

RETRACTION OF CERTAIN INFORMATION IN ASX ANNOUNCEMENT **DATED 12 NOVEMBER 2024**

Golden Deeps Ltd (GED, or, the Company) refers to the announcement lodged with the ASX on 12 November 2024 titled "New Copper and Gold Results Show Potential of NSW Projects".

That announcement contained certain statements on page's 1 and 3, as set out below, regarding portable XRF (pXRF) readings on infill soil sampling ("Information").

The fourth paragraph on page 1 of the announcement contained the sentence: 'Initial pXRF readings from infill soil sampling in this zone have further defined the (>100ppm Cu) copper anomaly/target, which remains open to the northeast'. This sentence is retracted.

The fifth paragraph on page 1 of the announcement contained the sentence: 'Initial pXRF readings of infill soils have further defined the 500m x 500m (>100ppm Cu) copper anomaly - associated with a large magnetic in altered volcanics, which continues under Permian cover to the south of the Havilah Project into Acros (JV) tenement EL91144'. This sentence is retracted.

The first paragraph on page 3 of the announcement contains the sentence: 'Initial pXRF results from infill soil sampling have further defined the extensions to the Hazelbrook anomaly which remains open to the northeast'. This sentence is retracted.

The second paragraph on page 3 of the announcement contains the sentence: 'The initial pXRF results of this sampling have defined a broad (>100ppm Cu) anomaly/target over 500m x 500m associated with the large magnetic anomaly/altered volcanics target in the area (see Figure 1)'. This sentence is retracted.

The Company has concluded that the information cannot be reported in accordance with the JORC code and the ASX listing Rules, so the Company retracts the Information.

The Company warns investors that they should not rely on the Information as a basis for investment decisions.

The Company has today re-released an amended version of the 12 November announcement without the Information.

Furthermore, additional changes to the amended announcement include:

SOLDEN DEFPS

- Figure 1: Amended to remove the location of infill soil sampling pXRF reading points.
- ii) Appendix 2: Descriptions of mineralisation and estimated abundance of minerals updated.
- Appendix 5: JORC Table 1, Section 1: Reference to soil sampling pXRF readings removed from iii) Sampling Techniques and Data.
- iv) Appendix 5: JORC Table 1, Section 2: Reference to soil sampling pXRF results removed from Other Substantive Exploration Data.

This announcement was authorised for release by the Board of Directors.

ENDS

New Copper and Gold Results Show Potential of NSW Projects

Highly Anomalous Copper in 116m Sulphide Bearing Intersection at Havilah

- Assay results from diamond drillhole HVD004¹ at the Hazelbrook prospect confirm widespread copper mineralisation at Golden Deeps' 100% owned Havilah Project in the world-class Lachlan Fold Belt Copper-Gold Province in NSW.
- > The results from HVD004 include a 30m zone grading 460ppm (0.05%) copper (Cu) from 86m, including results of up to 2m @ 1,260ppm (0.13%) Cu, within a highly anomalous 116m zone from surface grading 224ppm Cu (see significant results, Table 1).
- > The 116m zone of anomalous copper mineralisation in HVD004 occurs 200m along strike from the previous intersection in HVD003² at the Hazelbrook Prospect which intersected an **84m sulphide bearing zone from** 84m grading 0.08% Cu, 0.18% Zn. This included 30m @ 0.16% Cu, 0.41% Zn from 84m including 6m @ 0.30% Cu, 0.72% Zn from 102m and 1m @ 0.84% Cu, 2.6% Zn, 5.8 q/t Aq from 102m (see Figure 1).
- The Hazelbrook prospect is associated with a northeast trending soil and rockchip anomaly (up to 1.1% Cu³) which extends for 800m to the northeast of HVD004. Previous soil sampling assay results of up to 3,460ppm (0.35%) Cu³ indicate a greater than 1km strike-length mineralised zone (Figure 1). Infill soil sampling has been carried over the northeast part of this zone.
- Infill soil sampling was also carried out over the Milfor copper anomaly, where previous rockchip sampling produced results of up to 1.2% Cu³, which is associated with a large magnetic in altered volcanics, which continues under Permian cover to the south of the Havilah Project into Acros (JV) tenement EL91144 (see Figure 2).

Golden Deeps CEO Jon Dugdale commented: "The assay results for diamond drillhole HVD004 have confirmed the widespread highly anomalous copper mineralisation in the altered volcanic rocks at the Havilah Project. Further work programs will be developed based on the final results of the current program."

New Mapping and Rockchip Sampling Results at Tuckers Hill High-Grade Gold Prospect

- New mapping and rockchip sampling assay results from the Tuckers Hill high-grade gold prospect have confirmed the extensive zones of gold mineralised lode structures at the prospect.
- > The Tuckers Hill workings occur on extensions of the Hill End gold corridor, which has produced over 2Moz of gold historically⁵ (including Hargraves Goldfield, Figure 3).
- The new results, which include grades of up to 3.06 g/t Au from quartz samples adjacent to old workings, have been compiled with the new mapping data (see results table and compiled mapping, Appendix 4).
- Previous and historical mapping and sampling identified 5 lines of high-grade gold bearing lode structures over a 1.6km strike-length and across a 200m wide zone at Tuckers Hill⁶ (see Appendix 4, and JORC Table, Appendix 6 for descriptions of historical work).
- > The Company is reviewing the results of the current, previous and historical programs, and assessing potential for accessible drill-sites, before submitting drill-permitting applications to the NSW Regulator.

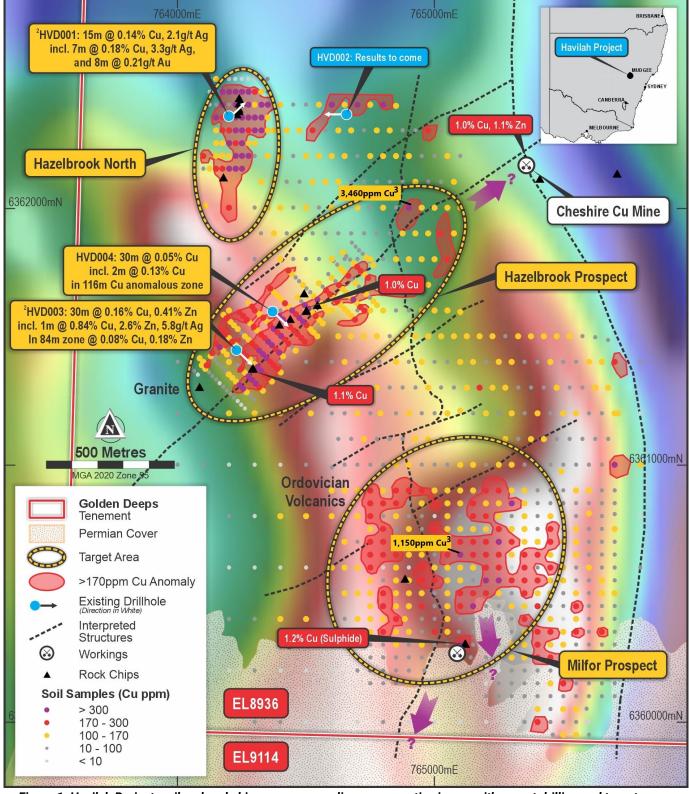


Figure 1: Havilah Project, soil and rockchip copper anomalies on magnetics image with recent drilling and target zones

Golden Deeps Ltd (ASX:GED) has received assay results from diamond drillhole HVD004 which tested the Hazelbrook Prospect at the 100% owned Havilah Project in the Lachlan Fold Belt copper-gold province of central NSW (Figure 1).

The results from HVD004 include a 30m zone grading 460ppm Cu (0.05%) from 86m and results of up to 2m @ 1,260ppm Cu (0.13%) within a highly anomalous 116m sulphide bearing zone from surface grading 224ppm Cu from surface (see significant results, Table 1).

The results in HVD004 are 200m along strike to the northeast of diamond drillhole HVD003, which intersected an 84m sulphide bearing zone which included 30m @ 0.16% Cu, 0.41% Zn, 1.0 g/t Ag from 84m including 6m @ 0.30% Cu, 0.72% Zn, 1.8 g/t Ag and 1m @ 0.84% Cu, 2.6% Zn, 5.8 g/t Ag from 102m² (see Figure 1).

