

ASX: VMM MARKET ANNOUNCEMENT

Cupim South Drilling Paves Way for Major Resource Upgrade

Expansion to high-grade zones at Cupim South continues

ASX Release: 30 October 2024

Highlights

- Maiden systematic RC Drilling at Cupim South Mining Licenses has uncovered further exceptionally thick and high-grade zones. These results underpin immense resource expansion potential and pathway to support a potential long-life, >4,500ppm TREO mine plan, highlighted below:
 - CS-RC-0367: 50m @ 2,999ppm TREO^A from surface, including 28m @ **3,232ppm TREO [30% MREO**^B] *Ending in mineralisation*
 - CS-RC-0375: 50m @ 2,952ppm TREO from surface, including 16m @ **4,068ppm TREO [27% MREO]** *Ending in mineralisation*
 - CS-RC-0361: 14m @ 6,644ppm TREO from 8m, including 8m @ 9,472ppm TREO [41% MREO]
 - CS-RC-0320: 10m @ 6,303ppm TREO from surface, including 6m @ 7,413ppm TREO [43% MREO]
 - CS-RC-0395: 58m @ 2,056ppm TREO from 2m [23% MREO]
 - CS-RC-0430: 24m @ 5,362ppm TREO from surface, including 10m @ 6,131ppm TREO [42% MREO]
 - CS-RC-0413: 26m @ 4,229ppm TREO from surface, including 14m @ 5,289ppm TREO [39% MREO]
 - CS-RC-0387: 6m @ 7,404ppm TREO from surface [39% MREO]
 - CS-RC-0426: 20m @ 4,441ppm TREO from surface, including 8m @ 5,122ppm TREO [31% MREO]
 - CS-RC-0352: 18m @ 4,907ppm TREO from surface, including 10m @ 6,226ppm TREO [41% MREO]
 - CS-RC-0474: 16m @ 4,426ppm TREO from surface, including 8m @ 5,940ppm TREO [37% MREO]
 - CS-RC-0373: 32m @ 3,394ppm TREO from surface, including 10m @ **6,123ppm TREO [39% MREO]**
 - CS-RC-0315: 14m @ 4,150ppm TREO from surface [34% MREO]
 - CS-RC-0363: 12m @ 4,795ppm TREO from 8m, including 6m @ 7,054ppm TREO [38% MREO]
 - CS-RC-0419: 6m @ 5,475ppm TREO from surface [30% MREO]
 - CS-RC-0423: 16m @ 4,161ppm TREO from surface [41% MREO]
 - CS-RC-0539: 12m @ 4,357ppm TREO from surface [29% MREO]
 - CS-RC-0513: 18m @ 3,055ppm TREO from surface, including 6m @ 5,063ppm TREO [33% MREO]
 - CS-RC-0538: 12m @ 3,992ppm TREO from surface [36% MREO]
 - CS-RC-0333: 8m @ 4,310ppm TREO from surface [37% MREO]
 - CS-RC-0354: 6m @ 4,556ppm TREO from surface [36% MREO]
 - CS-RC-0372: 22m @ 3,240ppm TREO from 2m, including 10m @ 4,011ppm TREO [40% MREO]
 - CS-RC-0282: 32m @ 2,948ppm TREO from surface, including 10m @ **4,206ppm TREO [34% MREO]**
 - CS-RC-0405: 6m @ 4,359ppm TREO from surface [31% MREO]
 - CS-RC-0425: 10m @ 4,247ppm TREO from surface [37% MREO]
 - CS-RC-0439: 14m @ 4,247ppm TREO from surface, including 6m @ 5,554ppm TREO [16% MREO]
 - CS-RC-0445: 12m @ 4,157ppm TREO from 2m [32% MREO]
 - CS-RC-0481: 8m @ 4,300ppm TREO from surface [37% MREO]
 - CS-RC-1170: 14m @ 4,060ppm TREO from 4m [34% MREO]

 $^{^{\}rm A}$ Total Rare Earth Oxides ('TREO'): La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3+ Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3

 $^{^{\}text{B}}$ Magnetic Rare Earth Oxides ('MREO'): Dy₂O₃, Gd₂O₃, Ho₂O₃, Nd₂O₃, Pr₆O₁₁, Sm₂O₃, Tb₄O₇

- Amongst these results, significant intercepts of elevated Heavy Rare Earths of Dy-Tb are also present at Cupim South complementing the outstanding enrichment and recoveries of Dy-Tb within the Northern Concessions. These intercepts from Cupim South are highlighted by:
 - CS-RC-0430: 24m @ 151ppm Dy-Tb Oxide and 5,632ppm TREO
 - CS-RC-0474: Includes 8m @ 83ppm Dy-Tb Oxide and 5,940ppm TREO
 - CS-RC-0423: 16m @ 73ppm Dy-Tb Oxide and 4,161ppm TREO
 - CS-RC-0419: 6m @ 86ppm Dy-Tb Oxide and 5,475ppm TREO
 - CS-RC-0413: Incldues 14m @ **86ppm Dy-Tb Oxide** and 5,289ppm TREO
 - CS-RC-0387: 6m @ 98ppm Dy-Tb Oxide and 7,404ppm TREO
 - CS-RC-0370: Includes 6m @ 99ppm Dy-Tb Oxide and 2,782ppm TREO
 - CS-RC-0361: Includes 8m @ 126ppm Dy-Tb Oxide and 9,472ppm TREO
 - CS-RC-0320: 10m @ 110ppm Dy-Tb Oxide and 6,303ppm TREO
- Infill RC holes at the existing Cupim South Deposit outline numerous higher-graded zones within the Mining Licenses than previous block modelling has shown. Furthermore, results demonstrate substantially elevated "MREO %", which is beneficial for maintaining a superior basket value.
- Cupim South has recently been converted into granted Mining Licenses, and Viridis continues to progress both Cupim South and Northern Concession Mining Licenses through environmental studies for permitting.
- ► Cupim South has also commenced its maiden mixed rare earth carbonate ('MREC') testing, which will follow the same systematic methodology as the Northern Concessions MREC, which yielded an outstanding ore to MREC recovery of¹:
 - Recovery of Praseodymium (Pr) 77%
 - Recovery of Neodymium (Nd) 76%
 - Recovery of Dysprosium (Dy) 67%
 - Recovery of Terbium (Tb) 71%
 - Overall MREO recovery from Ore to Carbonate 76%
- ► The Cupim South area has been systematically drilled, with the entire 200 x 200m grid concluded and 75% of the assays received in preparation for the next resource evaluation and, subsequently, the Scoping Study.

Chief Executive Officer, Rafael Moreno commented:

"This latest set of drilling results continues to showcase the extensive contiguous high-grade system we have on our hands at our Southern tenement package, underpinning our development strategy to mine the high-grade areas in both our Northern and Southern Concessions to maximise project economics and cashflow during the initial years of operations.

Especially pleasing is the consistently high ratio of MREO/TREO in the assays, which directly supports a high MREC basket value, which is paramount for increasing revenue.

With the deep drilling program now completed, the company is excited about releasing an updated resource estimate in the coming months, finalising the mine planning for the Northern and Southern concessions and releasing the results of the Scoping Study.

In parallel, other critical path activities such as the Prefeasibility Study, Environmental Approvals, and MREC test work on the southern concessions remain on track per our development timeline."

Viridis Mining and Minerals Limited ('Viridis' or 'Company') is pleased to report that the eleventh set of assays has been received within the Colossus Project, presenting outstanding results. This batch was the maiden systematic reverse circulation ('RC') drilling conducted across the consolidated Cupim South Mining License.

The results have successfully extended the large 4,000ppm+ zone of rare earth element ('REE') mineralisation trend along Cupim South (see Figure 1). Furthermore, several infill holes conducted within the existing Cupim South deposit in this batch of assays has encountered significantly higher grades than previously accounted for in the block model. For example:

- **CS-RC-0363:** Drilled into an interpolated light green block, estimated at ~2,700ppm TREO, however encountered a significantly higher **12m @ 4,795ppm TREO.**
- **CS-RC-0361:** Drilled into an interpolated light green block, estimated at ~2,700ppm TREO, however encountered a significantly higher **14m @ 6,644ppm TREO**.
- **CS-RC-0354:** Drilled into a green block, estimated at ~2,000ppm TREO, however encountered a significantly higher **6m @ 4,556ppm TREO.**

The Cupim South Mining Licenses continue redefining the initial feed potential for Colossus, with systematic RC drilling in a 200 x 200m grid completed and 75% of the associated assays now received.

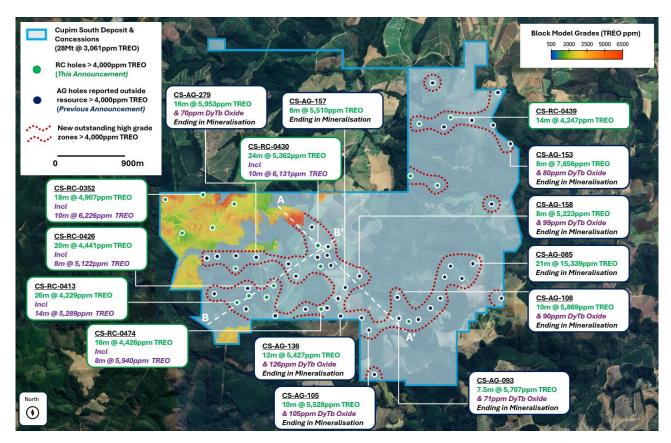
Maiden MREC production has also begun at Cupim South, with samples being sent to the Australian Nuclear Science and Technology Organisation ('ANSTO') for systematic and staged flowsheet recovery testing – replicating the methodology used within Northern Concessions at Colossus, which delivered world-leading recoveries. Viridis has chosen to produce two separate MRECs (one from Northern Concessions and one from Cupim South) to understand the unique recovery characteristics on each block of Mining Licenses. This will enable the Company to deliver a more accurate Scoping Study, with a detailed understanding of recoveries on each of its concessions and optimise the mine planning, considering both grades and recoveries at different parts of the complex.

