

ASX ANNOUNCEMENT

11 November 2024

New Regional High-Grade Gold Discoveries at Wallbrook Gold Project

- ✓ Exceptional regional exploration success as part of a 284 hole / 9,811 metre aircore drill program with all four targets delivering broad and high-grade near surface gold assay results
- ✓ Payns Prospect (Target MC5.2) <u>Significant New Gold Discovery</u>

Highlight results include:

- o 4m @ 6.85 g/t Au (within 16m @ 2.74 g/t Au) from 28 metres
- o 4m @ 7.12 g/t Au (within 20m @ 1.77 g/t Au) from 8 metres
- o 4m @ 6.59 g/t Au (within 8m @ 3.44 g/t Au) from 40 metres
- 4m @ 5.02g/t Au (within 8m @ 2.60g/t Au) from 20 metres
- 1m @ 5.99 g/t Au to EOH (within 8m @ 1.28 g/t Au) from 28 metres
- ✓ Godfrey Prospect (Target MC2.2) <u>Significant New Gold Discovery 1,200m x 100m Gold System</u>

Highlight results include:

- 4m @ 4.02 g/t Au (within 15m @1.30g/t Au) from 24 metres
- o 4m @ 2.17 g/t Au (within 8m @1.33g/t Au) from 24 metres
- 4m @ 3.81 g/t Au from 12 metres
- o 4m @ 2.78 g/t Au from 28 metres
- ✓ Target MC2.1 expanded 400 x 250m gold anomaly

Highlight results include:

- 8m @ 2.94 g/t Au (within 28m @1.13g/t Au) from 44 metres
- 3m @ 1.92 g/t Au (within 11m @0.72g/t Au) from 68 metres
- ✓ Target MC1.5 >50 gram metre intercept indicates high-grade gold potential

Highlight results include:

- o 4m @ 10.95 g/t Au (within 8m @ 6.55 g/t Au), from 16 metres
- Broader interval of 15m @ 3.65 g/t Au to EOH from 16 metres
- ✓ Results continue to demonstrate the strong regional exploration opportunity at the Wallbrook Gold Project, whilst also validating Company focus on high quality shallow discoveries
- ✓ Follow up aircore drilling is being planned to expand upon this considerable success

Nexus Minerals Limited (ASX: NXM) (Nexus or the Company) is pleased to announce that it has received gold assay results from its recently completed regional aircore (AC) program at the Wallbrook Gold Project (Wallbrook) in the north-eastern goldfields region of WA.

The AC drilling program was designed to systematically assess four shallow priority regional targets in line with the Company's exploration strategy. The program has returned strong results across all targets, including 2 new discoveries with material broad and high-grade intercepts. The results continue to demonstrate the robust exploration opportunity at Wallbrook and validates the Company exploration strategy which focusses on delivering near surface gold discoveries at Wallbrook.

The program included follow up drilling at target MC2.1, and first pass drilling of new targets MC5.2, MC2.2, and MC1.5. The targets were selected for their potential to host near-surface gold mineralisation with sufficient scale to materially build on the project ounce portfolio.

A total of 284 holes for 9,811 metres were completed across all targets. Drill holes were four metre composites sampled across the entire hole, with samples submitted for gold analysis. The final metre of each hole is currently subject to multi-element litho-geochemical analysis to improve internal target vectoring. All gold assays have now been received and an initial review is underway by Nexus geologists.

Payns Prospect (Combined Target MC5.2 and Target MC5.1) has returned exceptional results, displaying high grade gold continuity in MC5.2, and now includes MC5.1, assessed in the previous AC drilling campaign (ASX: NXM 27/9/2024). The combined footprint of these two targets (now Payns Prospect) represents a significant new discovery on the project with significant potential for expansion.

Godfrey Prospect (Target MC2.2) has also returned very encouraging results with a 1200 x 100 metre gold anomaly returning strong widths and grades, with parallels to the Crusader-Templar Deposit 600m to the west (ASX:NXM 1/5/2024).

Nexus Managing Director Andy Tudor commented "This has been an incredible result to a well-executed aircore program, with strong results across all four targets drill tested. Whilst any one of the prospects assessed represent a major success, the highlight of the program is the Payns Prospect discovery. This prospect is the combined footprint of MC5.1 and MC5.2 which offers exciting scale and grade potential for the Wallbrook Gold Project. Through the exploration teams' achievements, we continue to demonstrate the ability for Wallbrook to deliver additional gold discoveries.

We will continue to use first pass aircore drilling to follow up on these results and to complete our planned testing of the 18 high priority regional targets. We will then rank the targets for follow-up RC drilling. Planning for the next phase of exploration AC drilling is already well advanced."

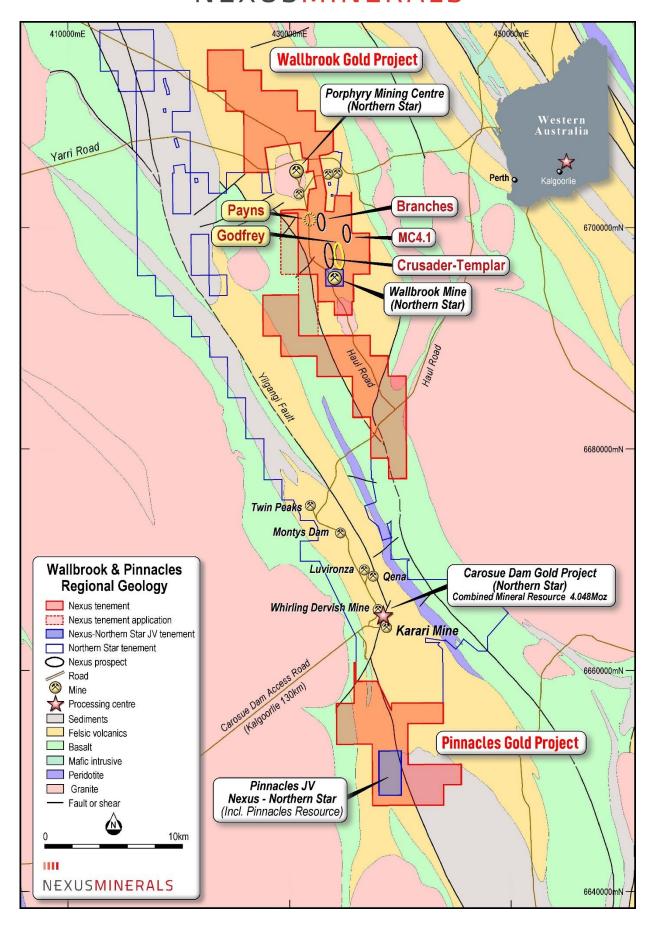
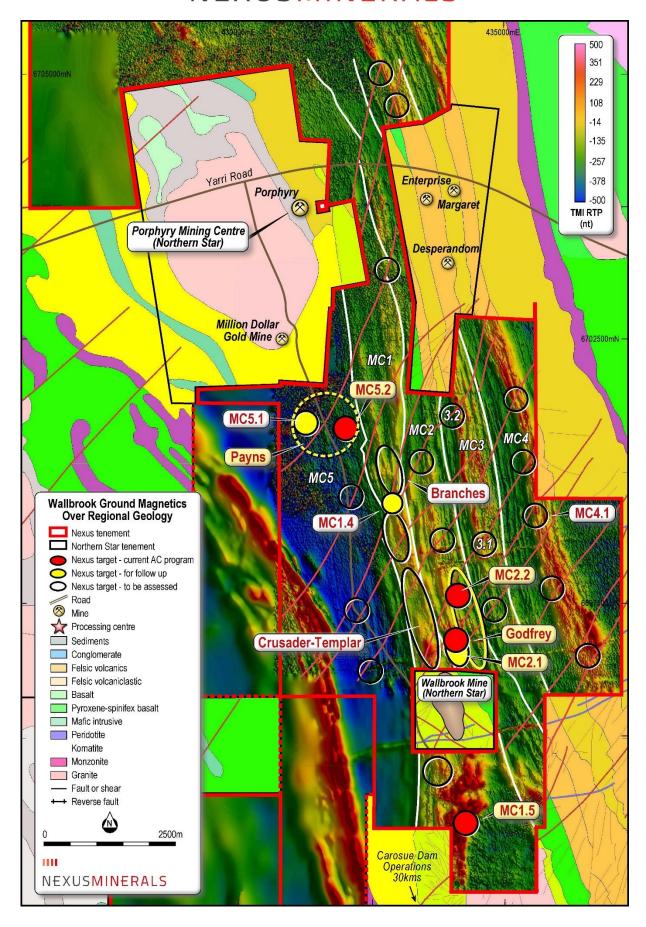



Figure 1. Nexus Eastern Goldfields Exploration Operations Map

ш

Figure 2: Nexus Wallbrook Regional Target Locations

Payns Prospect (Combined MC5.2 and MC5.1) - New Gold Discovery

Payns Prospect is situated 4km northwest of Nexus' Crusader-Templar gold deposit and 1km southeast of the Million Dollar Gold Mine (owned by Northern Star Resources). In an initial regional assessment, 60 drill holes were completed, totaling 2,604 metres of drilling.

AC drilling at Payns Prospect encountered fresh rock at approximately 40 metres downhole. The geology in this area consists primarily of intermediate volcanic and volcaniclastic rock, with occasional porphyry intrusions displaying hematite alteration. A zone of felsic volcaniclastic rock was also identified along the western boundary of the drill lines. Mineralisation appears to follow a northwest-southeast trend and dips gently to the southwest.

