876.87	<0.01	<0.5	19	2300	33	118	11	128	279	Dark ferruginous sandstone
3000983	709254.23	6259857.42	<0.01	1	193	3460	54	417	7	387	858	Ferruginous greywacke with sulphide casts
3000984	709228.01	6260022.32	0.01	1.9	417	760	36	377	522	604	1017	Baritic ferruginous siltstone
3000985	709267.76	6260018.34	0.01	0.5	29	9860	19	75	12	211	305	Ferruginous Siltstone
3000986	709285.5	6260015.62	0.04	28.8	237	>10000	9	127	110	29	165	Ferruginous greywacke
3000987	709289.6	6260012.65	0.05	18.5	118	>10000	8	154	92	13	175	Ferruginous greywacke
3000988	709296.51	6260002.29	0.21	8.5	361	>10000	17	71	372	72	160	Ferruginous greywacke
3000989	709294.27	6260001.68	0.14	17.8	280	>10000	17	51	105	123	191	Ferruginous greywacke with quartz
3000990	709298.64	6260002.36	0.22	16.1	221	>10000	18	80	91	50	148	Baritic Ferruginous greywacke
3000991	709317.71	6260022.57	<0.01	0.5	159	3810	43	271	11	612	926	Siltstone
3000992	709305.12	6260023.4	0.01	3.9	203	>10000	24	52	88	109	185	Ferruginous Sandstone with sulphide casts
3000993	709296.48	6260039.24	0.03	4.3	43	6440	10	229	170	75	314	Baritic Ferruginous greywacke
3000994	709138.4	6259882.48	<0.01	2.1	45	>10000	32	124	16	280	436	Ferruginous Sandstone with sulphide casts
3000995	709140.86	6259884.76	<0.01	18.8	48	>10000	35	565	18	222	822	Ferruginous Sandstone with sulphide casts
3000996	709131.33	6259881.08	0.01	73.4	198	>10000	123	157	23	328	608	Baritic Ferruginous sandstone
3000997	709150.63	6259899.53	<0.01	2.1	23	8090	8	335	16	86	429	Ferruginous Siltstone with sulphide casts
3000998	709154.28	6259901	<0.01	13.9	1055	>10000	23	738	188	2670	3431	Ferruginous Siltstone
3000999	709154.82	6259904.54	< 0.01	3	18	>10000	12	241	5	67	320	Ferruginous Sandstone
3001000	709158.94	6259902.45	<0.01	1.1	10	6720	17	119	5	288	424	Ferruginous Sandstone
3001001	709155.91	6259912.39	<0.01	2.1	27	>10000	5	164	21	35	204	Pink baritic sandstone
3001002	709114.48	6259860.59	<0.01	0.6	7	2370	6	49	<5	19	74	Ferruginous Sandstone
3001003	709130.28	6259871.23	0.01	66.9	62	>10000	91	1210	16	600	1901	Baritic sandstone
3001004	709127.31	6259871.07	<0.01	0.9	474	7910	70	63	302	2940	3073	Ferruginous Siltstone