Cupim South

The eleventh batch of assays predominantly focused on systematic RC drilling within the Cupim South Mining License, consisting of infill and step-out drilling to build its updated inferred and indicated resource estimate soon. These assays have returned both thick and high-grade mineralisation, significantly enriched in high-value MREOs, up to 43% MREO concentration.

These assays have successfully extended the main large continuous 4,000ppm footprint area outside the Cupim South resource and the second area on the northeast portion of the Mining License (see Figure 1). The northeast portion has the potential to form another significant 4,000ppm zone, with grades >7,000ppm, as seen by CS-AG-153, which intercepted **8m @ 7,856ppm TREO**² sitting within this secondary high-grade footprint.

Furthermore, infill drilling within the current resource has encountered significantly higher grades than previously modelled, paving the way for a significant resource grade both from the existing resource and new areas that have been drilled over the last few months.


Highlights from this batch of systematic RC drilling include:

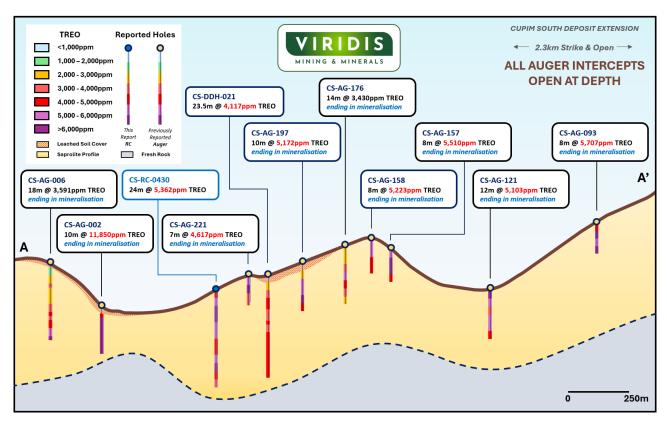
- CS-RC-0367: 50m @ 2,999ppm TREO from surface, including 28m @ **3,232ppm TREO [30% MREO]** *Ending in mineralisation*
- CS-RC-0430: 24m @ 5,362ppm TREO from surface, including 10m @ 6,131ppm TREO [42% MREO]
- CS-RC-0413: 26m @ 4,229ppm TREO from surface, including 14m @ 5,289ppm TREO [39% MREO]
- CS-RC-0426: 20m @ 4,441ppm TREO from surface, including 8m @ **5,122ppm TREO [31% MREO]**
- CS-RC-0375: 50m @ 2,952ppm TREO from surface, including 16m @ 4,068ppm TREO [27% MREO]

Ending in mineralisation

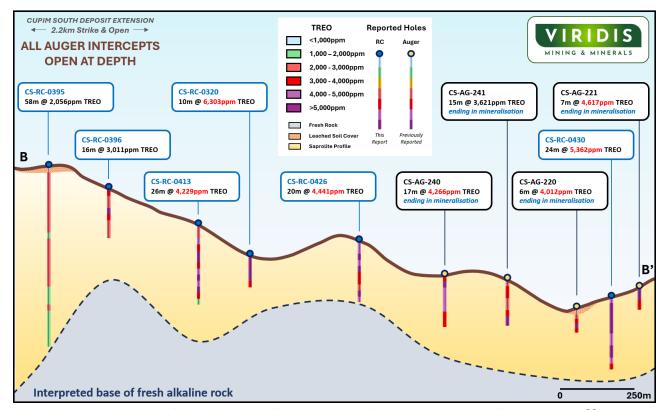
CS-RC-0361: 14m @ 6,644ppm TREO from 8m, including 8m @ 9,472ppm TREO [41% MREO]

Figure 1: Highlights of the plan view at Cupim South Deposit and extension with auger drills³ and RC drills within this report. More details on the block model can be found in the VMM ASX announcement on 4 June 2024.

Cupim South continues to demonstrate a large footprint of exceptional grades but also remarkably high contents of Nd, Pr, Dy, Tb, which are conducive to a substantially high-value basket and high-margin product as seen by:


- CS-RC-0361: 14m @ 6,644ppm TREO from 8m, including 8m @ 9,472ppm TREO [41% MREO]
- CS-RC-0430: 24m @ 5,362ppm TREO from surface, including 10m @ 6,131ppm TREO [42% MREO]
- CS-RC-0413: 26m @ 4,229ppm TREO from surface, including 14m @ **5,289ppm TREO [39% MREO]**
- CS-RC-0423: 16m @ 4,161ppm TREO from surface [41% MREO]

Furthermore, numerous RC infill holes within the current resource model encountered substantially higher grades than previously modelled, as seen in Figure 1 above:


- **CS-RC-0363:** Drilled into an interpolated light green block, estimated at ~2,700ppm TREO, however encountered a significantly higher **12m @ 4,795ppm TREO**.
- **CS-RC-0361:** Drilled into an interpolated light green block, estimated at ~2,700ppm TREO, however encountered a significantly higher **14m @ 6,644ppm TREO**.
- **CS-RC-0372:** Drilled into an interpolated light green block, estimated at ~2,700ppm TREO, however encountered a significantly higher **22m @ 3,240ppm TREO**.
- **CS-RC-0354:** Drilled into a green block, estimated at ~2,000ppm TREO, however encountered a significantly higher **6m @ 4,556ppm TREO.**
- **CS-RC-0373:** Drilled into a green block, estimated at ~2,000ppm TREO, however encountered a significantly higher **32m @ 3,394ppm TREO.**

These results lay the foundation for a significant resource upgrade at Cupim South Mining Licenses.

Figure 2: Cross section A (looking northeast) at Cupim South from Figure 1 with significant intercepts³. 15x Y-Axis exaggeration, grade blocks down-hole were sampled per 1.5-2m except for CS-AG-02 and 06 sampled per 1m.

Figure 3: Cross section B (looking northwest) at Cupim South from Figure 1 with significant intercepts^{2,3}. 10x Y-Axis exaggeration, grade blocks down-hole were sampled per 2m.

Future Work

The current drill results, along with remaining assays at Cupim South, will be used to develop and model an upgraded global resource for the Colossus Project in the near future. The key priority of the updated resource is the MREO content and the associated MREO/TREO ratio.

In conjunction with the ongoing drill program, Viridis has also commenced MREC production and testing from Cupim South, with samples having already been sent to ANSTO. The MREC testing will follow the same rigorous procedure to understand the optimal leaching, impurity removal and precipitation conditions used to develop the Northern Concessions maiden MREC, which returned 76% MREO recoveries from ore to final MREC¹.

Subsequently, upon completion of Southern Concessions' MREC and resource upgrade, the Company will complete mine planning targeting the high-grade areas in the Northern and Southern Concessions. Once complete, the Company anticipates release of its scoping study while continuing its critical environmental and regulatory permitting activities.

Approved for release by the Board of Viridis Mining and Minerals Ltd.

Contacts

For more information, please visit our website, www.viridismining.com.au or contact:

Carly Terzanidis

Company Secretary
Tel: + 61 3 9071 1847

Email: cosec@viridismining.com.au

Rafael Moreno

Chief Executive Officer Tel: + 61 3 9071 1847

Email: rafaelm@viridismining.com.au

About Viridis Mining and Minerals

Viridis Mining and Minerals Limited is a resource exploration and development company with assets in Brazil, Canada and Australia. The Company's Projects comprise:

- The Colossus Project, which the Company considers to be prospective for Rare Earth Elements;
- The South Kitikmeot Project, which the Company considers to be prospective for gold;
- The Boddington West Project, which the Company considers to be prospective for gold;
- The Bindoon Project, which the Company considers to be prospective for nickel, copper and platinum group elements; and
- The Poochera and Smoky Projects, which the Company considers to be prospective for kaolinhalloysite.

Maiden Mineral Resource Estimate

Colossus Project Maiden Resource Estimate at 1,000pm Cut-Off

Category	License	Million Tonnes (Mt)	TREO (ppm)	Pr6011 (ppm)	Nd2O3 (ppm)	Tb4O7 (ppm)	Dy2O3 (ppm)	MREO (ppm)	MREO/TREO
	Northern Concessions (NC)	50	2,511	145	441	5	25	616	25%
Indicated	Cupim South (CS)	10	3,014	204	612	6	31	853	28%
indicated	Capao Da Onca (CDO)	2	2,481	152	414	4	22	592	24%
	Indicated Sub-Total	62	2,590	154	467	5	26	653	25%
	Northern Concessions (NC)	97	2,519	151	473	5	26	656	26%
	Cupim South (CS)	18	3,087	199	620	6	34	859	28%
Inferred	Ribeirao (RA)	19	2,544	159	455	4	24	642	25%
	Capao Da Onca (CDO)	5	2,393	132	358	4	22	517	22%
	Inferred Sub-Total	139	2,591	158	486	5	27	675	26%
GLO	BAL RESOURCE (INDICATED & INFERRED)	201	2,590	157	480	5	27	668	26%

Table 1: Maiden Mineral Resource Estimate for Colossus REE Project using 1,000ppm TREO Cut-Off Grade. The resource model excludes leached/soil clays, transitional horizon and material under 300ppm MREO⁴.