Gold grades correlate with:

- Increased occurrence of quartz + goethite veining
- Intensity of sericite + rutile + tourmaline + albite alteration the regional gold signature
- Very high grades noted in proximity to hematised felsic intrusives into the fresh rock

Mineralised intercepts display continuity whilst returning strong grades and widths, promising material scale potential. A total of 46 of the 4 metre composite and end of hole samples analysed returned a value greater than 0.40 g/t Au, the cut off used in the recent Crusader-Templar Mineral Resource Estimate (refer to ASX: NXM 1/5/2024). Highlight results include:

- 4m @ 6.85 g/t Au (within 16m @ 2.74 g/t Au) from 28 metres
- 4m @ 7.12 g/t Au (within 20m @ 1.77 g/t Au) from 8 metres
- 4m @ 6.59 g/t Au (within 8m @ 3.44 g/t Au) from 40 metres
- 4m @ 5.02g/t Au (within 8m @ 2.60g/t Au) from 20 metres
- 1m @ 5.99 g/t Au to EOH (within 8m @ 1.28 g/t Au) from 28 metres

The opportunity at Payns Prospect is particularly compelling when viewed alongside results from previous target MC5.1 (now included within the Payns discovery). Drilling at MC5.1 returned highly anomalous results (2m at 4.28 g/t Au within 6m at 1.60 g/t Au, and 1m @ 1.43 g/t Au to end of hole), with depth of weathering limiting a full assessment of the target by AC drilling and leaving it open to the east (ASX:NXM 27/9/2024). The combined footprint of Payns Prospect offers a strongly mineralised target some 750 metres wide with unknown strike potential at this early stage.

Further exploration at Payns prospect is currently being planned, with next steps to include an expansional AC drill campaign over key areas where the weathering profile is considered favorable. Aircore drilling will allow for rapid and cost-effective assessment before reverse circulation (RC) drill testing of both key areas within the identified mineralised envelope, and extensions into the fresh rock.

Photo 1: NMWBAC24-721: 4m @ 6.85 g/t Au (from 44m) within 16m @ 2.74 g/t Au (from 32m)

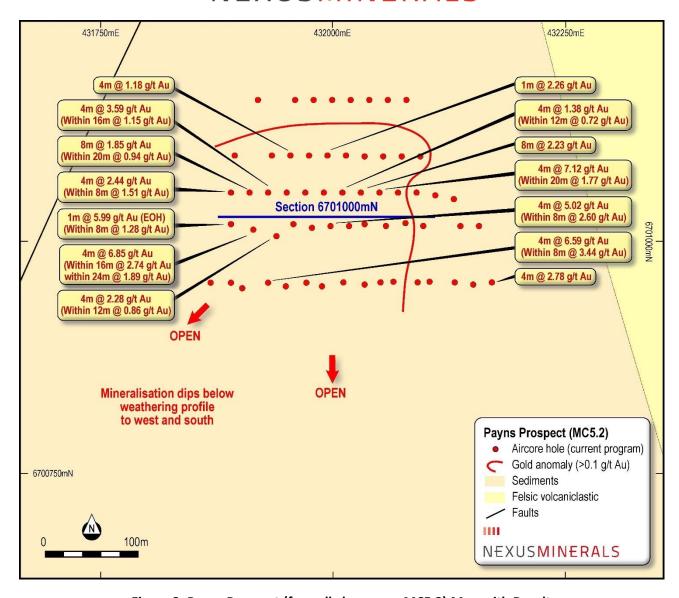


Figure 3: Payns Prospect (formally known as MC5.2) Map with Results

Ш

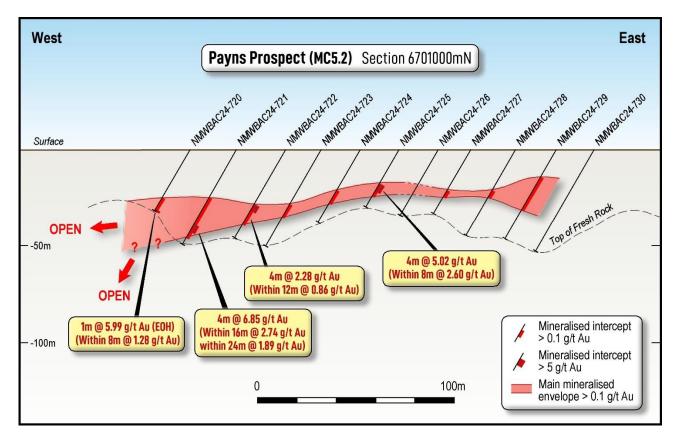


Figure 4: Payns Prospect Cross Section With Results (refer to map for location)

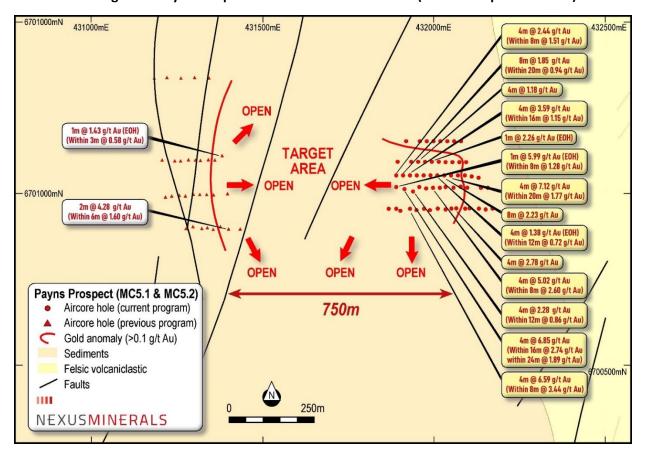


Figure 5: Payns Prospect Map (Combined Targets MC5.1 and MC5.2) (yellow labels are new results)

Godfrey Prospect (Formally known as MC2.2) - New Gold Discovery - 1,200m x 100m Gold System

Godfrey Prospect, is situated 600 metres east of the Crusader-Templar deposit and northeast of the Wallbrook Gold Mine (Northern Star Resources). A total of 97 drillholes for 3,375 metres were completed at the Godfrey Prospect in a first pass regional assessment.

Drilling at Godfrey Prospect encountered fresh rock at an average of 32 metres downhole, with the geology comprising an intermediate volcanic/volcaniclastic host package intruded by quartz porphyry dykes. These quartz porphyry dykes increased in frequency on the eastern side of the drilled lines.

Mineralisation is interpreted to trend northwest-southeast in two distinct zones that dip to the west. In the southern zone, mineralisation is associated with increased quartz veining in the oxide profile and is observed both at the surface and at the base of weathering. Mineralisation within the northern zone is concentrated at the base of weathering, with an increase in goethite and a sheared volcaniclastic unit with occasional sericite and rutile alteration. Anomalism in both zones is linked to hematite alteration and quartz porphyry intrusions.

Mineralisation displays strong strike continuity across a considerable mineralised system some $1,200 \times 100$ metres in size. Highlight results include:

- 4m @ 4.02 g/t Au (within 15m @1.30g/t Au) from 24 metres
- 4m @ 2.17 g/t Au (within 8m @1.33g/t Au) from 24 metres
- 4m @ 3.81 g/t Au from 12 metres
- 4m @ 2.78 g/t Au from 28 metres

Both mineralisation style and footprint scale at the Godfrey Prospect display distinct similarities to the Crusader-Templar Deposit. Sufficient strike continuity has now been established to progress to RC drill testing as part of a future exploration campaign.

Photo 2: NMWBAC24-651: 4m @ 4.02 g/t Au (from 28m) within 15m @1.30g/t Au (from 24m)

Ш

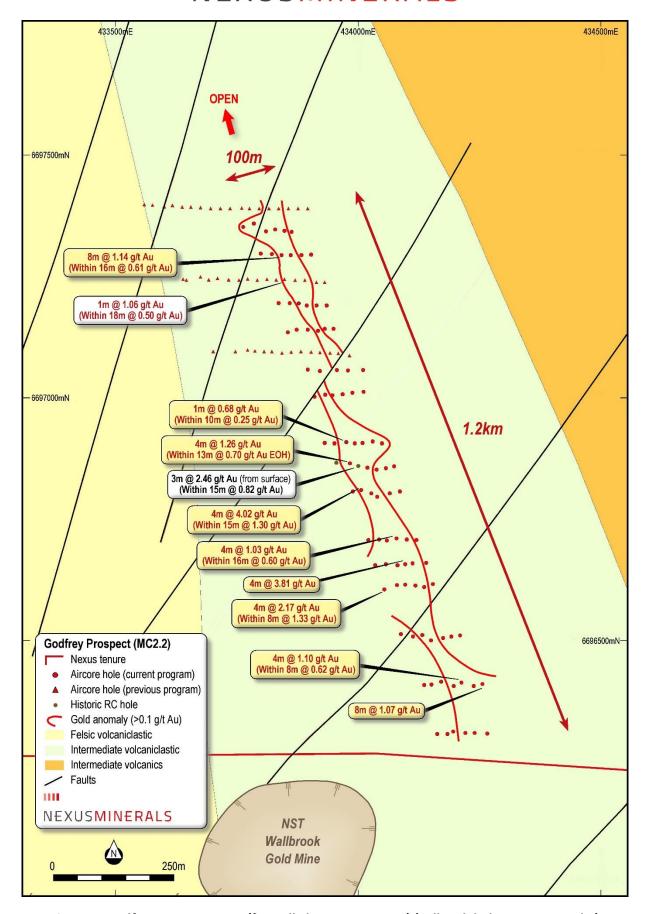


Figure 6: Godfrey Prospect Map (formally known as MC2.2) (yellow labels are new results)

Target MC2.1

Target MC2.1 is situated immediately north of the Wallbrook Gold Mine (Northern Star Resources), representing a potential extension of geology hosting this resource. An initial AC program discovered considerable gold anomalism (ASX:NXM 27/9/2024). Results included:

- 8m @ 2.93 g/t Au (within 28m @1.05g/t Au) from 28 metres
- 8m @ 2.33 g/t Au (within 14m @1.37g/t Au to EOH) from 32 metres
- 4m @ 2.89 g/t Au (within 24m @0.83g/t Au) from 32 metres
- 8m @ 2.16 g/t Au (within 36m @0.65g/t Au) from 36 metres
- 8m @ 1.55 g/t Au (within 20m @0.77g/t Au) from 52 metres

This most recent program aimed to expand upon this success, completing 35 drill holes for 1,553 metres. Gold anomalism has now been identified over a footprint of some 400 x 250 metres. Additional broad high-grade intercepts identified in the current program include:

- 8m @ 2.94 g/t Au (within 28m @1.13g/t Au) from 44 metres
- 3m @ 1.92 g/t Au (within 11m @0.72g/t Au) from 68 metres

Drilling at MC 2.1 encountered the top of fresh rock at an average of 40 metres downhole, with geology featuring hematised quartz porphyry dykes intruding through an intermediate volcanic/volcaniclastic host package. Mineralisation is associated with an increase in quartz and quartz-goethite veining in the saprolite, with higher grades toward the base of weathering. These observations are broadly consistent with geology encountered in the previous AC campaign.

