

Numerous strong drill targets identified at brownfields Eureka Gold Project

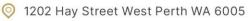
Targets display robust magnetic & geochemical signatures; Eureka drilling to start early 2025

Highlights

- Highly promising untested gold drilling targets identified during re-processing of aeromagnetic survey data at the brownfields Eureka Gold Project
- At least 12 structural and geochemical targets warrant immediate follow-up drilling, with some sitting immediately along strike of the Eureka Gold Deposit
- Eureka sits on a granted Mining Licences, has a JORC Resource of 112,000oz with mineralisation open along strike and at depth
- Historical drilling returned strong results which sit outside the Resource, including 4m at 134gpt, 3m at 48.75gpt and 4m at 32gpt, with no recent exploration drilling
- Eureka is located ~50km north of Kalgoorlie and within the same greenstone lithological sequence as the world-class Paddington gold mine (+4Moz), just 20km away
- Javelin also owns the Coogee Gold Project 50km south of Kalgoorlie, where its maiden drilling program is scheduled to start by the end of November

Javelin Minerals Limited (ASX: JAV) is pleased to announce that numerous compelling structural and geochemical drill targets have been identified at its recently acquired brownfields Eureka Gold Project in WA's Eastern Goldfields.

Javelin recently engaged Core Geophysics to compile and evaluate all historical open file geophysical data (including magnetics, auger and drilling surveys) related to the Eureka Gold Project and historical exploration results to the north and south of the Eureka Pit.


The review identified strong structural targets with robust magnetics coinciding with soil geochemistry in areas that have not yet been systematically drill tested. In light of these findings, Javelin intends to start drilling at Eureka in early 2025.

Javelin Executive Chairman Brett Mitchell said:

"These multiple, strong structural and geochemical drilling targets generated from the review by Core Geophysics supports our view about the outstanding prospectivity of the Eureka Gold Project.

"Given the production history, the existing JORC Resource, lack of recent systematic exploration and the open nature of the mineralisation, we already had every confidence in the exploration upside at Eureka.

"Now these outstanding exploration targets strengthen our conviction about the future of Eureka. They are entirely consistent with what we know about the project and its potential to become WA's next brownfields gold exploration success story.

"We are going to move as quickly as possible to start drilling at Eureka in early 2025.

"When combined with our Coogee Gold project, where drilling will start in the coming weeks, Javelin has two highly prospective brownfields gold exploration projects ~50km either side of Kalgoorlie".

Project Detail

The Eureka Gold Project tenements are located in the Eastern Goldfields of WA, 54 km north-north-west of Kalgoorlie in the heart of the State's greenstone belt (Figure 1). It sits only 20km north-north-west of the world-famous Paddington gold mine and near several producing mines.

The region is considered prospective for gold mineralisation and contains a number of historical mines and mineral occurrences. The Project is situated in a highly fertile greenstone belt with numerous gold deposits and abundant gold occurrences nearby.

The Eureka gold deposit was first discovered in the 1890s, with historical underground mining worked until 1940. Historical information sources noted that gold mineralisation is associated with shearing and quartz veining within easterly dipping oxidised fine grained mafic rocks. Recorded production from 1897 up to 1940 totalled 809 tonnes averaging 27.8 g/t Au. From 1985 to 1988, mining of the Eureka open pit included 220,000 tonnes at 4.5 g/t Au for 32,000oz by West Coast Holdings Limited. Development to test for underground mineralisation potential at Eureka was started in mid-1996. In 2018, Tyranna Resources Limited also mined 50,600 tonnes of ore grading 3.16 g/t Au producing 5,374oz of gold.

Figure 1 - Location Map showing the Eureka Project area with nearby Gold Mines and major infrastructure

Geology and Prospectivity

Regionally, the Eureka gold deposit occurs on the eastern limb of the major south-east plunging Goongarrie- Mt. Pleasant Anticline. The eastern limb consists predominantly of north-north-west trending mafic and ultramafic lithologies. This zone consists of multiple shear zones occurring within intercalated felsic, mafic and ultramafic lithologies in the vicinity of the synformal axis. The Eureka gold deposit is located within the Bardoc Tectonic Zone which hosts the Paddington and Bardoc gold deposits.

Gold mineralisation at Eureka occurs as a number of lens-shaped ore shoots up to 10m wide within the shear zone. The gold is hosted in quartz veins and quartz stringers within the altered mafic host rocks. The mineralisation at Eureka is hosted within basalts and is contained with a zone of shearing and foliation with quartz veining containing quartz, carbonate and low amounts of sulphides with some visible gold has a variable thickness of up to 20 metres. Mineralisation has been exploited in a 120m deep, 300m long open pit that was developed on a number of lens-shaped shoots up to 10 metre wide within an intensely sheared zone approximately 30 metres wide. The mineralisation is sub-vertically dipping and strikes in a north south orientation with several offsets and splays forming the main structure.

