

Amendment to ASX Announcement

Thick Copper and Zinc Bearing Sulphide Drilling Intersections, with Silver and Gold, at Havilah in World-Class Lachlan Fold Belt

Golden Deeps Limited ("Golden Deeps" or "the Company") wishes to advise that it has provided additional information to its announcement titled "Thick Copper and Zinc Bearing Sulphide Drilling Intersections, with Silver and Gold, at Havilah in World-Class Lachlan Fold Belt" released on 11 October 2024 (Announcement).

The additional information which has been added to the Announcement is:

- i) A Statement and discussion on page 7 about the assay results compared to the pXRF results and reasons for any potentially (material) difference.
- ii) Appendix 3 tabulation of the spot pXRF results and the assay results for copper and zinc.
- iii) Further details regarding the pXRF readings added to JORC Table 1, Sections 1 (Sampling Techniques) and 2 (Data Aggregation Methods).
- iv) Image 1 relevant assays shown.
- v) Expected timing provided regarding assay results from subsequent holes.
- vi) Further information provided regarding Copper Equivalent calculation in Appendix 3.

-ENDS-

For further information, please refer to the Company's Website, Goldendeeps.com, or contact:

Jon Dugdale Chief Executive Officer Golden Deeps Limited +61 (08) 9481 7833 Michael Muhling or Tanya Newby Joint Company Secretaries Golden Deeps Limited +61 (08) 9481 7833

Thick Copper and Zinc Bearing Sulphide Drilling Intersections, with Silver and Gold, at Havilah in World-Class Lachlan Fold Belt

- Assay results indicate the mineralisation at Havilah is in close proximity to a large (copper-gold +/- zinc, silver) porphyry-sulphide system
- Assay results from diamond drillholes HVD001 and HVD003 at Golden Deeps' 100% owned Havilah Project in the world-class Lachlan Fold Belt Copper-Gold Province in NSW have produced thick intersections of copper and zinc bearing sulphide mineralisation, with significant levels of silver and gold^{1,2}.
- Diamond drillhole HVD003, which tested the extensive Hazelbrook copper soil and rockchip anomaly (Figure 1), intersected an 84m zone of semi-massive patches, veins and disseminations of chalcopyrite, sphalerite and pyrite (Appendix 2), producing the following significant copper, zinc and silver intersections:
 - » 30m @ 0.30% CuEq* (0.16% Cu, 0.41% Zn, 1.0 g/t Ag) from 84m Incl. 6m @ 0.55% CuEq* (0.30% Cu, 0.72% Zn, 1.8 g/t Ag) from 102m Incl. 1m @ 1.7% CuEq* (0.84% Cu, 2.6% Zn, 5.8 g/t Ag) from 102m (see Image 1 below). Within an 84m sulphide bearing zone grading 0.14% CuEq* (0.08% Cu, 0.18% Zn, 0.43 g/t Ag)

Image 1: HVD003, 102.3 - 102.5m semi-massive chalcopyrite and sphalerite (part of 1m @ 0.84% Cu, 2.6% Zn interval above)

- Diamond drillhole HVD001, which tested the Hazelbrook North copper-zinc-gold anomaly (Figure 1), intersected 40m of siliceous breccia veining with disseminated sulphide mineralisation from surface, hosted by Silurian volcanic rocks, producing the following significant copper, zinc and silver intersections:
 - » 15m @ 0.2% CuEq* (0.14% Cu, 0.07% Zn, 2.1 g/t Ag) from 11m downhole Incl. 7m @ 0.3% CuEq* (0.18% Cu, 0.07% Zn, 3.3 g/t Ag) from 19m Within a 36m sulphide bearing zone grading 0.14% CuEg* (0.08% Cu, 0.10% Zn, 1.5 g/t Ag)
- HVD001 also intersected significant gold mineralisation, associated with shearing, alteration and fine sulphides on the upper contact zone of the Ordovician volcanics, producing the following gold intersection:
 - » 8m @ 0.21 g/t Au from 57m downhole including 2m @ 0.35 g/t Au from 60m
- Results are pending for the **92m sulphide bearing intersection in HVD004**², located 200m to the NE of HVD003.
- Extensive soil sampling programs in progress, including extensions to the Hazelbrook zone to >1km strikelength, and infill sampling of the 1km x 1km Milfor copper anomaly, where previous sampling of chalcopyrite mineralisation produced results of up to 1.1% Cu³ on a large magnetic anomaly/porphyry target (Figure 1).
- Further drilling of this strongly mineralised project area, with widespread copper anomalism over more than 3km x 1km, is planned following receipt of further drilling results (e.g. HVD004) and soil sampling results.

Golden Deeps CEO Jon Dugdale commented: "The assay results for diamond drillholes HVD001 and HVD003 at the Hazelbrook prospect at Havilah have confirmed the discovery of extensive copper-zinc bearing sulphide mineralisation as well as zones of silver and gold mineralisation in the world-class Lachlan Fold Belt in NSW.

The high levels of zinc with the copper mineralisation at Hazelbrook indicate the mineralisation is potentially on the periphery of a large copper-gold mineralised porphyry-sulphide system, with similar geological characteristics to major deposits in the Lachlan Fold Belt such as the world-class Cadia-Ridgeway Project.

Subject to further results from drilling and soil sampling programs, we are planning to launching a new drilling program to test this exciting discovery of widespread, copper-zinc, silver and gold bearing sulphide mineralisation."

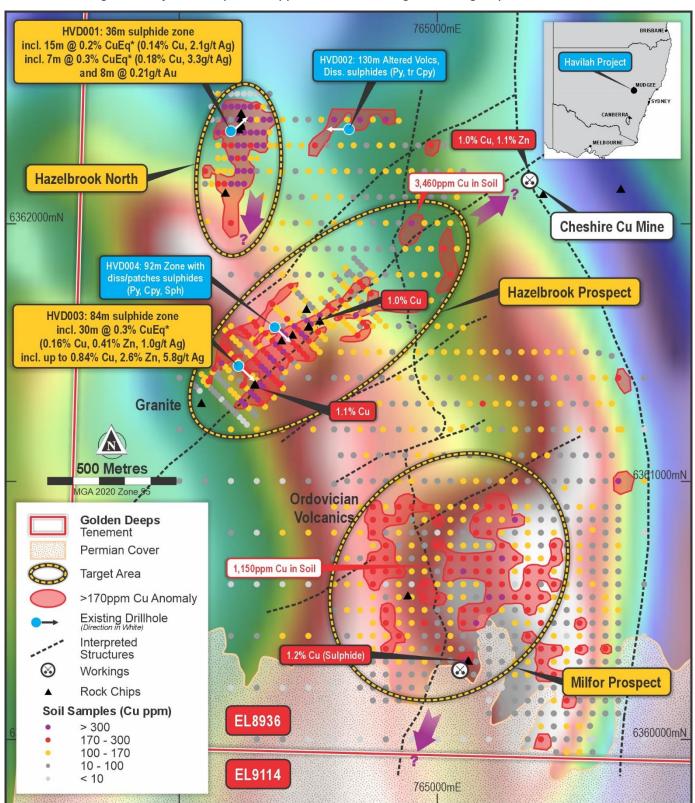


Figure 1: Havilah Project, soil and rockchip copper anomalies on magnetics image with recent drilling and target zones

Golden Deeps Ltd (ASX:GED) is pleased to announce assay results received from diamond drillholes HVD001 and HVD003 at the 100% owned Havilah Project in the Lachlan Fold Belt copper-gold province of central NSW have produced substantial intersections of copper and zinc bearing sulphide mineralisation which also contain zones with significant silver and gold assays¹ (see Table 1 for all significant intersections).

Diamond drillhole HVD003, which tested the extensive Hazelbrook copper soil and rockchip (>1% Cu) anomaly³ (see Figure 1), **intersected patches of semi-massive copper (chalcopyrite) and zinc (sphalerite) sulphides** (see Image 1) **as well as vein and disseminated sulphides across an 84m zone in the targeted Sofala Volcanics¹** (see Appendix 2 for descriptions of mineralisation). This 84m zone assayed 0.14% CuEq* (0.08% Cu, 0.18% Zn, 0.43 g/t Ag) from 84m downhole and included the significant intersections below:

» 30m @ 0.30% CuEq* (0.16% Cu, 0.41% Zn, 1.0 g/t Ag) from 84m Incl. 6m @ 0.55% CuEq* (0.30% Cu, 0.72% Zn, 1.8 g/t Ag) from 102m Incl. 1m @ 1.7% CuEq* (0.84% Cu, 2.6% Zn, 5.8 g/t Ag) from 102m

The Cu-Zn-Ag mineralised sulphide zone intersected in HVD003 is open to the southwest and at depth. Felsic dykes intersected by HVD003, parallel to the northeast trending anomaly, and the predominance of zinc, with silver, over copper and gold in the intersection, indicates the mineralisation is on the periphery of a mineralised porphyry system – with copper and gold grades expected to increase closer to the intrusion (see Figure 2).