The expansion of the target in this most recent round of drilling has now allowed the target to be considered alongside a limited program of previous RC drilling situated to the north at the Clement Prospect. Historic results included 2m at 5.57g/t Au (within 10m at 1.29g/t Au) from 71m, and 4m at 3.73g/t Au (within 10m @ 1.70g/t Au) from 151m (ASX: NXM 24/05/2022).

The next steps for exploration will include additional AC drilling to expand the target footprint to the north, to join with the Clement prospect, allowing a complete assessment for future RC drill testing.

Photo 3: NMWBAC24-595: 8m @ 2.94 g/t Au from 48m (within 24m @1.13g/t Au from 44m)

Ш

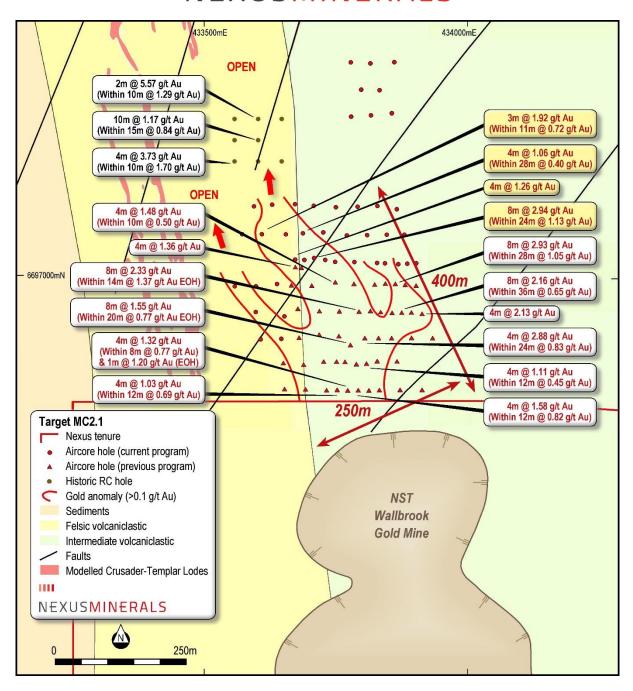


Figure 7: Target MC2.1 Map (yellow labels are new results)

Target MC1.5

Target MC1.5 is situated south of the Wallbrook Gold Mine (Northern Star Resources) on the western contact of a large monzonite intrusive and a sequence of intermediate volcanic and volcaniclastic units. A total of 90 drill holes for 2,191 metres were completed as part of a first pass regional AC drill program.

Drilling intercepted fresh rock at an average depth of 23 metres downhole, with the weathering profile becoming significantly shallower to the south. The Wallbrook Monzonite intrudes on the eastern edge of the drill tested lines, while intermediate volcanic/volcaniclastic rocks dominate toward the west, with occasional shallow hematised porphyry intrusions. Mineralisation in this area is associated with quartz-goethite veining, with the highest grades correlating to areas with a higher percentage of quartz-goethite and hematite alteration.

Results indicate the western contact of the Wallbrook Monzonite is fertile, with elevated gold results along the southern extent of the area assessed. The highest grade intercept of 4m at 10.95 g/t Au (from 20m) within 15m @ 3.65 g/t Au (from 16m) is associated with a northwest-southeast fault in close proximity to the intrusive and orientated at an oblique angle to the drill lines. Based on the visual assessment of the hole, Nexus geologists attempted to follow up on the intercept as part of the drill program but the aircore drill capacity to get to the desired depths were restricted by the shallow depth of weathering. The strong grade and width of the intercept, in addition to the continuity of the mapped fertile structure, results in MC1.5 being a strong target to follow up with future RC drilling.

Photo 4: NMWBAC24-791: 4m @ 10.95 g/t Au (from 20m) within 15m @ 3.65 g/t Au (from 16m)

Ш

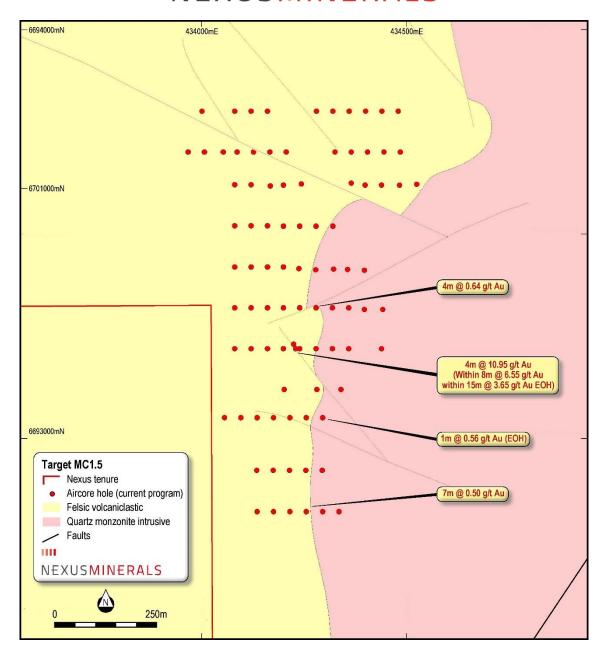
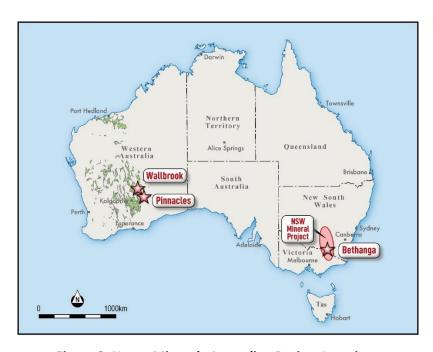



Figure 8: Target MC1.5 Map With Results

This announcement is authorised for release by Mr Andy Tudor, Managing Director, Nexus Minerals Limited.

About Nexus

Figure 9: Nexus Minerals Australian Project Locations

Nexus is actively exploring for gold deposits on its highly prospective tenement package in the Eastern Goldfields of Western Australia. In Western Australia, the consolidation of the highly prospective Wallbrook Gold Project by the amalgamation of existing Nexus tenements with others acquired, will advance these gold exploration efforts. Nexus holds a significant land package of highly prospective geological terrane within a major regional structural corridor and is exploring for gold deposits.

Nexus Minerals' tenement package at the Wallbrook Gold Project commences immediately to the north of Northern Star's multi-million ounce Carosue Dam mining operations (CDO), and current operating Karari and Whirling Dervish underground gold mines. The Company's Pinnacles Gold Project is located immediately to the south of CDO and comprises Nexus 100% owned tenure and Nexus-Northern Star Resources JV tenure. This Pinnacles JV tenure hosts the JORC 2012 combined Mineral Resource Estimate of 609,000t @ 4.0g/t Au for 78,000 ounces.

In addition to this, the Company has expanded its existing project portfolio with the addition of the granted tenure over 15,000km² of Gold, Copper and Critical Mineral prospective tenure in NSW, and the Bethanga Porphyry Copper-Gold project in Victoria.

Nexus is actively investing in new exploration techniques to refine the targeting approach for their current and future tenements.

- Ends -

Enquiries Mr Andy Tudor, Managing Director

Mr Paul Boyatzis, Non-Executive Chairman

Contact Phone: 08 9481 1749
Website <u>www.nexus-minerals.com</u>

ASX Code NXM

The information in this release that relates to Exploration Results, Mineral Resources or Ore Reserves is based on, and fairly represents, information and supporting documentation, prepared, compiled or reviewed by Mr Adam James, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr James is the Exploration Manager and full-time employee of Nexus Minerals Limited. Mr James has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr James consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. The results are available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

The information in the report to which this statement is attached that relates to Pinnacles Mineral Resources is based upon information compiled by Mr Mark Drabble, a Competent Person who is a member of The Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Drabble is a full-time employee of Optiro Pty Ltd, consultants to Nexus Minerals Limited. Mr Drabble has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Drabble consents to the inclusion in the report of matters based on his information in the form and context in which it appears. The information is extracted from the announcement dated 27/02/2020 and is available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parametres underpinning the estimates in the original announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.

The information in the report to which this statement is attached that relates to Wallbrook Mineral Resources is based upon information compiled by Mr Paul Blackney, a Competent Person who is a member of the Australian Institute of Geoscientists. Mr Blackney is a full-time employee of Snowden Optiro, consultants to Nexus Minerals Limited. Mr Blackney has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Blackney consents to the inclusion in the report of matters based on his information in the form and context in which it appears. The information is extracted from the announcement dated 01/05/2024 and is available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parametres underpinning the estimates in the original announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.