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872

T: +61 8 6311 2818 | E: info@argentminerals.com.au

Sample	Easting	Northing	Au	Ag	As	Ва	Cu	Pb	Sb	Zn	Cu/Pb/Zn	
ID	(GDA94)	(GDA94)	g/t	g/t	ppm	ppm	ppm	ppm	ppm	ppm	(ppm)	Description
3001005	709118.39	6259844.53	<0.01	15.9	234	>10000	18	212	23	210	440	Baritic sandstone
3001006	709118.39	6259844.53	<0.01	2.9	122	>10000	15	248	19	291	554	Baritic sandstone
3001007	709119.09	6259842.63	<0.01	16	258	>10000	45	218	33	449	712	Ferruginous Sandstone
3001008	709118.81	6259829.87	<0.01	53.5	42	2140	33	1360	52	602	1995	Barite outcrop
3001009	709122.4	6259828.9	<0.01	117	33	2640	19	602	61	302	923	Barite outcrop ferruginous
3001010	709101.22	6259813.94	<0.01	18.3	84	>10000	12	139	11	233	384	Baritic sandstone
3001011	709105.6	6259814.73	<0.01	11.5	42	>10000	14	255	8	258	527	Baritic sandstone
3001012	709086.73	6259786.86	0.01	10.6	30	>10000	9	955	16	46	1010	Pink baritic sandstone
3001013	709084.45	6259779.92	<0.01	39.8	36	>10000	5	633	12	568	В	Baritic sandstone
3001014	709083.72	6259780.6	<0.01	33.7	68	>10000	15	277	35	240	532	Baritic sandstone
3001015	709079.16	6259758.62	<0.01	3	82	>10000	17	170	35	161	348	Ferruginous Sandstone
3001016	709080.5	6259751.82	<0.01	1.6	64	>10000	7	338	136	78	423	Ferruginous Sandstone with rusty quartz
3001017	709068.44	6259768.39	0.03	4	176	>10000	17	174	109	623	814	Ferruginous Sandstone
3001018	709066.03	6259780.54	<0.01	10.2	134	>10000	83	1195	299	4300	5578	Schistose siltstone
3001019	709070.6	6259782.44	<0.01	1.5	10	>10000	6	112	6	109	227	Baritic sandstone
3001020	709243.64	6259788.96	0.49	0.7	555	2040	354	236	38	47	637	Ferruginous Sandstone with sulphide casts
3001021	709231.5	6259784.57	0.01	<0.5	30	1150	47	90	13	127	264	Ferruginous Sandstone
3001022	709246.33	6259788.91	0.04	<0.5	17	2770	60	157	134	23	240	Ferruginous Sandstone
3001023	709258.48	6259814.82	0.02	7.4	369	6170	55	384	22	198	637	Ferruginous Sandstone with sulphide casts
3001024	709252.08	6259814.3	<0.01	2	356	6750	41	627	16	256	924	Ferruginous Siltstone with sulphide casts
3001025	709273.83	6259834.68	0.02	1.6	482	3990	101	354	100	997	1452	Ferruginous Siltstone
3001026	709285.27	6259853.41	0.01	1.7	48	2660	29	147	7	99	275	Bleached sandstone
3001027	709334.92	6259915.67	<0.01	38.9	145	>10000	397	446	42	1745	2588	Gossanous quartz
3001028	709346.46	6259943.72	<0.01	20.8	119	>10000	225	197	16	4140	4562	Ferruginous Siltstone
3001029	709345.49	6259941.52	<0.01	17.1	268	9830	171	550	10	2740	3461	Gossan
3001030	709339.18	6259932.78	<0.01	46.9	111	>10000	304	1920	53	2390	4614	Gossan

ARGENT MINERALS LIMITED

Level 2, 7 Havelock Street, West Perth WA 6005, PO Box 308, West Perth WA 6872 T: +61 8 6311 2818 | E: <u>info@argentminerals.com.au</u>

About Argent Minerals Ltd (ASX: ARD)

Argent Minerals Limited is an ASX listed public company focused on creating shareholder wealth through the discovery, extraction, and marketing of precious and base metals. Currently, Argent has over 1,734km² of exploration ground in NSW and 1,038km² in Western Australia, totalling 2,772 km² within 2 Australian States.

Kempfield Project EL5645, EL5748 (100% ARD) NSW

The Kempfield Project is located 60km SSW of Cadia Newcrest Gold and Copper Mining Operations in Central West New South Wales, 250 kilometres west of Sydney. This is the Company's flagship project and is registered as a New South Wales State Significant Development Project. Kempfield Silver Deposit Mineral Resource estimate for all categories has been upgraded **63.7Mt @ 69.75** g/t silver equivalent for **142.8** million ounces Ag Eq, containing of **65.8 Moz silver**, **125,192 oz gold**, **207,402t lead & 420,373t zinc** (ASX Announcement 25 July 2024: Significant Silver Resource Upgrade over Kempfield Deposit)

Trunkey Creek Project EL5748 (100% ARD) NSW

The Trunkey Creek Gold Project is located 5 kms east of the Kempfield in Central West region New South Wales. The Project lies within the Trunkey Creek Mineral Field which extends for 5.5 km by 500 m wide with over 2,900 oz of gold extracted from small scale mining. New IP model has delineated three distinct resistive/chargeable zones. Sub-parallel main quartz reefs are spaced 30m to 50m apart over a strike length of 2 km (ASX Announcement 31 May 2022: New Gold Drill Targets Identified at Trunkey Creek).