Table 1, significant results from diamond drillhole HVD004 (see Appendix 1 for drillhole locations):

Hole #	From	То	m	Cu ppm	Zn ppm	S%
HVD004	0	116	116	224	98	0.74
incl.	86	116	30	460	120	0.14
incl.	90	92	2	1.260	85	0.35

The mineralisation intersected in HVD003 and HVD004 is associated with the northeast-trending Hazelbrook surface soil and rockchip copper-zinc anomaly, including previous rockchip sampling results of up to 1.1% Cu³. Previous, wide-spaced, soil sampling assay results of up to 3,460ppm (0.35%) Cu³, to the northeast of the detailed sampling zone, indicate that the Hazelbrook anomaly extends for a strike-length of more than 1km (see Figure 1). Infill soil sampling has been carried out in this zone.

Infill soil sampling has also been carried out over the extensive Milfor copper anomaly, which occurs over a 1km x 1km area (>100ppm Cu) and includes previous soil assay values of up to 1,150 (0.12%) Cu³ (Figure 1). Previous rockchip sampling of copper (chalcopyrite and malachite) mineralisation near historical workings produced assays of up to 1.2% copper³ (see Figure 1).

Auger soil sampling has also been carried over an area of altered silicified and sulphide bearing Sofala Volcanics which are exposed to the south of Havilah in the **Acros JV tenement**, **EL9114**⁴ (Figure's 1 and 2). Magnetics imagery indicates that the altered and magnetised volcanics continue south of Milfor under mostly (Permian) conglomerate cover for a further 2km within this tenement (see Figure 2, below). The assay results of the auger soil sampling will be compiled with mapping information prior to further work programs being planned.

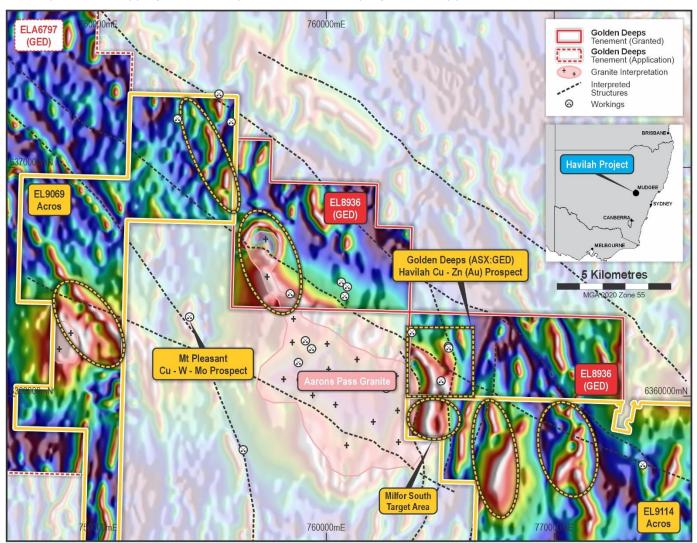


Figure 2: Location of the Havilah Project and Hazelbrook Cu-Zn-Au porphyry target area on magnetics image

The results for diamond drillhole HVD002 (see Figure 1) are expected to be available within 2 to 3 weeks.

About the Havilah Cu-Zn (Au) Project, Lachlan Fold Belt, NSW

The Havilah Project is a 100% owned granted Exploration Licence (EL8936) located within the eastern Lachlan Fold Belt (LFB) near Mudgee in central NSW (see Figure 3).

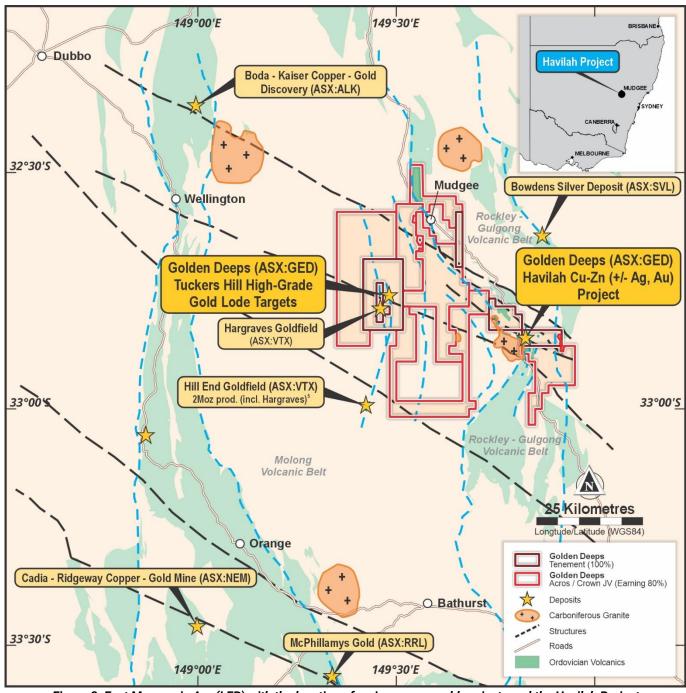


Figure 3: East Macquarie Arc (LFB) with the location of major copper-gold projects and the Havilah Project

The Company is targeting porphyry/volcanic hosted copper (zinc-silver) and gold mineralisation in a belt of Ordovician age (Sofala) volcanic rocks in the Rockley-Gulgong Volcanic Belt, which is part of the Macquarie Arc in the LFB - a major geological province known for world-class copper-gold deposits such as Cadia-Ridgeway⁷ and the recent Boda-Kaiser discovery of Alkane Resources Ltd⁸ (see Figure 3). Major deposits are associated with intrusive porphyries in the Ordovician volcanics, and occur within northwest trending structural corridors, one of which links Havilah with Boda-Kaiser discovery⁸, 80km to the northwest (Figure 3).

Havilah project includes an area of magnetic Ordovician Sofala Volcanics close to the northeastern margin of the Aaron's Pass Granite (see Figure 2 and 3). Mineralisation occurs on the tenement within this magnetic aureole at the historical Milfor and Cheshire copper workings, which are associated with altered Sofala (mafic/intermediate) Volcanics that contain pyrite and chalcopyrite (copper sulphide) mineralisation. The Aaron's Pass Granite is associated with porphyry Mo-W-Cu mineralisation west of Havilah at the Mt Pleasant prospect⁹ (see Figure 2).

The Company previously announced extensive copper with zinc and gold soil and rockchip anomalies, including several rockchip values of more than 1% copper at Hazelbrook, Hazelbrook North and Milfor prospects³. This mineralisation is associated with with northeast and north-south trending structures within the strongly altered and mineralised (Ordovician) Sofala Volcanics and the overlying Silurian volcanics (Hazelbrook North) (see Figure 1).

The sulphide mineralisation intersected in diamond drillholes HVD003² and HVD004¹ occurs within a northeast-trending zone of surface copper mineralisation in the Ordovician Sofala Volcanics at the Hazelbrook prospect. This is associated with a structural trend which links with the Aaron's Pass Granite to the west and potentially the Cheshire copper workings to the northeast, over a potential strike-length of over 1.2km (Figure 1).

Statement and Discussion regarding pXRF results vs Assay Results

Portable XRF (pXRF) spot readings on drillcore reported in the Company's ASX release of 23 September 2024¹ for Copper (Cu) and Zinc (Zn) have been listed for the reported intersections intervals (see Table 1) alongside individual 2m assayed values in Appendix 3 of this release.

The detectable pXRF readings for diamond drillhole HVD004, which were not length weighted in the ASX release of 23 September 2024¹, average 1,010ppm (0.10%) Cu over a 42.3m interval from 88.2m. This materially exceeds the weighted average assayed value over the 42m interval from 88m of 351ppm (0.04%) Cu. The reason for the material difference between the pXRF readings and the assayed results for this interval is explained by the nature of the sulphide mineralisation in this part of diamond drillhole HVD004, which includes irregularly distributed patches, flecks and grains of chalcopyrite and/or sphalerite (see mineralisation descriptions, Appendix 2). Spot pXRF readings on drill core either failed to detect the sulphides or, in cases where the spot reading has detected a sulphide patch or grain, the pXRF reading represents the high-grade of a spot reading of that sulphide patch, fleck or grain but has not accurately represented the average grade of the entire (2m) interval.

Cautionary Statement:

In relation to pXRF readings, the Company cautions that pXRF readings should never be considered a proxy or substitute for laboratory analyses. Laboratory assay results (ICP-MS/OES and Fire Assay for gold) are required to confirm the representative grades and intervals of the elements and the veracity of the pXRF readings.

New Mapping and Rockchip Sampling at Tuckers Hill High-Grade Gold Prospect

The Tuckers Hill prospect within EL9014 is located immediately to the northeast of the historical Hargraves Goldfield in the northern part of the Hill End orogenic gold trend which has produced over 2Moz of gold historically⁵.