Figure 2 - Eureka Open Pit North Wall showing gold ore zone within shear zone

Geophysical Data Processing

A search of the available open file company airborne geophysical surveys was conducted using the Department of Mines, Industry, Regulation and Safety (DMIRS) online systems which provides records of previous geophysical surveys and exploration activities. The search revealed that the project area has been subject to a number of high resolution airborne geophysical surveys.

Aeromagnetics

The open file aeromagnetic data has been compiled, merged and processed to generate a suite of imagery in an attempt to highlight and better define controlling structures including shears, faults and lithological variations. Data processing of the data included calculation of the first and second vertical derivatives and tilt derivatives, all reduced to the pole. With the project being covered by close line spaced surveys the overall resolution of the magnetic imagery is very good.

Newly Defined Drill Targets

The datasets highlight a significant regolith regime with the majority of the project area dominated by modern drainage and laterite cover. These display a strong, somewhat mottled magnetic response in the aeromagnetics, strong thorium responses in the radiometrics and blue responses in the Landsat 321 imagery. They can be inferred in all datasets mostly trending northeast - southwest across the project area within an overall regional north-south direction. The laterite development appears more well developed towards the east where it is likely shedding from an ultramafic unit defined in the 1:100K mapping outside the tenure. Based on this assessment, the depth of cover increases to the south of the project area.

The magnetic data does not indicate any strong basement magnetic features within the project tenements. As such it is assumed that the bedrock geology likely consists of weakly magnetic volcanics or mafics such as basalt and dolerite, which trend north- northwest.

The higher order processing completed has been used to interpret basement structures, which may be controls on mineralisation within the project. These mainly trend north- east or north-south with several cross-cutting structures trending northwest, figure 6. It appears that the Eureka Open Cut sits on a north-east trending structure. As such preference to structures in this orientation was given in selecting follow up target zones. As the radiometrics and Landsat data only show surficial or near surface responses their usefulness in defining bedrock geology is limited here due to amount of recent transported cover.

These include five high priority targets and have been selected over known mineralised trends, within favourable lithology and where anomalous responses are evident. These are summarised along with a ranking (1= high, 2= medium) in Table 1 and Figures 3.

Target ID Easting Northing Commodity Ranking Comment Immediately north of Eureka deposit along strike, Eureka 1 332604 6644389 Gold under tested, in circular magnetic feature Along secondary shear zone, anomalous Eureka 2 332156 6644542 Gold geochemistry, not tested Eureka 3 332981 6644770 Gold Along NE trending feature in magnetics 3 3 Eureka 4 333252 6644042 Gold Along Magnetic dyke UM/Mafic contact, anomalous geochemistry, 331692 6644166 1 Eureka 5 Gold untested Anomalous geochemistry, immediately west of 2 332068 Eureka 6 6643478 Gold Eureka Pit, untested Along NE trend in magnetics, anomalous Eureka 7 333462 6643222 Gold geochemistry 2 333550 Eureka 8 6642557 Gold Testing geochemistry anomaly 1 Interpreted NNE trend along anomalous Eureka 9 333026 6642463 Gold geochemistry 2 Interpreted NNE trend along anomalous Eureka 10 333208 6641072 Gold geochemistry 2 Interpreted NNE trend along anomalous Eureka 11 333488 6640521 Gold 2 geochemistry Interpreted NNE trend along anomalous