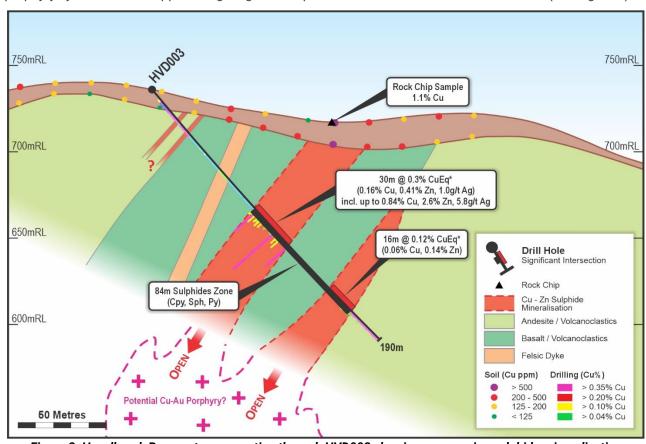


Figure 2: Hazelbrook Prospect cross section through HVD003 showing copper-zinc sulphide mineralisation

Diamond drillhole **HVD001** tested a silicified outcrop at Hazelbrook North (Figure 1), which is a broad, north-south trending copper-zinc-gold soil anomaly with high rockchip values of up to 1%Cu, 1.1% Zn and 0.2g/t Au³. This hole intersected a 40m zone of silicified breccia/veining and disseminated sulphide mineralisation from surface (see cross section, Figure 3) and produced the following significant intersections:

» 15m @ 0.2% CuEq* (0.14% Cu, 0.07% Zn, 2.1 g/t Ag) from 11m downhole
Incl. 7m @ 0.3% CuEq* (0.18% Cu, 0.07% Zn, 3.3 g/t Ag) from 19m
Within a 36m sulphide bearing zone grading 0.14% CuEq* (0.08% Cu, 0.10% Zn, 1.5 g/t Ag)

Significantly, HVD001 also intersected a zone of gold mineralisation, associated with alteration and fine pyrite within the upper contact zone of the Ordovician Volcanics, producing the following gold intersection:

» 8m @ 0.21 g/t Au from 57m downhole including 2m @ 0.35 g/t Au from 60m

*See Appendix 3 for copper equivalent (CuEq) calculations.

This gold mineralised zone at the upper contact of the Ordovician Volcanics (Figure 3), is open in all directions and represents a significant gold target associated with north and south extensions of this contact zone.

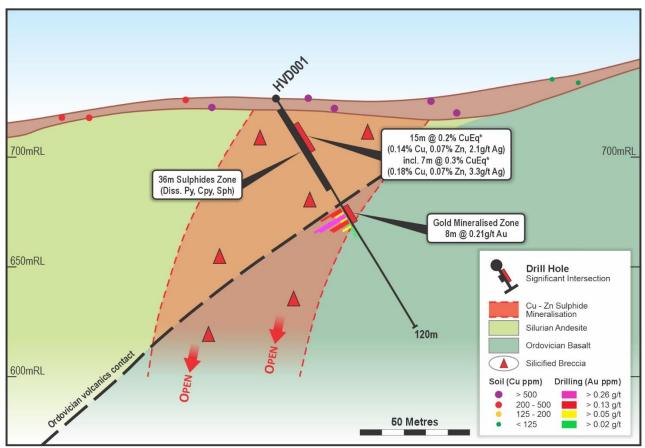


Figure 3: Hazelbrook North cross section through HVD001 showing copper-zinc mineralisation and gold zone

Sulphide mineralisation was also intersected 200m to the northeast of HVD003 at the Hazelbrook anomaly, in diamond drillhole HVD004², which intersected a 92m zone from 39m to 131m downhole of predominantly disseminated sulphides (pyrite +/- chalcopyrite, sphalerite) (Appendix 2). Assay results from this hole are expected to be available within 3 to 4 weeks.

Diamond drillhole HVD002 tested a strong IP chargeability anomaly east of the Hazelbrook North target¹ (see Figure 1) and **intersected more than 130m (from 7m) of altered mafic volcanics with scattered veinlets and disseminations of pyrite and trace chalcopyrite** (Appendix 2). Assaying of selected intervals from this hole will be subject to pXRF readings on drillcore which are currently being read and compiled. The intersection of extensive disseminated sulphides explains the IP anomaly detected and indicates that an extensive pyrite halo is present around a large potential porphyry system in the area – as observed at similar projects in the Lachlan Fold Belt such as the world-class Cadia-Ridgeway Cu-Au Project, located 100km SW of Havilah Project (Holliday, et, al, 1998)^{4,5}.

Discussion of Results and Next Steps for the Havilah Project

The mineralisation intersected in HVD003 and HVD004 is associated with the northeast-trending Hazelbrook surface soil and rockchip copper-zinc anomaly, associated with rockchip sampling results of over 1% Cu³, over at least 800m strike-length. Previous, wide-spaced, soil sampling results of up to 3,460ppm (0.35%) Cu, to the northeast of the detailed sampling zone indicate the Hazelbrook anomaly extends for a strike-length of more than 1km, open to the northeast and southwest (see Figure 1). Further (25m x 25m) soil sampling is in progress to define the extensions to the Hazelbrook anomaly to further define targets for follow-up drilling.

In addition, 25m x 25m infill soil sampling is being carried out over the extensive Milfor copper anomaly, which occurs over a 1km x 1km area (>170ppm Cu) and includes soil values of up to 1,150 (0.12%) Cu. Previous rockchip sampling of copper (chalcopyrite and malachite) mineralisation near historical workings produced assays of up to 1.1% copper³ (see Figure 1).

This extensive copper anomaly at Milfor is associated with a large magnetic high (see Figure 1), with low gravity (low density) zones indicating potential for copper-gold mineralised porphyries similar to the Ridgeway

porphyry at the world-class Cadia-Ridgeway project which was located at depth associated with magnetic anomalies underlying an IP chargeability anomaly associated with a pyritic cap⁵ (as intersected in HVD002).

The intersection of extensive disseminated pyritic sulphides associated with the large IP chargeability anomalies on the Project¹, indicates that the mineralisation at Havilah is in the upper, distal parts of a porphyry system with a pyritic cap and a high zinc to copper and gold ratio. Copper and gold are expected to increase closer to porphyry intrusions – which are generally associated with magnetic anomalies, such as that observed at Milfor and the Hazelbrook anomaly (see Figure 1, and cross section, Figure 2).

Following receipt of all laboratory assays from the initial drilling, and the completion of the infill soil sampling programs, further drilling will be planned to test for the targeted core of the porphyry copper-gold system within this extensively mineralised zone. Further drilling sites, including at Milfor, will require approval from the NSW Government.

The extensive surface copper mineralisation, with the strong sub-surface IP and magnetic anomalies detected, together represent a major porphyry/volcanic hosted copper-gold (zinc, silver) target at Havilah.

Soil and rockchip sampling has also been carried over an area of altered silicified and sulphide bearing Sofala Volcanics which are exposed to the south of Havilah in the **Acros JV tenement**, **EL9114**⁶. Magnetics imagery indicates that the altered and magnetised volcanics continue south of Milfor under mostly (Permian) conglomerate cover for a further 2km within this tenement (see Figure 4). The results of this soil sampling program are expected shortly.

The exposure of altered and mineralised volcanics in EL9114, and the large magnetic anomaly associated with the mineralised volcanics, indicates potential to double the footprint of the Havilah mineralised system to more than 5km from north to south (see Figure 4, below).

