

Javelin agrees to acquire Eureka Gold Mine near Kalgoorlie

Eureka already hosts a JORC Mineral Resource Estimate of 112,000oz Au, with mineralisation open along strike and at depth

Highlights

- Javelin to acquire Eureka Gold Mine from Delta Lithium Limited (ASX: DLI) for upfront consideration of \$3m in cash and shares, plus \$1m in deferred consideration shares
- The deal will deliver Javelin its second brownfields exploration project in WA's Eastern Goldfields, close to existing infrastructure including mills with production capacity
- Eureka historical drill intercepts to be followed up in Q1 2025 drill program include 4m @ 134.52g/t Au, 3m @ 48.75 g/t Au and 4m at 32.08g/t Au
- Javelin has secured \$3m in firm commitments with Shaw and Partners to fund the Eureka acquisition and the Eureka exploration programs to commence in Q1 2025
- Current JORC Mineral Resource Estimate at Eureka stands at 2.45Mt at 1.42 g/t Au totalling 112,000oz. All resources are hosted on granted historic mining leases.
- Major gold deposits such as Paddington (>4Moz) are hosted within the same greenstone lithological sequence only 20km south-east of Eureka
- Structural setting similar to Zoroastrian deposit (530Koz) at Bardoc Gold 1.4km to the east of Eureka Gold Deposit
- Javelin is set to start drilling at its Coogee Gold project near Kalgoorlie in this quarter

Javelin Minerals Limited (ASX: JAV) (**Javelin**) is pleased to advise that it has agreed to acquire 100% of the Eureka Gold Project (**Eureka Gold Project** or the **Project**) in WA from Delta Lithium Limited (ASX: DLI) (**Delta**) for upfront consideration of \$1.5 million cash and \$1.5m worth of Javelin shares to be escrowed for 12 months, and deferred consideration of \$1.0m worth of Javelin shares vesting on Eureka Gold Project milestones being achieved, subject to Javelin shareholder approval.

Eureka is located 54km north-north-west of Kalgoorlie in the heart of the State's greenstone belt. It sits 20km north-north-west of the world-famous Paddington gold mine and near several producing mines.

The Eureka Gold Project has a JORC Mineral Resource Estimate of 112,000oz at 1.42g/t at a cut-off grade of 0.5g/t. This includes an Indicated Mineral Resource Estimate of 62,000oz. The Project acquisition comprises four mining licences M24/0584, M24/0585, M24/0586 and M24/0189, one miscellaneous licence L24/0234 and the three prospecting licences P24/5116, P24/5549 and P24/5548 (the **Tenements**).

Eureka was mined in the early 1990's and then subject to tribute mining in 2018. The majority of the gold resource is currently hosted on granted mining leases in the immediate vicinity of the Eureka open pit, along strike and down-dip. The mineralisation is hosted within several steeply dipping sheared zones dipping at approximately 75 degrees to the east.

Resource drilling in 2021 by Delta (formerly TNT Mines Ltd) (ASX Announcement 28 July 2021: New Gold Lode at Eureka, ASX Announcement 7 October 2021: Eureka North Exploration Results Include High Grade Gold) led to the establishment of a new lode to the north of the pit. The successful drilling campaign confirmed additional mineralisation in addition to historical results in the ASX release including:

- 4m @ 134.52g/t Au from 53m from drillhole ERC39, and
- 4m at 32.08g/t Au from 104m from Drillhole WRRC106.

Drilling to the south of the pit extended the known mineralisation with additional high grade results including:

- 6m at 13.88g/t from 38m, including 2m at 31.95g/t from drillhole WRRC0121.

Subsequent extensional drilling in 2021 by Delta (formerly Red Dirt Metals Ltd) at Eureka North resulted in more significant results (ASX Announcement 7 October 2021: Eureka North Exploration Results Including High Grade Gold). Significant assays returned include:

- 3m @ 48.75 g/t Au from 129m in WRRC0135
- 4m @ 11.2 g/t Au from 32m in WRRC0136 (within 4m composite), and
- 1m @ 5.97 g/t Au from 108m in WRRC0127

Under the terms of the acquisition, Javelin will acquire from Delta 100% of the issued capital in Warriedar Mining Pty Ltd (**Warriedar**), a wholly owned subsidiary of Delta which owns 100% of the Eureka Project, for the following total acquisition consideration payable to Delta at settlement:

- \$1,500,000 in cash (from the proceeds of the \$3m capital raising);
- \$1,500,000 worth of Shares, being 500,000,000 fully paid ordinary shares in Javelin (**Shares**), at a deemed issue price of \$0.003 per Share, subject to shareholder approval. These shall be subject to 12 months voluntary escrow from their date of issue; and
- \$1,000,000 worth of deferred consideration Shares at a deemed issue price equal to the 10-day volume weighted average price (VWAP) of Shares as traded on the ASX up to and including the day prior to the relevant vesting date, subject to shareholder approval. The deferred consideration shares will vest upon the achievement of the earlier of:
 - 1. the recommencement of mining operations on one or more of the Tenements; or
 - 2. Javelin increasing the JORC compliant Inferred Mineral Resource across the Tenements to >200,000oz at a 0.5% g/t cut off, provided that the relevant milestone has been satisfied within the earlier of 3 years of settlement of the acquisition and 15 December 2027.

Delta will also have the right to appoint a representative to the Board of Javelin upon settlement of the acquisition.

info@javelinminerals.com.au
 +61 8 6319 1900

The Eureka acquisition will deliver Javelin its second brownfields exploration project in WA's Eastern Goldfields. The Company already owns the Coogee Project, where it is set to commence drilling this quarter. The Coogee Project is located next to the rich St Ives Goldfield and has a JORC Resource of 126,685oz of gold and 4,133 tonnes of contained copper (ASX Announcement 26 August 2024: 158% Increase in Coogee Gold MRE) (Appendix 2).

Javelin Executive Chairman Brett Mitchell said: "Eureka is an outstanding acquisition opportunity which has become available only because Delta is focussed on a wider Lithium strategy.

The Project meets our strategy perfectly. It has an established resource with further known mineralisation which remains open at depth and along strike. And like Coogee, it has been exposed to virtually no modern exploration.

Javelin now has two compelling brownfields exploration projects on mining leases, 50km either side of Kalgoorlie with immense exploration upside, giving us huge opportunities to create value for shareholders with further exploration".

Figure 1 – Aerial Photo showing the open cut Eureka Gold Pit looking east

Background on the Eureka Gold Project

The Eureka Gold Project tenements are located in the Eastern Goldfields of WA, 54 km north-north-west of Kalgoorlie and is accessed via the Goldfields Highway, Figure 2.

The region is considered prospective for gold mineralisation and contains a number of historical mines and mineral occurrences. The Project is situated in a highly fertile greenstone belt with numerous gold deposits and abundant gold occurrences nearby.

info@javelinminerals.com.au
 ≁61 8 6319 1900

The Eureka gold deposit was first discovered in the 1890s, with historical underground mining worked until 1940. Historical information sources noted that gold mineralisation is associated with shearing and quartz veining within easterly dipping oxidised fine grained mafic rocks. Recorded production from 1897 up to 1940 totalled 809 tonnes averaging 27.8 g/t Au. From 1985 to 1988, mining of the Eureka open pit included 220,000 tonnes at 4.5 g/t Au for 32,000oz by West Coast Holdings Limited. Development to test for underground mineralisation potential at Eureka was started in mid-1996. In 2018, Tyranna Resources Limited also mined 50,600 tonnes of ore grading 3.16 g/t Au producing 5,374oz of gold.

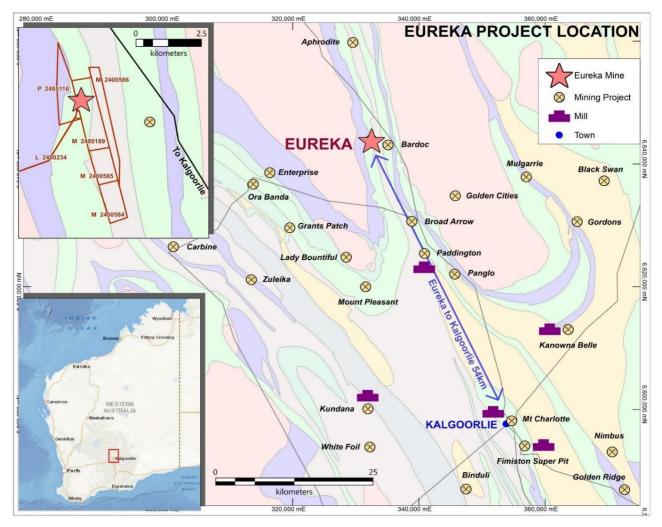


Figure 2 – Location Map showing the Eureka Project area with nearby Gold Mines and major infrastructure

Geology and Prospectivity

Regionally, the Eureka gold deposit occurs on the eastern limb of the major south-east plunging Goongarrie-Mt. Pleasant Anticline. The eastern limb consists predominantly of north-north-west trending mafic and ultramafic lithologies. This zone consists of multiple shear zones occurring within intercalated felsic, mafic and ultramafic lithologies in the vicinity of the synformal axis. The Eureka gold deposit is located within the Bardoc Tectonic Zone which hosts the Paddington and Bardoc gold deposits.

Gold mineralisation at Eureka occurs as a number of lens-shaped ore shoots up to 10m wide within the shear zone. The gold is hosted in quartz veins and quartz stringers within the altered mafic host rocks. The mineralisation at Eureka is hosted within basalts and is contained with a zone of shearing and foliation with quartz veining containing quartz, carbonate and low amounts of sulphides with some visible gold has a variable thickness of up to 20 metres. Mineralisation has been exploited in a 120m deep, 300m long open pit that was developed on a number of lens-shaped shoots up to 10 metre wide within an intensely sheared zone approximately 30 metres wide. The mineralisation is sub-vertically dipping and strikes in a north south orientation with several offsets and splays forming the main structure.

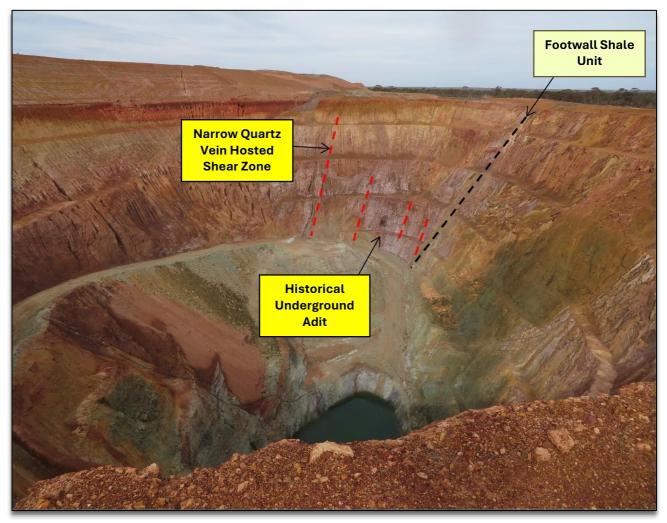


Figure 3 - Eureka Open Pit – Recent view of Open Pit workings, looking south (Cube, June 2021)

Mathematical info@javelinminerals.com.au

 → +61 8 6319 1900

Eureka Gold Project Mineral Resource Estimate

The existing Eureka Gold Project Mineral Resource Estimate (**MRE**) stands at **2.45Mt at 1.42 g/t Au totalling 112,000 ounces of gold**. Table 1 shows the Eureka Mineral Resource Estimate as of June 2021 based on tonnes and grades (*also refer to Appendix 3 – Summary of JORC Table 1 and Listing Rule 5.8.1*).

Table 1: Eureka Gold Deposit Mineral Resource Estimate by Classification as of June 2021(at a 0.5 g/t Au cut-off)

Classification	Tonnage t	<i>Grade</i> g/t Au	<i>Contained Metal</i> (Oz Gold)
Indicated	1,269,000	1.53	62,000
Inferred	1,183,000	1.3	50,000
Total	2,452,000	1.42	112,000

Exploration Potential

Strike potential north of the pit

Some 750m of strike north of the pit remain inadequately tested, which will be the focus of the planned Eureka exploration drilling program in early 2025. The previous exploration may have been ineffective as most of the drillholes were terminated at shallow depths thus not penetrating the zone of near-surface leaching. The drill traverses were restrictive in coverage and potentially have missed the best target zones.

Significant RC drilling results immediate north of the pit include:

- ERC39: 4m @ 135 g/t Au from 53m
- WRRC0106: 4m @ 32.6 g/t Au from 104m, including 1m @ 116 g/t Au from 104m
- WRRC0019: 4m @ 11 g/t Au from 42m, including 2m @ 19.2 g/t from 43m
- WRRC0135: 3m @ 48.75 g/t Au from 129m
- WRRC0136: 4m @ 11.2 g/t Au from 32m

The full results are set out in Appendix 1.

Strike potential south of the pit

At surface, the main host structure strikes over the western boundary of the leases some 330m south of the pit. Due to the east dip of the host structure, the 200m strike length seen at surface extends at depth beneath the tenement.

Significant RC drilling results immediate south of the pit include:

- WRRC0001: 13m @ 2.22 g/t Au from 51m
- WRRC0121: 6m @ 13.88 g/t Au from 38m
- WRRC0081: 13m @ 2.13 g/t Au from 110m, 9m @ 3.15 g/t Au from 127m, including 3m @ 7.9 g/t Au from 131m
- WRRC0082: 3m @ 8.59 g/t Au from 74m

The full results are set out in Appendix 1.

Strike potential for parallel structures extends some 4,400m south of the pit. This zone remains poorly tested with all the drilling concentrating around the Eureka Pit.