Competent Person Statement

Dr. José Marques Braga Júnior, the in-country Executive Director of Viridis' Brazilian subsidiary (Viridis Mineração Ltda), compiled and evaluated the technical information in this release and is a member of the Australian Institute of Geoscientists (AIG) (MAusIMM, 2024, 336416), accepted to report in accordance with ASX listing rules. Dr Braga has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting of Regulation, Exploration Results, Mineral Resources, and Ore Reserves. Dr Braga consents to including matters in the report based on information in the form and context in which it appears.

The Company confirms that it is unaware of any new information or data that materially affects the information included in the market announcements referred to in this release and that all material assumptions and technical information referenced in the market announcement continue to apply and have not materially changed. All announcements referred to throughout can be found on the Company's website – viridismining.com.au.

Forward-Looking Statements

This announcement contains 'forward-looking information' based on the Company's expectations, estimates and projections as of the date the statements were made. This forward-looking information includes, among other things, statements concerning the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions and that the Company's results or performance may differ materially. Forward-looking information is subject to known and unknown risks, uncertainties, and other factors that may cause the Company's actual results, level of activity, performance or achievements to materially differ from those expressed or implied by such forward-looking information.

References

- 1.VMM announcement dated 24 September 2024 'Colossus Maiden Mixed Rare Earth Carbonate (MREC)

 Product'
- 2. VMM announcement dated 12 June 2024 'Step-Out Drilling Multiplies Cupim South High-Grade Footprint'
- 3. VMM announcement dated 30 July 2024 'Cupim South Step-Out Drilling Delivers Best Results Seen at Colossus'
- 4. VMM announcement dated 04 June 2024 'Globally Significant Maiden MRE for Colossus IAC Project'

APPENDIX A: DRILL LOCATIONS

Auger, RC and Diamond Hole coordinates of assays reported within this announcement: All holes were drilled vertically.

Hole number	Northing	Easting	Elevation	Туре	Final Depth	ANM_ID
CNT-AG-0055	7572018	347386	1324	AG	14.00	830.711/2006
CNT-AG-0087	7571226	346581	1363	AG	6.00	830.850/2024
CNT-AG-0090	7571178	347175	1230	AG	3.00	830.711/2006
CNT-AG-0096	7571093	346567	1325	AG	3.00	830.850/2024
CNT-AG-0129	7570429	347827	1201	AG	3.00	830.711/2006
CNT-AG-0130	7570426	348037	1238	AG	10.00	830.711/2006
CNT-AG-0131	7570432	348221	1236	AG	15.00	830.711/2006
CNT-AG-0132	7570422	348457	1237	AG	8.00	830.711/2006
CNT-AG-0133	7570431	348631	1260	AG	15.00	830.711/2006
CNT-AG-0147	7570217	348626	1279	AG	5.00	830.711/2006
CS-RC-0282	7574338	345788	1446	RC	50.00	830.464/1982
CS-RC-0283	7574602	346076	1408	RC	29.00	830.464/1982
CS-RC-0289	7575141	346123	1386	RC	35.00	830.464/1982
CS-RC-0294	7574900	345244	1381	RC	17.00	830.464/1982
CS-RC-0296	7575540	345802	1308	RC	50.00	830.464/1982
CS-RC-0297	7576032	346365	1283	RC	20.00	830.340/1979
CS-RC-0298	7576318	346641	1345	RC	32.00	830.340/1979
CS-RC-0302	7574969	344604	1398	RC	21.00	830.464/1982
CS-RC-0303	7575176	344997	1329	RC	19.00	830.464/1982
CS-RC-0304	7575462	345245	1369	RC	27.00	830.464/1982
CS-RC-0305	7576026	345804	1268	RC	16.00	830.340/1979
CS-RC-0306	7576313	346091	1272	RC	34.00	830.340/1979
CS-RC-0307	7576555	346332	1255	RC	21.00	830.340/1979
CS-RC-0311	7575179	344382	1399	RC	22.00	830.464/1982
CS-RC-0312	7575470	344690	1334	RC	12.00	830.464/1982
CS-RC-0313	7576035	345221	1345	RC	28.00	830.464/1982
CS-RC-0314	7576326	345516	1264	RC	27.00	830.340/1979
CS-RC-0315	7576870	346087	1263	RC	44.00	830.340/1979
CS-RC-0316	7577113	346388	1350	RC	25.00	830.340/1979
CS-RC-0320	7575196	343843	1356	RC	12.00	830.464/1982
CS-RC-0321	7575475	344115	1383	RC	16.00	830.464/1982
CS-RC-0322	7575756	344409	1304	RC	12.00	830.464/1982
CS-RC-0323	7575995	344699	1279	RC	13.00	830.464/1982
CS-RC-0324	7576331	344957	1305	RC	24.00	830.464/1982
CS-RC-0325	7576602	345242	1285	RC	19.00	830.464/1982
CS-RC-0327	7577758	346260	1345	RC	19.00	830.340/1979

Hole number	Northing	Easting	Elevation	Туре	Final Depth	ANM_ID
CS-RC-0330	7575477	343546	1376	RC	32.00	830.464/1982
CS-RC-0331	7575742	343809	1316	RC	12.00	830.464/1982
CS-RC-0333	7580548	346341	1277	RC	28.00	806.605/1973
CS-RC-0347	7576590	342938	1413	RC	47.00	833.560/1996
CS-RC-0351	7576462	343057	1413	RC	21.00	833.560/1996
CS-RC-0352	7576597	343213	1408	RC	21.00	833.560/1996
CS-RC-0354	7576057	342971	1456	RC	17.00	833.560/1996
CS-RC-0357	7576414	343442	1371	RC	21.00	833.560/1996
CS-RC-0358	7576600	343597	1367	RC	21.00	833.560/1996
CS-RC-0361	7576161	343368	1398	RC	26.00	833.560/1996
CS-RC-0362	7576326	343525	1402	RC	37.00	833.560/1996
CS-RC-0363	7576476	343664	1392	RC	23.00	833.560/1996
CS-RC-0364	7576611	343882	1389	RC	39.00	833.560/1996
CS-RC-0365	7575335	342867	1433	RC	50.00	833.560/1996
CS-RC-0366	7575454	342982	1443	RC	50.00	833.560/1996
CS-RC-0367	7575608	343089	1449	RC	50.00	833.560/1996
CS-RC-0368	7575786	343218	1389	RC	30.00	833.560/1996
CS-RC-0369	7575968	343446	1374	RC	25.00	833.560/1996
CS-RC-0370	7576053	343521	1410	RC	44.00	833.560/1996
CS-RC-0371	7576203	343628	1421	RC	42.00	833.560/1996
CS-RC-0372	7576324	343805	1404	RC	40.00	833.560/1996
CS-RC-0373	7576469	343940	1406	RC	43.00	833.560/1996
CS-RC-0374	7576609	344084	1405	RC	32.00	833.560/1996
CS-RC-0375	7575353	343083	1471	RC	50.00	833.560/1996
CS-RC-0378	7575735	343552	1343	RC	30.00	830.464/1982
CS-RC-0379	7575926	343699	1333	RC	24.00	833.560/1996
CS-RC-0382	7576382	344108	1362	RC	32.00	833.560/1996
CS-RC-0383	7576387	344233	1344	RC	26.00	833.560/1996
CS-RC-0385	7578243	346136	1303	RC	13.00	830.340/1979
CS-RC-0386	7575326	343453	1393	RC	16.00	830.464/1982
CS-RC-0387	7575589	343698	1339	RC	10.00	830.464/1982
CS-RC-0388	7575909	343986	1296	RC	50.00	832.759/2023
CS-RC-0391	7576335	344371	1338	RC	42.00	833.560/1996
CS-RC-0392	7576455	344571	1274	RC	18.00	833.560/1996
CS-RC-0393	7576619	344661	1266	RC	20.00	830.518/2023
CS-RC-0394	7578153	346209	1315	RC	20.00	830.340/1979
CS-RC-0395	7574895	343278	1483	RC	66.00	830.464/1982
CS-RC-0396	7574975	343434	1458	RC	30.00	830.464/1982
CS-RC-0397	7575188	343536	1431	RC	43.00	830.464/1982
CS-RC-0398	7575340	343673	1386	RC	17.00	830.464/1982