The Exploration Target estimate has been prepared by Mr Andy Tudor, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Tudor is the Managing Director and full-time employee of Nexus Minerals Limited. Mr Tudor has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Tudor consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. The information is extracted from the announcement dated 26/03/2023 and is available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parametres underpinning the estimates in the original announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.

FORWARD LOOKING AND CAUTIONARY STATEMENTS. Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future earnings, cash flow, costs and financial performance. Forward looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "predict", "foresee", "proposed", "aim", "target", "opportunity", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this report are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements are provided as a general guide only and should not be relied on as a guarantee of future performance. Forward-looking statements may be affected by a range of variables that could cause actual results to differ from estimated results and may cause the Company's actual performance and financial results in future periods to materially differ from any projections of future performance or results expressed or implied by such forward-looking statements. So, there can be no assurance that actual outcomes will not materially differ from these forward-looking statements. No Ore Reserves have currently been defined on the Pinnacles or Wallbrook tenements. There has been insufficient exploration and technical studies to estimate an Ore Reserve and it is uncertain if further exploration and/or technical studies will result in the estimation of an Ore Reserve. The potential for the development of a mining operation and sale of ore from the Pinnacles or Wallbrook tenements has yet to be established.

<u>Appendix 1</u>
Payns Prospect (MC5.2) Aircore Results – Significant Intercepts (>0.4 g/t Au)

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-714	MC5.2	431949	6700952	365	53	-60	270	32	48	16	0.42
							inc	32	36	4	0.88
NMWBAC24-715	MC5.2	431988	6700952	365	53	-60	270	20	24	4	0.95
NMWBAC24-717	MC5.2	432065	6700957	365	55	-60	270	28	32	4	2.78
NMWBAC24-720	MC5.2	431890	6701019	365	36	-60	270	28	36 EOH	8	1.28
							inc	35	36 EOH	1	5.99
NMWBAC24-721	MC5.2	431914	6701013	365	56	-60	270	28	52	24	1.89
							inc	32	48	16	2.74
							inc	44	48	4	6.85
NMWBAC24-722	MC5.2	431939	6701006	365	52	-60	270	32	44	12	0.86
							inc	32	36	4	2.28
NMWBAC24-723	MC5.2	431957	6701019	365	57	-60	270	32	40	8	0.49
NMWBAC24-724	MC5.2	431977	6701015	365	43	-60	270	24	32	8	0.41
NMWBAC24-725	MC5.2	431997	6701016	365	34	-60	270	20	28	8	2.60
							inc	20	24	4	5.02
NMWBAC24-727	MC5.2	432034	6701019	365	38	-60	270	24	28	4	0.10
NMWBAC24-731	MC5.2	431890	6701053	365	43	-60	270	32	40	8	1.51
							inc	32	36	4	2.44
NMWBAC24-732	MC5.2	431930	6701053	365	50	-60	270	28	44	16	1.15
							inc	36	40	4	3.59
NMWBAC24-734	MC5.2	432010	6701053	365	33	-60	270	20	32	12	0.72
							inc	28	32	4	1.38
NMWBAC24-735	MC5.2	432050	6701053	365	36	-60	270	8	28	20	1.77
							inc	20	24	4	7.12
NMWBAC24-737	MC5.2	431894	6701093	365	51	-60	270	40	51 EOH	11	0.44
NMWBAC24-739	MC5.2	431954	6701093	365	50	-60	270	32	36	4	1.18
NMWBAC24-741	MC5.2	431994	6701093	365	40	-60	270	28	32	4	0.55
								39	40 EOH	1	2.26
NMWBAC24-742	MC5.2	432014	6701093	365	41	-60	270	28	32	4	0.97
NMWBAC24-743	MC5.2	432034	6701092	365	40	-60	270	24	28	4	0.40
NMWBAC24-755	MC5.2	431910	6701053	365	52	-60	270	24	44	20	0.94
							inc	36	44	8	1.85
NMWBAC24-756	MC5.2	431950	6701053	365	46	-60	270	36	40	4	0.62
NMWBAC24-758	MC5.2	432030	6701053	365	36	-60	270	12	16	4	0.64
								24	32	8	2.23
NMWBAC24-759	MC5.2	432070	6701053	365	29	-60	270	8	12	4	0.45
NMWBAC24-760	MC5.2	431890	6700956	365	44	-60	270	36	43	7	0.45
NMWBAC24-761	MC5.2	431930	6700956	365	52	-60	270	40	48	8	3.44
							inc	40	44	4	6.59
NMWBAC24-763	MC5.2	432011	6700956	365	49	-60	270	40	44	4	0.82

Godfrey Prospect (MC2.2) Aircore Results – Significant Intercepts (>0.4 g/t Au)

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	To	Interval	g/t Au
NMWBAC24-630	MC2.2	434213	6696413	377	55	-55	90	44	52	8	0.62
							inc	48	52	4	1.10
NMWBAC24-637	MC2.2	434150	6696500	377	51	-55	90	36	40	4	0.55
NMWBAC24-642	MC2.2	434136	6696610	377	43	-55	90	28	32	4	0.65
NMWBAC24-644	MC2.2	434080	6696614	377	71	-55	90	52	56	4	0.42
NMWBAC24-646	MC2.2	434054	6696605	377	52	-55	90	24	32	8	1.33
							inc	24	28	4	2.17
NMWBAC24-649	MC2.2	434039	6696796	377	37	-55	90	20	32	12	0.52
NMWBAC24-650	MC2.2	434027	6696803	377	36	-55	90	28	32	4	0.46
NMWBAC24-651	MC2.2	434006	6696810	377	40	-55	90	24	39	15	1.30
							inc	28	32	4	4.02
NMWBAC24-656	MC2.2	434019	6696856	377	49	-55	90	8	12	4	0.42
							inc	32	36	4	0.64
NMWBAC24-657	MC2.2	433983	6696865	377	21	-55	90	8	21 EOH	13	0.70
							inc	8	12	4	1.26
NMWBAC24-658	MC2.2	434049	6696906	377	32	-55	90	24	28	4	0.20
NMWBAC24-661	MC2.2	433993	6696906	377	21	-55	90	8	12	4	0.54
NMWBAC24-662	MC2.2	433975	6696908	377	10	-55	90	0	10 EOH	10	0.25
							inc	9	10 EOH	1	0.68
NMWBAC24-684	MC2.2	433894	6697190	376	24	-55	90	20	24 EOH	4	0.43
NMWBAC24-685	MC2.2	433876	6697200	377	42	-55	90	28	32	4	0.68
								41	42 EOH	1	0.63
NMWBAC24-691	MC2.2	433842	6697294	376	52	-55	90	12	28	16	0.61
							inc	20	28	8	1.14
								36	44	8	0.20
NMWBAC24-696	MC2.2	433829	6697347	376	50	-55	90	28	32	4	0.52
NMWBAC24-697	MC2.2	433810	6697343	376	53	-55	90	32	48	16	0.40
NMWBAC24-702	MC2.2	434097	6696657	377	51	-55	90	12	16	4	3.81
NMWBAC24-703	MC2.2	434081	6696655	377	67	-55	90	32	36	4	0.54
							inc	52	56	4	0.47
NMWBAC24-708	MC2.2	434079	6696710	377	50	-55	90	0	16	16	0.60
							inc	0	4	4	1.03
NMWBAC24-709	MC2.2	434059	6696706	377	47	-55	90	24	36	12	0.56
							inc	28	32	4	0.83
NMWBAC24-772	MC2.2	434256	6696410	377	37	-60	90	24	32	8	1.07

Target MC2.1 Aircore Results – Significant Intercepts (>0.4 g/t Au)

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-586	MC2.1	433553	6696484	378	54	-55	90	36	40	4	0.66
NMWBAC24-590	MC2.1	433841	6696530	378	25	-55	90	24	25 (EOH)	1	0.52
NMWBAC24-595	MC2.1	433705	6696538	378	71	-55	90	44	68	24	1.13
							inc	48	56	8	2.94
NMWBAC24-596	MC2.1	433687	6696535	378	80	-55	90	32	40	8	0.47
								52	56	4	0.42
NMWBAC24-597	MC2.1	433668	6696535	378	73	-55	90	40	44	4	1.26
NMWBAC24-603	MC2.1	433683	6696584	378	68	-55	90	36	64	28	0.40
							inc	52	56	4	1.06
NMWBAC24-605	MC2.1	433605	6696582	378	80	-55	90	68	79	11	0.72
							inc	76	79	3	1.92

Target MC1.5 Aircore Results – Significant Intercepts (>0.4 g/t Au)

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-776	MC1.5	434255	6692820	368	36	-60	90	28	35	7	0.50
NMWBAC24-780	MC1.5	434295	6693050	368	16	-60	94	15	16 EOH	1	0.56
NMWBAC24-787	MC1.5	434439	6693219.1	372	3	-60	90	2	3 EOH	1	0.30
NMWBAC24-791	MC1.5	434239	6693219.1	369	31	-60	90	16	31 EOH	15	3.65
							inc	16	24	8	6.55
							inc	20	24	4	10.95
NMWBAC24-801	MC1.5	434279	6693319.1	370	55	-60	90	28	32	4	0.64