Previous and historical mapping and sampling identified 5 lines of high-grade gold bearing lode structures over a 1.6km strike-length and across a 200m wide zone at Tuckers Hill⁶ (see Appendix 4, and JORC Table, Appendix 6 for descriptions of historical work)¹⁰.

The recent mapping of workings included further rockchip sampling (24 samples) of outcropping quartz veins and float samples (see Appendix 4), which produced assays of up to **3.06 g/t Au** (see Figure 4, Appendix 4).

Potential drill-sites from the crest of the hill are located on Crown Land that requires land access agreements with the Native Title claimants. Flora and Fauna and Heritage surveys have been completed across the crest of the hill and access agreements are under negotiation to allow access to the potential drill sites (see Figure 4, Appendix 4).

About Golden Deeps Ltd

Golden Deeps (ASX:GED) has a dual exploration focus on the world-class terranes of the Lachlan Fold Belt coppergold province of NSW, Australia, and the Otavi Mountain Land (Otavi) copper-lead-zinc and vanadium district of Namibia.

In the Lachlan Fold Belt, Golden Deeps has exploration programs in progress testing a series of copper, zinc, gold and silver targets within the under-explored Rockley-Gulgong Volcanic Belt near Mudgee, the eastern and most under-explored of four major volcanic belts which host several major copper-gold deposits. The company also has high-grade gold targets at the Tuckers Hill prospect (see Figure 3).

In Namibia, Golden Deeps has brownfields critical-metals deposits in the Otavi's including vanadium with copper, lead, zinc and silver supergene deposits as well as primary copper-silver sulphide deposits which are open at depth. The Company recently announced a new Mineral Resource for the Abenab high-grade vanadium (lead, zinc) project and a

maiden resource for the Nosib vanadium-copper-lead vanadate and copper-silver sulphide discovery¹¹. Previous drilling at the Khusib Springs copper-silver deposit produced thick silver-copper intersections that are open at depth¹².

Golden Deeps' strategy is based on discovery, building Mineral Resources and advancing critical and precious metals projects towards development.

References

- ¹ Golden Deeps Ltd, ASX 23 September 2024: New 92m Sulphide Hit Extends Hazelbrook Zone.
- ² Golden Deeps Ltd, ASX 11 October: Thick Cu and Zn Intersections with Ag and Au from Havilah
- ³ Golden Deeps Ltd, ASX 03 March 2022. Outstanding Copper Soil and Rockchip Results, Havilah Project, NSW.
- ⁴ Golden Deeps Ltd, ASX 12 July 2024: GED Expands Footprint in Lachlan Fold Belt Cu-Au Province, NSW
- ⁵PorterGeo Database Ore Deposit Description, Hill End Goldfield Hawkins Hill, Reward
- ⁶ Golden Deeps Ltd, ASX 22 January 2021: Sampling Confirms Gold Mineralisation at Tuckers Hill
- ⁷ Cadia Valley Operations Ridgeway, Cadia Hill. Portergeo.com.au/database/mineinfo.asp?mineid=mn228.
- ⁸ Alkane Resources Ltd, ASX:ALK, 29 April 2024: Revised Kaiser Resource Est. Improves confidence and Grade.
- ⁹ Minrex Resources Ltd (ASX:MRR), 2 September 2021: Mt Pleasant Project Approved for Exploration.
- ¹⁰ Golden Deeps Ltd (ASX:GED) announcement 2 September 2020 "Two more gold mineralised trends identified at Tuckers Hill Project".
- ¹¹ Golden Deeps Ltd ASX 25 June 2024: New Mineral Resources for Otavi V-Cu-Pb-Zn-Ag Deposits
- ¹² Golden Deeps Ltd ASX 22 October 2024: New Silver-Copper Resource Highlights Khusib Potential

This announcement was authorised for release by the Board of Directors.

ENDS

Please refer to the Company's website or contact:

Jon Dugdale Chief Executive Officer Golden Deeps Limited +61 (08) 9481 7833 Michael Muhling or Tanya Newby Joint Company Secretaries Golden Deeps Limited +61 (08) 9481 7833

Cautionary Statement regarding Forward-Looking Information:

This document contains forward-looking statements concerning Golden Deeps Ltd. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes. Forward looking statements in this document are based on the company's beliefs, opinions and estimates of Golden Deeps Ltd as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Competent Person Statement:

The information in this report that relates to exploration results, mineral resources and metallurgical information has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale. Mr Dugdale is the Chief Executive Officer of Golden Deeps Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ('FAusIMM'). Mr Dugdale has sufficient experience, including over 36 years' experience in exploration, resource evaluation, mine geology and finance, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ('JORC') Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

ASX Listing rules Compliance:

In preparing this announcement the Company has relied on the announcements previously made by the Company as listed under "References". The Company confirms that it is not aware of any new information or data that materially affects those announcements previously made, or that would materially affect the Company from relying on those announcements for the purpose of this announcement.

APPENDIX 1: Drillhole Details - HVD001, HVD002, HVD003, HVD004

DH_ID	Hole_Type	Coordinate System	Easting	Northing	RL	Azim_mag°	Azim_grid°	Dip°	Hole Length (m)
HVD001	DD	MGA94, Zone 55	764,224	6,362,385	734	015	028	-58	120.8
HVD002	DD	MGA94, Zone 55	764,646	6,362,424	667	257	270	-60	238.0
HVD003	DD	MGA94, Zone 55	764,254	6,361,465	732	122	135	-50	189.6
HVD004	DD	MGA94, Zone 55	764,377	6,361,627	705	122	135	-55	183.5

APPENDIX 2: Descriptions of Mineralisation – HVD004, HVD002

DH_ID	From	То	Min 1 Type	Min 1 Style	Min 1 Abundance	Min 2 Type	Min 2 Style	Min 2 Abundance	Min 3 Type	Min 3 Style	Min 3 Abundance	Comments
HVD004	15.00	18.00	PY	PAT	0.1%	PY	FRC	0.1%				Tr-weak pat and frc py.
HVD004	18.00	22.00	PY	FRC	0.1%							Frc tr-wk py.
HVD004	22.00	39.00	PY	STR	0.2%	PY	FRC	0.1%				Frc and str wk py.
HVD004	39.00	59.00	PY	STR	0.2%	SP	DIS	0.1%	СР	PAT/DIS	0.1%	Str/vlt py, minor pat/diss. Sph (+/-cpy) diss amongst prop patches (py w/ epidote(?)).
HVD004	59.00	100.00	PY	PAT	0.2%	SP	DIS	0.1%	СР	DIS	0.1%	Pat py in prop patches. Flecks of sph (+/- cpy). Mod py min with garnets 71-75m.
HVD004	109.00	131	СР	PAT	0.1%	PY	PAT	0.1%	СР	PAT/DIS	0.1%	Tr-wk pat cpy with py halo.
HVD004	140.00	183.50	PY	PAT	0.1%							Very trace pat/diss py.

Sulphide Mineralisation: PY = Pyrite, CP = Chalcopyrite, SP = Sphalerite.

Mineralisation Style: PAT = patchy, FRC = fracture coatings, STR = stringers, DIS = disseminated, VLT = veinlets

DH_ID	From	То	Min 1 Type	Min 1 Style	Min 1 Abundance	Min 2 Type	Min 2 Style	Min 2 Abundance	Min 3 Type	Min 3 Style	Min 3 Abundance	Comments
HVD002	4.50	8.10	LM	VLT	0.2%							Weak limonite along fractures & associated with carbonate veinlets
HVD002	8.10	60.20	PY	VLT	0.2%	PY	DIS	0.2%	СР	DIS	Trace	Scattered veinlets and disseminations of pyrite. Rare disseminations of chalcopyrite.
HVD002	60.20	63.44	PY	VLT	0.2%	PY	DIS	0.2%				Pyrite in veinlets and occasional disseminations <1%
HVD002	63.44	126.18	PY	VLT	0.2%	PY	DIS	0.2%	СР	DIS	Trace	Scattered veinlets and disseminations of pyrite. Rare disseminations of chalcopyrite.