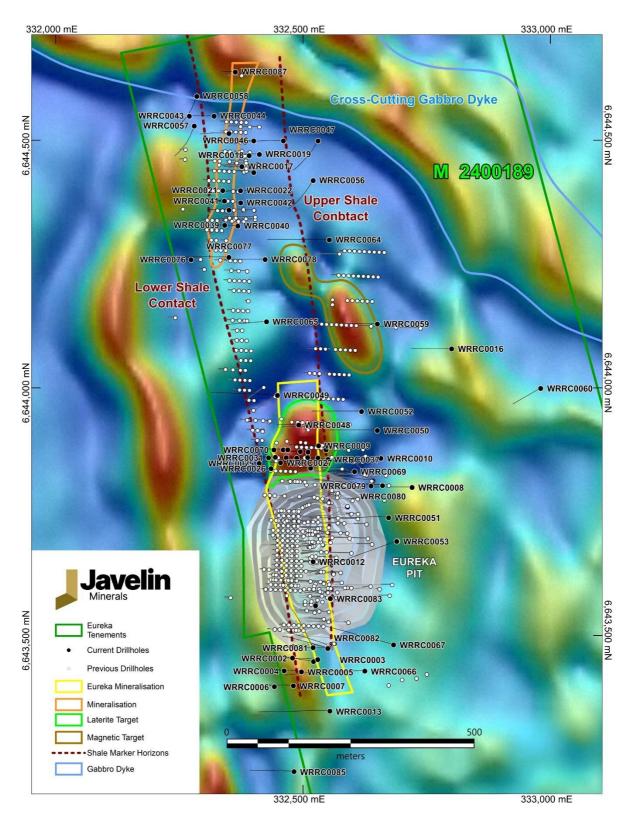


Figure 4 – Drillhole Collars Position in relation to the open Eureka Pit

info@javelinminerals.com.au
 ≁61 8 6319 1900

Potential at depth beneath the underground resource

The mineralised veins have been drilled over 180 vertical metres below the bottom of the current pit. Deeper drilling is suggested to test the continuation of the subvertical east dipping gold mineralised zone. The northern zone along with the bottom of the pit remain open.

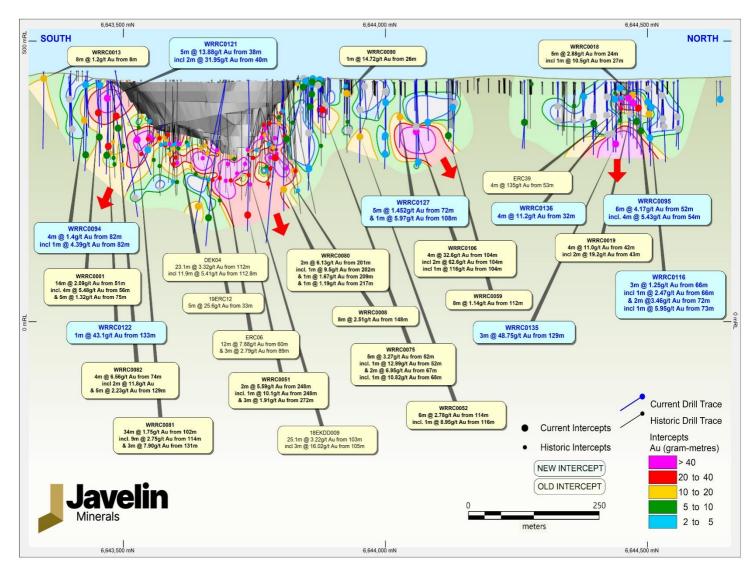


Figure 5 – Long Section showing significant gold intersection south and north of the Eureka Pit (Cube, June 2021)

Firm Commitments Received for \$3m Share Placement

The Company is pleased to advise that via lead manager and bookrunner Shaw and Partners it has received firm commitments for \$3m via a two-tranche placement, from institutional and sophisticated investors at \$0.0025 per Share (Placement). The Shares under the Placement will be issued as follows:

Tranche 1: 900,000,000 Shares at an issue price of \$0.0025 per Share, to raise up to \$2,250,000 utilising available placement capacity under ASX listing rule 7.1 (482,315,382 Shares) and 7.1A (417,684,618 Shares), will be issued on or about 1 November 2024; and

Page 8

1202 Hay Street West Perth WA 6005 www.javelinminerals.com.au

info@javelinminerals.com.au \square +61 8 6319 1900

 Tranche 2: 300,000,000 Shares at an issue price of \$0.0025 per Share to raise up to \$750,000 will be subject to shareholder approval at the Company's Annual General Meeting to be held in November 2024 (AGM).

The Placement participants will also receive a 1:2 option excercisable \$0.004 expiring 2 years from the date of grant (**Option**).

Fees of 5% of the amount raised under the Placement and 100,000,000 Options are payable to Shaw and Partners on the Placement. There is no retainer or right of first refusal contained in Shaw and Partners lead manager mandate.

Pareto Capital Pty Ltd will receive a fee of \$30,000 (to be settled in shares post AGM) and 50,000,000 Options for the provision of corporate advisory services associated with the transaction.

All Options related to the capital raising will be issued subject to shareholder approval at the AGM.

Key Terms of the Eureka Gold Project Acquistion

The Company has agreed to acquire 100% of the issued capital of Warriedar, and the Eureka Gold Project on the terms as set out below.

Consideration

Subject to the satisfaction of the conditions precedent, the total consideration to be payable by the Company to Delta for the acquisition is:

- a) \$1,500,000 cash;
- b) 500,000,000 Shares, being \$1,500,000 worth of **Shares**, at a deemed issue price of \$0.003, which shall be subject to 12 months voluntary escrow from their date of issue (**Settlement Shares**); and
- c) \$1,000,000 worth of Shares at a deemed issue price equal to the 10-day VWAP up to and including the day prior to the relevant vesting date below (**Deferred Consideration Shares**), vesting upon the achievement of the earlier of:
 - (A) recommencement of mining operations on one or more of the Tenements; or
 - (B) Javelin increasing the JORC compliant Inferred Mineral Resource acrosst the Tenements to >200,000 oz at a 0.5% g/t cut off, provided that the relevant milestone has been satisfied within the earlier of 3 years from settlement of the acquisition and 15 December 2027.

In the event that the 10-day VWAP in respect of the Deferred Consideration Shares calculated in accordance with paragraph (c) above is less than \$0.003 per Share at the relevant time, Javelin has agreed to (at its election):

- (A) seek refreshed shareholder approval for the issue of up to \$1,000,000 worth of Shares to Delta (or its nominee/s) at a deemed issue price equal to the 10-day VWAP up to and including the day prior to the relevant vesting date above; or
- (B) pay the \$1,000,000 in cash to Delta (or its nominee/s) into its nominated bank account.

Javelin will issue the Deferred Consideration Shares within 7 business days of achievement of the relevant milestone being achieved or if a refreshed shareholder approval is required (contemplated above), the Company will either:

- (A) pay the \$1,000,000 in cash to Delta (or its nominee/s) into its nominated bank account within 2 business days of the relevant milestone attaching to the Deferred Consideration Shares being achieved; or
- (B) issue the Deferred Consideration Shares to Delta (or its nominee/s) within 7 business days of the refreshed shareholder approval being obtained or, should any such resolution(s) not be passed by the requisite majority of shareholders, pay the \$1,000,000 in cash to Delta (or its nominee/s) within 2 business days of such shareholder meeting.

Any such refreshed shareholder approval must be sought, and the relevant shareholder meeting convened and held by the Company, as soon as practicable and within 3 months of the relevant milestone attaching to the Deferred Consideration Shares being achieved.

The Company will seek shareholder approval for the issue of the Settlement Shares and Deferred Consideration Shares at its upcoming AGM.

Conditions Precedent

The acquisition is subject to and conditional upon satisfaction of the following conditions (Conditions Precedent):

- a) the Company completing a capital raising to raise a minimum of \$2,500,000 (before costs) pursuant to a placement of Shares to sophisticated and professional investors; and
- b) the Company obtaining any and all Shareholder approvals required to undertake the issue of both the Settlement Shares and Deferred Shares (assuming compliance with the requirements of the ASX waiver dated 9 October 2024) for the purposes of Listing Rule 7.1.

The Conditions Precedent must be satisfied on or before 5.00pm (WST) on the date that is 3 months after the date of execution of the agreement.

Board changes – Delta right to appoint a Director

Under the terms of the agreement, Delta will have the right to nominate a director of Delta to the board of Javelin, with effect from settlement of the acquisition.

This ASX announcement has been authorised for release by the Board of Javelin Minerals Limited.

-ENDS-

For further information, please contact:

Brett Mitchell **Executive Chairman** Javelin Minerals Limited info@javelinminerals.com.au Paul Armstrong Investor Relations Consultant Read Corporate paul@readcorporate.com.au

info@javelinminerals.com.au

 → +61 8 6319 1900

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Pedro Kastellorizos. Mr. Kastellorizos is the Non-Executive Director of Javelin Minerals Limited and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on the information in the form and context in which it appears. Mr Kastellorizos has reviewed all relevant data for the aircore drilling program and reported the results accordingly.

The information in this announcement that relates to estimation and reporting of Mineral Resource at the Eureka Project Is based on information compiled by Mr Brian Fitzpatrick. Mr Fitzpatrick is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person (CP) as defined in the 2012 Edition of the Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Mr Fitzpatrick is a full time employee of Cube Consulting Pty Ltd , which specialises in mineral resource estimation, evaluation and exploration. Neither Mr Fitzpatrick nor Cube Consulting Pty Ltd holds any interest in Javelin Minerals, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Fitzpatrick consented to the inclusion of the information in the original announcements of TNT Mines in which it appears and all technical statements based on his information in the form and context in which it appears.

The information in this report / ASX release that relates to Exploration Results, Exploration Targets and Mineral Resources at Coogee is based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resource Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets and Mineral Resources. Mr Gillman is a full-time employee of Odessa Resource Pty Ltd, who specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillam nor Odessa Resource Pty Ltd holds any interest in Javelin Minerals Limited, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this report / ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

Javelin Minerals Limited confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning Exploration Results, Exploration Targets and Mineral Resources included in the original ASX announcements continue to apply and have no materially changed, and the forma and context in which the relevant competent person's findings are presented in this report have not been materially modified from the original ASX announcements.

Forward Statement

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipates" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, commodity prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in commodity prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

Info@javelinminerals.com.au
→ +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

References

Hodgins, J. - Combined Annual Technical Report, Eureka Gold Project M24/189, M24/584, M24/585 and M24/586, 1 January 2017 to 31 December 2017. Combined Report C42-005. Central Iron Ore Ltd.

Revell, N - Combined Annual Technical Report, Eureka Gold Project M24/189, M24/584, M24/585 and M24/586, 1 January 2018 to 31 December 2018. Combined Report C42-005. Tyranna Resources Ltd.

Wilford J.W., Craig M.A., Tapley I. J. and Mauger A.J., 1998. Regolith-Landform Mapping and its Implications for Exploration over the Half Moon Lake region, Gawler Craton, South Australia. CRC LEME Restricted Report 92R / E&M Report 542C. 91 pp. (Unpublished).

For further information, please refer to previous ASX announcements

(ASX:DLI – Formerly ASX:RDT and ASX:TNT):

ASX Announcement 21 October 2021: *Eureka North Exploration Results Including High Grade Gold* ASX Announcement 24 June 2021: *TNT Mines drilling increases Eureka Resource to 112,000 oz gold* ASX Announcement 15 June 2021: *Eureka Auger Programme delineates extensive Gold Anomaly* ASX Announcement 15 February 2021: *Investor Presentation – Eureka and Warriedar Gold Projects* ASX Announcement 9 February 2021: *Strong initial Gold Results Delivered from Eureka South* ASX Announcement 23 October 2010: *TNT acquires Historical Western Australian Gold Projects* ASX Announcement 7 October 2010: *Eureka North Exploration Results*

(ASX: JAV)

ASX Announcement: 26 August 2024: 158% Increase in Coogee Gold MRE This Announcement contains no new information on existing Javelin Projects.

info@javelinminerals.com.au
 → +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

PROFORMA CAPITAL STRUCTURE

	Pre Eureka acquisition and Placement	Placement and Eureka acquisition	Post Placement and Eureka acquisition
Shares	4,276,846,180	1,700,000,000	5,976,846,180
Unlisted Options (\$0.004 exp 30/11/2026)	154,300,007	750,000,000	754,300,007
Listed Options (JAVOA) – 31- Dec-2028 – \$0.002	2,813,422,931	-	2,813,422,931
Listed Options (JAVO) – 31- Dec-2024 – \$0.03	376,000,004	-	376,000,0004
Performance Rights	400,000,000	-	-

APPENDIX 1 - Significant Drilling Intercept Table Cut-off grade of 0.5 g/t Gold allowing for 2m internal dilution All co-ordinates in GDA94/ MGA Zone 51

Drillhole Id	From (m)	To (m)	Drill Interval (m)	Au g/t
ERC01	90	101	11	2.445
ERC02	122	127	5	2.808
ERC02	131	132	1	8.580
ERC02	139	140	1	3.290
ERC04	30	34	4	1.158
ERC04	58	62	4	5.773
ERC05	102	104	2	6.830
ERC05	105	113	8	3.303
ERC05	114	118	4	0.810
ERC06	36	40	4	4.168
ERC06	60	72	12	7.875
ERC06	89	92	3	2.793
ERC07	59	60	1	1.850
ERC07	91	96	5	1.248
ERC08	144	146	2	1.485
ERC08	148	155	7	2.479
ERC08	164	165	1	2.750
ERC10	43	51	8	1.008
ERC10	54	59	5	1.262
ERC10	72	79	7	1.539
ERC11	56	57	1	1.190
ERC11	58	67	9	1.563
ERC11	70	79	9	1.864
ERC12	47	52	5	1.860
ERC12	57	58	1	1.140
ERC12	59	60	1	0.790
ERC15	4	15	11	3.938
ERC15	16	22	6	1.273
ERC15	27	32	5	0.632
ERC15	36	41	5	1.438
ERC16	40	44	4	1.468
ERC16	45	52	7	2.079
ERC17	78	83	5	2.402
ERC18	36	39	3	1.377
ERC18	60	71	11	5.508
ERC20	130	133	3	1.160
ERC20	135	136	1	1.900
ERC20	140	141	1	0.590
ERC21	140	167	5	0.968
ERC22	146	150	4	1.685
ERC23	20	21	1	2.230
ERC23	53	54	1	1.510
ERC23	69	70	1	1.750
ERC24 ERC25	50	52	2	5.110
ERC25 ERC25	50	63	4	0.840
		63 73	4	17.000
ERC25	72			
ERC26	41	46	5	1.060