Appendix 2 All Wallbrook Regional Aircore Drill Results

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-580	MC2.1	433644	6696386	379	48	-55	90	32	44	12	0.11
NMWBAC24-581	MC2.1	433603	6696385	379	59	-55	90		N:	SI	1
NMWBAC24-582	MC2.1	433649	6696427	379	39	-55	90		N:	SI	
NMWBAC24-583	MC2.1	433594	6696436	378	62	-55	90	40	44	4	0.16
NMWBAC24-584	MC2.1	433633	6696486	378	51	-55	90		N:	SI	
NMWBAC24-585	MC2.1	433594	6696484	378	64	-55	90		N:	SI	
NMWBAC24-586	MC2.1	433553	6696484	378	54	-55	90	36	40	4	0.66
NMWBAC24-587	MC2.1	433902	6696530	378	32	-55	90		N:	SI	
NMWBAC24-588	MC2.1	433884	6696529	378	39	-55	90		N	SI	
NMWBAC24-589	MC2.1	433866	6696528	378	47	-55	90		N:	SI	
NMWBAC24-590	MC2.1	433841	6696530	378	25	-55	90	24	25 (EOH)	1	0.52
NMWBAC24-591	MC2.1	433826	6696529	378	23	-55	90	20	22	2	0.11
NMWBAC24-592	MC2.1	433782	6696531	378	25	-55	90		N:	SI	
NMWBAC24-593	MC2.1	433746	6696531	378	49	-55	90	48	49 (EOH)	1	0.14
NMWBAC24-594	MC2.1	433727	6696535	378	59	-55	90		N:	SI	
NMWBAC24-595	MC2.1	433705	6696538	378	71	-55	90	20	36	16	0.21
								44	68	24	1.13
							inc	48	56	8	2.94
NMWBAC24-596	MC2.1	433687	6696535	378	80	-55	90	32	40	8	0.47
								52	56	4	0.42
								68	76	8	0.21
NMWBAC24-597	MC2.1	433668	6696535	378	73	-55	90	40	44	4	1.26
								52	64	12	0.30
NMWBAC24-598	MC2.1	433888	6696581	378	26	-55	90		N:	SI	
NMWBAC24-599	MC2.1	433844	6696583	378	19	-55	90		N	SI	
NMWBAC24-600	MC2.1	433807	6696582	378	26	-55	90		N:	SI	
NMWBAC24-601	MC2.1	433768	6696581	378	33	-55	90		N	SI	
NMWBAC24-602	MC2.1	433722	6696586	378	43	-55	90		N:	SI	
NMWBAC24-603	MC2.1	433683	6696584	378	68	-55	90	36	64	28	0.40
							inc	52	56	4	1.06
NMWBAC24-604	MC2.1	433651	6696582	378	66	-55	90		N:	SI	
NMWBAC24-605	MC2.1	433605	6696582	378	80	-55	90	68	79	11	0.72
							inc	76	79	3	1.92
NMWBAC24-606	MC2.1	433564	6696587	378	37	-55	90		N:	SI	
NMWBAC24-607	MC2.1	433863	6696631	378	13	-55	90		N:	SI	
NMWBAC24-608	MC2.1	433826	6696637	378	20	-55	90		N:	SI	
NMWBAC24-609	MC2.1	433788	6696635	378	24	-55	90		N:	SI	
NMWBAC24-610	MC2.1	433746	6696634	378	30	-55	90		N:	SI	
NMWBAC24-611	MC2.1	433704	6696636	378	48	-55	90		N:	SI	
NMWBAC24-612	MC2.1	433668	6696639	377	53	-55	90		N:	SI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-613	MC2.1	433624	6696637	377	50	-55	90	40	49	9	0.23
NMWBAC24-614	MC2.1	433589	6696634	377	27	-55	90		N:	SI	
NMWBAC24-615	MC2.1	433852	6696812	377	48	-55	90		N:	SI	

							inc.	28	32	4	0.46
NMWBAC24-650	MC2.2	434027	6696803	377	36	-55	90	24	36	12	0.38
NMWBAC24-649	MC2.2	434039	6696796	377	37	-55	90	20	32	12	0.52
NMWBAC24-648	MC2.2	434065	6696803	377	39	-55	90		N:	SI	
NMWBAC24-647	MC2.2	434086	6696807	377	33	-55	90	-	N:	SI	
							inc	24	28	4	2.17
NMWBAC24-646	MC2.2	434054	6696605	377	52	-55	90	24	32	8	1.33
NMWBAC24-645	MC2.2	434097	6696615	377	48	-55	90	36	47	11	0.24
							inc	52	56	4	0.42
NMWBAC24-644	MC2.2	434080	6696614	377	71	-55	90	44	56	12	0.21
								36	40	4	0.20
NMWBAC24-643	MC2.2	434118	6696613	377	45	-55	90	0	4	4	0.11
NMWBAC24-642	MC2.2	434136	6696610	377	43	-55	90	28	32	4	0.65
NMWBAC24-641	MC2.2	434154	6696616	377	52	-55	90		N:	SI	
NMWBAC24-640	MC2.2	434088	6696513	377	34	-55	90		N:	SI	
NMWBAC24-639	MC2.2	434113	6696508	377	69	-55	90		N:	 SI	1
NMWBAC24-638	MC2.2	434132	6696511	377	58	-55	90	36	40	4	0.22
NMWBAC24-637	MC2.2	434150	6696500	377	51	-55	90	36	40	4	0.55
NMWBAC24-636	MC2.2	434175	6696505	377	52	-55	90		NS		
NMWBAC24-635	MC2.2	434192	6696508	377	41	-55	90		NS		
NMWBAC24-634	MC2.2	434136	6696408	378	25	-55	90	NSI			
NMWBAC24-633	MC2.2	434151	6696409	378	30	-55	90		NS		
NMWBAC24-632	MC2.2	434171	6696415	377	90	-55	90	20	NS NS		0.22
NMWBAC24-631	MC2.2	434197	6696406	377	62	-55	90	28	32	4	0.22
NHWBAC24-030	1102.2	434213	0090413	377	33	-33	inc	48	52	4	1.10
NMWBAC24-629	MC2.2	434238	6696413	377	55	-55	90	44	52	8	0.16
NMWBAC24-629	MC2.2	434163 434238	6696406	377	44	-55	90	32	36	4	0.16
NMWBAC24-627 NMWBAC24-628	MC2.2 MC2.2	434184	6696307 6696307	378 378	55 29	-55 -55	90		NS NS		
NMWBAC24-626	MC2.2	434196	6696312	378	41	-55	90		NS		
NMWBAC24-625	MC2.2	434221	6696309	377	39	-55	90	36	39 EOH	3	0.35
NMWBAC24-624	MC2.2	434240	6696309	377	51	-55	90		N:		T
NMWBAC24-623	MC2.2	434266	6696308	377	61	-55	90	36	44	8	0.39
NMWBAC24-622	MC2.2	433773	6696907	377	27	-55	90		N:		T
NMWBAC24-621	MC2.2	433810	6696906	377	50	-55	90		N:		
NMWBAC24-620	MC2.2	433856	6696908	377	31	-55	90		N:		
NMWBAC24-619	MC2.2	433793	6696856	377	33	-55	90	24	28	4	0.14
NMWBAC24-618	MC2.2	433828	6696855	377	55	-55	90		N:		1
NMWBAC24-617	MC2.2	433775	6696805	377	33	-55	90		NS.		
NMWBAC24-616	MC2.2	433812	6696808	377	37	-55	90		NS.		

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-651	MC2.2	434006	6696810	377	40	-55	90	24	39	15	1.30
							inc	28	32	4	4.02
NMWBAC24-652	MC2.2	433989	6696807	377	30	-55	90		N	SI	II.
NMWBAC24-653	MC2.2	434074	6696859	377	53	-55	90		N	SI	
NMWBAC24-654	MC2.2	434057	6696855	377	51	-55	90		N	SI	
NMWBAC24-655	MC2.2	434038	6696852	377	34	-55	90		N	SI	
NMWBAC24-656	MC2.2	434019	6696856	377	49	-55	90	0	24	24	0.19
							inc	8	12	4	0.42
								32	48	16	0.39
							inc	32	36	4	0.64
NMWBAC24-657	MC2.2	433983	6696865	377	21	-55	90	8	21 EOH	13	0.70
							inc	8	12	4	1.26
NMWBAC24-658	MC2.2	434049	6696906	377	32	-55	90	24	28	4	0.20
NMWBAC24-659	MC2.2	434030	6696910	377	27	-55	90		lN	SI	
NMWBAC24-660	MC2.2	434009	6696907	377	35	-55	90	0	4	4	0.11
NMWBAC24-661	MC2.2	433993	6696906	377	21	-55	90	0	20	20	0.18
				<i></i>			inc	8	12		0.54
NMWBAC24-662	MC2.2	433975	6696908	377	10	-55	90	0	10 EOH	10	0.25
14114467.024 002	1102.2	400070	0000000	077	10	- 00	inc	9	10 EOH	1	0.68
NMWBAC24-663	MC2.2	433951	6696906	377	9	-55	90			SI	0.00
NMWBAC24-664	MC2.2	433931	6696907	377	17	-55	90				
NMWBAC24-665	MC2.2	434011	6697012	377	21	-55	90		NSI NSI		
NMWBAC24-666	MC2.2	433988	6697010	377	13	-55	90		NSI NSI		
		433968	6697010	377	23		90			SI	
NMWBAC24-667 NMWBAC24-668	MC2.2					-55					
	MC2.2	433947	6697005	377	12	-55	90			SI	0.10
NMWBAC24-669	MC2.2	433932	6697006	377	9	-55	90	0	4	4	0.18
NMWBAC24-670	MC2.2	433910	6697002	377	5	-55	90			SI	
NMWBAC24-671	MC2.2	434010	6697057	377	7	-55	90			SI	
NMWBAC24-672	MC2.2	433979	6697056	377	5	-55	90			SI	
NMWBAC24-673	MC2.2	433956	6697057	377	18	-55	90			SI	
NMWBAC24-674	MC2.2	433921	6697055	377	15	-55	90			SI	
NMWBAC24-675	MC2.2	433896	6697058	377	7	-55	90			SI	
NMWBAC24-676	MC2.2	433949	6697142	377	17	-55	90			SI	
NMWBAC24-677	MC2.2	433931	6697142	377	29	-55	90	4	I	SI	0.00
NMWBAC24-678	MC2.2	433917	6697138	377	15	-55	90	4	15 EOH	11	0.30
NMWBAC24-679	MC2.2	433896	6697140	376	14	-55	90			SI	
NMWBAC24-680	MC2.2	433873	6697140	376	8	-55	90			SI	
NMWBAC24-681	MC2.2	433855	6697135	376	5	-55	90			SI	
NMWBAC24-682	MC2.2	433935	6697190	377	15	-55	90			SI	
NMWBAC24-683	MC2.2	433914	6697190	377	18	-55	90		I	SI I	1 _
NMWBAC24-684	MC2.2	433894	6697190	376	24	-55	90	8	12	4	0.22
								20	24 EOH	4	0.43
NMWBAC24-685	MC2.2	433876	6697200	377	42	-55	90	8	12	4	0.19
								28	32	4	0.68
								41	42 EOH	1	0.63