DH_ID	From	То	Min 1 Type	Min 1 Style	Min 1 Abundance	Min 2 Type	Min 2 Style	Min 2 Abundance	Min 3 Type	Min 3 Style	Min 3 Abundance	Comments
HVD002	126.18	126.70	PY	VLT	0.2%	PY	DIS	0.1%				Pyrite veinlet @ 126.47m. Disseminated pyrite specks associated with alteration zones.
HVD002	126.70	127.46	PY	VLT	0.1%	PY	DIS	0.1%				Disseminated pyrite specks & occasional pyrite veinlets associated with alteration zones.
HVD002	127.46	140.70	PY	VLT	0.2%	PY	DIS	0.2%				Disseminated pyrite specks & occasional pyrite veinlets associated with alteration zones.
HVD002	140.70	146.00	PY	VLT	0.2%	PΥ	DIS	0.1%				Weak pyrite mineralisation as veinlets and scattered spots.
HVD002	146.00	162.12	PY	VLT	0.2%	PY	DIS	0.1%				Weak pyrite mineralisation as veinlets and scattered spots.
HVD002	162.12	164.30	PY	VLT	0.1%							Weak pyrite mineralisation as veinlets.
HVD002	164.30	176.80	PY	VLT	0.1%	PY	DIS	0.1%				Weak pyrite mineralisation as veinlets and scattered spots.
HVD002	176.80	204.12	PY	VLT	0.1%							Weak pyrite mineralisation as veinlets.
HVD002	204.12	220.65	PY	VLT	0.5%							Weak pyrite mineralisation as veinlets.
HVD002	220.65	238.00	PY	VLT	0.5%							Weak pyrite mineralisation as veinlets.

Cautionary note regarding visual estimates:

In relation to the disclosure of visual mineralisation in the tables above, the Company cautions that visual estimates of oxide, carbonate and/or sulphide mineralisation material abundance should never be considered a proxy or substitute for laboratory analyses. Laboratory ICP-MS and ICP-OES analyses and Fire Assay for gold are required to determine grades and intervals of the elements (e.g., copper – Cu, zinc - Zn) associated with the visible mineralisation reported from preliminary geological logging. The Company will update the market when laboratory analytical results are received and compiled.

APPENDIX 3: p-XRF spot readings on drill-core vs Assays (Cu, Zn only)

Drillhole	Depth	Cu pXRF spot ppm	Zn pXRF spot ppm	From	То	Interval	Cu ppm (ICP)	Zn ppm (ICP)
HVD004		NR	NR	0	2	2	122	71
HVD004		NR	NR	2	4	2	117	79
HVD004		NR	NR	4	6	2	121	78
HVD004	6.5	202	101					
HVD004	7.3	99	77					
HVD004	7.5	140	119					
HVD004	7.8	127	53	6	8	2	116	74
HVD004	8.2	506	112					
HVD004	8.5	88	126					
HVD004	8.8	161	44					
HVD004	9.2	148	98					
HVD004	9.5	178	120					
HVD004	9.8	261	136	8	10	2	162	75
HVD004	10.2	119	56					
HVD004	10.5	153	135					
HVD004	10.9	211	95					
HVD004	11.8	76	70	10	12	2	157	83
HVD004	12.2	132	338					
HVD004	12.5	77	62					
HVD004	12.8	140	102					
HVD004	13.5	134	81					
HVD004	13.8	60	112	12	14	2	93	85
HVD004	14.2	106	123					
HVD004	14.5	64	112					
HVD004	14.8	91	48					
HVD004	15.2	53	172					
HVD004	15.5	67	107					
HVD004	15.8	47	162	14	16	2	127	77
HVD004	16.2	191	112					
HVD004	16.5	40	121					
HVD004	16.8	40	75					
HVD004	17.2	57	128					
HVD004	17.5	90	115					
HVD004	17.8	50	111	16	18	2	117	81
HVD004	18.2	62	132					
HVD004	18.5	39	178					
HVD004	18.8	61	96					
HVD004	19.2	143	121					
HVD004	19.5	88	101					
HVD004	19.8	45	92	18	20	2	128	80
HVD004	20.2	< LOD	99					
HVD004	20.5	72	60					
HVD004	20.8	68	63					

Drillhole	Depth	Cu pXRF spot ppm	Zn pXRF spot ppm	From	То	Interval	Cu ppm (ICP)	Zn ppm (ICP)
HVD004	21.2	165	92					
HVD004	21.5	47	120					
HVD004	21.8	64	81	20	22	2	136	92
HVD004	22.2	35	91					
HVD004	22.5	81	107					
HVD004	22.8	63	110					
HVD004	23.2	39	99					
HVD004	23.5	55	79					
HVD004	23.8	110	101	22	24	2	126	82
HVD004	24.2	< LOD	101					
HVD004	24.5	42	93					
HVD004	24.8	151	116					
HVD004	25.2	74	78					
HVD004	25.5	108	95					
HVD004	25.8	128	87	24	26	2	142	84
HVD004	26.2	131	140					
HVD004	26.5	104	64					
HVD004	26.8	242	413					
HVD004	27.2	50	87					
HVD004	27.5	94	81					
HVD004	27.8	182	65	26	28	2	142	87
HVD004	28.2	121	86					
HVD004	28.5	114	110					
HVD004	28.8	70	81					
HVD004	29.2	112	77					
HVD004	29.5	87	79					
HVD004	29.8	120	137	28	30	2	141	84
HVD004	30.2	95	101					
HVD004	30.5	51	111					
HVD004	30.8	63	94					
HVD004	31.2	134	89					
HVD004	31.5	75	61					
HVD004	31.8	100	88	30	32	2	116	81
HVD004	32.2	100	270					
HVD004	32.5	116	100					
HVD004	32.8	110	101					
HVD004	33.2	57	90					
HVD004	33.5	90	86					
HVD004	33.8	104	208	32	34	2	138	84
HVD004	34.2	77	146					
HVD004	34.5	36	66					
HVD004	34.8	104	49					
HVD004	35.2	105	95					
HVD004	35.5	95	203					
HVD004	35.8	165	151	34	36	2	139	78
HVD004	36.2	52	93					
HVD004	36.5	46	130					

Drillhole	Depth	Cu pXRF spot ppm	Zn pXRF spot ppm	From	То	Interval	Cu ppm (ICP)	Zn ppm (ICP)
HVD004	36.8	84	106					
HVD004	37.2	101	220					
HVD004	37.5	76	98	36	38	2	140	84
HVD004	38.2	130	194					
HVD004	38.5	67	121					
HVD004	38.8	105	60					
HVD004	39.2	69	95					
HVD004	39.5	45	116					
HVD004	39.8	112	144	38	40	2	132	73
HVD004	40.2	139	165					
HVD004	40.5	141	124					
HVD004	40.8	93	177					
HVD004	41.2	76	157					
HVD004	41.5	144	146					
HVD004	41.8	79	99	40	42	2	129	83
HVD004	42.03	<lod< td=""><td>37</td><td></td><td></td><td></td><td></td><td></td></lod<>	37					
HVD004	42.2	82	171					
HVD004	42.5	91	160					
HVD004	42.8	73	224					
HVD004	43.2	49	175					
HVD004	43.5	<lod< td=""><td>21</td><td></td><td></td><td></td><td></td><td></td></lod<>	21					
HVD004	43.8	<lod< td=""><td>19</td><td>42</td><td>44</td><td>2</td><td>176</td><td>108</td></lod<>	19	42	44	2	176	108
HVD004	44.2	45	24					
HVD004	44.5	<lod< td=""><td><lod< td=""><td></td><td></td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td><td></td><td></td></lod<>					
HVD004	44.8	26	<lod< td=""><td></td><td></td><td></td><td></td><td></td></lod<>					
HVD004	45.2	<lod< td=""><td><lod< td=""><td></td><td></td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td><td></td><td></td></lod<>					
HVD004	45.35	<lod< td=""><td>46</td><td></td><td></td><td></td><td></td><td></td></lod<>	46					
HVD004	45.5	109	152					
HVD004	45.8	<lod< td=""><td>229</td><td>44</td><td>46</td><td>2</td><td>104</td><td>63</td></lod<>	229	44	46	2	104	63
HVD004	46.2	116	140					
HVD004	46.5	89	112					
HVD004	46.8	46	105					
HVD004	47.2	33	94					
HVD004	47.5	54	66					
HVD004	47.8	<lod< td=""><td>66</td><td>46</td><td>48</td><td>2</td><td>109</td><td>88</td></lod<>	66	46	48	2	109	88
HVD004	48.2	56	110					
HVD004	48.5	69	171					
HVD004	48.8	<lod< td=""><td>308</td><td></td><td></td><td></td><td></td><td></td></lod<>	308					
HVD004	49.2	50	145					
HVD004	49.5	37	82					
HVD004	49.8	<lod< td=""><td>73</td><td>48</td><td>50</td><td>2</td><td>86</td><td>94</td></lod<>	73	48	50	2	86	94
HVD004	50.2	<lod< td=""><td>69</td><td></td><td></td><td></td><td></td><td></td></lod<>	69					
HVD004	50.5	<lod< td=""><td>85</td><td></td><td></td><td></td><td></td><td></td></lod<>	85					
HVD004	50.8	<lod< td=""><td>139</td><td></td><td></td><td></td><td></td><td></td></lod<>	139					
HVD004	51.2	86	170					
HVD004	51.5	30	83					
HVD004	51.8	74	92	50	52	2	151	103