Hole number	Northing	Easting	Elevation	Туре	Final Depth	ANM_ID
CS-RC-0399	7575439	343852	1335	RC	50.00	830.464/1982
CS-RC-0404	7576332	344688	1250	RC	15.00	830.464/1982
CS-RC-0405	7576462	344826	1257	RC	27.00	830.464/1982
CS-RC-0406	7576591	344963	1258	RC	22.00	830.464/1982
CS-RC-0407	7577663	346082	1327	RC	20.00	830.340/1979
CS-RC-0410	7578154	346490	1333	RC	12.00	830.464/1982
CS-RC-0413	7575144	343703	1408	RC	43.00	830.464/1982
CS-RC-0414	7575329	343972	1358	RC	21.00	830.464/1982
CS-RC-0415	7575620	344205	1345	RC	30.00	830.464/1982
CS-RC-0416	7575876	344532	1310	RC	13.00	830.464/1982
CS-RC-0417	7576184	344824	1278	RC	27.00	830.464/1982
CS-RC-0418	7576459	345102	1287	RC	25.00	830.464/1982
CS-RC-0419	7577602	346214	1369	RC	17.00	830.340/1979
CS-RC-0420	7577854	346521	1381	RC	27.00	830.464/1982
CS-RC-0423	7574906	343886	1408	RC	23.00	830.464/1982
CS-RC-0424	7574996	343962	1411	RC	50.00	830.464/1982
CS-RC-0425	7575174	344108	1394	RC	22.00	830.464/1982
CS-RC-0426	7575347	344209	1381	RC	24.00	830.464/1982
CS-RC-0427	7575455	344398	1351	RC	26.00	830.464/1982
CS-RC-0428	7575612	344567	1347	RC	20.00	830.464/1982
CS-RC-0429	7575759	344663	1305	RC	16.00	830.464/1982
CS-RC-0430	7575895	344820	1309	RC	29.00	830.464/1982
CS-RC-0431	7576006	344954	1337	RC	13.00	830.464/1982
CS-RC-0432	7576174	345109	1354	RC	24.00	830.464/1982
CS-RC-0433	7576309	345241	1331	RC	11.00	830.464/1982
CS-RC-0434	7576602	345776	1246	RC	22.00	830.464/1982
CS-RC-0435	7576598	345516	1287	RC	21.00	830.340/1979
CS-RC-0436	7577178	346107	1313	RC	23.00	830.340/1979
CS-RC-0437	7577211	346177	1312	RC	33.00	830.340/1979
CS-RC-0439	7577631	346599	1401	RC	24.00	830.464/1982
CS-RC-0443	7575048	344262	1426	RC	34.00	830.464/1982
CS-RC-0444	7575320	344540	1360	RC	28.00	830.464/1982
CS-RC-0445	7575593	344823	1305	RC	22.00	830.464/1982
CS-RC-0446	7575894	345107	1344	RC	40.00	830.464/1982
CS-RC-0447	7576251	345355	1303	RC	22.00	830.464/1982
CS-RC-0448	7576458	345668	1257	RC	22.00	830.340/1979
CS-RC-0449	7577112	346206	1324	RC	19.00	830.340/1979
CS-RC-0453	7574901	344394	1466	RC	50.00	830.464/1982
CS-RC-0454	7575093	344602	1379	RC	18.00	830.464/1982
CS-RC-0455	7575163	344771	1351	RC	19.00	830.464/1982

Hole number	Northing	Easting	Elevation	Туре	Final Depth	ANM_ID
CS-RC-0456	7575270	344828	1352	RC	25.00	830.464/1982
CS-RC-0457	7575459	344965	1315	RC	37.00	830.464/1982
CS-RC-0458	7575620	345100	1342	RC	23.00	830.464/1982
CS-RC-0459	7575751	345254	1361	RC	30.00	830.464/1982
CS-RC-0460	7575875	345388	1349	RC	23.00	830.464/1982
CS-RC-0461	7576039	345511	1310	RC	17.00	830.340/1979
CS-RC-0462	7576179	345670	1256	RC	22.00	830.340/1979
CS-RC-0463	7576305	345810	1258	RC	15.00	830.340/1979
CS-RC-0464	7576461	345940	1270	RC	19.00	830.340/1979
CS-RC-0465	7576566	346050	1249	RC	28.00	830.340/1979
CS-RC-0466	7576731	346235	1263	RC	22.00	830.340/1979
CS-RC-0467	7576865	346382	1337	RC	33.00	830.340/1979
CS-RC-0474	7575064	344904	1343	RC	19.00	830.464/1982
CS-RC-0475	7575314	345114	1362	RC	50.00	830.464/1982
CS-RC-0476	7575617	345357	1349	RC	16.00	830.464/1982
CS-RC-0477	7575838	345489	1312	RC	10.00	830.464/1982
CS-RC-0478	7575879	345681	1260	RC	17.00	830.340/1979
CS-RC-0479	7576168	345952	1295	RC	24.00	830.340/1979
CS-RC-0480	7576483	346279	1253	RC	11.00	830.340/1979
CS-RC-0481	7576717	346489	1319	RC	15.00	830.340/1979
CS-RC-0484	7574905	344897	1378	RC	34.00	830.464/1982
CS-RC-0485	7575026	345114	1352	RC	22.00	830.464/1982
CS-RC-0486	7575180	345244	1364	RC	26.00	830.464/1982
CS-RC-0487	7575259	345396	1316	RC	21.00	830.464/1982
CS-RC-0488	7575439	345586	1275	RC	23.00	830.464/1982
CS-RC-0489	7575563	345713	1287	RC	23.00	830.464/1982
CS-RC-0490	7575753	345862	1322	RC	22.00	830.464/1982
CS-RC-0491	7575898	345944	1325	RC	13.00	830.340/1979
CS-RC-0492	7576020	346089	1305	RC	30.00	830.340/1979
CS-RC-0493	7576173	346255	1259	RC	18.00	830.340/1979
CS-RC-0494	7576337	346354	1264	RC	29.00	830.340/1979
CS-RC-0495	7576448	346521	1303	RC	14.00	830.340/1979
CS-RC-0496	7576576	346637	1321	RC	12.00	830.340/1979
CS-RC-0502	7575030	345380	1337	RC	19.00	830.464/1982
CS-RC-0503	7575303	345693	1318	RC	24.00	830.464/1982
CS-RC-0504	7575609	345964	1349	RC	30.00	830.464/1982
CS-RC-0505	7575905	346119	1314	RC	16.00	830.340/1979
CS-RC-0506	7576216	346528	1300	RC	21.00	830.340/1979
CS-RC-0510	7574765	345332	1378	RC	12.00	830.464/1982
CS-RC-0511	7574914	345539	1316	RC	13.00	830.464/1982

Hole number	Northing	Easting	Elevation	Туре	Final Depth	ANM_ID
CS-RC-0512	7575031	345656	1325	RC	19.00	830.464/1982
CS-RC-0513	7575240	345832	1347	RC	21.00	830.464/1982
CS-RC-0514	7575355	345960	1377	RC	30.00	830.464/1982
CS-RC-0515	7575421	346082	1378	RC	29.00	830.464/1982
CS-RC-0518	7575920	346511	1328	RC	30.00	830.340/1979
CS-RC-0519	7576048	346651	1323	RC	15.00	830.340/1979
CS-RC-0528	7575019	345938	1351	RC	19.00	830.464/1982
CS-RC-0536	7574460	345749	1414	RC	23.00	830.464/1982
CS-RC-0538	7574777	345949	1404	RC	24.00	830.464/1982
CS-RC-0539	7574889	346092	1396	RC	24.00	830.464/1982
CS-RC-0550	7574260	345706	1430	RC	41.00	830.464/1982
CS-RC-0578	7574731	343696	1455	RC	28.00	831.129/2023
CS-RC-0995	7575631	343978	1348	RC	24.00	830.464/1982
CS-RC-0996	7575739	344123	1321	RC	19.00	830.464/1982
CS-RC-0997	7576021	344403	1270	RC	20.00	830.464/1982
CS-RC-0998	7576222	344517	1279	RC	18.00	833.560/1996
CS-RC-1170	7576530	342724	1397	RC	32.00	833.560/1996
LA-AG-0003	7586262	346111	1328	AG	7.00	833.615/1996
LA-AG-0004	7586264	346183	1344	AG	4.00	833.615/1996
LA-AG-0005	7586239	346257	1355	AG	8.00	833.615/1996
LA-AG-0006	7586143	346271	1363	AG	12.00	833.615/1996
RT-AG-0001	7579924	341659	1353	AG	6.00	833.558/1996
RT-AG-0002	7579945	341737	1362	AG	11.00	833.558/1996
RT-AG-0003	7579836	341651	1357	AG	12.00	833.558/1996
RT-AG-0004	7579840	341741	1379	AG	9.00	833.558/1996
RT-AG-0005	7579739	341642	1369	AG	8.00	833.558/1996
RT-AG-0006	7579748	341741	1390	AG	10.00	833.558/1996
RT-AG-0007	7582010	342501	1362	AG	15.00	830.993/2000
RT-AG-0008	7581898	342536	1335	AG	9.00	830.993/2000
RT-AG-0009	7581910	342701	1361	AG	2.00	830.993/2000
RT-AG-0010	7581913	342926	1403	AG	10.00	830.993/2000
RT-AG-0011	7582035	342983	1368	AG	11.00	830.993/2000
RT-AG-0012	7582101	343086	1347	AG	5.00	830.993/2000

Table 2: Drill log table. All holes were drilled vertically from topsoil, depths have been rounded to the nearest 0.5m and include soils, clays and penetration into hard-rock (for RC/DDH)

APPENDIX B: ASSAY RESULTS COMPILED

Auger Drilling: All holes were drilled vertically.