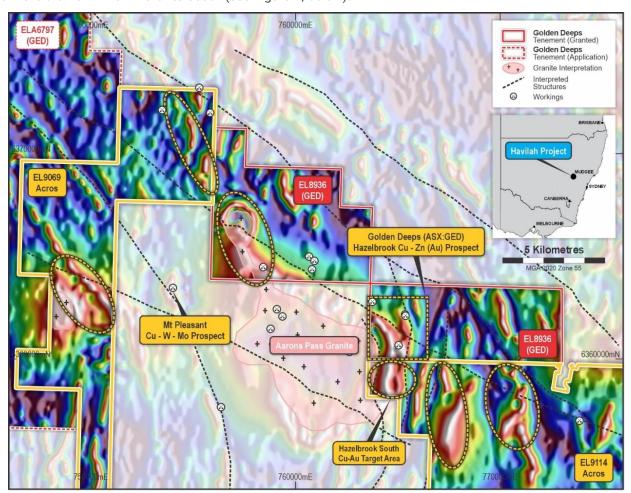


Figure 4: Location of the Havilah Project and Hazelbrook Cu-Zn-Au porphyry target area on magnetics image

About the Havilah Cu-Zn (Au) Project, Lachlan Fold Belt, NSW

The Havilah Project is a 100% owned granted Exploration Licence (EL8936) located within the eastern Lachlan Fold Belt (LFB) near Mudgee in central NSW (see Figure 5).

The Company is targeting porphyry/volcanic hosted copper (zinc-silver) and gold mineralisation in a belt of Ordovician age (Sofala) volcanic rocks in the Rockley-Gulgong Volcanic Belt, which is part of the Macquarie Arc in the LFB - a major geological province known for world-class copper-gold deposits such as Cadia-Ridgeway^{4,5} and the recent Boda-Kaiser discovery of Alkane Resources Ltd⁷ (see Figure 5). Major deposits are associated with intrusive porphyries in the Ordovician volcanics, and occur within northwest trending structural corridors, one of which links Havilah with Boda-Kaiser discovery⁷, 80km to the northwest (Figure 5).

Havilah includes an area of magnetic Ordovician Sofala Volcanics close to the northeastern margin of the Aaron's Pass Granite (see Figures 4 and 5). Mineralisation occurs on the tenement within this magnetic aureole at the historical Milfor and Cheshire copper workings, which are associated with altered Sofala (mafic/intermediate) Volcanics that contain pyrite and chalcopyrite (copper sulphide).

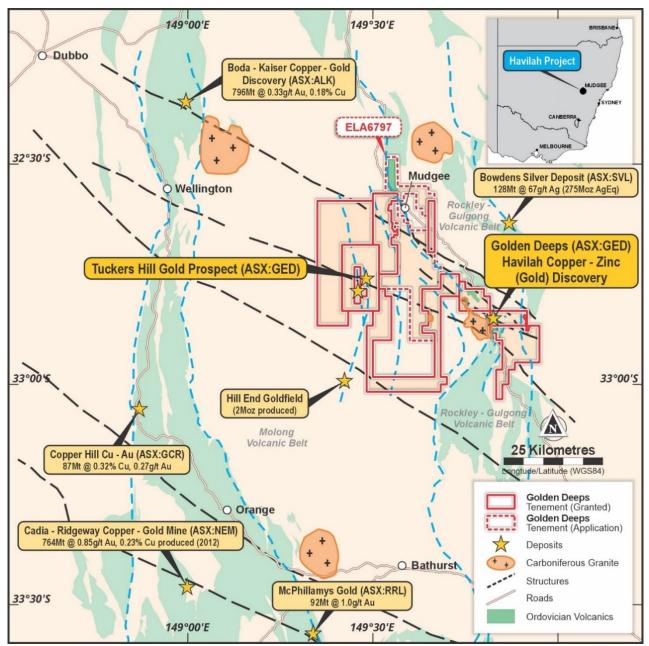


Figure 5: East Macquarie Arc (LFB) with the location of major copper-gold projects and the Havilah Project

The Company previously announced extensive copper with zinc and gold soil and rockchip anomalies, including several rockchip values of more than 1% copper (see Figure 1)³. This mineralisation is associated with the strongly altered and mineralised (Ordovician) Sofala Volcanics and northeast and north-south trending structures within the magnetic aureole of the Aaron's Pass Granite (see Figure 4).

The sulphide mineralisation intersected in diamond drillholes HVD003 and HVD004 occurs within a northeast-trending zone of surface copper mineralisation in the Ordovician Sofala Volcanics at the Hazelbrook prospect. This is associated with a structural trend which links with the Aaron's Pass Granite outcropping to the west –

which is associated with porphyry Mo-W-Cu mineralisation west of Havilah at the Mt Pleasant Prospect⁸, and the Cheshire copper-zinc workings over 2km to the northeast (Figures 1 and 4).

Table 1, significant Intersections from diamond drillholes HVD001 and HVD003:

Hole #	From	То	m	Cu Eq.%	Cu %	Zn%	Ag g/t	Au g/t	S%
HVD001	3.00	39.00	36.0	0.14	0.08	0.10	1.47	0.01	0.57
incl.	11.00	26.00	15.0	0.20	0.14	0.07	2.05	0.01	0.86
incl.	19.00	26.00	7.0	0.27	0.18	0.07	3.34	0.02	1.55
incl.	57.00	65.00	8.0	N/A	0.02	0.01	< 0.01	0.21	0.86
HVD003	84.00	168.00	84.0	0.14	0.08	0.18	0.43	<0.001	0.29
incl.	84.00	114.00	30.0	0.30	0.16	0.41	1.0	<0.001	0.60
incl.	102.00	108.00	6.0	0.55	0.30	0.72	1.83	0.001	0.83
incl.	102.00	103.00	1.0	1.70	0.84	2.62	5.80	0.007	2.87
incl.	152.00	168.00	16.0	0.12	0.06	0.15	0.40	< 0.001	0.20

Statement and Discussion regarding pXRF results vs Assay Results

Portable XRF (pXRF) spot readings on drillcore reported in the Company's ASX release of 3 September 2024¹ for Copper (Cu) and Zinc (Zn) have been listed for the reported intersections intervals (see Table 1) alongside individual assayed values in Appendix 4 of this release.

The detectable pXRF readings for diamond drillhole HVD001 per assayed interval for Cu and Zn are broadly comparable or under-represent the assay results of HVD001 over the 36m interval reported in Table 1 above, with pXRF readings averaging 0.06% Cu and 0.08% Zn vs assay results averaging 0.08% Cu and 0.10% Zn. The under-representing of the pXRF readings vs the assayed readings is explained by the evenly disseminated sulphide mineralisation in HVD001. Spot pXRF readings do not always detect disseminated sulphide grains and therefore do not necessarily represent the assayed metre intervals.

The detectable pXRF readings for diamond drillhole HVD003, which were not length weighted or averaged per metre in the original 3 September release (see JORC Table 1, Section 2, "Data aggregation methods"), average 0.5% Cu, 0.7% Zn over a 28m interval from 85.8m. This materially exceeds the average assayed value over the wider, 30m from 84m reported interval of 0.16% Cu and 0.41% Zn. The reason for the material difference between the average of detectable pXRF readings and the assayed results for this interval is explained by the nature of the sulphide mineralisation in HVD003, which includes patches of semi-massive chalcopyrite and sphalerite. Spot pXRF readings on drill core have not accurately represented the entire assayed interval and, in cases where the spot reading has detected a semi-massive sulphide zone, the pXRF reading will represent the high-grade of a spot reading of that semi-massive sulphide zone but has not accurately represented the average grade of the entire (1m) interval. For example, the pXRF spot reading of the semi-massive sulphide zone shown on Image 1 (102.5m to 102.7m) was 6.8% Cu, 12.3% Zn, whereas the 1m interval from 102m to 103m assayed 0.84% Cu, 2.6% Zn. Spot pXRF readings on lower grade disseminated sulphide zones have generally under-represented the grade of those zones, as Spot pXRF readings do not always detect disseminated sulphide grains and therefore do not represent the assayed metre intervals. For example, the pXRF spot readings for the interval 84m to 85m did not detect Cu and was 261ppm Zn vs assayed 397ppm Cu, 3,510 ppm (0.35%) Zn.

Cautionary Statement:

In relation to pXRF readings, the Company cautions that pXRF readings should never be considered a proxy or substitute for laboratory analyses. Laboratory assay results (ICP-MS/OES and Fire Assay for gold) are required to confirm the representative grades and intervals of the elements and the veracity of the pXRF readings. The Company will update the market when laboratory analytical results for outstanding drillholes ae compiled and become available.