Table 1: Drill Targets based on ranking over Eureka Gold Project

Gold

6639752

geochemistry

333881

Eureka 12

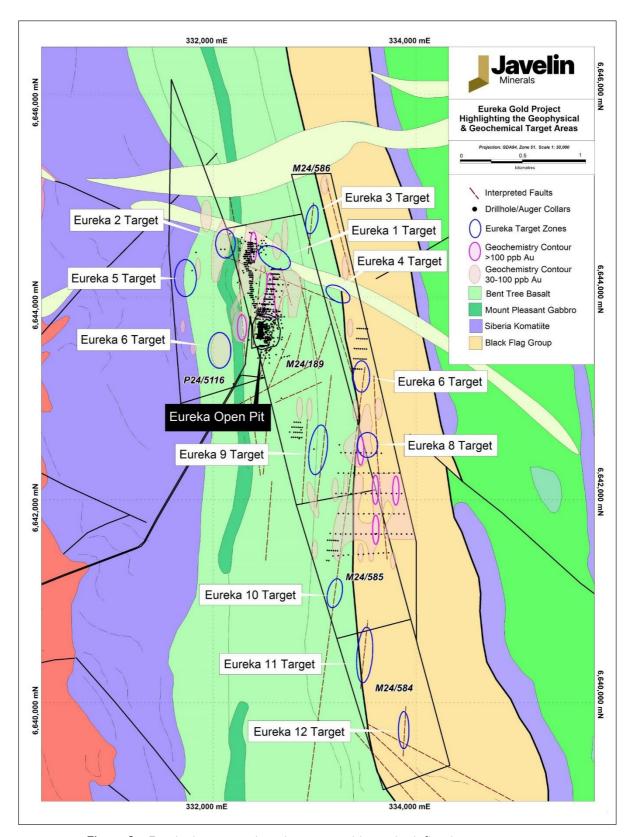


Figure 3 – Eureka interpreted geology map with newly defined target areas

Exploration Potential

Strike potential north of the pit

Some 750m of strike north of the pit remain inadequately tested, which will be the focus of the planned Eureka exploration drilling program in early 2025. The previous exploration may have been ineffective as most of the drillholes were terminated at shallow depths thus not penetrating the zone of near-surface leaching. The drill traverses were restrictive in coverage and potentially have missed the best target zones. The full results are set out in Appendix 1

Significant RC drilling results immediate north of the pit include:

- ERC39: 4m @ 135 g/t Au from 53m
- WRRC0106: 4m @ 32.6 a/t Au from 104m, including 1m @ 116 a/t Au from 104m
- WRRC0019: 4m @ 11 g/t Au from 42m, including 2m @ 19.2 g/t from 43m
- WRRC0135: 3m @ 48.75 g/t Au from 129m
- WRRC0136: 4m @ 11.2 g/t Au from 32m

Strike potential south of the pit

At surface, the main host structure strikes over the western boundary of the leases some 330m south of the pit. Due to the east dip of the host structure, the 200m strike length seen at surface extends at depth beneath the tenement. The full results are set out in Appendix 1.

Significant RC drilling results immediate south of the pit include:

- WRRC0001: 13m @ 2.22 g/t Au from 51m
- WRRC0121: 6m @ 13.88 g/t Au from 38m
- WRRC0081: 13m @ 2.13 g/t Au from 110m, 9m @ 3.15 g/t Au from 127m, including 3m @ 7.9 g/t Au from 131m
- WRRC0082: 3m @ 8.59 g/t Au from 74m

Strike potential for parallel structures extends some 4,400m south of the pit. This zone remains poorly tested with all the drilling concentrating around the Eureka Pit.

Potential at depth beneath the underground resource

The mineralised veins have been drilled over 180 vertical metres below the bottom of the current pit. Deeper drilling is suggested to test the continuation of the subvertical east dipping gold mineralised zone. The northern zone along with the bottom of the pit remain open. Figure 4 illustrates the five gold lodes plunging below the pit

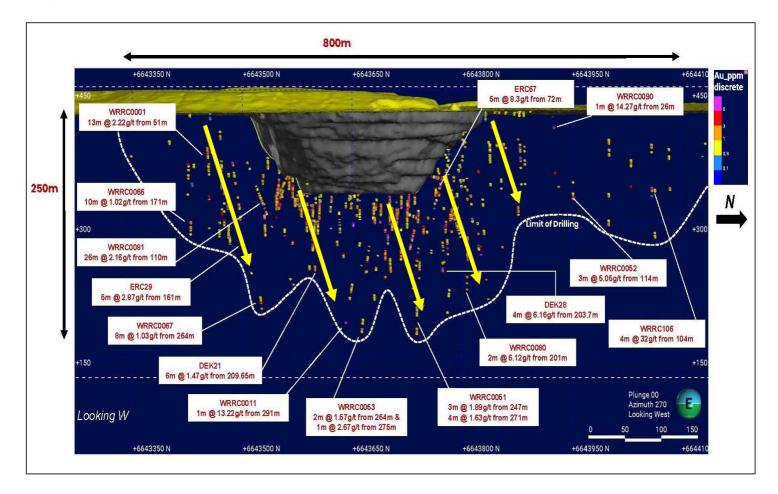


Figure 4 – Long Section showing significant gold intersection along with the main mineralised projected gold lodes looking west of the Eureka Pit

This ASX announcement has been authorised for release by the Board of Javelin Minerals Limited.

-ENDS-

For further information, please contact: Brett Mitchell **Executive Chairman** Javelin Minerals Limited info@javelinminerals.com.au

Paul Armstrong **Investor Relations Consultant** Read Corporate paul@readcorporate.com.au

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Pedro Kastellorizos. Mr. Kastellorizos is the Non-Executive Director of Javelin Minerals Limited and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on the information in the form and context in which it appears. Mr Kastellorizos has reviewed all relevant data for the aircore drilling program and reported the results accordingly.