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)	EOH Grade
	CNT-AG-0055	6.0	14.0	8.0	2,976	23%	627	20	4,067
	CNT-AG-0087	0.0	6.0	6.0	1,097	21%	177	21	1,041
	CNT-AG-0090	0.0	3.0	3.0	1,546	19%	237	18	1,546
Centro Sul	CNT-AG-0096	0.0	3.0	3.0	1,384	23%	262	14	1,368
	CNT-AG-0129	2.0	3.0	1.0	2,399	13%	274	15	2,399
	CNT-AG-0130	2.0	10.0	8.0	1,660	23%	328	14	1,743
	CNT-AG-0131	6.0	15.0	9.0	2,416	24%	530	21	3,768
	CNT-AG-0132	4.0	8.0	4.0	2,126	17%	291	20	2,442
	CNT-AG-0133	0.0	15.0	15.0	4,199	13%	412	17	2,227
	CNT-AG-0147	2.0	4.0	2.0	1,209	5%	46	7	1,209
	LA-AG-0003	4.0	7.0	3.0	1,974	22%	373	15	2,192
Laranjeiras	LA-AG-0004	0.0	4.0	4.0	1,722	12%	181	10	1,743
Laranjenas	LA-AG-0005	0.0	8.0	8.0	1,821	11%	156	14	1,603
	LA-AG-0006	0.0	12.0	12.0	1,517	5%	58	8	1,687
	RT-AG-0001	0.0	6.0	6.0	1,233	12%	99	18	1,172
	RT-AG-0002	2.0	11.0	9.0	3,498	33%	1033	38	5,036
	RT-AG-0003	4.0	12.0	8.0	2,174	28%	512	26	2,960
	RT-AG-0004	4.0	9.0	5.0	3,227	34%	956	30	4,887
	RT-AG-0005	0.0	8.0	8.0	1,806	10%	116	19	2,206
Retiro das	RT-AG-0006	2.0	10.0	8.0	1,545	3%	33	7	1,224
Tabuas	RT-AG-0007	2.0	15.0	13.0	2,635	24%	552	26	4,245
	RT-AG-0008	2.0	9.0	7.0	2,734	25%	580	30	1,917
	RT-AG-0009	0.0	2.0	2.0	1,944	17%	276	13	1,944
	RT-AG-0010	4.0	10.0	6.0	3,355	31%	918	33	4,092
	RT-AG-0011	4.0	11.0	7.0	3,087	29%	770	35	3,235
	RT-AG-0012	0.0	5.0	5.0	1,516	8%	86	17	1,717

Table 3: REE assays from auger drilling hosted within weathered clays, 1000ppm TREO cut-off, up-to 2m dilution. DyTb and NdPr grades presented are in Oxide converted form. Figures were rounded to the nearest 0.5m for length and the nearest whole number for 'ppm'.

APPENDIX B: ASSAY RESULTS COMPILED

Diamond and RC Drilling: All holes were drilled vertically.

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
	CS-RC-0282	0.0	32.0	32.0	2,948	27%	698	36
	incl.	10.0	20.0	10.0	4,206	34%	1,219	58
	CS-RC-0283	2.0	16.0	14.0	2,766	27%	654	28
	CS-RC-0289	0.0	10.0	10.0	2,320	22%	440	21
	CS-RC-0294	0.0	8.0	8.0	2,175	24%	439	31
	CS-RC-0296	0.0	6.0	6.0	1,910	21%	328	22
	CS-RC-0297	0.0	8.0	8.0	1,441	20%	230	16
	CS-RC-0298	0.0	12.0	12.0	1,692	20%	268	21
	CS-RC-0302	0.0	6.0	6.0	3,407	34%	933	71
	CS-RC-0303	0.0	8.0	8.0	2,320	27%	497	38
	CS-RC-0304	0.0	10.0	10.0	2,011	22%	367	23
	CS-RC-0305	0.0	4.0	4.0	1,451	21%	249	17
	CS-RC-0306	0.0	12.0	12.0	2,372	27%	532	35
	CS-RC-0307	0.0	8.0	8.0	1,580	21%	262	22
	CS-RC-0311	0.0	10.0	10.0	3,687	32%	975	53
	CS-RC-0312	0.0	8.0	8.0	4,322	34%	1,169	77
	CS-RC-0313	0.0	4.0	4.0	3,705	29%	858	69
Cupim	CS-RC-0314	0.0	5.0	5.0	1,979	29%	461	29
South	CS-RC-0315	0.0	14.0	14.0	4,150	34%	1,156	78
	CS-RC-0316	0.0	12.0	12.0	1,795	28%	401	33
	CS-RC-0320	0.0	10.0	10.0	6,303	40%	2,114	110
	incl.	0.0	6.0	6.0	7,413	43%	2,622	121
	CS-RC-0321	0.0	2.0	2.0	1,752	23%	337	18
	CS-RC-0322	0.0	4.0	4.0	2,139	26%	443	29
	CS-RC-0323	0.0	4.0	4.0	3,474	36%	1,045	49
	CS-RC-0324	0.0	16.0	16.0	1,608	22%	288	16
	CS-RC-0325	0.0	4.0	4.0	1,720	22%	296	21
	CS-RC-0327	0.0	12.0	12.0	1,513	23%	275	19
	CS-RC-0330	0.0	16.0	16.0	1,996	23%	376	20
	CS-RC-0331	0.0	6.0	6.0	2,723	30%	666	35
	CS-RC-0333	0.0	8.0	8.0	4,310	37%	1,246	94
	CS-RC-0347	2.0	18.0	16.0	2,281	25%	467	23
	CS-RC-0351	6.0	16.0	10.0	2,707	31%	739	29
	CS-RC-0352	0.0	18.0	18.0	4,907	36%	1,577	58
	incl.	4.0	14.0	10.0	6,226	41%	2,162	72
	CS-RC-0354	0.0	6.0	6.0	4,556	36%	1,432	53
	30 110 0004	5.0	5.0	0.0	-,500	5570	1,402	30

Prospect	Hole	From (m)	To (m)	Length	TREO	MREO	Nd-Pr	Dy-Tb
				(m)	(ppm)	%	(ppm)	(ppm)
	CS-RC-0357	0.0	16.0	16.0	1,934	25%	416	26
	CS-RC-0358	2.0	16.0	14.0	3,101	30%	788	37
	CS-RC-0361	8.0	22.0	14.0	6,644	32%	2,164	83
	incl.	14.0	22.0	8.0	9,472	40%	3,387	126
	CS-RC-0362	8.0	34.0	26.0	2,401	25%	491	32
	CS-RC-0363	8.0	20.0	12.0	4,795	33%	1,451	54
	incl.	10.0	16.0	6.0	7,054	38%	2,302	80
	CS-RC-0364	2.0	26.0	24.0	2,245	29%	594	25
	CS-RC-0365	0.0	18.0	18.0	1,621	24%	306	20
	CS-RC-0366	2.0	50.0	48.0	2,232	27%	484	27
	CS-RC-0367	0.0	50.0	50.0	2,999	27%	669	36
	incl.	18.0	46.0	28.0	3,232	30%	812	38
	CS-RC-0368	4.0	14.0	10.0	2,183	31%	574	24
	CS-RC-0369	0.0	16.0	16.0	1,856	25%	371	26
	CS-RC-0370	0.0	22.0	22.0	2,444	20%	355	50
	CS-RC-0371	0.0	26.0	26.0	2,532	24%	507	39
	CS-RC-0372	2.0	24.0	22.0	3,240	35%	1,021	33
	incl.	12.0	22.0	10.0	4,011	40%	1,385	40
	CS-RC-0373	0.0	32.0	32.0	3,394	30%	954	38
	incl.	16.0	26.0	10.0	6,123	39%	2,036	63
	CS-RC-0374	2.0	26.0	24.0	2,348	26%	503	27
	CS-RC-0375	0.0	50.0	50.0	2,952	22%	562	28
	incl.	32.0	48.0	16.0	4,068	26%	948	40
	CS-RC-0378	0.0	12.0	12.0	3,681	25%	796	41
	CS-RC-0379	4.0	16.0	12.0	2,118	27%	486	29
	CS-RC-0382	0.0	20.0	20.0	1,605	25%	324	19
	CS-RC-0383	0.0	6.0	6.0	2,852	31%	723	57
	CS-RC-0385	0.0	2.0	2.0	1,653	21%	283	17
	CS-RC-0386	0.0	4.0	4.0	2,496	24%	503	27
	CS-RC-0387	0.0	6.0	6.0	7,404	39%	2,472	98
	CS-RC-0388	0.0	6.0	6.0	1,813	25%	368	25
	CS-RC-0391	0.0	32.0	32.0	3,324	30%	924	42
	CS-RC-0392	0.0	8.0	8.0	2,289	24%	444	27
	CS-RC-0393	0.0	8.0	8.0	1,884	23%	360	29
	CS-RC-0394	0.0	8.0	8.0	3,452	26%	748	48
	CS-RC-0395	2.0	60.0	58.0	2,056	23%	376	23
	CS-RC-0396	0.0	16.0	16.0	3,011	42%	1,039	51
	CS-RC-0397	2.0	30.0	28.0	2,756	34%	790	32