About Golden Deeps Ltd

Golden Deeps (ASX:GED) is an explorer/developer with a dual focus on the world-class terranes of the Lachlan Fold Belt copper-gold province of NSW, Australia, and the Otavi Mountain Land (Otavi) copper-lead-zinc and vanadium district of Namibia.

In the Lachlan Fold Belt, Golden Deeps has exploration programs underway testing a series of copper, zinc, gold and silver targets within the under-explored Rockley-Gulgong Volcanic Belt near Mudgee, the eastern and most under-explored of four major volcanic belts which host several major copper-gold deposits. The company also has high-grade gold targets it plans to drill at the Tuckers Hill prospect (see Figure 5, above).

In Namibia, Golden Deeps has high-grade critical-metals deposits in the Otavis including vanadium and copper as well as lead, zinc and silver, on a brownfields site with limited modern exploration. The Company recently announced Mineral Resource upgrades for the Abenab high-grade vanadium (lead, zinc) project and a maiden resource for the Nosib vanadium-copper-lead vanadate and copper-silver sulphide discovery. Previous drilling at the Khusib Springs copper-silver deposit produced thick silver-copper intersections that are open at depth.

Golden Deeps' operational model is based on discovery, building resources and advancing developments with the ultimate aim of becoming a producer of critical and precious metals, such as copper, zinc, silver, gold and vanadium.

References

- ¹ Golden Deeps Ltd, ASX 03 September 2024: 80m Copper and Zinc Sulphide Zone Intersected at Havilah.
- ² Golden Deeps Ltd, ASX 23 September 2024: New 92m Sulphide Hit Extends Hazelbrook Zone.
- ³ Golden Deeps Ltd, ASX 03 March 2022. Outstanding Copper Soil and Rockchip Results, Havilah Project, NSW.
- ⁴ Cadia Valley Operations Ridgeway, Cadia Hill. Portergeo.com.au/database/mineinfo.asp?mineid=mn228.
- ⁵ Holliday, J.R., Wood, D.G., McMillan, C.C., Tedder, I.J., 1998: Discovery of the Cadia Cu-Au Deposits, Lachlan Fold Belt, Australia. In Pathways '98 Extended abstracts Volume, pp74. BC & Yukon Chamber Mines and SEG.
- ⁶ Golden Deeps Ltd, ASX 12 July 2024. GED Expands Footprint in Lachlan Fold Belt Cu-Au Province.
- ⁷ Alkane Resources Ltd, ASX:ALK, 29 April 2024: Revised Kaiser Resource Est. Improves confidence and Grade.
- ⁸ Minrex Resources Ltd (ASX:MRR), 2 September 2021: Mt Pleasant Project Approved for Exploration.
- ⁹ Cadia Valley Operations, NSW, Australia, 30 June 2020: NI43-101 Technical Report.
- ¹⁰ Silver Mines Ltd. (ASX:SVL). 19 September 2017. Significant Upgrade to Mineral Resource for Bowdens.

This announcement was authorised for release by the Board of Directors.

ENDS

Please refer to the Company's website or contact:

Jon Dugdale Chief Executive Officer Golden Deeps Limited +61 (08) 9481 7833 Michael Muhling or Tanya Newby Joint Company Secretaries Golden Deeps Limited +61 (08) 9481 7833

Cautionary Statement regarding Forward-Looking Information:

This document contains forward-looking statements concerning Golden Deeps Ltd. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on the company's beliefs, opinions and estimates of Golden Deeps Ltd as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Competent Person Statement:

The information in this report that relates to exploration results, mineral resources and metallurgical information has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale. Mr Dugdale is the Chief Executive Officer of Golden Deeps Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ('FAusIMM'). Mr Dugdale has sufficient experience, including over 36 years' experience in exploration, resource evaluation, mine geology and finance, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ('JORC') Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ASX Listing rules Compliance:

In preparing this announcement the Company has relied on the announcements previously made by the Company as listed under "References". The Company confirms that it is not aware of any new information or data that materially affects those announcements previously made, or that would materially affect the Company from relying on those announcements for the purpose of this announcement.

APPENDIX 1: Drillhole Details - HVD001, HVD002, HVD003, HVD004

DH_ID	Hole_Type	Coordinate System	Easting	Northing	RL	Azim_mag°	Azim_grid°	Dip°	Hole Length (m)
HVD001	DD	MGA94, Zone 55	764,224	6,362,385	734	015	028	-58	120.8
HVD002	DD	MGA94, Zone 55	764,646	6,362,424	667	257	270	-60	238.0
HVD003	DD	MGA94, Zone 55	764,254	6,361,465	732	122	135	-50	189.6
HVD004	DD	MGA94, Zone 55	764,377	6,361,627	705	122	135	-55	183.5

APPENDIX 2: Descriptions of Mineralisation – HVD001, HVD002, HVD003 and HVD004

DH_ID	From	То	Min 1 Type	Min 1 Style	Min 1 Intensity	Min 2 Type	Min 2 Style	Min 2 Intensity	Comments
HVD001	0	21.3	LM	FRC	2				Patchy veining with limonite-hematite <u>+</u> quartz
HVD001	21.3	25.8	PY	VNS	3	PY	VLT	1	Patchy pyrite <u>+</u> hematite veins. Pyrite-limonite on fractures throughout.
HVD001	25.8	37.9	PY	VLT	1				Quartz with pyrite veinlets and rare carbonate veinlets.
HVD001	37.9	39.85	PY	VLT	2	СР	XLS	1	Quartz veinlets & breccia fill throughout. Patchy pyrite & chalcopyrite veinlets and rare carbonate veinlets.
HVD001	39.85	67.1	PY	DIS	1				Rare pyrite specks, more commonly in shear zones.
HVD001	74	74.4	PY	DIS	2				Scattered pyrite patches within chlorite-silica alteration zones.
HVD001	85.3	87.9	PY	DIS	2				Scattered pyrite patches within chlorite-silica alteration zones.
HVD001	87.9	120.8							No visible mineralisation

DH_ID	From	То	Min 1 Type	Min 1 Style	Min 1 Intensity	Min 2 Type	Min 2 Style	Min 2 Intensity	Min 3 Type	Min 3 Style	Min 3 Intensity	Comments
HVD003	21.00	28.50	PY	FRC	1							Minor fracture plane py.
HVD003	28.50	45.50	PY	FRC	3	PY	STR	1	MO	BLB	1	Fracture plane py, minor qtz-py stringers with trace cpy. Red he patches/vlts. Another red-brown fine grained splotchy mineral in groundmass (poss. hematite). 2mm bleb of molybdenite @ 34.30m.
HVD003	45.50	53.80	PY	STR	1	СР	STR	1				Patchy/stringers/diss py. Amongst groundmass and prop alt patches. Trace-0.1% cpy with py. Minor frc/str he, trace mo amongst py/cpy.
HVD003	53.80	61.45	PY	DIS	1							Weak diss py in felsic dyke.
HVD003	61.45	84.90	PY	STR	1	PY	DIS	1				Weak str/diss py +- tr cpy.
HVD003	84.90	119.00	CP	PAT	2	SP	PAT	2	PY	DIS	1	1-2% patches/str of cpy-py-sph. Amongst prop/ pot patches. 0.5% diss cpy-sph-py. 102.25-102.45m (20cm) 2-5% cpy-py.
HVD003	119.00	180.00	СР	DIS	1	PY	DIS	1				Min in alt patches, 0.1-0.2% cpy-sph-py more diss rather than patchy, primarily in alt patches.