Drillhole	Depth	Cu pXRF spot ppm	Zn pXRF spot ppm	From	То	Interval	Cu ppm (ICP)	Zn ppm (ICP)
HVD004	52.2	176	104				, ,	, ,
HVD004	52.5	70	242					
HVD004	52.8	60	97					
HVD004	53.2	42	73					
HVD004	53.5	62	138					
HVD004	53.8	211	123	52	54	2	131	115
HVD004	54.2	132	172					
HVD004	54.5	71	111					
HVD004	54.8	130	221					
HVD004	55.2	257	181					
HVD004	55.5	139	91					
HVD004	55.8	178	57	54	56	2	222	101
HVD004	56.2	103	226					
HVD004	56.5	115	111					
HVD004	56.8	<lod< td=""><td>68</td><td></td><td></td><td></td><td></td><td></td></lod<>	68					
HVD004	57.2	116	103					
HVD004	57.5	135	181					
HVD004	57.8	143	218	56	58	2	185	98
HVD004	58.2	<lod< td=""><td><lod< td=""><td></td><td></td><td></td><td></td><td></td></lod<></td></lod<>	<lod< td=""><td></td><td></td><td></td><td></td><td></td></lod<>					
HVD004	58.5	<lod< td=""><td>264</td><td></td><td></td><td></td><td></td><td></td></lod<>	264					
HVD004	58.8	160	146					
HVD004	59.2	123	87					
HVD004	59.5	45	115					
HVD004	59.8	72	265	58	60	2	191	102
HVD004	60.2	80	83					
HVD004	60.5	136	101					
HVD004	60.8	139	153					
HVD004	60.93	266	103					
HVD004	61.2	102	92					
HVD004	61.5	51	42					
HVD004	61.8	135	83	60	62	2	130	76
HVD004	62.2	102	59					
HVD004	62.5	117	71					
HVD004	62.8	64	80					
HVD004	63.2	69	88					
HVD004	63.5	83	170					
HVD004	63.8	109	132	62	64	2	148	85
HVD004	64.2	138	91					
HVD004	64.5	150	57					
HVD004	64.8	151	77					
HVD004	65.2	99	41					
HVD004	65.5	<lod< td=""><td>56</td><td></td><td></td><td></td><td></td><td></td></lod<>	56					
HVD004	65.8	72	147	64	66	2	137	80
HVD004	66.2	95	128					
HVD004	66.5	93	51					
HVD004	66.8	56	86					
HVD004	67.2	97	127					

Drillhole	Depth	Cu pXRF spot ppm	Zn pXRF spot ppm	From	То	Interval	Cu ppm (ICP)	Zn ppm (ICP)
HVD004	67.5	125	63					-
HVD004	67.8	90	123	66	68	2	131	79
HVD004	68.2	148	68					
HVD004	68.8	120	98					
HVD004	69.2	102	135					
HVD004	69.5	50	78					
HVD004	69.8	151	131	68	70	2	133	89
HVD004	70.2	61	91					
HVD004	70.5	107	59					
HVD004	70.8	80	106					
HVD004	71.2	170	51					
HVD004	71.5	77	122					
HVD004	71.8	156	64	70	72	2	148	98
HVD004	72.2	70	111					
HVD004	72.5	125	72					
HVD004	72.8	144	139					
HVD004	73.2	98	184					
HVD004	73.5	163	101					
HVD004	73.8	87	72	72	74	2	165	95
HVD004	74.2	154	103					
HVD004	74.5	143	178					
HVD004	74.36	<lod< td=""><td>46</td><td></td><td></td><td></td><td></td><td></td></lod<>	46					
HVD004	74.8	110	124					
HVD004	75.2	55	129					
HVD004	75.5	68	77					
HVD004	75.8	120	103	74	76	2	199	112
HVD004	76.2	222	63					
HVD004	76.5	199	407					
HVD004	76.8	129	69					
HVD004	77.2	80	119					
HVD004	77.5	62	115					
HVD004	77.8	149	188					
HVD004	77.95	<lod< td=""><td><lod< td=""><td>76</td><td>78</td><td>2</td><td>196</td><td>121</td></lod<></td></lod<>	<lod< td=""><td>76</td><td>78</td><td>2</td><td>196</td><td>121</td></lod<>	76	78	2	196	121
HVD004	78.2	84	96					
HVD004	78.5	134	134					
HVD004	78.8	68	162					
HVD004	79.2	108	550					
HVD004	79.5	68	153					
HVD004	79.8	46	182	78	80	2	154	165
HVD004	80.2	124	130					
HVD004	80.5	134	106					
HVD004	80.8	84	106					
HVD004	81.2	62	122					
HVD004	81.5	149	217					
HVD004	81.8	170	103	80	82	2	162	90
HVD004	82.2	139	130					
HVD004	82.5	<lod< td=""><td>95</td><td></td><td></td><td></td><td></td><td></td></lod<>	95					

Drillhole	Depth	Cu pXRF spot ppm	Zn pXRF spot ppm	From	То	Interval	Cu ppm (ICP)	Zn ppm (ICP)
HVD004	82.8	120	104					
HVD004	83.2	132	145					
HVD004	83.5	113	141					
HVD004	83.8	<lod< td=""><td>139</td><td>82</td><td>84</td><td>2</td><td>173</td><td>128</td></lod<>	139	82	84	2	173	128
HVD004	84.2	<lod< td=""><td>149</td><td></td><td></td><td></td><td></td><td></td></lod<>	149					
HVD004	84.5	32	133					
HVD004	84.8	112	187					
HVD004	85.2	140	355					
HVD004	85.5	<lod< td=""><td>196</td><td></td><td></td><td></td><td></td><td></td></lod<>	196					
HVD004	85.8	35	191	84	86	2	102	118
HVD004	86.2	<lod< td=""><td>81</td><td></td><td></td><td></td><td></td><td></td></lod<>	81					
HVD004	86.5	<lod< td=""><td>180</td><td></td><td></td><td></td><td></td><td></td></lod<>	180					
HVD004	86.8	47	95					
HVD004	87.2	597	108					
HVD004	87.5	353	114					
HVD004	87.8	162	95	86	88	2	748	95
HVD004	88.2	183	2409					
HVD004	88.5	<lod< td=""><td>138</td><td></td><td></td><td></td><td></td><td></td></lod<>	138					
HVD004	88.8	<lod< td=""><td>164</td><td></td><td></td><td></td><td></td><td></td></lod<>	164					
HVD004	89.2	41	96					
HVD004	89.5	87	133					
HVD004	89.8	958	144	88	90	2	489	100
HVD004	90.2	45	196					
HVD004	90.5	3,197	109					
HVD004	90.8	513	82					
HVD004	91.2	380	102					
HVD004	91.5	<lod< td=""><td>83</td><td></td><td></td><td></td><td></td><td></td></lod<>	83					
HVD004	91.8	<lod< td=""><td>76</td><td>90</td><td>92</td><td>2</td><td>1260</td><td>85</td></lod<>	76	90	92	2	1260	85
HVD004	92.2	527	111					
HVD004	92.5	201	90					
HVD004	92.8	<lod< td=""><td>154</td><td></td><td></td><td></td><td></td><td></td></lod<>	154					
HVD004	93.2	<lod< td=""><td>19</td><td></td><td></td><td></td><td></td><td></td></lod<>	19					
HVD004	93.5	<lod< td=""><td>111</td><td></td><td></td><td></td><td></td><td></td></lod<>	111					
HVD004	93.8	57	120	92	94	2	290	83
HVD004	94.2	168	200					
HVD004	94.5	257	65					
HVD004	94.8	51	309					
HVD004	95.2	<lod< td=""><td>100</td><td></td><td></td><td></td><td></td><td></td></lod<>	100					
HVD004	95.5	64	168					
HVD004	95.8	1,120	312	94	96	2	635	86
HVD004	96.2	313	120					
HVD004	96.5	<lod< td=""><td>79</td><td></td><td></td><td></td><td></td><td></td></lod<>	79					
HVD004	96.8	<lod< td=""><td>185</td><td></td><td></td><td></td><td></td><td></td></lod<>	185					
HVD004	97.2	69	373					
HVD004	97.5	32	130					
HVD004	97.8	<lod< td=""><td>91</td><td>96</td><td>98</td><td>2</td><td>112</td><td>113</td></lod<>	91	96	98	2	112	113
HVD004	98.2	293	110					