Drillhole Id	From (m)	To (m)	Drill Interval (m)	Au g/t
ERC62	57	58	1	1.830
ERC62	62	63	1	0.520
ERC62	69	72	3	1.123
ERC39	23	24	1	0.970
ERC39	27	28	1	0.650
ERC39	53	57	4	134.520
ERC62	75	76	1	3.130
ERC62	86	89	3	3.463
ERC63	80	81	1	1.550
ERC64	221	224	3	3.503
ERC64	233	234	1	0.730
ERC65	74	76	2	2.455
ERC65	85	86	1	0.620
ERC66	53	55	2	1.025
ERC66	67	70	3	1.487
ERC67	63	65	2	3.335
ERC67	72	77	5	8.330
ERC68	46	49	3	1.393
ERC69	72	73	1	0.840
ERC69	90	102	12	1.585
ERC69	116	118	2	1.090
ERC70	7	13	6	2.085
ERC70	21	23	2	0.780
ERC72	10	11	1	0.630
ERC72	30	33	3	3.667
ERC72	37	38	1	0.590
ERC72	40	46	6	1.725
ERC73	32	35	3	2.103
ERC73	59	63	4	2.535
ERC74	50	58	8	2.138
ERC74	66	69	3	6.200
ERC74	85	86	1	0.920
ERC74	125	126	1	0.700
WRRC0001	51	64	13	2.225
WRRC0001	75	79	4	1.568
WRRC0002	3	6	3	0.683
WRRC0002 WRRC0002	13 51	14 52	1	0.500
WRRC0002 WRRC0003	65	52 66	1	0.660
WRRC0003	78	00 79	1	1.100
WRRC0003	102	107	5	1.662
WRRC0003	75	76	1	0.910
WRRC0004	73	70	1	0.520
WRRC0005	6	7	1	0.520
WRRC0005	9	10	1	0.690
WRRC0008	148	156	8	2.510
WRRC0008	232	233	1	0.630
WRRC0008	240	241	1	0.750
			-	
WRRC0009	4	7	3	0.730

1202 Hay Street West Perth WA 6005
 www.javelinminerals.com.au

Info@javelinminerals.com.au
 → +61 8 6319 1900

Drillhole Id	From (m)	To (m)	Drill Interval (m)	Au g/t
WRRC0009	51	52	1	1.260
WRRC0009	69	70	1	0.750
WRRC0009	99	100	1	0.830
WRRC0010	181	182	1	2.540
WRRC0011	144	146	2	0.835
WRRC0011	152	153	1	1.020
WRRC0011	183	184	1	0.590
WRRC0011	239	244	5	0.590
WRRC0011	247	250	3	1.653
WRRC0011	257	259	2	0.585
WRRC0011	291	292	1	13.220
WRRC0013	8	16	8	1.200
WRRC0017	9	12	3	0.967
WRRC0018	24	29	5	2.880
WRRC0018	42	43	1	0.500
WRRC0018	54	55	1	1.070
WRRC0019	42	46	4	10.990
WRRC0019	74	75	1	0.840
WRRC0021	107	108	1	6.720
WRRC0022	70	71	1	1.290
WRRC0023	48	49	1	0.630
WRRC0023	84	87	3	1.967
WRRC0024	33	34	1	0.760
WRRC0024	36	37	1	0.600
WRRC0024	42	43	1	0.510
WRRC0024	109	110	1	1.350
WRRC0026	0	3	3	0.887
WRRC0027	2	8	6	0.708
WRRC0028	6	10	4	1.438
WRRC0029	2	6	4	1.008
WRRC0029	51	53	2	0.770
WRRC0030	1	8	7	0.943
WRRC0030	27	28	1	3.210
WRRC0030	47	48	1	0.750
WRRC0031	0	2	2	1.315
WRRC0032	6	8	2	0.615
WRRC0033	5	10	5	1.234
WRRC0034	10	11	1	1.560
WRRC0035	3	8	5	1.080
WRRC0036	4	9	5	1.070
WRRC0036	53	54	1	1.000
WRRC0037	4	5	1	0.980
WRRC0037	47	51	4	1.128
WRRC0037	55	56	1	3.460
WRRC0037	59	60	1	0.540
WRRC0038	93	94	1	0.610
WRRC0041	17	18	1	0.970
WRRC0041	37	38	1	0.690
WRRC0041	45	46	1	0.640
WRRC0042	41	42	1	0.710

Drillhole Id	From (m)	To (m)	Drill Interval (m)	Au g/t
WRRC0042	75	76	1	0.520
WRRC0051	0	4	4	1.190
WRRC0051	136	140	4	1.470
WRRC0051	247	252	5	2.488
WRRC0051	254	255	1	1.000
WRRC0051	271	275	4	1.633
WRRC0052	114	120	6	2.780
WRRC0053	152	156	4	1.180
WRRC0053	160	164	4	1.120
WRRC0053	201	202	1	0.990
WRRC0053	264	269	5	0.902
WRRC0053	275	276	1	2.670
WRRC0054	0	4	4	1.740
WRRC0054	81	82	1	0.510
WRRC0054	93	96	3	2.523
WRRC0054	140	141	1	2.220
WRRC0059	115	118	3	2.383
WRRC0065	45	46	1	0.540
WRRC0066	171	173	2	0.965
WRRC0066	178	181	3	2.553
WRRC0066	188	189	1	0.750
WRRC0067	264	272	8	1.039
WRRC0067	279	280	1	1.040
WRRC0070	3	4	1	1.570
WRRC0072	8	9	1	0.590
WRRC0072	45	46	1	1.200
WRRC0073	6	10	4	2.388
WRRC0074	0	2	2	0.615
WRRC0074	5	7	2	0.735
WRRC0074	8	12	4	0.573
WRRC0075	10	11	1	0.510
WRRC0075	48	49	1	0.500
WRRC0075	52	53	1	12.990
WRRC0075	54	58	4	0.823
WRRC0075	67	69	2	6.950
WRRC0075	78	79	1	0.620
WRRC0077	88	89	1	6.470
WRRC0077	103	104	1	0.670
WRRC0079	118	119	1	1.380
WRRC0079	130	132	2	2.040
WRRC0079	156	157	1	3.620
WRRC0080	112	116	4	0.750
WRRC0080	165	166	1	0.960
WRRC0080	201	203	2	6.125
WRRC0080	209	210	1	1.670
WRRC0080	217	218	1	1.190
WRRC0081	69	71	2	1.335
WRRC0081	77	79	2	0.750
WRRC0081	99	103	4	0.698
WRRC0081	110	119	9	1.821

Drillhole Id	From (m)	To (m)	Drill Interval (m)	Au g/t
WRRC0081	121	123	2	5.385
WRRC0081	127	128	1	2.790
WRRC0081	131	136	5	5.016
WRRC0082	3	5	2	0.680
WRRC0082	74	77	3	8.590
WRRC0082	120	121	1	0.590
WRRC0082	129	130	1	2.970
WRRC0082	131	136	5	1.090
WRRC0083	53	54	1	3.440
WRRC0083	125	127	2	0.665
WRRC0087	36	40	4	0.500
WRRC0090	26	27	1	14.720
WRRC0091	103	104	1	1.320
WRRC0092	112	113	1	1.240
WRRC0094	8	9	1	0.590
WRRC0094	82	86	4	1.395
WRRC0094	99	100	1	4.780
WRRC0095	48	49	1	0.930
WRRC0095	52	58	6	4.167
WRRC0097	29	30	1	0.660
WRRC0098	39	42	3	0.533
WRRC0102	43	45	2	1.880
WRRC0102	54	55	1	0.710
WRRC0102	59	62	3	0.837
WRRC0103	113	115	2	0.905
WRRC0104	151	153	2	0.765
WRRC0104	156	158	2	1.140
WRRC0106	48	52	4	1.730
WRRC0106	63	64	1	0.510
WRRC0106	104	108	4	32.083
WRRC0107	108	109	1	0.930
WRRC0108	169	172	3	1.180
WRRC0109	55	56	1	2.480
WRRC0114	5	6	1	0.580
WRRC0114	112	113	1	0.990
WRRC0115	86	88	2	2.725
WRRC0115	122	123	1	1.020
WRRC0116	66	69	3	1.250
WRRC0116	72	74	2	3.455
WRRC0117	82	83	1	0.550
WRRC0117	85	86	1	0.540
WRRC0121	32	33	1	0.860
WRRC0121	38	43	5	13.882
WRRC0121	87	88	1	0.790
WRRC0122	67	68	1	1.540
WRRC0122	73	75	2	2.680
WRRC0122	92	94	2	1.140
WRRC0122	97	102	5	1.010
WRRC0122	128	129	1	0.580
WRRC0122	133	134	1	43.100

Drillhole Id	From (m)	To (m)	Drill Interval (m)	Au g/t
WRRC0123	132	133	1	0.790
WRRC0123	141	142	1	0.740
WRRC0123	143	150	7	0.867
WRRC0124	64	65	1	0.960
WRRC0127	72	77	5	1.452
WRRC0127	80	81	1	0.920
WRRC0127	108	109	1	5.970
WRRC0129	66	68	2	0.680
WRRC0129	109	112	3	0.927
WRRC0130	98	105	7	0.659
WRRC0130	106	107	1	0.790
WRRC0130	112	114	2	0.825
WRRC0131	128	130	2	1.300
WRRC0133	102	103	1	0.730
WRRC0135	129	132	3	48.750
WRRC0136	85	86	1	0.740
WRRC0136	126	127	1	0.840
WRRC0136	162	163	1	0.570
DEK04	112.8	119.5	6.7	8.570
DEK04	120.5	128.3	7.8	1.100
DEK04	131.3	132.5	1.2	5.500
DEK04	133.5	135.1	1.6	1.730
19ERC12	33	38	5	25.620

Drilling Collar File

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
ERC01	332573	6643784	400.30	150	-77	270
ERC02	332600	6643773	397.20	148	-72	280.5
ERC04	332557	6643769	388.70	132	-65	264
ERC05	332596	6643746	392.50	166	-50	266
ERC06	332534	6643695	329.60	100	-87	270
ERC07	332562	6643626	344.80	97	-60	285
ERC08	332598	6643746	392.50	192	-75	266
ERC10	332553	6643604	343.30	82	-70	268
ERC11	332551	6643596	344.60	79	-73	270
ERC12	332550	6643587	346.00	70	-68	270
ERC15	332507	6643551	353.10	60	-67	255
ERC16	332523	6643547	369.25	70	-67	270
ERC17	332562	6643624	345.20	94	-55	277
ERC18	332534	6643717	330.30	80	-90	0
ERC19	332580	6643926	433.10	150	-60	271
ERC20	332592	6643875	432.98	174	-60	272
ERC21	332628	6643824	431.12	186	-60	274
ERC22	332520	6643480	429.20	174	-90	0
ERC23	332467	6643581	360.50	78	-90	0
ERC24	332457	6643621	364.40	78	-90	0
ERC25	332457	6643630	363.80	78	-90	0
ERC26	332455	6643640	365.00	78	-90	0

info@javelinminerals.com.au
 → +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
ERC27	332556	6643596	343.20	120	-90	0
ERC28	332539	6643568	344.10	120	-90	0
ERC29	332572	6643495	428.20	174	-65	273.5
ERC30	332570	6643495	428.40	151	-50	273.5
ERC31	332564	6643484	428.50	162	-50	267.5
ERC32	332563	6643484	428.60	168	-65	267.5
ERC33	332555	6643475	428.70	150	-50	270
ERC34	332556	6643475	428.70	156	-65	270
ERC35	332526	6643558	351.50	102	-90	0
ERC36	332571	6643788	400.40	156	-60	271
ERC37	332553	6643801	403.00	103	-75	293
ERC38	332506	6643922	433.63	115	-60	269
ERC39	332385	6644449	429.91	97	-60	270
ERC39a	332406	6644448	429.62	76	-60	270
ERC40	332425	6644447	430.09	109	-60	270
ERC41	332360	6644360	429.16	78	-60	270
ERC42	332380	6644359	429.71	101	-60	270
ERC43	332401	6644359	429.69	139	-60	270
ERC44	332443	6643983	430.20	115	-60	235
ERC45	332421	6644002	429.61	79	-60	235
ERC46	332375	6644450	429.57	54	-60	270
ERC47	332394	6644449	429.83	66	-60	270
ERC48	332386	6644439	429.41	60	-60	270
ERC49	332384	6644459	430.58	60	-60	270
ERC50	332346	6644358	429.22	90	-60	270
ERC51	332376	6644479	429.96	90	-60	270
ERC52	332374	6644529	430.44	52	-60	270
ERC53	332330	6644451	428.89	114	-60	90
ERC54	332385	6644444	429.52	66	-60	270
ERC55	332380	6644450	427.32	66	-60	270
ERC55		6644449	430.46	66	-60	270
	332390					
ERC57	332385	6644455	430.45	66	-60	270
ERC58	332392	6644528	430.09	65	-60	270
ERC59	332412	6644528	431.09	83	-60	270
ERC60	332376	6644631	431.49	51	-60	270
ERC61	332535	6643695	327.00	96	-75	233
ERC62	332541	6643683	329.60	102	-75	230
ERC63	332540	6643684	329.20	93	-72	212
ERC65	332602	6643561	400.00	140	-60	270
ERC66	332569	6643786	400.00	130	-60	270
ERC67	332566	6643787	400.00	130	-50	286
ERC68	332569	6643786	400.00	130	-50	250
ERC69	332569	6643786	401.00	130	-50	292
ERC70	332569	6643779	384.00	40	-70	270
ERC71	332529	6643778	385.00	50	-60	275
ERC72	332539	6643777	386.00	80	-60	275
ERC73	332553	6643769	388.00	100	-60	275
ERC74	332552	6643769	388.00	130	-65	270
ERC75	332570	6643788	400.00	55	-75	251