DH_ID	From	То	Min 1 Type	Min 1 Style	Min 1 Intensity	Min 2 Type	Min 2 Style	Min 2 Intensity	Min 3 Type	Min 3 Style	Min 3 Intensity	Comments
HVD002	4.50	8.10	LM	VLT	2							Weak limonite along fractures & associated with carbonate veinlets
1110002	1.00	0.10	LIVI	Y = 1								Scattered veinlets and disseminations of
												pyrite. Rare disseminations of
HVD002	8.10	60.20	PY	VLT	2	PY	DIS	2	CP	DIS	1	chalcopyrite.
												Pyrite in veinlets and occasional
HVD002	60.20	63.44	PY	VLT	2	PY	DIS	2				disseminations <1%
												Scattered veinlets and disseminations of
LIV/D000	60.44	106 10	DV	\ // T		DV	DIO		OD	DIO		pyrite. Rare disseminations of
HVD002	63.44	126.18	PY	VLT	2	PY	DIS	2	СР	DIS	l l	chalcopyrite.
		126.70										Pyrite veinlet @ 126.47m. Disseminated pyrite specks associated with alteration
HVD002	126.18	120.70	PY	VLT	2	PY	DIS	1				zones.
1110002	120.10			7-1	_		5.0					Disseminated pyrite specks & occasional
		127.46										pyrite veinlets associated with alteration
HVD002	126.70		PY	VLT	1	PY	DIS	1				zones.
												Disseminated pyrite specks & occasional
		140.70										pyrite veinlets associated with alteration
HVD002	127.46		PY	VLT	2	PY	DIS	2				zones.
111/12000	4 40 70	146.00	D) (5)./	510					Weak pyrite mineralisation as veinlets
HVD002	140.70		PY	VLT	2	PY	DIS	1				and scattered spots.
HVD002	146.00	162.12	PY	VLT	2	PY	DIS	1				Weak pyrite mineralisation as veinlets
		164.30			2	Pĭ	סוט	l				and scattered spots.
HVD002	162.12	104.30	PY	VLT	I							Weak pyrite mineralisation as veinlets.
HVD002	164.30	176.80	PY	VLT	1	PY	DIS	1				Weak pyrite mineralisation as veinlets and scattered spots.
HVD002	176.80	204.12	PY	VLT	1							Weak pyrite mineralisation as veinlets.
HVD002	204.12	220.65	PY	VLT	2							Weak pyrite mineralisation as veinlets.
HVD002	220.65	238.00	PY	VLT	2							Weak pyrite mineralisation as veinlets.

DH_ID	From	То	Min 1 Type	Min 1 Style	Min 1 Intensity	Min 2 Type	Min 2 Style	Min 2 Intensity	Min 3 Type	Min 3 Style	Min 3 Intensity	Comments
HVD004	15.00	18.00	PY	PAT	1	PY	FRC	1				Tr-weak pat and frc py. Large patch at 17m, pXRF 36% Fe, 346ppm Ag .
HVD004	18.00	22.00	PY	FRC	1							Frc tr-wk py.
HVD004	22.00	39.00	PY	STR	2	PY	FRC	1				Frc and str wk py.
HVD004	39.00	59.00	PY	STR	2	SP	DIS	1	СР	PAT/DIS	0.5	Str/vlt py, minorly pat/diss. Sph (+-cpy) diss amongst prop patches (py w/epidote(?)).
HVD004	59.00	100.00	PY	PAT	2	SP	DIS	1	СР	DIS	1	Pat py in prop patches. Flecks of sph (+-cpy) . Mod py min with garnets 71-75m.
HVD004	109.00	131	СР	PAT	1	PY	PAT	1	СР	PAT/DIS	1	Tr-wk pat cpy with py halo.
HVD004	140.00	183.50	PY	PAT	1							Very trace pat/diss py.

Cautionary note regarding visual estimates:

In relation to the disclosure of visual mineralisation in the tables above, the Company cautions that visual estimates of oxide, carbonate and/or sulphide mineralisation material abundance should never be considered a proxy or substitute for laboratory analyses. Laboratory ICP-MS and ICP-OES analyses and Fire Assay for gold are required to determine grades and intervals of the elements (e.g., copper – Cu, zinc - Zn) associated with the visible mineralisation reported from preliminary geological logging. The Company will update the market when laboratory analytical results are received and compiled.

APPENDIX 3: Copper Equivalent Calculations

The conversion to copper equivalent (CuEq) grade must take into account the plant recovery/payability and sales price (net of sales costs) of each commodity.

Expected recoveries are based on typical recoveries for mineralised sulphide and precious metals projects in the Lachlan Fold Belt which have similar mineralogy to the Havilah identified mineralisation (see Appendix 2) such as the Cadia-Ridgeway (*Cadia Valley Operations, NSW, Australia, 30 June 2020: NI43-101 Technical Report – "Overall average LOM recovery forecasts for Cadia East are 80% gold recovery and 85% copper recovery"*), and the Bowdens Silver Deposit (*Silver Mines Ltd. (ASX:SVL). 19 September 2017. Significant Upgrade to Mineral Resource for Bowdens* ¹⁰ – "metallurgical recoveries of 85% silver, 82% zinc and 83% lead estimated from test work commissioned by Silver Mines Limited"). Based on this information and the similarity of the mineralisation identified at the Company's Havilah Project to the mineralisation identified at these nearby LFB project's, it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

The prices used in the calculation are based on market pricing for Cu, Zn, Pb, Au and Ag are sourced from the website kitco.com and other publicly available websites, October 2024.

The predominant metal in terms of value (based on grade of intersections and recovery estimates) in the intersections reported is copper. Copper has been chosen for reporting on an equivalent basis as it is the one that contributes most to the metal equivalent calculation for the reported intersections.

The table below shows the grades, process recoveries and factors used in the conversion of drilling intersection grades into a Copper Equivalent (CuEq) grade %:

Metal	Average grade (%)	Average grade g/t)		Metal Prices		Recovery (%)	Factor	Factored Grade %
			\$/oz	\$/lb	\$/t			
Cu	0.16			4.50	\$9,918	0.85	1.00	1.00
Zn	0.41			1.40	\$3,086	0.82	0.30	0.31
Ag		1.0	32	512.00	1,128,448	0.85	0.01	0.011
Au		0.001	2650	42,400.00	93,449,600	0.80	0.89	0.89
Pb	0.006			0.94	2,077	0.83	0.21	0.21
							CuEq	0.30

Using the factors calculated above the equation for calculating the Copper Equivalent (CuEq)% grade of the intersection of, for example, HVD003: 30m @ 0.16% Cu, 0.41%Zn, 1.0 g/t Ag, 0.001 g/t Au, 0.006% Pb is:

 $CuEq\% = (1 \times 0.16\% Cu) + (0.30 \times 0.41\% Zn) + (0.01 \times 1.0 g/t Ag) + (0.89 \times 0.001 g/t Au) + (0.21 \times 0.006\% Pb) = 0.30\% CuEq$

APPENDIX 4: p-XRF spot readings on drill-core vs Assays (Cu, Zn only)

SAMPLE	From	То	Cu pXRF	Assay.	Zn pXRF	Assay	Pb pXRF	Anal Pb
OAI II EE	110111	10	ppm	Cu ppm	ppm	Zn ppm	pppm	ppm
HVD001	1	2	315	277	559	617	139	81
HVD001	2	3	215	427	527	965	67	387
HVD001	3	4	140	555	298	1,740	809	1,020
HVD001	4	5	181	307	356	1,005	47	52
HVD001	5	6	220	247	455	782	48	72
HVD001	6	7	254	223	845	862	40	49
HVD001	7	8	428	391	5,294	2,200	31	39
HVD001	8	9	399	369	556	1,045	17	24
HVD001	9	10	478	560	929	2,820	63	22
HVD001	10	11	435	968	406	671	5	10
HVD001	11	12	5,005	3,240	1,608	1,525	5	7
HVD001	12	13	1,884	2,660	638	1,160	22	7
HVD001	13	14	166	753	182	496	5	12
HVD001	14	15	607	530	531	856	30	14
HVD001	15	16	84	105	97	231	14	10
HVD001	16	17	97	145	106	181	41	38
HVD001	17	18	527	466	425	407	20	33
HVD001	18	19	545	495	565	587	67	42
HVD001	19	20	146	2,380	175	779	70	79
HVD001	20	21	3,015	1,770	422	377	86	80
HVD001	21	22	5,906	3,000	553	1,735	161	765
HVD001	22	23	1,040	1,155	158	471	227	541
HVD001	23	24	248	1,345	158	397	151	501
HVD001	24	25	39	1,515	175	194	77	189
HVD001	25	26	373	1,420	67	610	130	611
HVD001	26	27	244	409	180	678	191	875
HVD001	27	28	144	853	200	472	171	574
HVD001	28	29	5	87	182	382	86	254
HVD001	29	30	5	36	235	943	150	219
HVD001	30	31	5	204	225	432	45	68
HVD001	31	32	51	140	250	1,295	122	149
HVD001	32	33	28	84	285	1,220	16	138
HVD001	33	34	172	176	1,551	751	14	22
HVD001	34	35	5	15	3,347	587	15	30
HVD001	35	36	5	42	3,164	1,205	35	17
HVD001	36	37	5	114	864	2,660	27	57
HVD001	37	38	235	145	1,317	1,025	5	30
HVD001	38	39	61	181	251	2,070	17	29
HVD001	39	40	97	165	155	202	15	19
HVD001	40	41	5	162	94	108	5	9
HVD001	41	42	56	143	197	137	19	14
HVD001	42	43	5	88	149	146	22	20
HVD001	43	44	5	58	340	195	22	20