		Cu pXRF	Zn pXRF				Cu ppm	Zn ppm
Drillhole	Depth	spot ppm	spot ppm	From	То	Interval	(ICP)	(ICP)
HVD004	98.5	<lod< th=""><th>89</th><th></th><th></th><th></th><th></th><th></th></lod<>	89					
HVD004	98.8	<lod< td=""><td>97</td><td></td><td></td><td></td><td></td><td></td></lod<>	97					
HVD004	99.2	49	68					
HVD004	99.5	1,514	110					
HVD004	99.8	138	85	98	100	2	579	97
HVD004	100.2	<lod< td=""><td>244</td><td></td><td></td><td></td><td></td><td></td></lod<>	244					
HVD004	100.5	<lod< td=""><td>78</td><td></td><td></td><td></td><td></td><td></td></lod<>	78					
HVD004	100.8	38	160					
HVD004	101.2	109	114					
HVD004	101.5	33	113					
HVD004	101.8	<lod< td=""><td>112</td><td></td><td></td><td></td><td></td><td></td></lod<>	112					
HVD004	101.8	<lod< td=""><td>105</td><td>100</td><td>102</td><td>2</td><td>25</td><td>124</td></lod<>	105	100	102	2	25	124
HVD004	102.2	<lod< td=""><td>88</td><td></td><td></td><td></td><td></td><td></td></lod<>	88					
HVD004	102.5	172	148					
HVD004	102.8	<lod< td=""><td>163</td><td></td><td></td><td></td><td></td><td></td></lod<>	163					
HVD004	103.2	<lod< td=""><td>220</td><td></td><td></td><td></td><td></td><td></td></lod<>	220					
HVD004	103.5	<lod< td=""><td>115</td><td></td><td></td><td></td><td></td><td></td></lod<>	115					
HVD004	103.8	<lod< td=""><td>192</td><td>102</td><td>104</td><td>2</td><td>97</td><td>132</td></lod<>	192	102	104	2	97	132
HVD004	104.2	54	127					
HVD004	104.5	50	143					
HVD004	104.8	35	142					
HVD004	105.2	41	165					
HVD004	105.5	<lod< td=""><td>170</td><td></td><td></td><td></td><td></td><td></td></lod<>	170					
HVD004	105.8	34	150	104	106	2	25	140
HVD004	106.2	33	166					
HVD004	106.5	<lod< td=""><td>141</td><td></td><td></td><td></td><td></td><td></td></lod<>	141					
HVD004	106.8	<lod< td=""><td>149</td><td></td><td></td><td></td><td></td><td></td></lod<>	149					
HVD004	107.2	<lod< td=""><td>119</td><td></td><td></td><td></td><td></td><td></td></lod<>	119					
HVD004	107.5	<lod< td=""><td>124</td><td></td><td></td><td></td><td></td><td></td></lod<>	124					
HVD004	107.8	<lod< td=""><td>113</td><td>106</td><td>108</td><td>2</td><td>6</td><td>152</td></lod<>	113	106	108	2	6	152
HVD004	108.2	49	227					
HVD004	108.5	<lod< td=""><td>164</td><td></td><td></td><td></td><td></td><td></td></lod<>	164					
HVD004	108.8	<lod< td=""><td>147</td><td></td><td></td><td></td><td></td><td></td></lod<>	147					
HVD004	109.2	72	150					
HVD004	109.5	397	137					
HVD004	109.8	<lod< td=""><td>141</td><td>108</td><td>110</td><td>2</td><td>1115</td><td>174</td></lod<>	141	108	110	2	1115	174
HVD004	110.2	36	120					
HVD004	110.5	348	144					
HVD004	110.8	39	158					
HVD004	111.2	273	108					
HVD004	111.5	114	254					
HVD004	111.8	63	157	110	112	2	207	145
HVD004	112.2	48	182					
HVD004	112.5	47	126					
HVD004	112.8	67	141					
HVD004	113.2	<lod< td=""><td>131</td><td></td><td></td><td></td><td></td><td></td></lod<>	131					
HVD004	113.5	<lod< td=""><td>150</td><td></td><td></td><td></td><td></td><td></td></lod<>	150					

Drillhole	Depth	Cu pXRF spot ppm	Zn pXRF spot ppm	From	То	Interval	Cu ppm (ICP)	Zn ppm (ICP)
HVD004	113.8	55	67	112	114	2	122	115
HVD004	114.2	189	116					
HVD004	114.5	1,578	285					
HVD004	114.8	33	141					
HVD004	115.2	<lod< td=""><td>151</td><td></td><td></td><td></td><td></td><td></td></lod<>	151					
HVD004	115.5	36,215	780					
HVD004	115.8	<lod< td=""><td>138</td><td>114</td><td>116</td><td>2</td><td>1190</td><td>161</td></lod<>	138	114	116	2	1190	161
HVD004	116.2	36	139					
HVD004	116.5	80	145					
HVD004	116.8	37	120					
HVD004	117.2	<lod< td=""><td>121</td><td></td><td></td><td></td><td></td><td></td></lod<>	121					
HVD004	117.8	<lod< td=""><td>125</td><td></td><td></td><td></td><td></td><td></td></lod<>	125					
HVD004	117.5	39	112	116	118	2	39	135
HVD004	118.2	<lod< td=""><td>191</td><td></td><td></td><td></td><td></td><td></td></lod<>	191					
HVD004	118.5	<lod< td=""><td>141</td><td></td><td></td><td></td><td></td><td></td></lod<>	141					
HVD004	118.8	241	109					
HVD004	119.2	<lod< td=""><td>94</td><td></td><td></td><td></td><td></td><td></td></lod<>	94					
HVD004	119.5	<lod< td=""><td>122</td><td></td><td></td><td></td><td></td><td></td></lod<>	122					
HVD004	119.8	453	120	118	120	2	299	129
HVD004	120.2	115	105					
HVD004	120.5	37	114					
HVD004	120.8	50	109					
HVD004	121.2	77	139					
HVD004	121.5	34	136					
HVD004	121.8	61	128	120	122	2	291	144
HVD004	122.2	<lod< td=""><td>153</td><td></td><td></td><td></td><td></td><td></td></lod<>	153					
HVD004	122.5	61	123					
HVD004	122.8	<lod< td=""><td>118</td><td></td><td></td><td></td><td></td><td></td></lod<>	118					
HVD004	123.2	36	146					
HVD004	123.5	40	132					
HVD004	123.8	596	107	122	124	2	144	138
HVD004	124.2	<lod< td=""><td>152</td><td></td><td></td><td></td><td></td><td></td></lod<>	152					
HVD004	124.5	<lod< td=""><td>146</td><td></td><td></td><td></td><td></td><td></td></lod<>	146					
HVD004	124.8	<lod< td=""><td>145</td><td></td><td></td><td></td><td></td><td></td></lod<>	145					
HVD004	125.2	<lod< td=""><td>144</td><td></td><td></td><td></td><td></td><td></td></lod<>	144					
HVD004	125.5	52	141					
HVD004	125.8	47	94	124	126	2	148	139
HVD004	126.2	34	140	·	*	_	140	
HVD004	126.5	<lod< td=""><td>129</td><td></td><td></td><td></td><td></td><td></td></lod<>	129					
HVD004	126.8	<lod< td=""><td>135</td><td></td><td></td><td></td><td></td><td></td></lod<>	135					
HVD004	127.2	<lod <lod< td=""><td>122</td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	122					
HVD004	127.5	47	126					
HVD004	127.8	<lod< td=""><td>149</td><td>126</td><td>128</td><td>2</td><td>86</td><td>146</td></lod<>	149	126	128	2	86	146
HVD004	128.2	<lod <lod< td=""><td>130</td><td>120</td><td>120</td><td></td><td>00</td><td>140</td></lod<></lod 	130	120	120		00	140
HVD004	128.5	<lod <lod< td=""><td>124</td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	124					
111004	126.3	\LUD	124			ı l		l