Page 20

 Q 1202 Hay Street West Perth WA 6005
 Www.javelinminerals.com.au
 ✓ info@javelinminerals.com.au 🛞 www.javelinminerals.com.au

ABN 39 151 900 855 ASX:JAV

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
ERC76	332344	6644340	429.58	100	-60	270
ERC77	332360	6644340	429.27	100	-60	270
ERC78	332380	6644337	429.85	100	-60	270
ERC79	332403	6644341	430.14	100	-60	270
WRRC0001	332521	6643448	429.45	151	-60	277
WRRC0002	332478	6643455	428.51	100	-55	273
WRRC0003	332530	6643452	429.91	160	-75	275
WRRC0004	332461	6643430	428.22	100	-55	275
WRRC0005	332496	6643428	429.28	120	-55	276
WRRC0006	332442	6643398	425.45	80	-55	272
WRRC0007	332480	6643399	428.48	100	-55	272
WRRC0008	332700	6643806	426.43	340	-63	257
WRRC0009	332531	6643884	430.58	120	-60	273
WRRC0010	332657	6643859	427.86	230	-61	271
WRRC0011	332684	6643695	429.32	330	-56	250
WRRC0013	332554	6643348	444.29	272	-60	272
WRRC0014	332867	6642690	421.39	200	-57	274
WRRC0015	332848	6642604	419.31	200	-57	272
WRRC0017	332376	6644448	426.09	75	-60	268
WRRC0018	332391	6644470	426.48	90	-57	273
WRRC0019	332412	6644473	426.65	120	-57	272
WRRC0021	332337	6644400	425.20	120	-57	272
WRRC0022	332373	6644399	425.44	120	-57	266
WRRC0023	332399	6644399	425.94	150	-57	269
WRRC0024	332400	6644436	426.16	141	-51	275
WRRC0025	332411	6643849	431.78	30	-60	270
WRRC0026	332431	6643844	435.06	55	-60	270
WRRC0026	332431	6643844	435.06	55	-60	270
WRRC0027	332454	6643850	434.44	65	-60	270
WRRC0028	332477	6643851	433.32	80	-60	270
WRRC0029	332495	6643847	432.28	90	-60	270
WRRC0030	332518	6643846	431.23	90	-60	245
WRRC0031	332427	6643862	434.10	30	-60	272
WRRC0031	332427	6643862	434.10	30	-60	272
WRRC0032	332444	6643861	435.14	55	-60	270
WRRC0033	332466	6643860	434.18	65	-60	270
WRRC0034	332487	6643859	433.09	90	-60	270
WRRC0035	332509	6643861	431.96	100	-60	273
WRRC0036	332530	6643859	430.82	110	-60	270
WRRC0037	332550	6643857	429.94	120	-61	271
WRRC0038	332600	6643853	429.17	160	-61	273
WRRC0039	332341	6644329	425.95	80	-57	270
WRRC0040	332368	6644328	426.14	100	-57	273
WRRC0041	332341	6644378	425.13	90	-60	270
WRRC0042	332374	6644375	425.61	120	-60	273
WRRC0043	332266	6644550	425.61	100	-57	273
WRRC0044	332317	6644550	426.23	100	-60	270
WRRC0045	332341	6644520	426.34	100	-57	270

 Q 1202 Hay Street West Perth WA 6005
 Model www.javelinminerals.com.au
 Model with a strength of the strengt of the strengend of the strength of the strength of the str

info@javelinminerals.com.au
 → +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
WRRC0046	332395	6644501	426.87	100	-60	270
WRRC0047	332446	6644508	427.58	150	-57	270
WRRC0048	332486	6643923	431.25	75	-55	270
WRRC0049	332444	6643984	427.03	80	-60	270
WRRC0051	332673	6643739	429.26	295	-67	274
WRRC0051	332673	6643739	429.26	295	-67	274
WRRC0052	332599	6643953	429.88	200	-61	269
WRRC0053	332685	6643695	429.31	330	-66	251
WRRC0054	332552	6643476	428.02	200	-60	290
WRRC0055	332528	6644499	428.30	150	-60	210
WRRC0056	332518	6644418	427.21	150	-60	210
WRRC0057	332278	6644531	425.53	150	-60	200
WRRC0058	332283	6644588	426.11	150	-60	200
WRRC0059	332647	6644120	431.08	130	-60	268
WRRC0061	332993	6642500	417.57	150	-60	270
WRRC0062	333244	6642543	417.25	178	-60	270
WRRC0064	332551	6644302	429.64	250	-61	270
WRRC0065	332426	6644135	427.89	150	-57	267
WRRC0066	332620	6643431	445.49	214	-57	270
WRRC0067	332682	6643485	446.41	290	-62	289
WRRC0070	332437	6643875	434.44	30	-60	269
WRRC0071	332454	6643877	434.59	30	-60	270
WRRC0072	332469	6643876	433.76	80	-60	271
WRRC0073	332494	6643872	432.60	80	-60	270
WRRC0074	332507	6643872	431.94	90	-60	270
WRRC0075	332550	6643878	430.02	110	-60	273
WRRC0077	332350	6644265	427.06	150	-55	272
WRRC0078	332419	6644265	429.29	150	-55	270
WRRC0079	332637	6643803	427.95	192	-55	279
WRRC0080	332660	6643804	427.20	250	-68	275
WRRC0081	332520	6643476	429.35	190	-60	329
WRRC0082	332550	6643475	428.27	170	-52	285
WRRC0083	332559	6643576	350.97	140	-55	200
WRRC0085	332481	6643226	422.89	154	-55	270
WRRC0086	332672	6643002	421.53	200	-55	270
WRRC0087	332361	6644638	427.68	46	-55	271
WRRC0088	332469	6643891	433.52	75	-60	266
WRRC0089	332507	6643894	431.36	85	-60	269
WRRC0090	332515	6643926	429.94	80	-60	269
WRRC0091	332573	6643930	429.63	120	-60	270
WRRC0092	332555	6643399	439.85	180	-60	274
WRRC0093	332518	6643396	435.59	140	-61	273
WRRC0094	332551	6643429	436.69	170	-59	266
WRRC0095	332427	6644481	427.02	100	-61	272
WRRC0096	332416	6644573	428.18	100	-56	270
WRRC0097	332423	6644527	427.59	100	-55	273
WRRC0098	332428	6644501	427.28	100	-61	267
WRRC0099	332507	6643960	427.94	78	-61	276

1202 Hay Street West Perth WA 6005
 www.javelinminerals.com.au

info@javelinminerals.com.au
 → +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
WRRC0100	332556	6643951	428.32	120	-59	271
WRRC0101	332508	6643999	427.20	60	-59	273
WRRC0102	332556	6644000	428.51	102	-61	271
WRRC0103	332607	6644000	430.47	150	-62	270
WRRC0104	332655	6644000	430.28	192	-60	270
WRRC0105	332530	6644056	427.41	60	-60	270
WRRC0106	332576	6644058	428.69	120	-58	271
WRRC0107	332624	6644058	430.43	150	-60	275
WRRC0108	332675	6644060	430.99	180	-60	275
WRRC0109	332596	6644126	429.91	108	-60	275
WRRC0110	332596	6644194	432.69	102	-60	272
WRRC0111	332655	6644197	432.42	150	-60	273
WRRC0112	332325	6644422	425.22	120	-55	273
WRRC0113	332362	6644421	425.66	120	-55	271
WRRC0114	332401	6644421	425.83	150	-55	272
WRRC0115	332466	6644479	427.34	150	-53	272
WRRC0116	332467	6644501	427.73	156	-55	271
WRRC0117	332482	6644529	428.40	115	-54	271
WRRC0118	332524	6644593	430.51	120	-54	272
WRRC0119	332474	6644557	428.86	150	-53	270
WRRC0120	332455	6644430	426.68	150	-56	272
WRRC0121	332512	6643469	429.01	120	-54	272
WRRC0122	332548	6643471	428.27	150	-60	270
WRRC0123	332554	6643471	428.08	174	-75	271
WRRC0124	332164	6644624	424.51	102	-55	270
WRRC0125	332075	6644471	423.22	60	-55	271
WRRC0126	332115	6644471	423.60	60	-56	268
WRRC0127	332584	6644028	429.35	148	52	268
WRRC0128	332620	6644058	430.22	190	-56	271
WRRC0129	332587	6644079	429.07	130	-56	274
WRRC0130	332485	6644487	427.79	160	-55	270
WRRC0131	332527	6644501	428.33	196	-51	271
WRRC0132	332517	6644529	428.84	178	-54	272
WRRC0133	332500	6644558	429.43	148	-56	272
WRRC0134	332442	6644466	426.94	118	-55	270
WRRC0135	332473	6644441	426.92	148	-57	268
WRRC0136	332500	6644464	427.58	178	-57	268
DEK04	332577	6643607	425.50	136	-60	270
19ERC12	332528	6643651	333.86	38	-60	270

JORC CODE, 2012 EDITION - TABLE 1 REPORT - APPLICABLE TO EUREKA

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	Historic drilling by various companies included reverse circulation (RC) drill samples which were collected and split in even metre intervals when sample was dry. Wet samples were speared or on occasion scoop sampled. RC drill chips from each metre were examined visually and logged by the geologist. Duplicate samples were collected at 1 m intervals by scoop sampling reject bags. Based on the historical drilling reviewed from Javelin through WAMEX files, drilling commenced from 1982, which included Vacuum, Augur, open hole percussion/ RAB, RC and diamond core drilling (mostly NQ, also PQ and HQ). Sampling methods included chip samples collected and split in even 1 metre or 4 metre composite intervals for dry samples. Wet samples were speared or on occasion scoop sampled. Diamond core was half core sampled at selected intervals where the geologist recorded Samples are collected from rig mounted cyclone cone splitter at 1m intervals. Duplicate samples are collected from reject bags every 10m (by spear sampling). Calico samples are weighed to ensure minimum size of 2.5kg are collected. Current QAQC protocols include the analysis of field duplicates and the insertion of appropriate commercial standards (I, e., certified reference material (CRM). Sample protocols where they are described from historical reports sourced from WAMEX followed by historic operators are in line with industry standards at the time. RC drilling was used to obtain 1 m samples from which a 1 m samples (mineralisation zones) or 2m and 4m composite samples (waste zones) of approximately 2.5 to 5kg was also collected.
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	For the 2020-2021 drilling the RC rig specs are as follows: Schramm T450 RC rig - 5 ½ inch diameter face sampling hammer LC36 KWL700 RC rig (for deep holes) – 5 inch face sampling hammer X350 RC rig - 4 ½ inch diameter face sampling hammer; drilling since May 2021) Historically, the project has been drilled using rotary air blast (RAB), percussion (Perc), reverse circulation (RC) and diamond core drilling (DD) over numerous campaigns by several companies. The majority of holes are on a grid either infilling within or surrounding historical pit and underground (UG) workings or extending along strike into geochemical or geophysical (areo-mag) anomalies. The recent programs drilled in 2020 and 2021 have all been RC drilling. The majority of drill holes have a dip of -55 or - 60° and azimuths mostly drilled to

Info@javelinminerals.com.au
→ +61 8 6319 1900

Criteria	JORC Code explanation	Commentary
		270° MGA grid.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	RC sample recovery is visually assessed and recorded in drill logs. RC drilling programs showed good recoveries. From WAMEX records, descriptions noted that the majority of DD drilling had good recoveries >90%, although several holes recorded recoveries of ~50% or lower within highly fractured quartz vein intervals, and also where there was intersection of historical UG workings. RC samples were visually checked for recovery, moisture, and contamination. A cyclone and splitter were used to provide a uniform sample and these were routinely cleaned. Wet samples and logged barren zone, 4 m composites were speared to obtain the most representative sample possible. Sample recoveries are mostly high with only a very small number of wet samples recorded by geologists. No significant sample loss has been recorded with a corresponding increase in Au present. No sample bias is anticipated, and no preferential loss/gain of grade material has been noted
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	RC chips are geologically logged at 1 metre intervals. RC chip trays have been stored for future reference. Detailed logging exists for more recent drilled prior to WRD holes (18EKDD, and 19ERC prefix holes, but most of the historical RC and DD holes drilled do not have the logging digitally recorded in WRD database files provided, although the WAMEX files do contain PDF copies of RC and DD geology logs WRD RC chip logging included the recording of colour, lithology, regolith, oxidation state, colour, alteration, mineralisation, and veining/quartz content. The entire length of each hole was logged. Previous RC and DD drilling completed by previous owners contained similar detailed geological descriptions in PDF logs. Remaining core was examined from the 18EKDD drilling program at the Eureka project field office. The core remaining is in good condition but has been poorly labelled, with intervals and hole identification often indistinguishable as no aluminium tags or more permanent markers were used on core blocks or to label the core trays. Percentage of drilling logged that was used in the 2021 MRE are record as follows:

info@javelinminerals.com.au
 → +61 8 6319 1900

Criteria	JORC Code explanation	Commentary
		 records in WRD DB ERC holes – RC drilling – 4% logged records in WRD DB DEK, WEK – RC/DD drilling – 8% logged records in WRD DB
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Previous companies have conducted diamond drilling; WAMEX records have noted that ½ core sampling was mostly conducted, generally in highly selective intervals based RC chips were collected from rig mounted cyclone cone splitter as 1m samples. 2 and 4m composites using a sample scoop were taken from the 1m RC plastic sample bags. Samples were generally dry. 1m RC samples are also speared. At the commercial laboratory, RC samples are dried at minimum 60° C. If the sample weight is greater than 3 kg, the sample is riffle split. It is then pulverised to a grind size where 85% of the sample passes 75 micron. Field QAQC procedures included the insertion of CRMs and field duplicates for RC drilling after every 10 samples. CRMs represented approximately 5% of total samples. Field duplicates were collected during the RC drilling programs in 2020-21. Duplicate samples are submitted at a rate of one duplicate submitted for every 10 samples. Duplicates samples represent approximately 5% of total samples. Based on statistical analysis of the field duplicate results, there is no evidence to suggest the samples are not representative. A sample size of between 2.5 and 5 kg was collected. This size is considered appropriate, and representative of the material being sampled given the width and continuity of the intersections, and the grain size of the material being collected.
<i>Quality of assay data and laboratory tests</i>	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias)	Both single 1 metre samples and 2 m or 4 m composite samples have been analysed using a 30g fire assay technique with an AAS finish. No geophysical tools etc. have been used at Eureka. Field QAQC procedures include the insertion of both field duplicates and CRMs. No blanks were inserted by TIN. Assay results to date have been satisfactory and demonstrate an acceptable level of accuracy and precision. Laboratory QAQC involves the use of internal certified reference standards, blanks, splits, and replicates. Analysis of these results to date show an acceptable level of precision and accuracy.