CAMPLE	F	T -	Cu pXRF	Assay.	Zn pXRF	Assay	Pb pXRF	Anal Pb
SAMPLE	From	То	ppm	Cu ppm	ppm	Zn ppm	pppm	ppm
HVD001	44	45	5	53	151	212	42	18
HVD001	45	46	5	134	217	161	20	14
HVD001	46	47	5	58	107	169	21	16
HVD001	47	48	5	276	106	116	5	13
HVD001	48	49	123	258	113	95	5	10
HVD001	49	50	71	107	82	85	5	10
HVD001	50	51	74	137	79	101	5	11
HVD001	51	52	95	134	70	113	5	10
HVD001	52	53	46	198	83	109	5	14
HVD001	53	54	76	132	106	127	25	21
HVD001	54	55	44	112	152	186	13	17
HVD001	55	56	52	142	118	159	12	14
HVD001	56	57	53	124	191	222	12	18
HVD001	57	58	123	233	87	139	20	15
HVD001	58	59	38	115	65	108	20	20
HVD001	59	60	131	260	180	111	20	16
HVD001	60	61	77	298	137	114	5	12
HVD001	61	62	125	262	100	125	5	16
HVD001	62	63	5	96	185	183	5	8
HVD001	63	64	56	145	83	91	19	11
HVD001	64	65	53	91	132	166	5	11
HVD001	65	66	5	60	142	102	13	12
HVD001	66	67	5	102	150	181	5	11
HVD001	67	68	30	39	105	128	5	7
HVD001	68	69	5	13	315	258	5	9
HVD001	69	70	5	16	209	205	18	9

Drillhala	Douth	Cu pXRF	Zn pXRF	Fuere	Ta	Intomial	pXRF	Assay	pXRF	Assay
Drillhole	Depth	spot ppm	spot ppm	From	То	Interval	Cu Ave ppm	Cu ppm	Zn Ave ppm	Zn ppm
HVD003	84.2	ppiii	188				ppiii	Phin	ppin	ppiii
HVD003	84.5		330							
HVD003	84.8		264	84	85	1		397	261	3,510
HVD003	85.2	32	1,157							
HVD003	85.5	56	594							
HVD003	85.8	447	787							
HVD003	85.82	31,666	348,125	85	86	1	8,050	1,210	50,206	2,700
HVD003	86.2	579	773							
HVD003	86.5	274	366							
HVD003	86.8	546	12,667	86	87	1	466	4,100	4,602	14,000
HVD003	87.2	60	325							
HVD003	87.5	304	3,731							
HVD003	87.8	94	780	87	88	1	153	1,600	1,612	6,230
HVD003	88.2		436							
HVD003	88.5	506	2,147							
HVD003	88.8	108	329	88	89	1	307	1,255	971	1,070
HVD003	89.2	1,631	525							
HVD003	89.5	137	288							
HVD003	89.8	2,629	3,958	89	90	1	1,002	1,390	1,281	4,270
HVD003	90.2	132	1,187							
HVD003	90.35	184,503	19,985							
HVD003	90.5		450							
HVD003	90.8	705	1,049	90	91	1	37,621	1,895	4,486	3,400
HVD003	91.2	36	807							
HVD003	91.5	38	268							
HVD003	91.8	100	342	91	92	1	58	2,400	472	5,240
HVD003	92.2	419	527							
HVD003	92.5	445	651							
HVD003	92.8	939	1,567	92	93	1	601	1,385	915	2,080
HVD003	94.2	2,669	811							
HVD003	93.5	1,007	1,044							
HVD003	93.8	1,275	1,010	93	94	1	1,650	2,380	955	4,580
HVD003	94.2	583	696							
HVD003	94.5	125	171							
HVD003	94.8	55	74	94	95	1	254	1,225	314	1,490
HVD003	95.2	111	108							
HVD003	95.5	55	443							
HVD003	95.8	80	533	95	96	1	82	653	361	1,020
HVD003	96.2	17,359	3,753							
HVD003	96.5	2,158	902							
HVD003	96.8	151	463	96	97	1	6,556	1,585	1,706	3,100
HVD003	97.2	1,705	2,589							
HVD003	97.5		518							
HVD003	97.8	123	535	97	98	1	914	1,200	1,214	2,290
HVD003	98.2	64	160							
HVD003	98.5	122	161							

Drillholo	Donth	Cu pXRF	Zn pXRF	From	To	Intorval	pXRF	Assay	pXRF	Assay
Drillhole	Depth	spot ppm	spot	From	То	Interval	Cu Ave	Cu	Zn Ave	Zn
HVD003	98.8	ppiii	ppm 366	98	99	1	ppm 93	ppm 680	ppm 229	ppm 1,295
HVD003	99.2	86	296							1,200
HVD003	99.5	226	417							
HVD003	99.8	302	669	99	100	1	205	362	461	828
HVD003	100.1	2,208	1,111							
HVD003	100.3	410	1,036							
HVD003	100.5		139							
HVD003	100.7	36	258							
HVD003	100.9	65	2,221	100	101	1	680	614	953	2,310
HVD003	101.1	53	635							
HVD003	101.3	108	618							
HVD003	101.5	72	2,167							
HVD003	101.7		105							
HVD003	101.9		104	101	102	1	78	490	726	2,500
HVD003	102.1	43	233							
HVD003	102.3	9,162	2,953							
HVD003	102.4	68,306	122,615							
HVD003	102.4	2,896	61,333							
HVD003	102.5	704	1,526							
HVD003	102.7		45							
HVD003	102.9		201	102	103	1	16,222	8,360	26,987	26,200
HVD003	103.1	33	201							
HVD003	103.3		540							
HVD003	103.5	29	221							
HVD003	103.7		113							
HVD003	103.9	29	143	103	104	1	30	775	244	1,030
HVD003	104.8	92	432							
HVD003	104.1	237	945							
HVD003	104.3	9,698	8,574							
HVD003	104.5	581	1,034							
HVD003	104.7		284							
HVD003	104.9	1,004	518	104	105	1	2,322	955	1,964	1,915
HVD003	105.1	3,202	741							
HVD003	105.3	373	577							
HVD003	105.5	39	390							
HVD003	105.7	1,115	859							
HVD003	105.9	5,649	3,791	105	106	1	2,076	2,880	1,272	5,000
HVD003	106.1	29	262							
HVD003	106.3	82	287							
HVD003	106.5	47	186							
HVD003	106.7	830	181							
HVD003	106.9	955	431	106	107	1	389	1,720	269	2,510
HVD003	107.1	1,149	4,458							
HVD003	107.3	1,161	1,966							
HVD003	107.5	3,195	18,212							
HVD003	107.7	19,841	9,125							

		Cu pXRF	Zn pXRF				pXRF	Assay	pXRF	Assay
Drillhole	Depth	spot	spot	From	То	Interval	Cu Ave	Cu	Zn Ave	Zn
		ppm	ppm				ppm	ppm	ppm	ppm
HVD003	107.9	5,190	1,922	107	108	1	6,107	3,350	7,137	6,430
HVD003	108.1	208	675							
HVD003	108.3		152							
HVD003	108.5		99			·				
HVD003	108.7	32	122							
HVD003	108.9	151	500	108	109	1	130	394	310	552
HVD003	109.2	50	83							
HVD003	109.5		220							
HVD003	109.8		85	109	110	1	50	252	129	835
HVD003	110.2		98							
HVD003	110.5	94	285							
HVD003	110.8	200	113	110	111	1	147	140	165	174
HVD003	111.1	77	156							
HVD003	111.3		300							
HVD003	111.5	265	538							
HVD003	111.7	45	168							
HVD003	111.9	63	164	111	112	1	113	580	265	999
HVD003	112.1		103							
HVD003	112.3		102							
HVD003	112.5	67	90							
HVD003	112.7		206							
HVD003	112.9	55	133	112	113	1	61	307	127	832
HVD003	113.2	389	153							
HVD003	113.25	5,309	69,575							
HVD003	113.4	6,224	28,568							
HVD003	113.55	563	745							
HVD003	113.7	29	182							
HVD003	113.9	37	163	113	114	1	2,092	4,010	16,564	13,450
HVD003	114.2	37	112							
HVD003	114.5	48	87							
HVD003	114.8		126	114	115	1	43	190	109	202
HVD003	115.2	40	108							
HVD003	115.5	31	95							
HVD003	115.8	72	98	115	116	1	47	113	100	135
HVD003	116.2	77	125							
HVD003	116.5	90	176							
HVD003	116.8	51	139	116	117	1	72	247	146	278
HVD003	117.2	199	132	-		<u> </u>			•	-
HVD003	117.5	140	163							
HVD003	117.8	31	103	117	118	1	123	170	133	207
HVD003	118.2	33	73			<u> </u>				-
HVD003	118.5	39	98							
HVD003	118.8	257	81	118	119	1	110	110	84	106
HVD003	119.2	80	82				-10	-10	0-1	
HVD003	119.5	41	103							
HVD003	119.8	41	81	119	120	1	60	115	89	115
נוטטעזוו	113.0		OI	113	120		OU	110	03	110