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-686	MC2.2	433859	6697195	376	24	-55	90		N	SI	
NMWBAC24-687	MC2.2	433836	6697195	376	7	-55	90		N	SI	
NMWBAC24-688	MC2.2	433903	6697295	377	17	-55	90	12	16	4	0.18
NMWBAC24-689	MC2.2	433883	6697294	376	31	-55	90		N	SI	•
NMWBAC24-690	MC2.2	433861	6697294	376	36	-55	90	24	28	4	0.12
NMWBAC24-691	MC2.2	433842	6697294	376	52	-55	90	12	28	16	0.61
							inc	20	28	8	1.14
								36	44	8	0.20
								51	52	1	0.11
NMWBAC24-692	MC2.2	433822	6697296	376	31	-55	90		N	SI	
NMWBAC24-693	MC2.2	433799	6697297	376	15	-55	90		N	SI	
NMWBAC24-694	MC2.2	433863	6697342	376	27	-55	90		N	SI	
NMWBAC24-695	MC2.2	433848	6697344	376	41	-55	90	28	32	4	0.12
NMWBAC24-696	MC2.2	433829	6697347	376	50	-55	90	24	44	20	0.26
							inc	28	32	4	0.52
NMWBAC24-697	MC2.2	433810	6697343	376	53	-55	90	20	53 EOH	33	0.28
							inc	32	48	16	0.40
NMWBAC24-698	MC2.2	433785	6697359	376	40	-55	90	32	40	8	0.21
NMWBAC24-699	MC2.2	433763	6697352	376	37	-55	90	24	28	4	0.11
NMWBAC24-700	MC2.2	434140	6696660	377	40	-55	90		N	SI	
NMWBAC24-701	MC2.2	434112	6696659	377	38	-55	90	0	4	4	0.11
NMWBAC24-702	MC2.2	434097	6696657	377	51	-55	90	0	4	4	0.22
								12	16	4	3.81
								24	36	12	0.16
NMWBAC24-703	MC2.2	434081	6696655	377	67	-55	90	32	44	12	0.31
							inc	32	36	4	0.54
								52	56	4	0.47
NMWBAC24-704	MC2.2	434057	6696657	377	45	-55	90	40	44	4	0.15
NMWBAC24-705	MC2.2	434035	6696655	377	25	-55	90	20	24	4	0.13
NMWBAC24-706	MC2.2	434120	6696707	377	30	-55	90		N	SI	
NMWBAC24-707	MC2.2	434100	6696708	377	39	-55	90	24	28	4	0.12
NMWBAC24-708	MC2.2	434079	6696710	377	50	-55	90	0	16	16	0.60
							inc	0	4	4	1.03
								28	32	4	0.32
NMWBAC24-709	MC2.2	434059	6696706	377	47	-55	90	24	36	12	0.56
							inc	28	32	4	0.83
NMWBAC24-710	MC2.2	434043	6696708	377	49	-55	90	24	28	4	0.14
NMWBAC24-711	MC2.2	434021	6696707	377	27	-55	90		N	SI	
NMWBAC24-772	MC2.2	434256	6696410	377	37	-60	90	4	8	4	0.41
								24	32	8	1.07
NMWBAC24-773	MC2.2	434210	6696510	377	35	-60	90		N	SI	
	1					1					
NMWBAC24-712	MC5.2	431868	6700956	365	20	-60	270		N	SI	1
NMWBAC24-713	MC5.2	431902	6700950	365	37	-60	270	32	36	4	0.17

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-714	MC5.2	431949	6700952	365	53	-60	270	32	48	16	0.42
							inc	32	36	4	0.88
NMWBAC24-715	MC5.2	431988	6700952	365	53	-60	270	20	24	4	0.95
NMWBAC24-716	MC5.2	432034	6700954	365	52	-60	270		N:	SI	
NMWBAC24-717	MC5.2	432065	6700957	365	55	-60	270	28	32	4	2.78
NMWBAC24-718	MC5.2	432104	6700957	365	40	-60	270	NSI			
NMWBAC24-719	MC5.2	432151	6700954	365	45	-60	270	4	8	4	0.40
NMWBAC24-720	MC5.2	431890	6701019	365	36	-60	270	28	36 EOH	8	1.28
							inc	35	36 EOH	1	5.99
NMWBAC24-721	MC5.2	431914	6701013	365	56	-60	270	28	52	24	1.89
							inc	32	48	16	2.74
							inc	44	48	4	6.85
NMWBAC24-722	MC5.2	431939	6701006	365	52	-60	270	32	44	12	0.86
							inc	32	36	4	2.28
NMWBAC24-723	MC5.2	431957	6701019	365	57	-60	270	32	40	8	0.49
NMWBAC24-724	MC5.2	431977	6701015	365	43	-60	270	24	32	8	0.41
NMWBAC24-725	MC5.2	431997	6701017	365	34	-60	270	20	28	8	2.60
							inc	20	24	4	5.02
NMWBAC24-726	MC5.2	432017	6701017	365	39	-60	270	NSI			
NMWBAC24-727	MC5.2	432034	6701019	365	38	-60	270	24	28	4	0.10
NMWBAC24-728	MC5.2	432057	6701017	365	51	-60	270	24	28	4	0.21
NMWBAC24-729	MC5.2	432078	6701020	365	53	-60	270	16	36	20	0.13
NMWBAC24-730	MC5.2	432097	6701017	365	60	-60	270	NSI			
NMWBAC24-731	MC5.2	431890	6701053	365	43	-60	270	32	40	8	1.51
							inc	32	36	4	2.44
NMWBAC24-732	MC5.2	431930	6701053	365	50	-60	270	28	44	16	1.15
							inc	36	40	4	3.59
NMWBAC24-733	MC5.2	431970	6701053	365	46	-60	270	16	28	12	0.24
								36	45	9	0.29
NMWBAC24-734	MC5.2	432010	6701053	365	33	-60	270	20	32	12	0.72
							inc	28	32	4	1.38
NMWBAC24-735	MC5.2	432050	6701053	365	36	-60	270	8	28	20	1.77
							inc	20	24	4	7.12
NMWBAC24-736	MC5.2	432090	6701053	365	34	-60	270		N:	SI	T
NMWBAC24-737	MC5.2	431894	6701093	365	51	-60	270	20	24	4	0.11
								40	51 EOH	11	0.44
NMWBAC24-738	MC5.2	431934	6701093	365	50	-60	270	36	50 EOH	14	0.38
NMWBAC24-739	MC5.2	431954	6701093	365	50	-60	270	32	50 EOH	18	0.34
							inc	32	36	4	1.18
NMWBAC24-740	MC5.2	431974	6701093	365	47	-60	270	28	40	12	0.33
NMWBAC24-741	MC5.2	431994	6701093	365	40	-60	270	28	32	4	0.55
								39	40 EOH	1	2.26
NMWBAC24-742	MC5.2	432014	6701093	365	41	-60	270	28	32	4	0.97
NMWBAC24-743	MC5.2	432034	6701092	365	40	-60	270	24	28	4	0.40
NMWBAC24-744	MC5.2	432054	6701092	365	34	-60	272	NSI			