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
	incl.	6.0	16.0	10.0	3,623	36%	1,072	34
	CS-RC-0398	0.0	4.0	4.0	1,872	30%	459	26
	CS-RC-0399	0.0	8.0	8.0	2,215	23%	418	18
	CS-RC-0404	0.0	6.0	6.0	1,770	23%	335	22
	CS-RC-0405	0.0	6.0	6.0	4,359	31%	1,151	49
	CS-RC-0406	0.0	18.0	18.0	2,911	27%	706	32
	incl.	4.0	10.0	6.0	4,331	32%	1,172	50
	CS-RC-0407	0.0	10.0	10.0	2,082	23%	398	28
	CS-RC-0410	0.0	6.0	6.0	1,969	20%	321	16
	CS-RC-0413	0.0	26.0	26.0	4,229	34%	1,255	63
	incl.	8.0	22.0	14.0	5,289	38%	1,665	86
	CS-RC-0414	0.0	10.0	10.0	3,728	32%	971	55
	CS-RC-0415	0.0	6.0	6.0	2,406	23%	436	37
	CS-RC-0416	0.0	6.0	6.0	3,640	34%	995	72
	CS-RC-0417	0.0	4.0	4.0	2,394	24%	470	28
	CS-RC-0418	0.0	6.0	6.0	1,506	21%	258	15
	CS-RC-0419	0.0	6.0	6.0	5,475	30%	1,350	86
	CS-RC-0420	0.0	10.0	10.0	2,289	23%	425	29
	CS-RC-0423	0.0	16.0	16.0	4,161	41%	1,406	73
	CS-RC-0424	0.0	26.0	26.0	3,112	31%	843	42
	CS-RC-0425	0.0	10.0	10.0	4,247	37%	1,309	59
	CS-RC-0426	0.0	20.0	20.0	4,441	32%	1,163	66
	incl.	2.0	10.0	8.0	5,122	31%	1,313	60
	CS-RC-0427	0.0	20.0	20.0	2,324	29%	531	44
	CS-RC-0428	0.0	12.0	12.0	3,573	34%	995	68
	incl.	0.0	8.0	8.0	4,081	36%	1,193	78
	CS-RC-0429	0.0	2.0	2.0	1,829	22%	336	19
	CS-RC-0430	0.0	24.0	24.0	5,362	41%	1,668	151
	incl.	2.0	12.0	10.0	6,131	41%	2,006	147
	CS-RC-0431	0.0	2.0	2.0	1,730	28%	397	23
	CS-RC-0432	0.0	8.0	8.0	1,570	23%	296	19
	CS-RC-0433	0.0	6.0	6.0	2,169	30%	486	48
	CS-RC-0434	4.0	16.0	12.0	2,152	27%	492	25
	CS-RC-0435	0.0	14.0	14.0	2,214	29%	527	40
	CS-RC-0436	0.0	4.0	4.0	1,519	25%	316	21
	CS-RC-0437	0.0	12.0	12.0	1,527	26%	319	20
	CS-RC-0439	0.0	14.0	14.0	4,247	19%	663	29
	incl.	0.0	6.0	6.0	5,554	16%	<i>7</i> 93	30

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
	CS-RC-0443	0.0	6.0	6.0	4,149	32%	1,081	64
	CS-RC-0444	0.0	10.0	10.0	2,096	27%	452	31
	CS-RC-0445	2.0	14.0	12.0	4,157	32%	1,080	61
	CS-RC-0446	0.0	16.0	16.0	2,745	31%	667	56
	CS-RC-0447	0.0	10.0	10.0	2,736	34%	762	57
	CS-RC-0448	0.0	8.0	8.0	3,305	33%	947	47
	CS-RC-0449	0.0	6.0	6.0	1,690	24%	328	27
	CS-RC-0453	0.0	32.0	32.0	2,244	22%	384	31
	CS-RC-0454	0.0	14.0	14.0	2,690	26%	560	49
	CS-RC-0455	0.0	10.0	10.0	3,065	29%	712	57
	CS-RC-0456	0.0	22.0	22.0	2,389	26%	524	29
	CS-RC-0457	0.0	16.0	16.0	3,251	23%	632	33
	CS-RC-0458	0.0	10.0	10.0	1,620	24%	313	20
	CS-RC-0459	0.0	6.0	6.0	2,136	27%	469	35
	CS-RC-0460	0.0	6.0	6.0	2,022	23%	388	24
	CS-RC-0461	0.0	14.0	14.0	1,310	21%	224	13
	CS-RC-0462	0.0	18.0	18.0	1,680	22%	306	19
	CS-RC-0463	0.0	2.0	2.0	2,335	27%	515	31
	CS-RC-0464	0.0	14.0	14.0	1,991	26%	410	26
	CS-RC-0465	6.0	18.0	12.0	1,524	20%	244	16
	CS-RC-0466	0.0	10.0	10.0	2,142	21%	347	26
	CS-RC-0467	0.0	30.0	30.0	1,500	21%	262	18
	CS-RC-0474	0.0	16.0	16.0	4,426	33%	1,267	63
	incl.	2.0	10.0	8.0	5,940	37%	1,866	83
	CS-RC-0475	0.0	24.0	24.0	3,168	28%	748	56
	incl.	12.0	22.0	10.0	4,096	35%	1,146	79
	CS-RC-0476	0.0	12.0	12.0	2,076	24%	401	28
	CS-RC-0477	0.0	4.0	4.0	2,159	26%	454	27
	CS-RC-0478	0.0	12.0	12.0	2,299	24%	467	28
	CS-RC-0479	0.0	8.0	8.0	1,548	22%	264	21
	CS-RC-0480	0.0	4.0	4.0	2,572	27%	553	39
	CS-RC-0481	0.0	8.0	8.0	4,300	37%	1,359	60
	CS-RC-0484	0.0	20.0	20.0	2,763	30%	719	38
	incl.	0.0	10.0	10.0	3,385	34%	976	44
	CS-RC-0485	0.0	16.0	16.0	2,183	26%	486	34
	incl.	0.0	6.0	6.0	3,341	29%	833	47
	CS-RC-0486	0.0	14.0	14.0	3,128	28%	679	55
	CS-RC-0487	0.0	6.0	6.0	2,055	25%	420	28

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
	CS-RC-0488	0.0	6.0	6.0	2,264	22%	418	24
	CS-RC-0489	0.0	4.0	4.0	2,788	25%	557	38
	CS-RC-0490	0.0	4.0	4.0	1,242	21%	211	13
	CS-RC-0491	0.0	2.0	2.0	1,749	21%	292	18
	CS-RC-0492	0.0	8.0	8.0	1,718	21%	299	17
	CS-RC-0493	0.0	14.0	14.0	1,985	19%	286	29
	CS-RC-0494	0.0	12.0	12.0	1,520	20%	239	22
	CS-RC-0495	4.0	6.0	2.0	1,351	23%	249	20
	CS-RC-0496	0.0	6.0	6.0	2,093	26%	440	39
	CS-RC-0502	0.0	8.0	8.0	2,974	27%	644	57
	CS-RC-0503	0.0	8.0	8.0	3,312	24%	632	54
	CS-RC-0504	0.0	6.0	6.0	2,327	26%	489	39
	CS-RC-0505	2.0	8.0	6.0	1,707	23%	335	19
	CS-RC-0506	0.0	8.0	8.0	2,554	28%	559	52
	CS-RC-0510	0.0	8.0	8.0	2,454	27%	538	42
	CS-RC-0511	0.0	10.0	10.0	1,999	20%	319	20
	CS-RC-0512	0.0	8.0	8.0	2,275	25%	466	28
	CS-RC-0513	0.0	18.0	18.0	3,055	28%	749	39
	incl.	4.0	10.0	6.0	5,063	33%	1,381	69
	CS-RC-0514	0.0	14.0	14.0	2,472	28%	556	38
	CS-RC-0515	0.0	2.0	2.0	1,554	25%	318	19
	CS-RC-0518	0.0	10.0	10.0	2,045	24%	385	31
	CS-RC-0519	0.0	12.0	12.0	1,409	20%	216	24
	CS-RC-0528	0.0	4.0	4.0	2,574	23%	513	26
	CS-RC-0536	0.0	20.0	20.0	1,703	21%	297	21
	CS-RC-0538	0.0	12.0	12.0	3,992	36%	1,263	50
	CS-RC-0539	0.0	12.0	12.0	4,357	29%	1,115	41
	CS-RC-0550	0.0	18.0	18.0	2,952	32%	834	34
	CS-RC-0578	0.0	18.0	18.0	2,236	28%	523	25
	CS-RC-0995	0.0	12.0	12.0	3,483	31%	912	45
	CS-RC-0996	0.0	4.0	4.0	1,870	24%	366	22
	CS-RC-0997	2.0	12.0	10.0	2,142	25%	452	23
	CS-RC-0998	6.0	14.0	8.0	3,828	34%	1,067	62
	CS-RC-1170	4.0	18.0	14.0	4,060	34%	1,190	44

Table 4: REE assays from diamond and RC drilling hosted within weathered clays, 1000ppm TREO cut-off, up to 2m dilution. RC denotes Adapted Reverse Circulation Drill Holes; DDH denotes Diamond Drill Holes. The DyTb and NdPr grades presented are in Oxide-converted form. Figures were rounded to the nearest 0.5m for length and the nearest whole number for 'ppm'.

APPENDIX C: DRILL LOCATIONS OF HOLES REPORTED IN THIS ANNOUNCEMENT

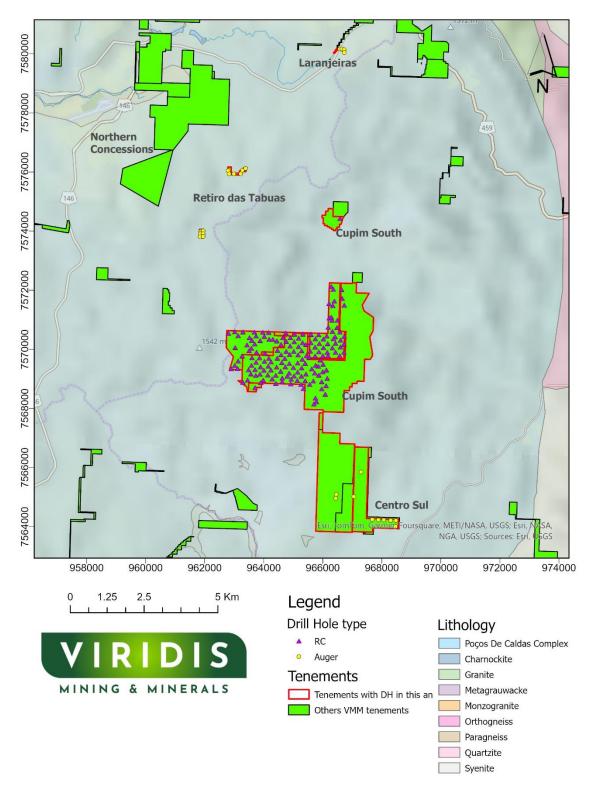


Figure 4: Location of all drill holes reported within this announcement.