		Cu pXRF	Zn pXRF				pXRF	Assay	pXRF	Assay
Drillhole	Depth	spot	spot	From	To	Interval	Cu Ave	Cu	Zn Ave	Zn
		ppm	ppm				ppm	ppm	ppm	ppm
HVD003	120.2	52	110							
HVD003	120.5	129	97							
HVD003	120.8		206							
HVD003	121.2	34	106			·	·			
HVD003	121.5	47	79							
HVD003	121.8	33	99	120	122	2	59	358	116	131
HVD003	122.2		95							
HVD003	122.5	80	87							
HVD003	122.8	34	59			·	·			
HVD003	123.2		73							
HVD003	123.5	104	129							
HVD003	123.8		70	122	124	2	73	131	85	99
HVD003	124.2	33	86				·			
HVD003	124.5	32	78							
HVD003	124.8	67	144							
HVD003	125.2		134							
HVD003	125.5		215							
HVD003	125.8	72	92	124	126	2	51	123	125	86
HVD003	126.2	33	98							
HVD003	126.5		71							
HVD003	126.8	42	94							
HVD003	127.2		119							
HVD003	127.5	40	73							
HVD003	127.8		38	126	128	2	38	79	82	85
HVD003	128.2	53	85							
HVD003	128.5	57	110							
HVD003	128.8	58	39							
HVD003	129.2	207	77							
HVD003	129.5		111							
HVD003	129.8	69	78	128	130	2	89	123	84	95
HVD003	130.2	39	84							
HVD003	130.5	84	74							
HVD003	130.8		118			·				
HVD003	131.2	89	51							
HVD003	131.5	71	61							
HVD003	131.8		66	130	132	2	71	123	76	93
HVD003	132.2	45	79							
HVD003	132.5		101							
HVD003	132.73		19							
HVD003	132.8	47	111							
HVD003	133.2	297	76							
HVD003	133.5	128	102							
HVD003	133.8	44	95	132	134	2	112	104	83	90
HVD003	134.2	7-7	109						- 55	
HVD003	134.5		117							
114000	104.0		11/			l				

		Cu pXRF	Zn pXRF				pXRF	Assay	pXRF	Assay
Drillhole	Depth	spot	spot	From	To	Interval	Cu Ave	Cu	Zn Ave	Zn
		ppm	ppm				ppm	ppm	ppm	ppm
HVD003	134.8	62	76							
HVD003	135.2		98							
HVD003	135.5		60							
HVD003	135.8		70	134	136	2	62	160	76	110
HVD003	136.2	90	123							
HVD003	136.5	251	126							
HVD003	136.8	41	122							
HVD003	137.2	95	80							
HVD003	137.5	54	87							
HVD003	137.8	100	77	136	138	2	105	134	102	117
HVD003	138.2	112	102							
HVD003	138.5		97							
HVD003	138.8	61	120							
HVD003	139.2		122				·			
HVD003	139.5	64	102							
HVD003	139.5	75	66							
HVD003	139.8	83	130	138	140	2	79	127	106	107
HVD003	140.2	31	88							
HVD003	140.5	34	113							
HVD003	140.8		147							
HVD003	141.2		103							
HVD003	141.5	59	64							
HVD003	141.8	45	109	140	142	2	42	122	104	103
HVD003	142.2	68	121							
HVD003	142.5	64	172							
HVD003	142.8	85	98							
HVD003	143.2		171							
HVD003	143.5		115							
HVD003	143.8		85	142	144	2	72	101	127	164
HVD003	144.2		71							
HVD003	144.5	33	122							
HVD003	144.8	100	129							
HVD003	145.2	80	110							
HVD003	145.5	93	70							
HVD003	145.8	500	1,101	144	146	2	224	179	427	221
HVD003	146.2	37	68							
HVD003	146.5	77	126							
HVD003	146.8		78							
HVD003	147.2	77	123							
HVD003	147.5		73							
HVD003	147.8	49	126	146	148	2	60	105	99	154
HVD003	148.2	76	100							
HVD003	148.5	60	67							
HVD003	148.8	74	119							
HVD003	149.2		263							
HVD003	149.5	32	179							

		Cu pXRF	Zn pXRF				pXRF	Assay	pXRF	Assay
Drillhole	Depth	spot	spot	From	To	Interval	Cu Ave	Cu	Zn Ave	Zn
		ppm	ppm				ppm	ppm	ppm	ppm
HVD003	149.8	510	68	148	150	2	151	163	133	148
HVD003	150.2		18							
HVD003	150.5		87							
HVD003	150.8	112	134							
HVD003	151.2	59	140							
HVD003	151.5	241	212							
HVD003	151.8	2,106	1,056	150	152	2	630	137	274	156
HVD003	152.2	205	396							
HVD003	152.5	153	605							
HVD003	152.8	31	350							
HVD003	153.2		282							
HVD003	153.5	34	640							
HVD003	153.8	279	1,118	152	154	2	141	573	565	1,570
HVD003	154.2		213							
HVD003	154.5	37	154							
HVD003	154.8	1,767	8,099							
HVD003	155.2	463	254							
HVD003	155.5	74	58							
HVD003	155.8	97	116	154	156	2	488	493	1,482	758
HVD003	156.2	65	119							
HVD003	156.5		331							
HVD003	156.8		128							
HVD003	157.2		198							
HVD003	157.5	56	904							
HVD003	157.8	32	137	156	158	2	51	418	303	815
HVD003	158.2	35	106							
HVD003	158.5	37	107							
HVD003	158.8	426	162							
HVD003	159.2		205							
HVD003	159.5	38	113							
HVD003	159.8		133	158	160	2	134	266	138	436
HVD003	160.1	34	83							
HVD003	160.3	64	200							
HVD003	160.5	37	172							
HVD003	160.7		129							
HVD003	160.9	187	428							
HVD003	161.1	45	417							
HVD003	161.3	265	1,092							
HVD003	161.5	32	335							
HVD003	161.7	1,511	756							
HVD003	161.9	2,238	46,132	160	162	2	490	1,485	4,974	2,430
HVD003	162.1	155	520						, ,	
HVD003	162.3		604							
HVD003	162.5	559	248							
HVD003	162.7	47	266							
HVD003	162.9	31	213							
1140000	102.3		210			I .			l l	ļ

		Cu pXRF	Zn pXRF	_	_		pXRF	Assay	pXRF	Assay
Drillhole	Depth	spot	spot	From	То	Interval	Cu Ave	Cu	Zn Ave	Zn
		ppm	ppm				ppm	ppm	ppm	ppm
HVD003	163.2	527	946							
HVD003	163.5		217							
HVD003	163.8	166	195	162	164	2	248	933	401	1,980
HVD003	164.2	56	170							
HVD003	164.5		137							
HVD003	164.8		117							
HVD003	165.2	1,592	8,286							
HVD003	165.5	67	492							
HVD003	165.8	56	616	164	166	2	443	422	1,636	2,430
HVD003	166.2	2,855	363							
HVD003	166.5	280	222							
HVD003	166.8	241	312							
HVD003	167.2	219	133							
HVD003	167.5	160	512							
HVD003	167.8		1,482	166	168	2	189	467	709	1,540