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-745	MC5.2	432074	6701092	365	33	-60	270	24	28	4	0.19
NMWBAC24-746	MC5.2	432094	6701092	365	36	-60	270	32	35	4	0.19
NMWBAC24-747	MC5.2	431919	6701153	365	42	-60	270		N:	SI	
NMWBAC24-748	MC5.2	431959	6701153	365	39	-60	270		NS	SI	
NMWBAC24-749	MC5.2	431979	6701153	365	33	-60	270		N:	SI	
NMWBAC24-750	MC5.2	431999	6701153	365	39	-60	270		NS	SI	
NMWBAC24-751	MC5.2	432019	6701153	365	26	-60	270		N:	SI	
NMWBAC24-752	MC5.2	432039	6701153	365	30	-60	270		N:	SI	
NMWBAC24-753	MC5.2	432059	6701153	365	28	-60	270		N	SI	
NMWBAC24-754	MC5.2	432079	6701153	366	31	-60	270		N:	SI	
NMWBAC24-755	MC5.2	431910	6701053	365	52	-60	270	24	44	20	0.94
							inc	36	44	8	1.85
NMWBAC24-756	MC5.2	431950	6701053	365	46	-60	270	36	40	4	0.62
NMWBAC24-757	MC5.2	431990	6701053	365	36	-60	270	16	20	4	0.16
NMWBAC24-758	MC5.2	432030	6701053	365	36	-60	270	12	16	4	0.64
								24	32	8	2.23
NMWBAC24-759	MC5.2	432070	6701053	365	29	-60	270	8	12	4	0.45
								20	28	8	0.33
NMWBAC24-760	MC5.2	431890	6700956	365	44	-60	270	36	43	7	0.45
NMWBAC24-761	MC5.2	431930	6700956	365	52	-60	270	40	48	8	3.44
							inc			6.59	
NMWBAC24-762	MC5.2	431971	6700956	365	57	-60	270	NSI			
NMWBAC24-763	MC5.2	432011	6700956	365	49	-60	270	40	44	4	0.82
NMWBAC24-764	MC5.2	432051	6700956	365	55	-60	270		N	SI	
NMWBAC24-765	MC5.2	432091	6700956	365	46	-60	270		N	SI	
NMWBAC24-766	MC5.2	432131	6700956	365	43	-60	270	36	42	6	0.38
NMWBAC24-767	MC5.2	432171	6700956	365	68	-60	270		N	SI	
NMWBAC24-768	MC5.2	432137	6701017	365	36	-60	270		N	SI	
NMWBAC24-769	MC5.2	432157	6701017	365	41	-60	270		N	SI	
NMWBAC24-770	MC5.2	432130	6701046	365	46	-60	270	28	32	4	0.21
								40	45	5	0.33
NMWBAC24-771	MC5.2	432110	6701050	365	66	-60	270		N	SI	
NMWBAC24-774	MC1.5	434335	6692820	370	2	-60	90		N:	SI	
NMWBAC24-775	MC1.5	434295	6692820	369	8	-60	90	0	4	4	0.11
NMWBAC24-776	MC1.5	434255	6692820	368	36	-60	90	28	35	7	0.50
NMWBAC24-777	MC1.5	434215	6692820	368	16	-60	90		N:	SI	
NMWBAC24-778	MC1.5	434175	6692820	367	13	-60	90	NSI			
NMWBAC24-779	MC1.5	434135	6692820	367	2	-60	90		N	SI	
NMWBAC24-780	MC1.5	434295	6693050	368	16	-60	94	15	16 EOH	1	0.56
NMWBAC24-781	MC1.5	434255	6693050	368	31	-60	90		N:	SI	
NMWBAC24-782	MC1.5	434215	6693050	367	15	-60	90		N	SI	
NMWBAC24-783	MC1.5	434175	6693050	366	9	-60	90	NSI			
NMWBAC24-784	MC1.5	434135	6693050	366	15	-60	90		N:	SI	
NMWBAC24-785	MC1.5	434095	6693050	365	28	-60	90		N:	SI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-786	MC1.5	434055	6693050	365	16	-60	90		N:	SI	_
NMWBAC24-787	MC1.5	434439	6693219	372	3	-60	90	2	3 EOH	1	0.30
NMWBAC24-788	MC1.5	434359	6693219	370	18	-60	90		N:	SI	
NMWBAC24-789	MC1.5	434319	6693219	370	16	-60	90		N;	SI	
NMWBAC24-790	MC1.5	434279	6693219	369	38	-60	90		N:	SI	
NMWBAC24-791	MC1.5	434239	6693219	369	31	-60	90	16	31 EOH	15	3.65
							inc	16	24	8	6.55
							inc	20	24	4	10.95
NMWBAC24-792	MC1.5	434229	6693219	368	16	-60	90		N:	SI	
NMWBAC24-793	MC1.5	434199	6693219	368	13	-60	90		N;	SI	
NMWBAC24-794	MC1.5	434160	6693219	367	15	-60	90		N:	SI	
NMWBAC24-795	MC1.5	434120	6693219	367	3	-60	90		N;	SI	
NMWBAC24-796	MC1.5	434080	6693219	366	9	-60	90		N:	SI	
NMWBAC24-797	MC1.5	434442	6693315	372	7	-60	90		N;	SI	
NMWBAC24-798	MC1.5	434397	6693315	371	15	-60	90		N:	SI	
NMWBAC24-799	MC1.5	434359	6693319	371	22	-60	90		N;	SI	
NMWBAC24-800	MC1.5	434319	6693319	370	45	-60	90		N:	SI	
NMWBAC24-801	MC1.5	434279	6693319	370	55	-60	90	28	32	4	0.64
NMWBAC24-802	MC1.5	434239	6693319	369	32	-60	90		N:	SI	
NMWBAC24-803	MC1.5	434199	6693319	368	16	-60	90	NSI			
NMWBAC24-804	MC1.5	434160	6693319	368	10	-60	90	NSI			
NMWBAC24-805	MC1.5	434120	6693319	367	5	-60	90		N:	SI	
NMWBAC24-806	MC1.5	434080	6693319	367	19	-60	90		N:	SI	
NMWBAC24-807	MC1.5	434397	6693411	372	28	-60	86		N:	SI	
NMWBAC24-808	MC1.5	434356	6693413	371	32	-60	90		N:	SI	
NMWBAC24-809	MC1.5	434322	6693414	371	36	-60	90		N:	SI	
NMWBAC24-810	MC1.5	434278	6693412	370	68	-60	90		N:	SI	
NMWBAC24-811	MC1.5	434237	6693415	369	28	-60	90		N:	SI	
NMWBAC24-812	MC1.5	434199	6693419	369	16	-60	90		N:	SI	
NMWBAC24-813	MC1.5	434160	6693419	368	17	-60	90		N:	SI	
NMWBAC24-814	MC1.5	434120	6693419	368	12	-60	90		N:	SI	
NMWBAC24-815	MC1.5	434080	6693419	367	11	-60	90		N:	SI	
NMWBAC24-816	MC1.5	434320	6693519	371	59	-60	90		N:	SI	
NMWBAC24-817	MC1.5	434279	6693519	370	64	-60	90		N:	SI	
NMWBAC24-818	MC1.5	434239	6693519	370	47	-60	90		N:	SI	
NMWBAC24-819	MC1.5	434160	6693520	369	31	-60	90		N:	SI	
NMWBAC24-820	MC1.5	434080	6693520	368	10	-60	90		N:	SI	
NMWBAC24-821	MC1.5	434243	6693622	370	34	-60	90		N:	SI	
NMWBAC24-822	MC1.5	434167	6693617	369	25	-60	90		N:	SI	
NMWBAC24-823	MC1.5	434080	6693620	368	7	-60	90		N:	SI	
NMWBAC24-824	MC1.5	434206	6693700	369	39	-60	90		N:	SI	
NMWBAC24-825	MC1.5	434126	6693700	368	15	-60	90		N:	SI	
NMWBAC24-826	MC1.5	434052	6693700	367	20	-60	90		N:	SI	
NMWBAC24-827	MC1.5	433966	6693700	366	23	-60	90		N:	SI	
NMWBAC24-828	MC1.5	434160	6693800	369	21	-60	90		N:	SI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	g/t Au
NMWBAC24-829	MC1.5	434080	6693800	368	12	-60	90		N	SI	
NMWBAC24-830	MC1.5	434000	6693800	367	4	-60	90	NSI			
NMWBAC24-831	MC1.5	434120	6693800	368	18	-60	90	NSI			
NMWBAC24-832	MC1.5	434166	6693700	369	36	-60	90		N	SI	
NMWBAC24-833	MC1.5	434086	6693700	368	25	-60	90	0	4	4	0.13
NMWBAC24-834	MC1.5	434006	6693700	367	19	-60	90		N	SI	•
NMWBAC24-835	MC1.5	434199	6693619	369	42	-60	90	36	41	5	0.26
NMWBAC24-836	MC1.5	434120	6693620	368	23	-60	90		N	SI	•
NMWBAC24-837	MC1.5	434199	6693519	369	33	-60	90		N	SI	
NMWBAC24-838	MC1.5	434120	6693520	368	21	-60	90	16	20	4	0.14
NMWBAC24-839	MC1.5	434224	6693230	368	20	-60	48		N	SI	•
NMWBAC24-840	MC1.5	434340	6693119	370	13	-60	90		N	SI	
NMWBAC24-841	MC1.5	434281	6693119	369	29	-60	90		N	SI	
NMWBAC24-842	MC1.5	434201	6693119	367	8	-60	90		N	SI	
NMWBAC24-843	MC1.5	434294	6692921	368	3	-60	90		N	SI	
NMWBAC24-844	MC1.5	434254	6692921	368	23	-60	90		N	SI	
NMWBAC24-845	MC1.5	434214	6692921	367	14	-60	90		N	SI	
NMWBAC24-846	MC1.5	434174	6692921	366	9	-60	90		N	SI	
NMWBAC24-847	MC1.5	434134	6692921	366	33	-60	90		N	SI	
NMWBAC24-848	MC1.5	434525	6693621	372	4	-60	90	0	3	3	0.37
NMWBAC24-849	MC1.5	434483	6693619	372	11	-60	90		N	SI	
NMWBAC24-850	MC1.5	434439	6693619	372	27	-60	90		N	SI	
NMWBAC24-851	MC1.5	434365	6693624	371	45	-60	90		N	SI	
NMWBAC24-852	MC1.5	434485	6693700	372	56	-60	90		N	SI	
NMWBAC24-853	MC1.5	434405	6693700	371	37	-60	90		N	SI	
NMWBAC24-854	MC1.5	434325	6693700	371	28	-60	90		N	SI	
NMWBAC24-855	MC1.5	434480	6693800	372	34	-60	90		N	SI	
NMWBAC24-856	MC1.5	434400	6693800	371	40	-60	90	NSI			
NMWBAC24-857	MC1.5	434360	6693800	371	30	-60	90	NSI			
NMWBAC24-858	MC1.5	434320	6693800	370	35	-60	90		N	SI	
NMWBAC24-859	MC1.5	434280	6693800	370	33	-60	90		N	SI	
NMWBAC24-860	MC1.5	434440	6693800	371	41	-60	90	36	40	4	0.18
NMWBAC24-861	MC1.5	434445	6693700	372	65	-60	90		N	SI	
NMWBAC24-862	MC1.5	434365	6693700	371	36	-60	90		N	SI	
NMWBAC24-863	MC1.5	434399	6693619	372	46	-60	90		N	SI	