Criteria	JORC Code explanation	Commentary
	and precision have been established.	
<i>Verification of sampling and assaying</i>	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	All significant intersections were assessed by Javelin Minerals through current access and historical databases. Version 2024 Micoomine has been used to delineate gold grades above 0.5 g/t Au level from the Javelin geologist as part of the over verification of assay results comparing to the historically significant intersections previously reported. No specific twinned holes have been drilled to date. Recent drilling from 2018 to the current programs have some infill holes in close proximity to historical drilling, and mostly confirm the presence of Au mineralisation, and also intersect significant mineralisation where historical hole intervals that were not sampled. Field data and logging is collected and entered using Toughbook field computers. The data is sent via a SharePoint site, to a contract database administrator for validation and compilation into an MS Access database. No adjustments have been made to assay data apart from values below the detection limit which are assigned a value of negative the detection limit for the 2021 MRE work.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All recently drilled hole collars have been surveyed by hand- held GPS (Garmin 64 GPS) to an accuracy of about 3m. The drill holes are then picked up using a DGPS by Cardno Spectrum Survey, Kalgoorlie at the completion of each drill program. Downhole surveying is conducted by the drilling contractor, using EZ-Shot single shot downhole camera at 30 m intervals at the completion of each hole The grid system is MGA_GDA94 Zone 51. Topographic datum is AHD71(Australian Height Datum 1971). The topographic surfaces include a very high resolution DTM surface (LiDAR survey) was initially used for hole collar location verification. Part of the project area that was not covered by the DTM surfaces was validated or edited using the collar coordinates based on DGPS surveys.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Historical exploration and drilling at Eureka targeted discrete areas based on surface geochemical and geophysical anomalies, historical workings that identified the location of host mineralisation. Consequently, current drilling is not grid based, but across the historical open pit and UG workings the drill spacing is nominally 10m N x 10m E. Extensions to the north and south have been nominally drilled at 20m N x 20m/10m spaced drilling. The mineralised domains have sufficient continuity in both geology and grade to be considered appropriate for the Mineral Resource and Ore Reserve estimation procedures Page 27

Criteria	JORC Code explanation	Commentary
<i>Orientation of data in relation to geological structure</i>	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 and classification applied under the 2012 JORC Code 4m composite samples were collected from RC drill holes within the logged barren intervals Drill hole collars are set-out on the MGA grid and drill lines were generally at E- W direction Drilling sections are orientated perpendicular to the strike of the overall shear orientation and mineralised host rocks. Several shallow dipping vein structures are noted in the applied were structures.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	southern pit wall, but overall, the mineralised vein structures appear parallel to sub-parallel with the shear orientation from north to south. The drilling is angled at either -55° or -60° which is close to perpendicular to the dip of the shear trend and host units. No orientation-based sampling bias has been identified in the data at this point.
Sample security	The measures taken to ensure sample security.	All samples are selected, cut, and bagged in tied numbered calico bags, grouped in larger tied plastic bags, and placed in large sample cages with a sample submission sheet to the assay laboratory in Kalgoorlie.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data is validated by the contract database administrator whilst loading into the Javelin MS Access database. Pre Javelin data audits found to be satisfactory in regard to QAQC though in line with industry standards of the time.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type,referencename/number,location andownershipincludingagreementsormaterialissues with third parties suchasjointventures,partnerships,overridingroyalties,nativetitleinterests,historicalsites,wilderness orand environmental settings.The security of the tenureheld at the time of reportingalongwithanyknownimpediments to obtaining alicenceto operatearea.	The Project acquisition comprises 4 mining licences M24/0584, M24/0585, M24/0586 and M24/0189 and 3 prospecting licence P24/5116, P24/5549 and P24/5548. The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Discovery and initial UG workings commenced 1897. UG mining up to 1941 produced 797 oz Au from 809 tonnes at 27g/t Au. More recently, the tenement area has been previously explored by numerous companies including: • CSR (1982-83) – included 4.4km of RC drilling

Criteria	JORC Code explanation	Commentary
		 West Coast Holdings (WCH) (1984-87) – Surface geochemistry (including Augur drilling), aero-mag surveys, vacuum drilling, Percussion, DC and DD drilling; surface mapping and gridding; evaluation and mining of oxide resources Open Pit) and evaluation of UG resources – open pit mining produced 45,865 tonnes at 4.64g/t Au, for 6,842 oz Au (WCH, 1986). Glengarry Mining NL (1994) – Aeromag Interpretation, RAB Drilling Jasper Mining NL (+ JV partners) (1996-2004) – UG mine refurbishment & trial mining from November 1998 to June 1999 – approx. 400t @ 6g/t Au from 80m Level (JMM, 2000); Project management plan (1998-99) Sherlock Bay Nickel Corp (SBNC) (2004-2006) – Ground Mag survey; gridding; surface mapping; RC drilling (ERC) International Gold P/L (2007-2010) – Mag-radiometric survey, Augur drilling; UG design study (41,000 t @ 10.1 g/t, 13.3k Oz Au) Central Iron Ore Ltd (2011-14) – Resource evaluation (451,000y @ 4.4g/t, 64,200 oz Au); Geophysical data review.
Geology	Deposit type, geological setting, and style of mineralisation.	The Eureka gold deposit occurs on the eastern limb of the major south-east plunging Goongarrie-Mt. Pleasant Anticline. The eastern limb consists predominantly of north-north-west trending mafic and ultramafic lithologies, with minor thin mainly interflow sediments, bounded to the west by pre-to syntectonic granitoid forming the core of the regional anticline.
		To the east, the Bardoc-Broad Arrow Synform occurring between the major Goongarrie- Mt. Pleasant and Scotia-Kanowma Anticlines is subject to significant disruption by the broad Bardoc Tectonic Zone.
		This zone consists of multiple shear zones occurring within intercalated felsic, mafic and ultramafic lithologies in the vicinity of the synformal axis. The Bardoc Tectonic Zone is host to the Paddington and Bardoc gold deposits.
		Local Geology and Mineralisation
		The Eureka deposit is located within a sequence of mafic and ultramafic rocks forming part of the Kalgoorlie – Menzies greenstone belt. The layered sequence is approximatley 6 km wide with a northerly trend. The sequence is intruded by east-west trending Proterozoic mafic dykes and is bunded to the east and west by complex granitic plutons.
		In the vicinity of the Eureka Mine the sequence has a generally easterly dip of 65° to 70°, parallel by the regional foliation. Regional metamorphism of the sequence is lower greenschist facies.
		Two distinct shale units are present, the western or footwall unit being the Copper Mine Shale which marks the top of the sill and the hanging wall unit, an interflow unit amongst the basalt.
		Weathering profile is extensive with the deepest weathering along the main shear zones and contacts causing a weathering trough of highly oxidised rock that extends down the main shear to the bottom of the pit exposures. Both the north end and south end exposures of the pit show massive and blocky clay altered rock masses bounded by narrow, highly sheared zones, commonly containing limonitic quartz veining. The quartz vein hosted shears run parallel or sub-parallel to the main N-S shear trend, and less commonly cross cutting, shallow dipping quartz veins.

Criteria	JORC Code explanation	Commentary
		High grade gold mineralisation at Eureka is associated with veining within the altered lower mafics. The vein system typically consists of quartz, carbonate and sulphide and has a variable thickness of up to 20m. The mineralisation exploited in the open pit consists of a number of lens shaped shoots up to 10m wide within an intensely sheared zone some 30m wide.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – • elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this	All relevant drill hole details were presented in ASX release in Appendix 1
	information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should	All reported assays have been length weighted if appropriate. No top cuts have been applied. A nominal 0.5g/t Au lower cut off has been applied, with only intersections >0.5g/t considered significant. High grade Au intervals lying within broader zones of Au mineralisation are reported as included intervals. In calculating the zones of mineralisation, a maximum of 2 metres of internal dilution is allowed. Metal equivalent values have not been used. Only gold grade is reported.

Criteria	JORC Code explanation	Commentary
	be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
<i>Relationship between mineralisation widths and intercept lengths</i>	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	The mineralised zones vary in strike between the Main and North prospects. Gold mineralisation is steeply dipping in the Main zone but more shallow drilling in the North prospect. Drill hole orientation reflects the change in strike of the rocks. Reported down hole intersections are believed to approximate true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	All relevant drill hole details were presented in ASX release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results above the stated reporting criteria have previously been reported, not just the higher-grade intercepts.
<i>Other substantive exploration data</i>	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results;	Groundwater, and geotechnical studies have not commenced as part of the assessment of the project.

Criteria	JORC Code explanation	Commentary
	bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Planned further work includes additional drilling to test extensions at depth and to the south of the higher-grade zone south of the as-mined pit, and drill testing of the supergene mineralisation in the northern part of the deposit. The Eureka project will continue to be drilled to extend the known Au mineralisation and delineate further Au mineralisation and potential resources at other nearby prospects. All relevant drill hole details were presented in this ASX release.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	<i>Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors,</i>	The drilling database for the Eureka deposit is maintained by a contract database administrator from Delta Lithium. The below data was given to Javelin as part of the total data review.
	<i>between its initial collection</i> <i>and its use for Mineral</i> <i>Resource estimation purposes.</i>	The Eureka drilling data was supplied to Cube in two MS Access files formats for the purposes of the 2021 MRE: They include the below access database.
	Data validation procedures	EUREKA_HIST_DB_Extract_Z51_20210323.accdb = (old holes)
	used.	EUREKA_WAR_DB_Extract_Z51_20210430.accdb = (TIN holes, 2020- 21)
		Cube compiled the data for importing into a standard resource database in MS Access for use in the May 2021 Mineral Resource estimate.
		This database has been relied upon as the source of data for the 2021 MRE work.
		Cube carried out a database validation review of the supplied drilling data, supplied digital terrain models (DTM) prior to undertaking the resource estimation update.
		There were no old survey plans in digital format and no survey 3DM wireframes of the historical UG workings from 1897-1940, or the recent UG trial mining in 1998.
		Validation checks completed prior to MRE work for the MRE included the following:

		Collar duplications, hole collar checks with natural surface topography Downhole survey deviation checks in 3D software, survey quality ranking Maximum hole depths check between sample/logging tables and the collar records Checking for sample and logging overlaps; Reporting of missing assay intervals A validated assay field was included into the Assay table (to convert any intercepts that have negative values or blanks in the primary Au field (Au ppm). Javelin Resources Ltd conducted independent data research on WAMEX to source historical reports and information on previous drilling programs conducted at Eureka prior to 2020. Current database records was reviewed by Javelin for the drilling, sampling,
Cite visit-	Commont on any site	and assaying conducted within the deposit area.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	Brian Fitzpatrick (Principal Geologist at Cube conducted a site visit on 9 June 2021. Inspection and reconnaissance mapping of the open pit workings Locate and GPS survey pickup of the approximate location of 26 WRRC holes Inspect available core from the 18EKDD program at the site field office facilities Review sample despatch and sample security facilities and procedures at the site field office. Review hard copies of CRMs, lab forms and logging documentation
Geological	Confidence in (or	Discussions with geology and field staff regarding drilling and sampling protocols, QAQC procedures, drilling methods and equipment used, surveying, logging. The site visit noted that no bulk density (BD) sampling has been conducted and recommends that BD sampling take place in the near future. No previous BD information was source from historical documentation. The CP concluded from the site visit that apart from lack of BD sampling, other processes were deemed appropriate for the type of deposit and are carried out in accordance with standard industry practice.
interpretation	conversely, the uncertainty of) the geological interpretation of the mineral deposit.	The confidence in the geological interpretation of the mineral deposit is good as a result of the close, optimally spaced RC drilling confirming the location and tenor of mineralisation previously intersected by historical RC and DD drilling.
	Nature of the data used and of any assumptions made. The effect, if any, of alternative	In addition, previous mining activities such as the historical UG workings and open pit mining in 1985-86 indicate the presence of economic gold mineralisation based on the historical production figures: • UG Mining - 1897 to 1940: 809 tonnes at 27g/t Au, produced 797oz
	interpretations on Mineral Resource estimation.	Au (Ransted, 1985) • Open Pit Production – 1985 to 1986: 45,865 tonnes at 4.64g/t Au, for
	The use of geology in guiding and controlling Mineral Resource estimation.	6,842 oz Au (WCH, 1986). The historical underground Eureka Gold Mine consists of several parallel gold lodes in a Main zone mineralisation modelled for the 2021 MRE. The gold is associated with quartz veins inside a north south trending, steeply east displaced constraints.
	<i>The factors affecting continuity both of grade and geology.</i>	dipping shear zone. Within the northern zone the gold lodes appear to be parallel to the more shallow, east dipping shear planes. Grades are highly inconsistent within two main mineralised envelopes and appear to be offset by a NE-SW trend fault structure.
		A significant and highly visible footwall maker unit – a thin graphitic shale horizon follows the N-S shear trend continuously within the Main zone