APPENDIX 5: JORC 2012 Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Soil sampling in 2021 and 2022 was carried out by Rangott Mineral Exploration Pty Ltd initially on a 200m x 100m grid with infill on a 50m x 20m grid. Samples were collected from surface in areas of skeletal soils or, where deeper, from approximately 20cm below surface and sieved to -1mm before submission to the ALS laboratory, Orange NSW for gold (Au) by fire assay and other elements analysis by ICP-MS. Rock chip samples in 2022 were collected by Rangott Mineral Exploration Pty Ltd from selected outcrop and, where possible, collected across the trike of structures located. Samples were submitted to the ALS laboratory in Orange NSW from which approximately 3 kg was pulverised to produce a 50 g charge for gold fire assay and analysis of other elements by acid digest and ICP-MS/OES analysis at the ALS Brisbane laboratory. Current diamond drilling sampled as halfcore on approximately 1m intervals (varied subject to geological contacts) and analysed using the same procedure as above. The spot pXRF readings previously reported and pending are spot readings on drill-core taken at intervals averaging 0.25m for HVD003 and 1m for HVD001 (see Appendix 3) of actual core length within each mineralised zone. Readings are taken at bottom of core, unless core orientation cannot be determined. The p-XRF measurements are taken in Mining Mode. The values for copper (Cu), Lead (Pb) and Zinc (Zn) are indicative only. Gold, (Au) and Silver (Ag) values are not accurate or reliable and give very limited indication of final values expected in laboratory analyses. A system check and calibration of the pXRF device was performed each time on bootup. Readings of the blank and low-Cu CRM standard were carried out at the start, occasionally during and at end of the pXRF readings session. Some repeat readings were carried out, as indicated by readings with the same depth. All values are as recorded on the pXRF. No values have been substituted, such as when there has been

Criteria	JORC Code explanation	Commentary
		 intervals (ave. 1 standard, 1 blank per 20m). The type of instrument used was a Niton XL3t portable XRF device. The p-XRF was in TestAll Geo/Mining mode. Single-beam, 3 filters in 10 seconds rotation, beam (readings) duration >30secs.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Current drilling is diamond drillcore, PQ in the collar zone then reducing to HQ sized core, triple-tube. Core is oriented by electronic orienting device.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond drilling recovery is reported in the detailed log. Where lost core is recorded assay grades are assumed to be zero. Triple tube used to maximise recovery of broken core. No relationship between grade and broken core so no bias expected.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the 	 All holes were logged for lithology, structure, alteration and mineralisation. Magnetic susceptibility and geotechnical RQD logging completed. Core photography completed. All relevant intersections logged. Logged to the standard that would support a Mineral Resource estimation.
Sub-sampling techniques and sample preparation	 relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. 	 Diamond drilling sampling half core sampled on approximately 1m intervals using core-saw. Drill sample preparation and analysis being carried out at registered laboratory (ALS laboratory in Orange NSW). Field sample procedures involve the insertion of registered Standards every 25m, and duplicates or blanks generally every 25m and offset. Sampling is carried out using standard protocols as per industry practice. Sample sizes range typically from 2 to 3kg and are deemed appropriate to provide an accurate indication of mineralisation.
Quality of assay data	 Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures 	Drillcore (as well as rockchip and soil samples) samples are submitted to

Criteria	JORC Code explanation	Commentary
and laboratory tests	used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Australian Laboratory Service (ALS) in Orange, NSW. Pulp sample(s) have been digested with a mixture of four Acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids for a total digest. Cu, Pb, Zn, Ag determined by Inductively Coupled Plasma (ICP) Mass Spectrometry (ICP-MS). Hand-held XRF spot readings on drill-core are used to provide a guide regarding mineralised intervals and cannot be used for the purposes of estimating intersections. 35 elements including copper, lead and zinc were assayed using Aqua Regia digestion and ICP-AES. Gold was assayed using a 50g charge using Fire Assay. The assaying and laboratory procedures are appropriate for this style of mineralisation.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 For current drilling all significant intercepts will be reviewed and confirmed by two senior personnel before release to the market. No adjustments made to the raw assay data. Data is imported directly to Datashed in raw original format. All data are validated using the QAQCR validation tool with Datashed. Visual validations are then carried out by senior staff members.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillhole locations are initially set and verified with hand held GPS (+/- 5m accuracy). Detailed survey once holes completed. Downhole surveys are via GYRO electronic multishot. Drillhole details shown in Appendix 1.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Current diamond drilling represents an initial test of geochemical and/or geophysical targets and thus the data spacing and distribution is insufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation. No sample compositing will be applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key 	Holes were oriented to best intersect the interpreted structures/mineralisation.

Criteria	JORC Code explanation	Commentary
	mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	 Sampling is carried out at Rangott Exploration facility in Orange, NSW and samples are securely transported to ALS, also in Orange.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the sampling data conducted.

JORC 2012 Edition - Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Golden Deeps Limited acquired 100% of Extract Minerals Pty Ltd (Extract Minerals) which holds the Havilah Project (EL8936) in the Lachlan Fold Belt, New South Wales. Exploration Licence EL8936 was granted on 4th February 2020 for a two-year term. On 23 March 2022 the tenement was renewed for a further 6-year term to 4th February 2028.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The most comprehensive exploration program at the Cheshire Mine – Milfor prospect was conducted by Mt. Hope Minerals NL between 1971 and 1976. Subsequent work comprised reviews of existing data and regional sampling. The TH Creek prospect was explored by Neo Resources NL/Perpetual Resources Limited between 2010 and 2019.
Geology	Deposit type, geological setting and style of mineralisation.	The Havilah Project (EL8936) covers sediments and volcanics of the Tannabutta Group and the (Ordovician) Sofala Volcanics within the Lachlan Fold Belt. The Project is primarily prospective for porphyry/volcanic hosted copper-gold mineralisation analogous to the Cadia-Ridgeway deposit (Newcrest Ltd). Areas of the project immediately adjoining the Bowdens Silver Project are prospective for silver-zinc-lead skarn mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	Rockchip sample coordinates and results are detailed in Golden Deeps Ltd, ASX release 03 March 2022. "Outstanding Copper Soil and Rockchip Results, Havilah Project, NSW". All drillhole details are included in the Table

Criteria	JORC Code explanation	Commentary
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	contained ion Appendix 1 of this release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 For the laboratory assays length weighted average grades have been reported. No high-grade cuts have been applied. Metal equivalent values are as calculated in Appendix 3. Previous pXRF readings on drillcore were spot readings on drill-core taken at intervals averaging 0.25m for HVD003 and 1m for HVD001 (see Appendix 4) of actual core length within each mineralised zone. Readings were generally taken at bottom of core, unless core orientation cannot be determined. The p-XRF measurements are taken in in TestAll Geo / Mining Mode. The values for copper (Cu), Lead (Pb) and Zinc (Zn) are indicative only. Gold, (Au) and Silver (Ag) values are not accurate or reliable and give very limited indication of final values expected in laboratory analyses. The pXRF readings are unrepresentative spot indications of grade only and laboratory assays (ICP-MS/OES) are required to confirm representative grades and intervals. Averages of detectable pXRF readings across the mineralised intervals are not length weighted.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole 	 The downhole intervals of mineralisation intersected in HVD003 (and HVD004) approximates true width. HVD001 and HVD002 were drilled at an oblique angle to the identified mineralisation and mineralised intervals do not represent true thicknesses.
	lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should	 Refer to Figure 1 for the location of relevant data generated by the Company in plan view. Figure 2 is a representative cross section

Criteria	JORC Code explanation	Commentary
	include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 through the mineralisation intersected in HVD003. Figure 3 is a representative cross section through the mineralisation intersected in HVD001. Refer to Figures 4 and 5 for regional location and geological setting.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Table 1 includes all significant intersections in HVD001 and HVD003. Appendix 1 contains drillhole details. Appendix 2 provides a description of all mineralised intervals intersected by the drilling to date. Appendix 4 includes spot pXRF readings within the reported intervals in HVD001 and HVD003 with assays (Cu and Zn) for the same intervals.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other new material exploration data reported. Details of previous geophysical survey data referred to in this release is detailed in Golden Deeps Ltd, ASX release 14 February 2024: "Strong IP Porphyry Cu-Au Targets Identified at Havilah".
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Based on the results of this drilling program and infill and extension soil sampling in progress, further drilling may be carried out at the Hazelbrook and Hazelbrook North prospects to define the lateral and depth extent of the mineralisation. Other targets such as Milfor (Figure 1), where previous soil sampling has defined a large 1km x 1km anomalous area associated with a prominent magnetic anomaly, requires additional geophysics (magnetics and IP) and further soil sampling to fine tune the target for drill testing,