Appendix 3

Indicated			Inferred			TOTAL		
Tonnes (kt)	Au grade (g/t)	Au ounces (koz)	Tonnes (kt)	Au grade (g/t)	Au ounces (koz)	Tonnes (kt)	Au grade (g/t)	Au ounces (koz)
2,460	1.8	140	3,210	1.6	164	5,670	1.7	304

Crusader-Templar Mineral Resource Summary (0.4g/t cut-off) (rounding errors may occur)

Cut Off Grade (g/t Au)		Category	Tonnes (kt)	Au Grade (g/t)	Au Ounces (kOz)
		Indicated	140	2.6	11
0.5	O/P	Inferred	19	1.6	1
		Sub-total	159	2.4	12
	U/G	Indicated	170	5.6	30
1.0		Inferred	280	4.0	36
		Sub-total	450	4.6	66
	609	4.0	78		

Pinnacles Mineral Resource Summary (OP & UG gold g/t cut-off) (rounding errors may occur)

Northern Star Ltd Carosue Dam Resource Table as at 31/3/2024

	V	/leasure	d	lr.	ndicated		I	nferred		Tota	Resour	rces
NST Attributable	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces
Inclusive of Reserve	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)
Carosue Dam												
Surface	2,489	1.6	129	17,061	1.8	998	6,559	1.7	356	26,109	1.8	1,483
Underground	6,992	2.9	656	14,752	2.6	1,222	6,282	3.0	514	28,026	2.8	2,392
Stockpiles	6,996	1.5	167	-	-	-	-	-	-	6,996	1.5	167
Gold in Circuit	-	-	6	-	-	-	-	-	-	-	-	6
Sub-total Carosue Dam	16,476	1.8	958	31,814	2.2	2,220	2,841	2.4	870	61,131	2.1	4,048

Northern Star Ltd Carosue Dam Reserve Table as at 31/3/2024

		Proved		Probable			Total Reserve		
NST Attributable Reserve	Tonnes (000's)	Grade (gpt)	Ounces (000's)	Tonnes (000's)	Grade (gpt)	Ounces (000's)	Tonnes (000's)	Grade (gpt)	Ounces (000's)
Carosue Dam									
Surface	-	-	-	6,535	1.8	381	6,535	1.8	381
Underground	3,407	3.0	333	2,870	3.1	283	6,277	3.1	616
Stockpiles	6,996	1.5	167	-	-	-	6,996	0.7	167
Gold in Circuit	-	-	6		-	-	-	-	6
Sub-total Carosue Dam	10,403	1.5	506	9,405	2.2	663	19,809	1.8	1,170

Appendix A 11/11/2024

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	The sampling was carried out using Aircore Drilling (AC). AC chips provide representative samples for analysis.
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Sampling was carried out in accordance with Nexus Minerals protocols and QAQC procedures which Nexus considers to be industry best
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	practice. AC holes were drilled to refusal, with 1m samples collected in buckets
	Aspects of the determination of mineralisation that are Material to the Public Report.	through a cyclone and upended on the ground in rows of 10m. All samples had 4 consecutive 1m samples composited to form a 4m composite sample which was sent to the laboratory for analysis. The
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m	bottom of hole sample was collected as a 1m sample and sent to the laboratory for analysis.
	samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual	All 4m composite samples were pulverized at the laboratory to -75um, to produce a 50g charge for gold Fire Assay with ICP finish.
	commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	All 1m bottom of hole samples were pulverized at the laboratory to - 75um, to produce a 50g charge for gold Fire Assay with ICP finish and four acid digest multi element (48 elements + 12 rare earth elements) analysis undertaken on the sample pulps by the laboratory.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	An AC drilling rig was used to undertake the AC drilling and collect the samples. Drilling was completed using a 3.5 inch (90mm) diameter bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All samples were dry with no significant ground water encountered.
10001019	Measures taken to maximise sample recovery and ensure representative	No sample bias is believed to have occurred during the sampling process.
	nature of the samples.	AC face sampling bits and dust suppression were used to minimise sample loss. Average AC metre sample weight recovered was 10kg with

Criteria	JORC Code explanation	Commentary		
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	minimal variation between samples.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	All AC chip samples were geologically logged by Nexus Minerals Geologists, using the approved Nexus Minerals logging code. Logging of AC chips: Lithology, mineralogy, alteration, mineralisation, colour, weathering and other characteristics as observed. All AC samples (except clays) were wet sieved. All AC holes and all metres were geologically logged.		
Sub-	If core, whether cut or sawn and whether quarter, half or all core taken.	AC holes were drilled to refusal, with 1m samples collected in buckets		
sampling techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	through a cyclone and upended on the ground in rows of 10m. All samples had 4 consecutive 1m samples composited to form a 4m composite sample which was sent to the laboratory for analysis. The bottom of hole sample was collected as a 1m sample and sent to the laboratory for analysis.		
	or all sample types, the nature, quality and appropriateness of the sample preparation technique.	For composite samples four consecutive metres were sampled using an aluminium scoop which penetrates the entire sample with multiple slices taken from multiple angles to ensure a representative sample is collected. These are combined to produce a 4m composite sample of 2-3kg.		
		All samples submitted for analysis were dry.		
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Samples were prepared at an accredited laboratory in either Perth or Kalgoorlie. Samples were dried, and the whole sample pulverized to 85% passing 75um, with a sub-sample of ~200g retained. A nominal 50g was used for analysis. This is best industry practice.		
	Measures taken to ensure that the sampling is representative of the in	Duplicate composite scoop field samples were collected at 1:25 samples.		
	situ material collected, including for instance results for field duplicate/second-half sampling.	Sampling methods and company QAQC protocols are best industry practice.		
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate for the material being sampled and the sample size being submitted for analysis.		
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were analysed at an accredited laboratory in either Perth or Kalgoorlie. 4m and 1m samples were analysed for gold using Fire Assay technique with ICP finish. This method is considered appropriate for the material being assayed. The method provides a near total digestion of		

Criteria	JORC Code explanation	Commentary		
laboratory tests		the material. This method is considered appropriate for the material being assayed. The method provides a near total digestion of the material.		
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their	No other geophysical tools, spectrometers etc were used in this drill program.		
	derivation, etc.	Nexus Minerals protocol provides for Certified Reference Material		
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	(Standards and Blanks) to be inserted at a rate of 4 standards and 4 blanks per 100 samples. Field duplicates are inserted at a rate of 1 per 25 samples.		
Verification of sampling	The verification of significant intersections by either independent or alternative company personnel.	Results and significant intersections were verified by the Exploration Manager.		
and assaying	The use of twinned holes.	No twin holes were drilled as part of this program.		
, 0	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field logging is carried out on a laptop computer. Data is submitted electronically to the database manager in Perth. Assay files are received electronically from the laboratory and added to the database. All data is managed by the database geologist.		
	Discuss any adjustment to assay data.	No adjustment to assay data has occurred.		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole locations were determined using a handheld GPS, with an accuracy of 3m. Drill holes were lined up using a sighting compass – no down hole surveys were completed.		
	Specification of the grid system used.	Grid projection is GDA94 Zone51.		
	Quality and adequacy of topographic control.	The drill hole collar RL is allocated from a handheld GPS.		
		Accuracy is +/- 3m.		
Data spacing and	Data spacing for reporting of Exploration Results.	AC drilling took place at the MC1.5, MC2.1, MC2.2 (Godfrey) and MC5.1 (Payns) Prospects.		
distribution	Whether the data spacing and distribution is sufficient to establish the	This release refers to these prospects results only.		
	degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is not sufficient to establish the degree of geological and grade continuity appropriate for any Mineral Resource and Ore Reserve estimation procedure(s) and classifications to be applied.		
	Whether sample compositing has been applied.	Yes as stated above.		

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of the drill lines is considered to be roughly perpendicular to the strike of the regional structures controlling the mineralisation (0 degrees).
geological structure	THE TOP TO A TOTAL POLICE OF THE ACTUAL OF T	AC holes were drilled at a dip of either -55 or -60 degrees. Drill hole azimuth was 090 degrees for prospects MC1.5, MC2.1, MC2.2 (Godfrey), and 270 degrees for prospect MC5.2 (Payns).
		The relationship between the drilling orientation and the orientation of key mineralised structures is not considered to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	For the AC drilling program pre-numbered calico bags were placed into green plastic bags, sealed and transported to the laboratory in Kalgoorlie by company personnel or established transport company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All sampling, logging, assaying and data handling techniques are considered to be industry best practice.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites,	AC drilling was undertaken on tenements E31/1160, M31/231, M31/188 and M31/190.
tenure status	· · · · · · · · · · · · · · · · · · ·	Tenure is held by Nexus 100% There are no other known material issues with the tenements.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing with the Western Australian Mines Department (DMP).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	In the areas targeted, the tenements have been subject to minimal prior exploration activities.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	Gold mineralisation in the Wallbrook area is known to be closely associated with quartz +/- pyrite and brick-red coloured hematitic alteration of high level porphyry intrusives and their volcanic / sedimentary host rocks.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to ASX announcements for full tables.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No top cuts have been applied to the reported assay results. No aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results. No metal equivalent values were reported.
Relationship between mineralisatio n widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The orientation of the drill lines is considered to be roughly perpendicular to the strike of the regional structures controlling the mineralisation (0 degrees). Holes were drilled at either -55 or -60 degrees towards 090 or 270 degrees. All reported intersections are down-hole length – true width not known.

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the maps included in the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Clearly stated in body of release
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data to be reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Post full assessment of recent drill results and integration with existing data sets, future work programs may include Aircore drilling and/or RC/Diamond drilling to follow up on the results received from this drill program.