2 +61 8 6319 1900

mineralisation and is also highly visible I the current open pit workings. The footwall shale has been readily logged in most drill holes intersecting through the Main zone workings. A similar hanging wall shale is also visible in the NE corner of the pit but is more inconsistent and clearly pinches out in the pit outcrops.
 In summary, mineralisation continuity in the Main zone mineralisation consisting of 2 main zones in close proximity, following the trend of the main shear. Along the hanging wall and in the North zone, mineralisation is more inconsistent, although many old holes have selective sampling. Several significant gold intersections footwall to the FW graphitic shale were modelled into a single Au domain and may indicate further mineralisation along the footwall sequence yet to be uncovered. Data is sourced from the recent and historical drill logging and RC chip logging/ DD core logging, and surface mapping interpretations from provide work.
 previous work. Interpreted projections for structures and local mineralisation trends were made between drill sections and extending along strike and down dip based on a drill spacing down to 10 m x 10 m.
 The logging and mining information has been used to inform the mineralisation domains used for the estimation. Weathering surfaces were interpreted for oxide, transitional and primary weathering boundaries from available logging data. This data allowed the density values for the mineral resource estimate to be sub-divided by weathering domains Previous mineralisation interpretations used for an UG study in 2008,
 Previous mineralisation interpretations used for all OG study in 2008, and further studies for pit and UG development in 2011 were reviewed by Javelin from reports sourced from WAMEX. The 2008 UG study defined three 'ore shoots' based on DD drilling at a cut-off grade (COG) of 4.0g/t. The shoots were defined over an area of 350m north to south strike, 170m wide and 110m deep area.
 It appears the 2011 study, relied on historical interpretations and assumptions from work done in 2003, and 2008, but assuming a lower COG applied for the open pit resource. The 2011 resource was classified entirely as Measure Resources Javelin has not relied on any of this previous information or the underlying
assumptions for the 2021 MRE. Drillhole geology logging information containing lithology codes, weathering, quartz vein percentages, and general lithological descriptions were used to assist and guide geology and mineralisation interpretations informing the estimate.
 Surface geology mapping provide exposure to some of the deposit rock types, structures and styles of mineralisation. Historical documents contain minimal information on UG backs mapping of development, stopes or rises on no 3DM modelling was completed due to the uncertainty with converting the local coordinates back to MGA
 Geological and mineralisation interpretations in plan and cross section views have been followed up with 3D wireframe models based on analysis of the collated historical and recent drilling information. The bulk of the mineralisation in the Main zone has been constrained within two main mineralised zones within the overall shear zone striking
 north to south and dipping to the east at 70°. The north zone mineralisation has a similar strike orientation but with a shallower dip averaging 42° to the east and bisected by apparent NE-SW fault. Gold mineralisation are mostly restricted in 2 parallel to the quartz vein

		hosted shear orientations, although there is evidence of discontinuous linking quartz vein structures are evident within the main shear zones and may contain significant high grade mineralisation. These oblique vein structures are clearly visible in the southern wall of the pit. A mineralised laterite zone has been modelled horizontally across the north end of the Eureka Pit. A COG of 0.2g/t Au has been applied in order to maintain wireframe continuity and thickness amenable to surface mining dimensions.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by- products. Estimation of deleterious elements or other non- grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 One block model was constructed to enable efficient gold estimation of all mineralisation domains Estimation Methods: Ordinary Kriging (OK) and Inverse distance to the power of 2 (ID²) were the estimation methods used for the May 2021 MRE. The data is informed by good quality drilling on regular drill spacing – down to 10 m x 10 m for the central area, broadening out to a nominal 25mE x 25 mN to the north and south of the Main zone. Maximum extrapolation of wireframes from drilling was 20m along strike or 10m down-dip. Maximum extrapolation along strike and below the deepest drilling was generally half drill hole spacing. Domaining and Compositing: Drill hole sample data was flagged using domain codes generated from 3D mineralisation domains. Sample data was composited over the full downhole interval. Intervals with no assays were initially assigned background grades for the compositing routine as these un-assayed intervals in the orlil holes used for the 2021 MRE were to be ignored in the compositing routine. Assessment of the raw assay interval lengths and raw gold assay values were completed in order to determine the most appropriate length for compositing of the samples. The most common sample length is 1.0 m and covers the range of the Au grades. Therefore, 1 m composes were used as the source data for the gold grade estimates. All domain composites included coding by weathering for oxide/transition versus fresh material. Statistical analysis of grade distribution for the well- informed domains by weathering was conducted, mainly to assess if further sub-domaining was required (e.g., evidence of supergene enrichment). No consistent variability in the sub-domaining by weathering was noted across the zones. Moding and the effects of grade capping were reviewed and applied on a domain basis where it was deemed appropriate i.e. for extreme high-grade

2 +61 8 6319 1900

		Grade Interpolation and Search Parameters.
		The mineralised domain wireframes were used to code the block model and the volume between the wireframe models and the coded block model were checked in order to ensure that the sub-blocking size are appropriate for the interpreted domains.
		Estimation was carried out on capped and uncapped gold grade. Hard domain boundaries were used between the mineralised domains, meaning only composites within the domain are used to estimate inside that domain. The variogram orientations were used as the orientation of the search ellipse. The variogram and search parameters for well-informed were used to represent the poorly informed domains.
		Gold was estimated in two passes – first pass using optimum search distances for each domain (mostly 40 m) as determined through the KNA process, second pass set at longer distances in order to populate all blocks (2nd = max 120 m).
		A waste domain boundary encompassing the mineralisation domains and within the limits of the drilling and host units was modelled for each deposit and included in the grade estimation runs. This allowed for any isolated zones and any mineralised haloes proximal to the hard boundary mineralised blocks to be estimated for estimation of dilution within pit optimisation limits. Interpolation parameters were set to a minimum number of 6 composites and a maximum number of 16 composites for the estimate. A maximum of 6 samples per hole was used. <i>Software Used</i> :
		Leapfrog Geo – Database validation, mineralisation zone economic compositing at lower grade cut-offs, mineralisation trends along with Surpac v6.9.0 used for Drillhole validation, weathering surface DTMs, final mineralisation interpretation and wireframe modelling and minor zones OK estimation.
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	One block model was constructed to enable efficient gold estimation of all mineralisation domains <i>Estimation Methods:</i>
		 Ordinary Kriging (OK) and Inverse distance to the power of 2 (ID²) were the estimation methods used for the May 2021 MRE. The data is informed by good quality drilling on regular drill spacing – down to 10 m x 10 m for the central area, broadening out to a nominal 25mE x 25 mN to the north and south of the Main zone. Maximum extrapolation of wireframes from drilling was 20m along strike or 10m down-dip. Maximum extrapolation along strike and below the deepest drilling was generally half drill hole spacing. Domaining and Compositing:
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by- products.	 Drill hole sample data was flagged using domain codes generated from 3D mineralisation domains. Sample data was composited over the ful downhole interval. Intervals with no assays were initially assigned background grades for the compositing routine as these un-assayed intervals in the drill holes were assumed to be waste or 'barren' during logging and sampling Assessment of the raw assay interval lengths and raw gold assay values were completed in order to determine the most appropriate length fo compositing of the samples. The most common sample length is 1.0 m and covers the range of the Au grades. Therefore, 1 m composites were used as the source data for the gold grade estimates. All domain composites included coding by weathering fo oxide/transition versus fresh material. Statistical analysis of grade distribution for the well- informed domains by weathering was conviced as a properties.
	Estimation of deleterious elements or other non- grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model	
	ווו נווב נמשב טו אוטנא וווטעפו	conducted, mainly to assess if further sub-domaining was required

Page 36

ABN 39 151 900 855 ASX:JAV

interpolation, the block size in relation to the average sample spacing and the search employed.	(e.g., evidence of supergene enrichment). No consistent variability in the sub-domaining by weathering was noted across the zones. <i>Treatment of Extreme Grades:</i>
Any assumptions behind modelling of selective mining units.	 Gold grade distributions within the estimation domains were assessed to determine if high grade cuts or distance limiting should be applied. Distance limiting thresholds and the effects of grade capping were
Any assumptions about correlation between variables.	reviewed and applied on a domain basis where it was deemed appropriate i.e. for extreme high-grade outliers, high grade clustering or a high coefficient of variation (CV).
Description of how the geological	Variography:
interpretation was used to control the resource estimates.	Variogram calculations were carried out on the 1m composites for three well informed domains (1001, 10012, 1004). Variography failed to produce
	satisfactory results for other domains due to lack of samples
Discussion of basis for using or not using grade cutting or capping.	Indicator estimation was considered but did not provide sufficient data in the higher bins to produce well-structured variograms.
The second state of the first state	Grade Interpolation and Search Parameters.
The process of validation, the	The mineralised domain wireframes were used to code the block model and
checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	the volume between the wireframe models and the coded block model and checked in order to ensure that the sub-blocking size are appropriate for the interpreted domains.
	Estimation was carried out on capped and uncapped gold grade. Hard domain boundaries were used between the mineralised domains, meaning only composites within the domain are used to estimate inside that domain. The variogram orientations were used as the orientation of the search ellipse. The variogram and search parameters for well-informed were used to represent the poorly informed domains. Gold was estimated in two passes – first pass using optimum search distances for each domain (mostly 40 m) as determined through the KNA process, second pass set at longer distances in order to populate all blocks (2nd = max 120 m). A waste domain boundary encompassing the mineralisation domains and within the limits of the drilling and host units was modelled for each deposit and included in the grade estimation runs. This allowed for any isolated zones
	and any mineralised haloes proximal to the hard boundary mineralised blocks to be estimated for estimation of dilution within pit optimisation limits. Interpolation parameters were set to a minimum number of 6 composites and a maximum number of 16 composites for the estimate. A maximum of 6 samples per hole was used.
	Software Used: Leapfrog Geo – Database validation, mineralisation zone economic compositing at lower grade cut-offs, mineralisation trends Surpac v6.9.0 – Drillhole validation, weathering surface DTMs, final mineralisation interpretation and wireframe modelling and minor zones OK estimation
	The parent block dimensions used in the block model were: 5 m N by 2.5 m E by 2.5 m RL, with sub-cells of 2.5 m by 1.25 m by 1.25 m. The parent block size was selected on the basis one half/one quarter of the minimum drill spacing of 10/20 m E by 10 m N in Indicated areas and one quarter of the maximum drill spacing of 40 m E by 20 m N in Inferred areas. For the block model definition parameters, the primary block size and sub- blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow zones or terminations, or disrupted zones due to contacts or surface boundaries.

info@javelinminerals.com.au
 → +61 8 6319 1900

rr	
	The block model definition parameters included a primary block size and sub- blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow or complex zones modelled. These dimensions are suitable for block estimation and modelling the selectivity for an open pit operation.
	No correlation analysis has been undertaken due to limited number of multi- element samples in the database provided.
	The mineralisation domain interpretation was used at all stages to control the estimation. Overall, the mineralisation was constrained by wireframes constructed using a nominal 0.5 g/t Au cut-off grade lower threshold within shear-hosted, quartz veins and vein selvedges within a predominantly mafic/interflow sediments host units.
	Statistical analysis was carried out for all domains. This involved a combination of grade capping analysis tools (grade histograms, log probability plots and coefficient of variation (CV)), and spatial analysis. The high CV and the presence of extreme grade values observed on the histogram for some of the domains suggested that high grade cuts were required for subsequent geostatistical analysis. The remaining domains were left uncut.
	Top cuts were applied on a domain basis by application of grade capping for a domain composite data or using a grade distance threshold option in the interpolation module in Surpac.
	The influence of extreme grade values was reduced by applying a grade- distance threshold limit for the estimation domains containing high grade outliers. Outside a distance of 20 m diameter (overall average drill spacing distance), a top cut was applied to the estimation domains. Grade capping values and effects are summarised as follows: range of top cut values = 10 g/t to 40 g/t (total of 17 samples cut) Metal loss based on composite mean and ratio of samples = -16%.
	 Block model validation was conducted by the following means: Visual inspection of block model estimation in relation to raw drill data on a section by section basis. Volumetric comparison of the wireframe/solid volume to that of the block model volume for each domain. A global statistical comparisons of input and block grades, and local composite grade (by Easting and RL) relationship plots (swath plots), to the block model estimated grade for each domain. Comparison of the cut grade drill hole composites with the block model grades for each lode domain in 3D. Comparison with check estimates (OK or ID²) No significant validation issues were noted from the model validation process. During interpolation runs, adjustments were made to search parameters to improve local and semi-local representation of grades where possible.

Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages are estimated on a dry tonnes basis. Moisture was not considered in the density assignment.
Cut-off parameters	<i>The basis of the adopted cut-off grade(s) or quality parameters applied.</i>	For Open Pit areas a Cut-off grade of 0.4 g/t Au was applied to all material within mineral resource defined by specific open optimisation pit shells.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining	For Open pit areas Optimisation pit shells were generated in Whittle based on: Gold Price assumption of \$AUD 2500/oz Cost experience for Mining, Processing and Administration
	reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the	
Metallurgical factors or assumptions	mining assumptions made. The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No recent metallurgical testwork and reporting have been conducted. Metallurgical factors and assumption are based on similar mineralisation styles from examples in Western Australia. For oxide and transition a recovery of 95% has been assumed for the pit optimisation input parameters For fresh rock, a recovery of 90% has been assumed for the pit optimisation input parameters

Environmental factors or assumptions	greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.					
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that	There were no bulk de No BD data was found work conducted in 20 regardless of degree of BD assignment for the experience of similar greenstone hosted go For the 2021 MRE, C and fresh material for	I from report 11, a BD of of weatherin 2021 MRE material to old deposits ube assigne	ts found in 2.65 was a ng. has theref ypes in m in Westerr ed BD valu	WAMEX. For pplied for all ore been esti oderately to a Australia.	preliminary resource material rock types, imated from industry deeply weathered
	adequately account for void		Material	Ore	Waste	
	spaces (vugs, porosity, etc), moisture and differences between rock and alteration		Туре	gm/cm3	gm/cm3	-
	zones within the deposit.		Laterite	2.2	2.2	
	Discuss assumptions for bulk density estimates used in the evaluation process of the		Oxide	2.2	2.2	
	different materials.		Transition	2.4	2.4	
			Fresh	2.75	2.8	
			Voids	0	0	
Classification	The basis for the		the breadth rial type is c	of the proj	ect area. The acceptable.	refore, a single value
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view	 applied to each material type is considered acceptable. The Mineral Resource estimate is reported here in compliance with the 2012. The resource was classified as Indicated, and Inferred Mineral Resource based on data quality, sample spacing, and lode continuity. The Indicated Mineral Resource was defined within areas of close spaced diamond and RC drilling (mostly 2020-2021 drilling) of less than 20 m by 20 m and where the continuity and predictability of the lode positions was good. The Inferred Mineral Resource was assigned to areas of the deposit where drill hole spacing was greater than 20 m by 20 m and where small, isolated pods of mineralisation occur outside the main mineralised trends. The resource classification is based on the quality of information for the drill types (recent RC and DD), geological domaining, as well as the drill spacing and geostatistical measures to provide confidence in the tonnage and grade estimates 				

2 +61 8 6319 1900

· · · · · · · · · · · · · · · · · · ·		
Audits or reviews	of the deposit. The results of any audits	 and does not favour or misrepresent in-situ mineralisation. The definition of mineralised zones is based on high level geological understanding producing a robust model of mineralised domains. Validation of the block model shows good correlation of the input data to the estimated grades. Open hole percussion holes (RAB and Perc) and some older RC holes were excluded from the estimation and data spacing when determining relative confidence for classification. The Mineral Resource estimate appropriately reflects the Competent Person's view of the deposit. The current estimation domaining, MRE parameters, classification and
	or reviews of Mineral Resource estimates.	reporting have all been internally peer reviewed by qualified professionals at Cube and Javelin Minerals Ltd.
Discussion of relative accuracy/ confidence	Where appropriate astatement of the relativeaccuracy and confidence levelin the Mineral Resourceestimate using an approach orprocedure deemedappropriate by the CompetentPerson.For example, the application ofstatistical or geostatisticalprocedures to quantify therelative accuracy of theresource within statedconfidence limits, or, if suchan approach is not deemedappropriate, a qualitativediscussion of the factors thatcould affect the relativeaccuracy and confidence ofthe estimate.The statement should specifywhether it relates to global orlocal estimates, and, if local,state the relevant tonnages,which should be relevant totechnical and economicevaluation. Documentationshouldinclude assumptions madeand the procedures used.These statements of relativeaccuracy and confidence of the	 The Eureka 2021 MRE is made up predominantly of moderately thick to narrow, very continuous mineralised gold zones hosted within sheared alteration zones containing high grade quartz veining. The close density of drilling supports the classification of 56% of the Mineral Resource to be classified as Indicated (by contained metal). The deposit geometry and continuity has been adequately interpreted to reflect the applied level for Indicated and Inferred Mineral Resources. The data quality is good, and the drill holes have detailed logs produced by qualified geologists. A recognised laboratory has been used for all analyses. The current modelled MRE is a reasonable representation of the global contained metal but not a local estimation. Confidence in the 2021 MRE is such that it will provide adequate accuracy for global resource evaluation for selective open pit mining. 1897 to 1940 includes 809 tonnes recovery of 797oz of gold at an average grade of 27 g/t Au (Ransted, 1985). Previously recorded gold production for the Eureka open pit mine during the period 1985 to 1986 includes 45,865 tonnes at an average grade of 4.64 g/t Au. Gold recovered has not been recorded. (WCH, 1987). UG mine refurbishment & trial mining from November 1998 to June 1999 – approx. 400t @ 6g/t Au from 80m Level (JMM, 2000). The historical mining figures indicate the presence of high-grade quartz vein hosted mineralisation also logged and sampled by more recent drilling. The May 2021 MRE has been depleted by open pit mining based on open pit survey DTM. The accuracy of the depleted resource is affected to a minor degree by the exclusion of historical voids, although as only 809 tonnes was recorded as being mined (Ransted, 1985), it is not

APPENDIX 2: COOGEE GOLD RESOURCE

Classification	Weathering Zone	Volume m²	Density g/cm²	Tonnage T	<i>Grade</i> g/t Au	<i>Contained</i> <i>Metal</i> ounces Au
Indicated	Supergene	7,531 350.898	2.10 2.70	15,816 947,426	1.17 1.31	593 39,969
Inferred	Primary Supergene	11,715	2.10	24,601	0.56	445
	Primary	987,773	2.70	2,666,988	1.00	85,677
Total	Supergene	19,246	2.10	40,417	0.80	1,038
Total	Fresh	1,338,672 1,357,918	2.70 2.69	3,614,414 3,654,831	1.08 1.08	125,647 126,685

Table 1: Coogee Gold Deposit Mineral Resource Estimate by Classification as of July 2024(at a 0.5 g/t Au cut-off)

Table 2: Coogee Gold Deposit Mineral Resource Estimate by Classification as of July 2024(at a >2,000 ppm Cu cut-off)

Classification	Weathering Zone	Volume m ²	Density g/cm²	Tonnage T	<i>Grade</i> g/t Au	<i>Contained Metal</i> ounces Au
Inferred	Primary within Gold Domian	122,358	2.7	330,366	5.546	1,832
Inferred	Supergene	129,402	2.1	271,745	3,619	983
Inferred	Primary without Gold Domain	153,887	2.7	415,494	3,144	1,306
Total		405,647		1,017,606	4,103	4,122

Table 3: Coogee Au Minerals Resource Estimate by Classification of Block Id as of July 2024(at a 0.5 g/t Au cut-off)

Mineralised Block ID	Classification	Volume m²	Density g/cm²	Tonnage t	<i>Grade</i> g/t Au	<i>Contained</i> <i>Metal</i> ounces Au
Northern	Indicated	185,074	2.68	495,969	1.14	18,190
	Inferred	913,813	2.69	2,461,114	0.98	77,846
	Total	1,098,887	2.69	2,957,084	1.01	96,036

1202 Hay Street West Perth WA 6005
 www.javelinminerals.com.au

Info@javelinminerals.com.au
→ +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV Page 42

Central	Indicated	99,695	2.70	268,881	1.36	11,735
(under pit)	Inferred	32,918	2.70	88,879	1.09	3,106
	Total	132,613	2.70	357,759	1.29	14,841
Southern	Indicated	73,660	2.69	198,391	1.67	10,637
	Inferred	52,758	2.68	141,596	1.14	5,171
	Total	126,418	2.69	339,988	1.45	15,808
Northern	Indicated	185,074	2.68	495,969	1.14	18,190
	Inferred	913,813	2.69	2,461,114	0.98	77,846
	Total	1,098,887	2.69	2,957,084	1.01	96,036

APPENDIX 3 - SUMMARY OF JORC TABLE 1 AND LISTING RULE 5.8.1

The following is a summary of material information used to estimate the Eureka Mineral Resource, as required by Listing Rule 5.8.1 and JORC 2012 Reporting Guidelines.

1. MINING HISTORY

The Eureka gold deposit was first discovered in the 1890s, with historical underground mining worked until 1940. Historical information sourced from WAMEX noted that gold mineralisation is associated with shearing and quartz veining within easterly dipping oxidised fine grained mafic rocks. Recorded production from 1897 up to 1940 totalled 809 tonnes averaging 27.8 g/t Au (Ransted, 1985).

More recently, the Eureka tenement area has been explored and operated by numerous companies, with the major work completed outlines as follows:

- CSR (1982-83) included 4.4km of RC drilling
- West Coast Holdings (WCH) (1984-87)
 - Surface geochemistry (including Augur drilling), aero-mag surveys, vacuum drilling, Percussion, DC and DD drilling; surface mapping and gridding
 - Evaluation and mining of oxide resources (Open Pit) and evaluation of UG resources
 - Eureka Open Pit mining produced 45,865 tonnes at 4.64g/t Au, for 6,842 oz Au (WCH, 1986).
- Glengarry Mining NL (1994) Aeromag Interpretation, RAB Drilling
- Jasper Mining NL (+ JV partners) (1996-2004)
 - UG mine evaluation, refurbishment & trial mining
 - Limited ore drive development from November 1998 to June 1999 produced 400 t @ 6g/t Au from 80m Level (JMM, 2000);
- Sherlock Bay Nickel Corp (SBNC) (2004-2006) Ground Mag survey; gridding; surface mapping; RC drilling (ERC holes)
- International Gold P/L (2007-2010) Mag-radiometric survey, Augur drilling; UG design study (41,000 t @ 10.1 g/t, for 13,300 oz Au)
- Central Iron Ore Ltd (2011-14) Resource evaluation (451,000t @ 4.4g/t for 64,200 oz Au); Geophysical data review

2. MINERAL TENEMENT AND LAND TENURE STATUS

The Eureka project is situated on tenement numbers M24/189, M24/584, M24/585 and M24/586 and P24/5116. The suite of five tenements is located 50 Kilometres north-west of Kalgoorlie. The tenements are owned 100% by Warriedar Mining (WRM). WRM is the operator of the tenement package. All licences are in good standing with no known impediments.

3. EUREKA DEPOSIT GEOLOGY AND MINERALISATION

Regional Geology

The Eureka gold deposit occurs on the eastern limb of the major south-east plunging Goongarrie-Mt. Pleasant Anticline. The eastern limb consists predominantly of north-north-west trending mafic and ultramafic lithologies, with minor thin mainly interflow sediments, bounded to the west by pre-to syntectonic granitoid forming the core of the regional anticline.

To the east, the Bardoc-Broad Arrow Synform occurring between the major Goongarrie- Mt. Pleasant and Scotia-Kanowma Anticlines is subject to significant disruption by the broad Bardoc Tectonic Zone.

This zone consists of multiple shear zones occurring within intercalated felsic, mafic and ultramafic lithologies in the vicinity of the synformal axis. The Bardoc Tectonic Zone is host to the Paddington and Bardoc gold deposits.

info@javelinminerals.com.au
 +61 8 6319 1900

Local Geology and Mineralisation

The Eureka deposit is located within a sequence of mafic and ultramafic rocks forming part of the Kalgoorlie -Menzies greenstone belt. The layered sequence is approximatley 6 km wide with a northerly trend (Figure 1). The sequence is intruded by east-west trending Proterozoic mafic dykes and is bunded to the east and west by complex granitic plutons.

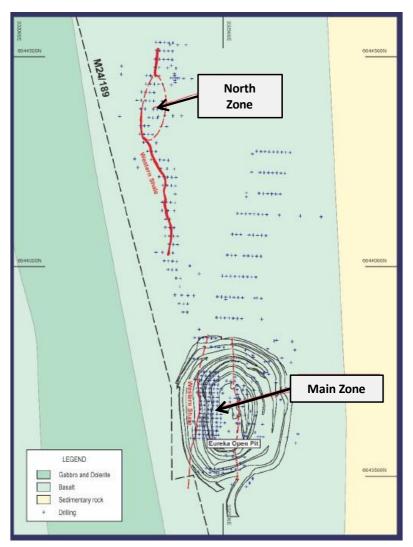


Figure 1 – Eureka Gold Project - Simplified Local Geology (from Hodgins, 2014, based on historical work)

In the vicinity of the Eureka Mine the sequence has a generally easterly dip of 65° to 70°, parallel by the regional foliation. Regional metamorphism of the sequence is lower greenschist facies.

Two distinct shale units are present, the western or footwall unit being the Copper Mine Shale which marks the top of the sill and the hanging wall unit, an interflow unit amongst the basalt (Figure 2).

Weathering profile is extensive with the deepest weathering along the main shear zones and contacts causing a weathering trough of highly oxidised rock that extends down the main shear to the bottom of the pit exposures. Both the north end and south end exposures of the pit show massive and blocky clay altered rock masses bounded by narrow, highly sheared zones, commonly containing limonitic quartz veining. The quartz vein hosted shears run parallel or sub-parallel to the main N-S shear trend, and less commonly cross cutting, shallow dipping quartz veins (Figure 2).

1202 Hay Street West Perth WA 6005

🛞 www.javelinminerals.com.au

🖂 info@javelinminerals.com.au en +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

High grade gold mineralisation at Eureka is associated with veining within the altered lower mafics. The vein system typically consists of quartz, carbonate and sulphide and has a variable thickness of up to 20m. The mineralisation exploited in the open pit consists of a number of lens shaped shoots up to 10m wide within an intensely sheared zone some 30m wide.

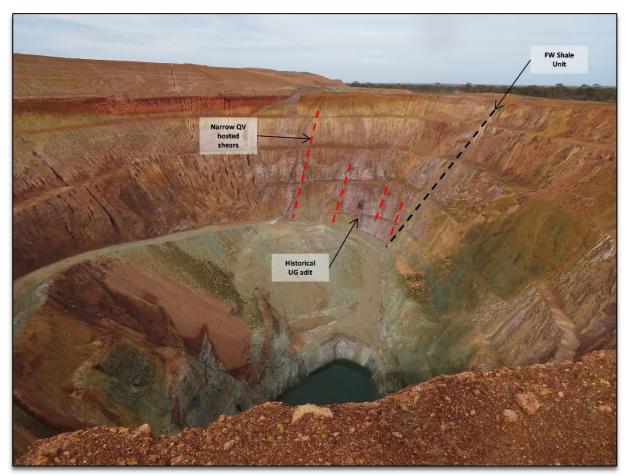


Figure 2 – Eureka Open Pit – Recent view of Open Pit workings, looking south (Cube, June 2021)

4. DRILLING TECHNIQUES AND HOLE SPACING

Historically, the project has been drilled using rotary air blast (RAB), percussion (Perc), reverse circulation (RC) and diamond core drilling (DD) over numerous campaigns by several companies and currently by TIN.