Pine Ridge Project EL8213 (100% ARD), NSW

The Project is located in the Central Tablelands in New South Wales approximately 65 kilometres south of the township of Bathurst and 10 km south-west of Trunkey. Gold mining commenced in 1877 and continued sporadically until 1948, producing a total of 6,864t ore with variable gold grades. Current 2012 JORC Resource is **419,887t @ 1.65 g/t Au containing 22,122 oz Gold** (*ASX Announcement 20 April 2022: Pine Ridge Inferred Resource*)

Mt Dudley Project EL5748 (100% ARD), NSW

The Project is located 5 km northwest of the township of Trunkey, near Blayney NSW. The Mt Dudley mine was worked between 1913-1922 and 1928-1931, with the mine's records indicating an average mined grade of approximately 25 g/t of gold. Current 2012 JORC Resource is **882,636t @ 1.03 g/t Au containing 29,238 oz Gold** (ASX Announcement 13 September 2022: Maiden JORC Resource Over Mt Dudley Prospect)

Copperhead Project (100% ARD), WA

The Copperhead Project is located NE of Carnarvon and SW of Karratha in Western Australia Gascoyne Region. The project is proximal to major REE deposits and is considered Elephant country based on its untapped potential.

Helicopter rock-chip sample program has confirmed the extensive copper mineralisation over the Mount Palgrave Prospect. High-grade stratiform copper assays include 2.42%, 4.14%, 5.92%, 8.8%, 14.96% and 21.1% Cu.

The Project is also considered highly prospective for potential ironstone/carbonatite Rare Earth mineralisation. Over Fifty (50) high priority potential ironstone/carbonatite rare earth targets have been delineated and are currently being assessed (*ASX Announcement 1 February 2023: High-grade copper confirmed at Gascoyne Copper Project*)

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	188 rock chip samples were collected in during the reconnaissance field trip over Kempfield NW and NE Prospect areas.
	investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as	Rock chip samples representative of outcrops with samples collected from mineralised and non-mineralised rocks.
	limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the	All rock chip samples weight varies from 1 kg to 2 kg based on various outcrops.
	appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report	ALS used industry standard method using ME-ICP61r for a 7 element four acid ICP-MS. Fire Assay (AA26 Fire Assay method) using a 25 gram charge is used to analyse gold.
	In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to	All samples were collected by geologists on site with samples dispatched to ALS Labs in Orange.
	obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation	Individual samples were bagged in calcio bags and sent to ALS Labs with all samples photographed and documented.
	may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed	Samples completed is appropriate for early-stage exploration.
Deilling	information.	
techniques	binn type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	N/A – No unling was undertaken.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	N/A – No drilling was undertaken.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	N/A – No drilling was undertaken. All rock chip samples were logged for a combination of geological and geotechnical attributes in their entirety including as appropriate major & minor lithologies, alteration, vein minerals, vein percentage, sulphide type and percentage, fractures, shears, colour, weathering, hardness, grain size. The Project areas is currently classified as early stage of

ARGENT MINERALS LIMITED

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	The rock chip samples were collected from outcrop in the field. No field duplicates for rock chip samples were collected during this sampling exercise and no sub-sampling is needed for compositing.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	ALS Perth will be using ME-MS61r (7 element four acid ICP- MS) for Ag, As, Ba, Cu, Pb, Sb and Zn. Detection limits for the various elements between 0.05 to 5. Geochemical Analysis of the rock chip samples conducted by ALS in Orange included drying and pulverising to 85% passing 75um. Four acid ICP-AES (ME-ICP61) was used to assay for Ag (g/t), As (ppm), Ba (ppm), Cu (ppm), Pb (ppm) and Zn (ppm). When high grade assays results were encountered, ICP-AES Ore Grade Element was used If Ag > = 100 ppm then Method Ag-OG62 was used Gold Analysis was undertaken by AA26 Fire Assay method which included drying and pulverising to 85% passing 75um with detection limit of 0.01 ppm Acceptable levels of accuracy for all data referenced in this ASX announcement have been achieved given the purpose of the analysis (first pass exploration).
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Rock chip samples areas were documented in the field by qualified geologist with photos taken from each site. All samples were collected by GPS and validated through aerial photography. All field data was collected then transferred into a computer database.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All rock chip locations were recorded with a handheld GPS with +/- 5m accuracy GDA94, Zone 55 was used
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and	Data spacing and distribution was dependant on the identification of mineralisation observed in outcrops. This