Appendix D: JORC Code, 2012 Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques Drilling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample retrospectivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diametre, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented 	The areas were sampled using the powered auger and Reverse Circulation drills. Auger drill holes: Each drill site was cleaned, removing leaves and roots from the surface. Tarps were placed on either side of the hole, and samples of soil and saprolite were collected every 2m in advance. They were logged, photographed, and subsequently bagged in plastic bags, and each sample was identified. Reverse Circulation drill holes: Samples were collected and identified from every 2 metres of the RC rig. All samples were sent for preparation to the contracted laboratories, ALS or SGS, in Vespasiano-MG, Brazil. Powered Auger: Powered auger drilling employed a motorised post-hole digger with a 2 to 4-inch diameter. All holes were drilled vertically. The maximum depth achieved was 15 metres, the minimum was 2 metres, and the average was 8.5 metres, providing the hole did not encounter fragments of rocks/boulders within the weathered profile and/or excessive water. Final depths were recorded according to the
Drill sample	 and if so, by what method, etc). Method of recording and assessing 	Reverse Circulation: RC drilling was conducted using an Atlas Copco EXPLORAC R50 RC Machine configured with a 4.75-inch diameter. The drill site preparation included clearing, levelling the ground, and delineating the drilling area. The RC rig conducted drilling within each hole and terminated upon intercepting transitional material or fresh rock. RC drilling was used predominantly in a systematic manner, forming a grid with 200m spacing. Samples were collected from every 2 metres of the RC rig and sent for preparation to the contracted laboratories, ALS or SGS. Auger sample recovery:
recovery	core and chip sample recoveries and results assessed. Measures are taken to maximise sample recovery and ensure the representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Estimated visually based on the sample recovered per 2m interval drilled. Recoveries ranged from 82% to 100%. If estimates dropped below 75% recovery in a 2m interval, the field crew aborted the drill hole and redrilled the hole. Reverse Circulation recovery: Every 2m sample is collected in plastic buckets and weighed. Each sample averages approximately 30kg, which is considered acceptable given the hole diameter and the specific density of the material. 99% of the samples had more than 85% recovery.
Logging	Have core and chip samples been geologically and geotechnically logged to a level of detail to support appropriate mineral resource	Geological descriptions are made using a tablet with the MX Deposit system, which directly connects the geological descriptions to the database in the MX Deposit system managed by the Viridis geologist team.

Criteria	JORC Code explanation	Commentary			
	estimation, mining studies, and metallurgical studies? • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • The total length and percentage of the relevant intersections logged.	 Auger drilling: Material is described in a drilling bulletin every 2m and photographed. The description is made according to tactile-visual characteristics, such as material (soil, colluvium, saprolite, rock fragments), material colour, predominant particle size, presence of moisture, indicator minerals, and extra observations. The chip trays of all drilled holes have a digital photographic record and are retained at the core facility in Poços de Caldas. All drill holes are photographed and stored at the core facility in Pocos de Caldas. Reverse Circulation drilling: A geologist logs the material at the drill rig or core facility. Logging focuses on the soil (humic) horizon, saprolite/clay zones, and transition boundaries. Other parameters recorded include grain size, texture, and colour, which can help identify the parent rock before weathering. Due to the nature of the drilling, logging is done at 2m intervals. 2m samples weighing approximately 30kg are collected in a bucket and presented for sampling and logging. The chip trays of all drilled holes have a digital photographic record and are retained at the core facility in Pocos de Caldas. 			
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The Chip trays of all arilled noies have a digital photographic record and are retained at the core facility in Poços de Caldas. Powdered Auger Drilling: Collection and Labeling: Samples of clayey soil, regolith, and saprolite were collected at 2m intervals, placed into clear plastic bags, sealed, and labelled. Weighing and Lab Analysis: The samples were weighed and sent to SGS Geosol for analysis. Sample Preparation (PRP102_E): Upon arrival at the lab, samples were dried at 105°C, crushed to 75% less than 3 mm, homogenised, and passed through a Jones riffle splitter (250g to 300g). This aliquot was then pulverised in a steel mill until over 95% had a size of 150 microns. Analysis (IMS95A): Samples were fused with lithium metaborate and read using the ICP-MS method to determine the rare earth elements assays. Reverse Circulation: Collection and Labeling: Samples of clayey soil, regolith, saprolite, and transitional material were collected at 2m intervals, placed in transparent plastic bags, sealed, and labelled. Weighing and Lab Analysis: The samples were weighed and sent for analysis at the SGS laboratory. Sample Preparation (PRP102_E): Upon arrival at the lab, samples were dried at 105°C, crushed to 75% less than 3 mm, homogenised, and passed through a Jones riffle splitter (250g to 300g). This aliquot was then pulverised in a steel mill until over 95% had a size of 150 microns. Analysis (IMS95A): Samples were fused with lithium metaborate and read using 			
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Auger and RC samples were analysed at the SGS Geosol laboratory in batches of approximately 40 samples containing control samples (duplicate, blank, and standards). The sample preparation method employed was PRP102_E: the samples were dried at 105°C, crushed to 75% less than 3 mm, homogenised, and passed through a Jones riffle splitter (250g to 300g). This aliquot was then pulverised in a steel mill until over 95% had a size of 150 microns. • ICP95A - Determination by Fusion with Lithium Metaborate - ICP MS for Major Oxides. Some elements and their detection limits include: Al ₂ O ₃ 0,01 - 75 (%) Ba 10 - 100,000 (ppm) Fe ₂ O ₃ 0,01 - 75 (%) K ₂ O 0,01 - 25 (%) Na ₂ O 0,01 - 30 (%) P ₂ O ₅ 0,01 - 25 (%) TiO ₂ 0,01 - 25 (%) V 5 - 10,000 (ppm) CaO 0,01 - 60 (%) Cr ₂ O ₃ 0,01 - 10 (%) MgO 0,01 - 30 (%) MnO 0,01 - 10 (%) SiO ₂ 0,01 - 90 (%) Sr 10 - 100,000 (ppm)			

Criteria	JORC Code explanation	Commen	itary				
			Zn	5 – 10,000 (pp	om) Zr		10 – 100,000 (ppm)
		•	PHY01E: 1,000°C.	Loss on Ignition	(LOI) was de	termine	d by calcining the sample at
		•	Mass Sp	ectrometry (ICP	MS) was en	nployed	d by Inductively Coupled Plasma to determine concentrations of the elements include:
			Се	0.1 – 10,000 (p	ppm)	Dy	0.05 – 1,000 (ppm)
			Gd	0.05 – 1,000 (p	ppm)	Но	0.05 – 1,000 (ppm)
			Nd	0.1 – 10,000 (p	opm)	Pr	0.05 – 1,000 (ppm)
			Th	0.1 – 10,000 (p	•	Tm	0.05 – 1,000 (ppm)
					• •		
			Yb	0.1 – 1,000 (pp	·	Eu	0.05 – 1,000 (ppm)
			Er	0.05 – 1,000 (p	ppm)	Lu	0.05 – 1,000 (ppm)
			La	0.1 – 10,000 (p	ppm)	Tb	0.05 – 1,000 (ppm)
			Sm	0.1 – 1,000 (pp	om)	Υ	0.05 – 1,0000 (ppm)
			U	0.05 – 10,000 ((ppm)		
		accuracy	and precis	, ,	data. Interno	ally, the	trol procedures, ensuring the laboratory uses duplicate
Verification of sampling	The verification of significant intersections by either independent		gnificant in mpany per		not yet beer	indepe	ndently verified by alternative
and assaying	or alternative company personnel.The use of twinned holes.	• Pri	imary data	collection follow	s a structure	ed proto	col with standardised data
, , ,	Documentation of primary data, data						sure that any anomalies or is stored in physical forms, such
	entry procedures, data verification, and data storage (physical and						ases with regular backups.
	electronic) protocols.	• Th					nsforming the elemental values
	Discuss any adjustment to assay						are included in the table below.
	data.			Element	Oxide	Fac	tor
				Се	CeO ₂	1	1.2284
				La	La_2O_3	1	1.1728
				Sm	Sm ₂ O ₃	1	1.1596
				Nd	Nd ₂ O ₃	1	1.1664
				Pr	Pr ₆ O ₁₁	1	1.2082
				Dy	Dy_2O_3		1.1477
				Eu	Eu ₂ O ₃		1.1579
				Υ	Y ₂ O ₃		1.2699
				Tb	Tb4O7		1.1762
				Gd	Gd2O3		1.1526
				Ho	Ho ₂ O ₃		1.1455
				Er Tm	Er ₂ O ₃		1.1435 1.1431
				Tm Yb	Tm2O3 Yb2O3		1.1421 1.1387
				rb Lu	YD2O3 Lu2O3		1.1387 1.1371
		• Th	e TRFO (To				ed by the sum of the following
		ox Sm the Tb	oxides: CeO_2 , Dy_2O_3 , Er_2O_3 , Eu_2O_3 , Gd_2O_3 , Ho_2O_3 , Lo_2O_3 , Lo_2O_3 , Nd_2O_3 , Pr_6O_{11} , Sm_2O_3 , Tb_4O_7 , Tm_2O_3 , Y_2O_3 , Yb_2O_3 . For the MREO (Magnetic Rare Earth Oxides), the following oxides were considered: Dy_2O_3 , Gd_2O_3 , Ho_2O_3 , Nd_2O_3 , Pr_6O_{11} , Sm_2O_3 , Tb_4O_7 . And for the HREO (Heavy Rare Earth Oxides) we consider: Dy_2O_3 , Er_2O_3 , Eu_2O_3 , Eu_2				
				rom auger drilling EO cut-off and 2n		endix w	ere reported within clays with
			O assays o		vere reported	d within	clays with 1,000ppm TREO cut-
		• Gr	ades (ppm)) were rounded t	o the neares	t whole	figure, and lengths (m) were