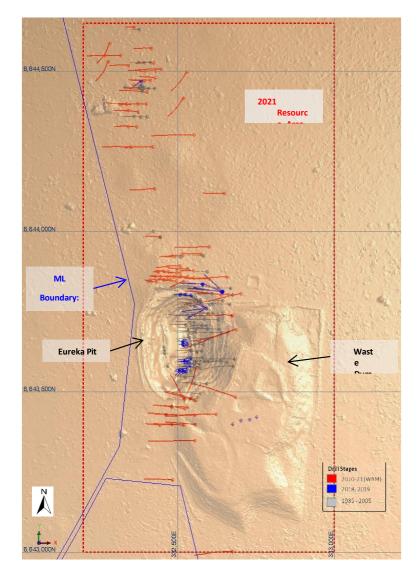
Eureka Open Pit - Recent view of Open Pit workings, looking south (Cube, June 2021)

For the 2020-2021 all drilling was completing using RC rigs. The RC rig specs are as follows:

- Schramm T450 RC rig 5 ¹/₂ inch diameter face sampling hammer
- LC36 KWL700 RC rig (for deep holes) 5 inch face sampling hammer
- X350 RC rig 4 ¹/₂ inch diameter face sampling hammer; drilling since May 2021)

The majority of holes are on a grid either infilling within or surrounding historical pit and underground (UG) workings or extending along strike into geochemical or geophysical (areo- mag) anomalies. The recent programs drilled in 2020 and 2021 have all been RC drilling. The majority of drill holes have a dip of -55 or -60° and azimuths mostly drilled to 270° MGA grid.

1202 Hay Street West Perth WA 6005


🛞 www.javelinminerals.com.au

info@javelinminerals.com.au
 +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

Historical exploration and drilling at Eureka targeted discrete areas based on surface geochemical and geophysical anomalies, historical workings that identified the location of host mineralisation. Consequently, current drilling is not grid based, but across the historical open pit and UG workings the drill spacing is nominally 10m N x 10m E. Extensions to the north and south have been nominally drilled at 20m N x 20m/10m spaced drilling. A plan view showing the drill spacing of holes used for the 2021 MRE within the Eureka project area are highlighted in Figure 3.

5. SAMPLING METHODS

Historical drilling reviewed from WAMEX files and carried out from 1982, included Vacuum, Augur, open hole percussion/ RAB, RC and diamond core drilling (mostly NQ, also PQ and HQ). Sampling methods included chip samples collected and split in even 1 metre or 4 metre composite intervals for dry samples. Wet samples were speared or on occasion scoop- sampled. Diamond core was half core sampled at selected intervals where the geologist recorded evidence of the presence of mineralisation.

For the recent drilling by TNT Mines Ltd (TIN), reverse circulation (RC) drill samples are collected from rig mounted cyclone cone splitter at 1m intervals. Duplicate samples are collected from reject bags every 10m (by spear sampling). Calico

2 1202 Hay Street West Perth WA 6005

➢ info@javelinminerals.com.au
 → +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

🛞 www.javelinminerals.com.au

samples are weighed to ensure minimum size of 2.5kg are collected. Rarely where wet samples were encountered, the samples were speared or on occasion scoop-sampled. RC drill chips from each metre were examined visually and logged by the geologist. Duplicate samples were collected at 1 m intervals by scoop sampling reject bags.

Certified reference materials (CRM), analytical blanks, and field duplicates were used as part of the QAQC procedures used for the 2020-2021 RC drilling programs at Eureka and summarised as follows:

- Insertion of CRMs after every 10 samples which represents approximately 5% of total samples. No blanks were inserted for the 2020-2021 RC drilling programs.
- Insertion of field duplicates at a rate of one duplicate submitted for every 10 samples. Duplicates samples represent approximately 5% of total samples.
- Based on the independent statistical analysis of the QAQC results, there is no evidence to suggest the samples are not representative. Analysis of the results to date show an acceptable level of precision and accuracy.

6. SAMPLE SECURITY AND LABORATORY ANALYSIS

Chain of custody is managed by TIN staff at the site office and core storage facility at Eureka. Between 300-400 samples are delivered in a batch directly by TIN personnel to the assay laboratory in Kalgoorlie by light vehicle and trailer with enclosed cage. Samples are securely packed in wire-tied, large hessian bags.

Two laboratories have been used for the 2020-2021 RC drilling, sample preparation and analysis: -

- ALS, Kalgoorlie, certified ISO 9001
- SGS, Kalgoorlie, certified ISO 9001

At the commercial laboratory, RC samples are dried at minimum 60° C. If the sample weight is greater than 3 kg, the sample is riffle split. It is then pulverised to a grind size where 85% of the sample passes 75 micron. All samples have been analysed using a 30g fire assay technique with an AAS finish.

All assay results are forwarded electronically to TIN for review by the CEO prior to validation and importing into the TIN database by contract database administrator.

7. ESTIMATION METHODOLOGY

Data is sourced from the recent and historical drill logging and RC chip logging/ DD core logging, and surface mapping interpretations from previous work. Interpreted projections for structures and local mineralisation trends were made between drill sections and extending along strike and down dip based on a drill spacing down to 10 m x 10 m. The logging and mining information has been used to inform the mineralisation domains used for the estimation.

Weathering surfaces were interpreted for oxide, transitional and primary weathering boundaries from available logging data. This data allowed the density values for the mineral resource estimate to be sub-divided by weathering domains.

Mineralisation continuity in the Main zone mineralisation consisting of 2 main zones in close proximity, following the trend of the main shear. Along the hanging wall and in the North zone, mineralisation is more inconsistent, although many old holes have selective sampling. Several significant gold intersections footwall to the FW graphitic shale were modelled into Au domain, and may indicate anomalous Au mineralisation along the footwall sequence.

Estimation domains were based on grouping of the gold mineralisation domains into five zones as defined by domain boundary threshold, nominally at 0.5g/t Au:

- Domain 1001 to 1008 Main Zone Au mineralisation
- Domain 2001 to 2004 North Zone Au mineralisation
- Domain 3001 Laterite Au mineralisation
- Domain 100 Min/Waste halo domain covering background mineralisation across the Main and North zones.

Drill hole sample data was flagged using domain codes generated from three-dimensional mineralisation domains. Sample data was composited to one-metre downhole lengths using a best fit-method. No residuals were generated. Statistical analysis was carried out on data from all estimated domains, with hard boundary techniques employed within each estimation domain.

Gold grade distributions within the estimation domains were assessed to determine if high grade cuts or distance limiting should be applied. Distance limiting thresholds and the effects of grade capping were reviewed and applied on a domain basis where it was deemed appropriate i.e., for extreme high-grade outliers, high grade clustering or a high coefficient of variation (CV).

The mineralised domain wireframes were used to code the block model and the volume between the wireframe models and the coded block model were checked in order to ensure that the sub-blocking size are appropriate for the interpreted domains. Estimation was carried out on capped and uncapped gold grade. Hard domain boundaries were used between the mineralised domains, meaning only composites within the domain are used to estimate inside that domain. The variogram orientations were used as the orientation of the search ellipse. The variogram and search parameters for well-informed were used to represent the poorly informed domains.

Gold was estimated in two passes – first pass using optimum search distances for each domain (mostly 40 m) as determined through the KNA process, second pass set at longer distances in order to populate all blocks (2nd = max 120 m). A waste domain boundary encompassing the mineralisation domains and within the limits of the drilling and host units was modelled for each deposit and included in the grade estimation runs. This allowed for any isolated zones and any mineralised haloes proximal to the hard boundary mineralised blocks to be estimated for estimation of dilution within pit optimisation limits. Interpolation parameters were set to a minimum number of 6 composites and a maximum number of 16 composites for the estimate. A maximum of 6 samples per hole was used.

The parent block dimensions used in the block model were:

• 5 m N by 2.5 m E by 2.5 m RL, with sub-cells of 2.5 m by 1.25 m by 1.25 m.

The parent block size was selected on the basis one half/one quarter of the minimum drill spacing of 10/20 m E by 10 m N in Indicated areas and one quarter of the maximum drill spacing of 40 m E by 20 m N in Inferred areas. For the block model definition parameters, the primary block size and sub-blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow zones or terminations, or disrupted zones due to contacts or surface boundaries.

The block model definition parameters included a primary block size and sub-blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow or complex zones modelled. These dimensions are suitable for block estimation and modelling the selectivity for an open pit operation. A view of the block model constrained within the estimation domains is illustrated in Figure 4.

1202 Hay Street West Perth WA 6005
 www.javelinminerals.com.au

info@javelinminerals.com.au
 +61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

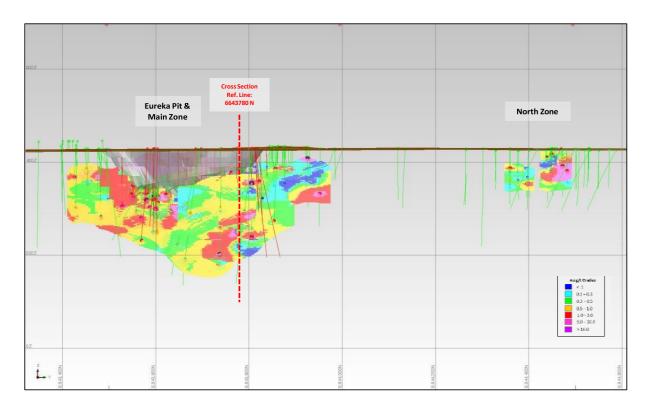


Figure 4 – Eureka Project – Composite Long Section (looking west) with block grades within defined estimation domains and drilling density (May 2021)

The block model was validated using a combination of visual and statistical techniques including global statistics comparisons, correlation coefficients comparisons, and trend plots.

A cross section looking north with estimated block grades constrained by the estimation domains within the Main Zone is presented in Figure 5.

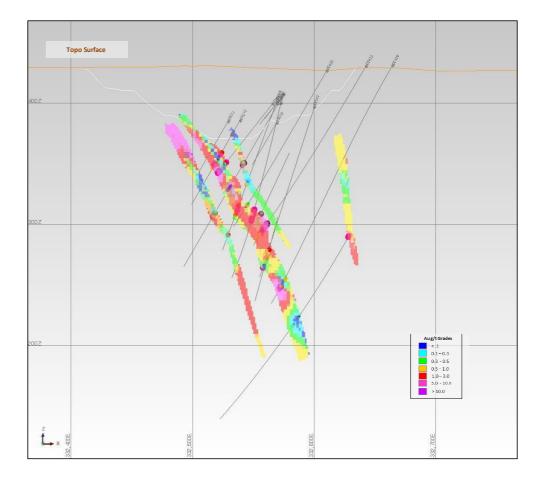


Figure 5 – Eureka Project – Main Zone Cross section 6643780N (looking north) with block grades compared with downhole 1m composite grades (May 2021)

8. RESOURCE CLASSIFICATION

A range of criteria was considered by Cube when addressing the suitability of the classification boundaries. These criteria include:

- Geological continuity and volume;
- Drill spacing and drill data quality;
- Modelling technique; and
- Estimation properties, including search strategy, number of informing composites, average distance of composites from blocks and kriging quality parameters.

Blocks have been classified in both the Indicated (56% of total metal) and Inferred (44%) categories, primarily based on drill data spacing and well-defined Au mineralisation continuity, in combination with other model estimate quality parameters.

For Eureka, the following criteria was adopted for identifying the resource classification boundaries:

- The Indicated Mineral Resource was defined within areas of close spaced diamond and RC drilling (mostly 2020-2021 drilling) of less than 20 m by 20 m, and where the continuity and predictability of the lode positions was good.
- 1202 Hay Street West Perth WA 6005
- 🛞 www.javelinminerals.com.au

➢ info@javelinminerals.com.au
 → +61 8 6319 1900

• The Inferred Mineral Resource was assigned to areas of the deposit where drill hole spacing was greater than 20 m by 20 m and where small, isolated pods of mineralisation occur outside the main mineralised trends

9. REPORTING

In situ Resources

A summary of the in-situ Eureka Mineral Resources, as of 30 June 2021 is presented in Table 2. All resources have been depleted by previous open pit mining activity and are reported at a range of cut-off grades (COG). As the resources occur at or near surface, the models were constructed with a view towards selective open pit mining. Therefore, the selected Au lower cut-off ranges were deemed appropriate

Resource Category	COG	Tonnes (t)	Grade (g/t Au)	Contained (Oz Au)					
	0.3	1,437,000	1.4	65,000					
lu ali a a ta al	0.5	1,269,000	1.5	62,000					
Indicated	0.8	983,000	1.8	56,000					
	1.0	811,000	2.0	52,000					
	0.3	1,341,000	1.2	52,000					
	0.5	1,183,000	1.3	50,000					
Inferred	0.8	887,000	1.5	43,000					
	1.0	666,000	1.7	37,000					
	0.3	2,778,000	1.3	116,000					
All Resouces	0.5	2,452,000	1.4	112,000					
All Resouces	0.8	1,870,000	1.7	100,000					
	1.0	1,477,000	1.9	88,000					

Table 2: Eureka Gold Project- In Situ Mineral Resources (as of 23 June 2021)

Notes:

- Figures may not add up due to rounding.
- All resources have been depleted by open pit mining based on the most recent surface topography DTM. No resources have been depleted by historical UG mining.
- The average bulk density assigned to the mineralisation is 2.2 g/cm³ for oxide

material, 2.4 g/cm³ for transition, and 2.75 g/cm³ for fresh rock.

- Mineral Resources that are not Mineral Reserves have not demonstrated economic viability. The estimate of Mineral Resources may be materially affected by environmental, permitting, legal, title, taxation, socio-political, marketing, or other relevant issues.
- No mining or metallurgical factors have been applied to the In Situ Mineral Resources

10. CUT-OFF GRADE

As the resources occur at or near surface, and have been mined previously by this method, the models were constructed with a view towards selective open pit mining.