Drillhole	Depth	Cu pXRF spot ppm	Zn pXRF spot ppm	From	То	Interval	Cu ppm (ICP)	Zn ppm (ICP)
HVD004	128.8	<lod< td=""><td>149</td><td></td><td></td><td></td><td></td><td></td></lod<>	149					
HVD004	129.2	80	132					
HVD004	129.4	221	71					
HVD004	129.6	11,472	211					
HVD004	129.8	117	113	128	130	2	202	139
HVD004	130	47	202					
HVD004	130.2	<lod< td=""><td>205</td><td></td><td></td><td></td><td></td><td></td></lod<>	205					
HVD004	130.4	<lod< td=""><td>123</td><td></td><td></td><td></td><td></td><td></td></lod<>	123					
HVD004	130.47	14,962	373					
HVD004	130.6	<lod< td=""><td>107</td><td></td><td></td><td></td><td></td><td></td></lod<>	107					
HVD004	130.8	<lod< td=""><td>76</td><td></td><td></td><td></td><td></td><td></td></lod<>	76					
HVD004	131	<lod< td=""><td>73</td><td></td><td></td><td></td><td></td><td></td></lod<>	73					
HVD004	131.2	<lod< td=""><td>86</td><td></td><td></td><td></td><td></td><td></td></lod<>	86					
HVD004	131.5	<lod< td=""><td>104</td><td></td><td></td><td></td><td></td><td></td></lod<>	104					
HVD004	131.8	<lod< td=""><td>92</td><td>130</td><td>132</td><td>2</td><td>104</td><td>99</td></lod<>	92	130	132	2	104	99

APPENDIX 4: Tuckers Hill, Rockchip Sampling

Tuckers Hill	Prospect]
Sample No.	EASTING	NORTHING	Sample Description	Au FA ppm
GDTH002	732041	6372526	Chips from outcrop	0.005
GDTH003	732135	6372513	Chips from adit	<0.005
GDTH004	732136	6372515	Chips from adit	0.005
GDTH005	732444	6372107	float around shaft	<0.005
GDTH006	732435	6372085	float around old workings	<0.005
GDTH007	732374	6372282	float from workings at base of tree	0.043
GDTH009	732369	6373088	Chips from outcrop	0.007
GDTH010	732350	6373091	Chips from outcrop	0.007
GDTH011	732390	6373025	Float from shaft of the side of the road	0.014
GDTH012	732392	6373025	Float from shaft of the side of the road	0.233
GDTH013	732541	6372451	Chips from massive quartz vein in outcrop above adit	0.022
GDTH014	732542	6372451	float around adit	0.048
GDTH015	732542	6372451	float in front of adit	0.015
GDTH016	732543	6372489	float from outcrop near adit	0.221
GDTH018	732453	6372607	float from shaft	3.06
GDTH019	732350	6372785	float from filled in shaft	0.024
GDTH020	732403	6372772	Float from after shaft cuttings	<0.005
GDTH021	732336	6372545	Float from workings	0.034
GDTH022	732325	6372514	float from shaft dump	0.008
GDTH023	732316	6372531	Float from dump pile	0.049
GDTH026	732514	6372056	Rock chips from outcrop	<0.005
GDTH027	732289	6372720	Float near adit	0.058
GDTH028	732289	6372737	Float from filled in shaft	0.005
GDTH029	732289	6372737	Float from near shaft	0.009

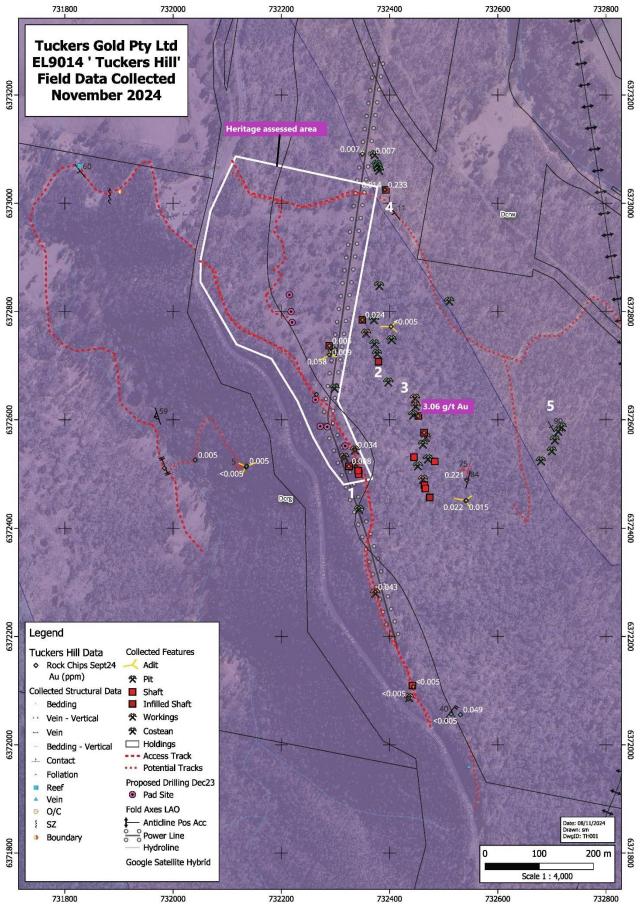


Figure 4, Mapping of the Tuckers Hill gold prospect with recent rockchip sample results

APPENDIX 5: JORC 2012 Table 1 – Havilah Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Previous and current soil sampling programs carried out by Rangott Mineral Exploration Pty Ltd (RME) initially on a 200m x 100m grid with infill on a 50m x 20m grid or 25m x 25m grid. Samples were collected from surface in areas of skeletal soils or, where deeper, from approximately 20cm below surface and sieved to -1mm before submission to the ALS laboratory, Orange NSW for gold (Au) by fire assay and other elements analysis by ICP-MS. Diamond drilling has been sampled as half-core on 1m for strongly mineralised and/or 2m intervals. Samples were submitted to the ALS laboratory in Orange NSW from which approximately 3 kg was pulverised to produce a 50 g charge for gold fire assay and analysis of other elements by acid digest and ICP-MS/OES analysis at the ALS Brisbane laboratory. The spot pXRF readings previously reported are spot readings on drill-core taken at intervals averaging approximately 0.2m for HVD004 (see Appendix 3) of actual core length within each mineralised zone. Readings are taken at bottom of core, unless core orientation cannot be determined. The p-XRF measurements are taken in Mining Mode. The values for copper (Cu), Lead (Pb) and Zinc (Zn) are indicative only. Gold, (Au) and Silver (Ag) values are not accurate or reliable and give very limited indication of final values expected in laboratory analyses. A system check and calibration of the pXRF device was performed each time on bootup. Readings of the blank and low-Cu CRM standard were carried out at the start, occasionally during and at end of the pXRF readings session. Some repeat readings were carried out, as indicated by readings with the same depth. All values are as recorded on the pXRF. No values have been substituted, such as when there has been no detectable reading. Standards and blanks were tested at regular intervals (ave. 1 standard, 1 blank per 20m). The type of instrument used was a Niton XL3t portable XRF device. The p-XRF was

Criteria	JORC Code explanation	Commentary
		beam (readings) duration >30secs.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Recent drilling is diamond drillcore, PQ in the collar zone then reducing to HQ sized core, triple-tube. Core is oriented by electronic orienting device.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond drilling recovery is reported in the detailed log. Where lost core is recorded assay grades are assumed to be zero. Triple tube used to maximise recovery of broken core. No relationship between grade and broken core so no bias expected.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All holes were logged for lithology, structure, alteration and mineralisation. Magnetic susceptibility and geotechnical RQD logging completed. Core photography completed. All relevant intersections logged. Logged to the standard that would support a Mineral Resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond drilling sampling half core sampled on approximately 1m intervals using core-saw. Drill sample preparation and analysis being carried out at registered laboratory (ALS laboratory in Orange NSW). Field sample procedures involve the insertion of registered Standards every 25m, and duplicates or blanks generally every 25m and offset. Sampling is carried out using standard protocols as per industry practice. Sample sizes range typically from 2 to 3kg and are deemed appropriate to provide an accurate indication of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors 	 Drillcore (as well as rockchip and soil samples) samples are submitted to Australian Laboratory Service (ALS) in Orange, NSW. Pulp sample(s) have been digested with a mixture of four Acids including Hydroflouric, Nitric, Hydrochloric and Perchloric Acids for a total digest.