Criteria	JORC Code explanation	Commentary
		rounded to the nearest 0.5m.
		 For some samples exceeding 1000 ppm, over-limit analysis for Nd and Pr (praseodymium) was necessary.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	The positioning of the drill has been achieved with high precision using a GPS RTK (Real-Time Kinematic) system CHC i73. This sophisticated GPS provides real-time corrections. The horizontal accuracy in RTK is 8 mm + 1 ppm RMS, and the Vertical accuracy is 15 mm + 1 ppm RMS, with a startup time of under 10 seconds and a Startup Reliability greater than 99.9%. The project's grid system is based on the SIRGAS 2000 UTM coordinate system. This universal grid system facilitates consistent data interpretation and integration with other geospatial datasets. Benchmark and control points were established within the project area to ensure the quality and reliability of the topographic location data.
Data	Data spacing for reporting of	Auger drilling collar
spacing and distribution	Exploration Results. • Whether the data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and	 The auger drilling was conducted on a regular grid with 200 x 200 metres spacing. This grid spacing provides a detailed exploration framework suitable for the area of interest. It aims to assist in defining our initial resource and offer a foundational understanding of the geological and grade continuity in the targeted zone. Auger samples were collected at 2.0m intervals.
	classifications applied.	RC drilling collars
	Whether sample compositing has been applied.	 Reverse circulation (RC) drilling is carried out on a structured grid with 200 x 200 metres spacing. This grid pattern is tailored to facilitate a comprehensive exploration strategy suitable for the designated area, with the primary goal of enhancing our understanding of the mineral distribution and geological consistency across the target zone. The broader spacing of 200 x 200 metres for the RC drilling is strategically chosen to cover a larger area efficiently while still providing valuable insights into the potential mineralisation patterns and geological features.
		RC samples were collected at 2.00m composites.
		No sample compositing has been applied to report the exploration results. Each sample is treated and reported individually to maintain the highest level of detail and accuracy.
Orientation of data about geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of crucial mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All drill holes were vertically oriented, which is deemed appropriate given the nature of the deposit. The deposit in question is a supergene deposit with a much larger areal extent than the thickness of the mineralised body. This type of deposit tends to be horizontally extensive with relatively consistent thickness. Given the vast area extent of the deposit and its relatively consistent thickness, vertical drilling is best suited to achieve unbiased sampling. This orientation allows for consistent intersecting of the horizontal mineralised zones and provides a representative view of the overall geology and mineralisation. There is no indication that drilling orientation has introduced any sampling bias about the crucial mineralised structures. The drilling orientation aligns well with the deposit's known geology, ensuring accurate representation and unbiased sampling of the mineralised zones. Any potential bias due to drilling orientation is considered negligible in this context.
Sample security	The measures taken to ensure sample security.	All samples were collected by field personnel and carefully packed in labelled plastic bags. Once packaged, the samples were transported directly to SGS-GEOSOL, Brazil. The samples were secured during transportation to ensure no tampering, contamination, or loss. Chain of custody was maintained from the field to the laboratory, with proper documentation accompanying each batch of samples to ensure transparency and traceability of the entire sampling process. Using a reputable laboratory further reinforces the sample security and integrity of the assay results.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Two site visits were carried out by Volodymyr Myadzel from BNA Mining Solutions, one on 18-19 March 2024 and the other on 25-26 October 2024, to inspect drilling and sampling procedures, verify survey methods, inspect the storage shed, verify geological records, review QAQC procedures and review the geologic model. He concluded in both visits that the procedures applied for the exploration work follow the best practices in the mining industry.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section).

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership, including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All samples were acquired from tenements that Viridis Mining and Minerals Ltd owned. The sampled tenements are highlighted in Appendix C's map and Appendix A's collar table.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical exploration in the area comprises notable endeavours by various entities: The Colossus project is geologically intertwined with the Caldeira Project, sharing the same geological context. Varginha Mineração previously undertook regional drilling exercises, utilising a powered auger drill rig to produce open holes. This historical data provides essential context and complements current exploration efforts in understanding the region's geological potential.
Geology	Deposit type, geological setting and style of mineralisation.	 The geology of the region where the deposit is located can be summarised as follows: Deposit Nature: The deposit under study is recognised as an lonic Adsorption Clay Rare Earth Element (REE) deposit. Its spatial positioning is within and adjacent to the renowned Poços De Caldas Alkaline massif complex. Poços de Caldas Complex: This geological entity stands as one of the most extensive alkaline massif intrusions globally, enveloping an area of roughly 800 km². It stretches across the Brazilian states of São Paulo and Minas Gerais. From a macro perspective, it portrays a near-circular structure with an approximate diameter of 30 km. This formation resembles a collapsed caldera. Delving deeper, the dominant rocks within the alkaline complex encompass phonolite, nepheline syenites, sodalite syenites, and many volcanic rocks. This diverse geological setting has played a crucial role in dictating mineral occurrences and potential mining prospects. REE Mineralisation: The specific REE mineralisation highlighted in this disclosure leans towards the lonic Clay type. Evidence pointing to this is mainly derived from its occurrence within the saprolite/clay zone of the weathering profile of the Alkaline granite basement. The enriched MREO (Medium Rare Earth Oxides) composition also attests to this classification. Relevant Additional Information: The lonic Adsorption Clay Rare Earth Element deposits, particularly in regions like Poços de Caldas, have recently gained significant attention due to the global demand surge for rare earth elements. These elements, especially the heavy rare earths, have vital applications in modern technologies such as renewable energy systems, electronics, and defence apparatus. The ability of these deposits to offer relatively environmentally friendly mining prospects compared to traditional hard rock REE mines further enhances their appeal. Given the strategic importance of REEs in modern industries, a thorough under

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results, including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 Auger Drilling Total number of holes: 26 Total meterage drilled: 221 m RC Drilling: Total number of holes: 163 Total meterage drilled: 4.200 m Reported in Appendix A and B of this Report
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Data collected for this project includes surface geochemical analyses, geological mapping, and auger and RC sample results. Data were compiled without selective exclusion. All analytical methods and aggregation were done according to industry best practices, as detailed in previous discussions.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Given the nature of the deposit, which is a supergene deposit with a much larger areal extent than its thickness, the vertical drilling orientation is suitable for accurately representing the mineralised zones. All drill holes are vertical and are appropriate for the deposit type, ensuring unbiased sampling of the mineralisation. Due to the mineralisation's geometry and the drill holes' vertical orientation, downhole lengths can be considered close representations of the true widths of the mineralised zones. However, further studies would be required for absolute precision. In cases where there might be a discrepancy between downhole lengths and true widths, it should be noted that "downhole length, true width not known."
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The data presented in this report helps readers better understand the information. Various diagrams and supplementary information are included in the document, enhancing the clarity and accessibility of the geological findings and exploration results.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The data presented in this report strives to provide a transparent and holistic view of the exploration activities and findings. All the information, ranging from sampling techniques, geological context, prior exploration work, and assay results, has been reported comprehensively. Cross-references to previous announcements have been provided where relevant to ensure continuity and clarity. Including diagrams, such as geological maps and tables, supports a more in-depth understanding of the data. It's noteworthy to mention that while positive results have been highlighted, the nature of the samples, particularly their origin

Criteria	JORC Code explanation	Commentary
		from either saprolitic clays or bauxite, has been distinctly reported to ensure a balanced view. This report faithfully represents the exploration activities and findings without undue bias or omission.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no additional substantive exploration data to report currently.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The current drill results, along with remaining assays at Cupim South, will be used to develop and model an upgraded global resource for the Colossus Project in the near future. The key priority of the updated resource is the MREO content and the associated MREO/TREO ratio. In conjunction with the ongoing drill program, Viridis has also commenced MREC production and testing from Cupim South, with samples having already been sent to ANSTO. The MREC testing will follow the same rigorous procedure to understand the optimal leaching, impurity removal and precipitation conditions used to develop the Northern Concessions maiden MREC, which returned 76% MREO recoveries from ore to final MREC. Subsequently, upon completion of Southern Concessions' MREC and resource upgrade, the Company will complete mine planning targeting the high-grade areas in the Northern and Southern Concessions. Once complete, the Company anticipates release of its scoping study while continuing its critical environmental and regulatory permitting activities.