Criteria	JORC Code explanation	Commentary
	distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	was not a systematic rock chip sampling program based on a grid. The locations of the samples are provided in Table 1 and illustrated in Figure 3. There is insufficient data to determine any economic parameters or mineral resources.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Rock chip sampling has been conducted in selective manner targeting precious and base-metal mineralisation from outcrops. Based on the early stage of exploration, the surface grab sampling across the mineralisation over the ironstones, schists and metasediments from the Kangaloolah Volcanics achieves an unbiases sampling of possible structures.
Sample security	The measures taken to ensure sample security.	Sub-samples will be stored on site prior to being transported to the laboratory for analysis. The sample pulps will be stored at the laboratory and will be returned to the Company and stored in a secure location.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been undertaken

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type,referencename/number,locationand ownership includingagreements or materialissues with third partiessuch as joint ventures,partnerships,overridingroyalties,native titleinterests,historical sites,wilderness or national parkandenvironmentalsettings.The security of the tenureheld at the time ofreporting along with anyknownimpediments toobtaining a licence tooperate in the area.	Exploration Licence, Kempfield EL5645 & EL5748, Trunkey Creek, NSW, held by Argent (Kempfield) Pty Ltd (100% interest), a wholly owned subsidiary of Argent Minerals Limited. There are no overriding royalties other than the standard government royalties for the relevant minerals. There are no other material issues affecting the tenements. All granted tenements are in good standing and there are no impediments to operating in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Argent Minerals Limited through its wholly owned subsidiary Argent (Kempfield) Pty Ltd is the sole operator of the project. Argent Minerals introduced best industry practice work. Kempfield has been explored for more than forty years by several exploration companies as set out in in the below table:

Criteria	JORC Code explanation	Commentary		
		Company	Period	Exploration activities
		Argent Minerals	2007-current	Drilling, surface geochemical sampling, VTEM survey, pole-dipole IP survey, gravity survey, ground EM and down- hole EM survey
		Golden Cross	1996-2007	Drilling and high resolution airborne magnetic survey
		Jones Mining	1982-1995	Drilling
		Shell	1979-1982	Drilling, ground EM survey, dipole-dipole IP survey, and soil sampling
		Inco	1972-1974	Drilling
Geology	Deposit type, geological setting, and style of mineralisation.	The deposit type The geological se intra-arc Hill End Mineralisation i occurring in wha gold and barite associated with t are consistent w	tis Volcanogenic M etting is Silurian fels Trough in the Lach s hosted in strat t appear to be a se mineralisation is de he felsic volcanic ac vith a distal facies	assive Sulphide (VMS). sic to intermediate volcaniclastics within the lan Orogen, Eastern Australia; and iform and probably barite-rich horizons ries of tight isoclinal folds. Silver, lead, zinc, rived from submarine volcanic exhalations ctivity. The geology and mineral assemblage of a volcanic-hosted base metals sulphide
		deposit (VHMS).		
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – • elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report the Competent	No drilling has be The announceme No Drilling result	een undertaken ove ent is highlighting a :s are reported in th	er the Kempfield NW and NE Zones reas rock chip areas and results. his announcement
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques	No averaging or	aggregating of rock	chip results was undertaken.

Criteria	JORC Code explanation	Commentary
	maximum and/or	All individual results have been reported.
	minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	All rock chip results from the laboratory have been outlined in the announcement.
Delationskip between	These relationships are	All somewhere we also be in up to a property with the set big is percentered as a set
mineralisation widths and intercept lengths	particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are	exploration. The nature and dip of the mineralisation are still being evaluated and is currently unknown.
	clear statement to this effect (e.g., 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figure 3 and Table 4 have been presented within the announcement outlining locations of rock chip samples sites.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All assays result for significant economic elements for samples are included in Table 4 of the announcement. The reporting balances is considered as early exploration results.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Metallurgical, groundwater, and geotechnical studies have not commenced as part of the assessment of the project.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	RC drilling programme has commenced over the Kempfield NW Zone. Kempfield NE zone will be tested during the course of 2024.