Critorio	IODC Code evaluation	Commentany
Criteria	JORC Code explanation	Commentary
	 applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Cu, Pb, Zn, Ag determined by Inductively Coupled Plasma (ICP) Mass Spectrometry (ICP-MS). Hand-held XRF spot readings on drill-core are used to provide a guide regarding mineralised intervals and cannot be used for the purposes of estimating intersections. 35 elements including copper, lead and zinc were assayed using Aqua Regia digestion and ICP-AES. Gold was assayed using a 50g charge using Fire Assay. The assaying and laboratory procedures are appropriate for this style of mineralisation.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intercepts are reviewed and confirmed by two senior personnel before release to the market. No adjustments made to the raw assay data. Data is imported directly to Datashed in raw original format. All data are validated using the QAQCR validation tool with Datashed. Visual validations are then carried out by senior staff members.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillhole locations are initially set and verified with hand held GPS (+/- 5m accuracy). Detailed survey once holes completed. Downhole surveys are via GYRO electronic multishot. Drillhole details shown in Appendix 1.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Current diamond drilling represents an initial test of geochemical and/or geophysical targets and thus the data spacing and distribution is insufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation. No sample compositing will be applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Holes were oriented to best intersect the interpreted structures/mineralisation.
Sample security	The measures taken to ensure sample security.	 Sampling is carried out at Rangott Exploration facility in Orange, NSW and samples are securely transported to ALS, also in Orange.

Criteria JORC Code explanation		Commentary		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of the sampling data conducted.		

JORC 2012 Edition - Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Golden Deeps Limited acquired 100% of Extract Minerals Pty Ltd (Extract Minerals) which holds the Havilah Project (EL8936) in the Lachlan Fold Belt, New South Wales. Exploration Licence EL8936 was granted on 4th February 2020 for a two-year term. On 23 March 2022 the tenement was renewed for a further 6-year term to 4th February 2028.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The most comprehensive exploration program at the Cheshire Mine – Milfor prospect was conducted by Mt. Hope Minerals NL between 1971 and 1976. Subsequent work comprised reviews of existing data and regional sampling. The TH Creek prospect was explored by Neo Resources NL/Perpetual Resources Limited between 2010 and 2019.
Geology	Deposit type, geological setting and style of mineralisation.	The Havilah Project (EL8936) covers sediments and volcanics of the Tannabutta Group and the (Ordovician) Sofala Volcanics within the Lachlan Fold Belt. The Project is primarily prospective for porphyry/volcanic hosted copper-gold mineralisation analogous to the Cadia-Ridgeway deposit (Newcrest Ltd). Areas of the project immediately adjoining the Bowdens Silver Project are prospective for silver-zinc-lead skarn mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this 	 Rockchip sample coordinates and results are detailed in Golden Deeps Ltd, ASX release 03 March 2022. "Outstanding Copper Soil and Rockchip Results, Havilah Project, NSW". All drillhole details are included in the Table contained in Appendix 1 of this release.

Criteria	JORC Code explanation	Commentary
	exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 For the laboratory assays length weighted average grades have been reported. No high-grade cuts have been applied. Previous pXRF readings on drillcore were spot readings on drill-core taken at intervals averaging 0.2m for HVD003 and HVD004 (see Appendix 3) of actual core length within each mineralised zone. Readings were generally taken at bottom of core, unless core orientation cannot be determined. The p-XRF measurements are taken in in TestAll Geo / Mining Mode. The values for copper (Cu), Lead (Pb) and Zinc (Zn) are indicative only. Gold, (Au) and Silver (Ag) values are not accurate or reliable and give very limited indication of final values expected in laboratory analyses. The pXRF readings are unrepresentative spot indications of grade only and laboratory assays (ICP-MS/OES) are required to confirm representative grades and intervals. Averages of detectable pXRF readings across the mineralised intervals are not length weighted.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 The downhole intervals of mineralisation intersected in HVD003 (and HVD004) approximates true width. HVD001 and HVD002 were drilled at an oblique angle to the identified mineralisation and mineralised intervals do not represent true thicknesses.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Refer to Figure 1 for the location of relevant data generated by the Company in plan view. Refer to Figures 2 and 3 for regional location and geological setting.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Table 1 includes all significant intersections in HVD004. Appendix 1 contains drillhole details. Appendix 2 provides a description of all mineralised intervals in HVD004 and HVD002. Appendix 3 includes spot pXRF readings within the reported intervals in HVD004 and with assays (Cu and Zn only) for 2m intervals.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No other new material exploration data reported. Details of previous geophysical survey data referred to in this release is detailed in Golden Deeps Ltd, ASX release 14 February 2024: "Strong IP Porphyry Cu-Au Targets Identified at Havilah".
Further work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The results of this drilling program will be fully assessed before further work programs are considered. Data from other targets such as Milfor (Figure 1), are being assessed prior to recommendations for further work.

APPENDIX 6: JORC 2012 Table 1 -Tuckers Hill Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples were taken by taking selective or representative samples of rocks and minerals with a hammer. Selective samples are taken where appropriate to test specific rocks of interest.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling conducted.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling conducted.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	The type of rock or mineral was recorded by the geologist including details of the geological setting (see Appendix 4).

Criteria	JORC Code explanation	Commentary
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Sub-sampling and quality control techniques are not applicable, and the rock chip sampling is not being used for a Mineral Resource estimate.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The rock chip samples were crushed and pulverised prior to analysis via Fire Assay 50g charge with ICP-MS finish. The laboratory utilised its standard QAQC procedures which include insertion of standards, blanks and duplicates. No issues were identified. No standards or standards or blanks were added to the sample submission by GED given the rock chip samples are not being used for Mineral Resource estimation.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No drilling was undertaken. No duplicate samples were taken. Data is checked prior to entry into the database.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Rock chips were located using a handheld GPS in the MGA 94 grid datum (Zone 55). The location of the rock chips are used as a guidance for future exploration. The quality and adequacy of the surface topography is not applicable as the information is not being used in a Mineral Resource estimate.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Not applicable. The location of the rock chip samples does not allow inference as to the potential size of a host gold lode. The location, quantity or quality of the rock chip samples will be used to guide future exploration in the area and is not being used in a Mineral Resource estimate.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The rock chip sample locations are used as a guidance for future exploration and not for a Mineral Resource estimate. Where applicable samples are collected along the orientation or strike of the geological structure
Sample security	The measures taken to ensure sample security.	All samples remain in the custody of RME and are fully supervised from point of field collection to laboratory drop-off.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None yet undertaken for this dataset.

JORC 2012 Edition - Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of 	 EL9014 was granted on 7th December 2020 for a period of 6 years, expiring 6th October 2026. The Exploration Licence is held 100% by Tuckers Gold Pty Ltd a subsidiary of Golden Deeps Pty Ltd. EL9014 EL9014 is located in the Hargraves Goldfield southwest of Mudgee, NSW. There are no material issues known to GED which may be deemed an impediment to the continuity of EL9014. Tuckers Hill Project (EL9014) is at the
Exploration done by other parties	exploration by other parties.	 Tuckers Hill Project (EE9014) is at the northern end of Hill End Gold trend, which, combined with the Hargreaves Gold field produced over 2Moz of gold historically. A rock chip sampling program was conducted at Tuckers Hill by C.W. Marshall and Associates Mining Consultants for Tuckers Hill Limited in 1963. Twenty-four rock chip samples taken from surface trenches and shafts along the Philips Vein. In 1981 M.J.A. Mining & Exploration Management (MJA) was engaged by Challenger Mining Corporation NL to conduct a detailed study on the Hargraves Goldfield including Tuckers Hill and the area covered by EL9014. In 1985, they prepared a report for inclusion in a prospectus for Challenger Mining Corporation NL. The report includes the results of geological mapping and sampling at the Tuckers Hill, Maitland and Meroo Trends and also a new mineralised trend that links historic workings at Reef Hill and the Blue Spec Mine².
Geology	Deposit type, geological setting and style of mineralisation.	Previous geological mapping has identified gold bearing 'saddle' reefs and 'leg' reefs in a folded sequence of siltstone (slate) with minor sandstone, including a prominent volcaniclastic sandstone (Merrions Tuff). Tuckers Hill is an elongate north-northwest trending anticline that plunges to the north and south. Multiple saddle reefs have formed in the apex of the fold at the top of Tuckers Hill with narrow but high-grade 'leg' reefs on bedding contacts on the fold limbs. The contact between the siltstone and the medium grained volcaniclastic sandstone is an important control on the formation of the reefs.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: a easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No average weighting of grade has been completed. No high grade or low grade cutting has been completed. Metal equivalence is not applicable to this release.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	No drilling was undertaken.

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Appendix 4 of this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Relevant assay results are provided in Appendix 4.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other data is material to this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Golden Deeps is assessing potential drilling sites. Provisional drill sites have been selected on the crest and eastern side of the hill where there is good access. Heritage surveys and flora and fauna surveys have been conducted over the potential drill sites area (see Figure 4, Appendix 4). Potential drill sites will be subject to access agreements being established on Crown Land with the registered native title claimants.