The information in this report / ASX release that relates to Exploration Results, Exploration Targets and Mineral Resources at Eurekais based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resource Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets and Mineral Resources. Mr Gillman is a full-time employee of Odessa Resource Pty Ltd, who specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillam nor Odessa Resource Pty Ltd holds any interest in Javelin Minerals Limited, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this report / ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

Javelin Minerals Limited confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning Exploration Results, Exploration Targets and Mineral Resources included in the original ASX announcements continue to apply and have no materially changed, and the forma and context in which the relevant competent person's findings are presented in this report have not been materially modified from the original ASX announcements.

Forward Statement

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, commodity prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in commodity prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

References

Hodgins, J. - Combined Annual Technical Report, Eureka Gold Project M24/189, M24/584, M24/585 and M24/586, 1 January 2017 to 31 December 2017. Combined Report C42-005. Central Iron Ore Ltd.

Revell, N - Combined Annual Technical Report, Eureka Gold Project M24/189, M24/584, M24/585 and M24/586, 1 January 2018 to 31 December 2018. Combined Report C42-005. Tyranna Resources Ltd.

Wilford J.W., Craig M.A., Tapley I. J. and Mauger A.J., 1998. Regolith-Landform Mapping and its Implications for Exploration over the Half Moon Lake region, Gawler Craton, South Australia. CRC LEME Restricted Report 92R / E&M Report 542C. 91 pp. (Unpublished).

For further information, please refer to previous ASX announcement:

ASX Announcement 21 October 2021: Eureka North Exploration Results Including High Grade Gold ASX Announcement 24 June 2021: TNT Mines drilling increases Eureka Resource to 112,000 oz gold

ASX Announcement 15 June 2021: Eureka Auger Programme delineates extensive Gold Anomaly ASX Announcement 15 February 2021: Investor Presentation - Eureka and Warriedar Gold Projects ASX Announcement 9 February 2021: Strong initial Gold Results Delivered from Eureka South

ASX Announcement 23 October 2010: TNT acquires Historical Western Australian Gold Projects

ASX:JAV

ASX Announcement 7 October 2010: Eureka North Exploration Results

ASX Announcement: 26 August 2024: 158% Increase in EurekaGold MRE This Announcement contains no new information on existing Javelin Projects.

ASX Announcement 21 October 2021: Eureka North Exploration Results Including High Grade Gold

ASX Announcement 24 June 2021: TNT Mines drilling increases Eureka Resource to 112,000 oz gold

ASX Announcement 15 June 2021: Eureka Auger Programme delineates extensive Gold Anomaly

ASX Announcement 15 February 2021: Investor Presentation – Eureka and Warriedar Gold Projects

ASX Announcement 9 February 2021: Strong initial Gold Results Delivered from Eureka South

ASX Announcement 23 October 2010: TNT acquires Historical Western Australian Gold Projects

ASX Announcement 7 October 2010: Eureka North Exploration Results

Eureka Gold Project Mineral Resource Estimate

The existing Eureka Gold Project Mineral Resource Estimate (MRE) stands at 2.45Mt at 1.42 g/t Au totalling 112,000 ounces of gold (ASX Announcement 24 June 2021: TNT Mines drilling increases Eureka Resource to 112,000 oz gold). Table 5 showing the Eureka Mineral Resource as of June 2021 based on tonnes and grades.

Table 5: Eureka Gold Deposit Mineral Resource Estimate by Classification as of June 2021 (at a 0.5 g/t Au cut-off)

Classification	Tonnage t	<i>Grade</i> g/t Au	Contained Metal (Oz Gold)
Indicated	1,269,000	1.53	62,000
Inferred	1,183,000	1.3	50,000
Total	2,452,000	1.42	112,000

APPENDIX 1 - Significant Drilling Intercept Table Cut-off grade of 0.5 g/t Gold - All co-ordinates in GDA94/ MGA Zone 51

Drillhole Id	From (m)	To (m)	Drill Interval (m)	Au g/t
ERC01	90	101	11	2.45
ERC02	122	127	5	2.81
ERC02	131	132	1	8.58
ERC02	139	140	1	3.29
ERC04	30	34	4	1.16
ERC04	58	62	4	5.77
ERC05	102	104	2	6.83
ERC05	105	113	8	3.30
ERC05	114	118	4	0.81
ERC06	36	40	4	4.17
ERC06	60	72	12	7.88
ERC06	89	92	3	2.79
ERC07	59	60	1	1.85
ERC07	91	96	5	1.25
ERC08	144	146	2	1.49
ERC08	148	155	7	2.48
ERC08	164	165	1	2.75
ERC10	43	51	8	1.01
ERC10	54	59	5	1.26

ERC10	72	79	7	1.54
ERC11	56	57	1	1.19
ERC11	58	67	9	1.56
ERC11	70	79	9	1.86
ERC12	47	52	5	1.86
ERC12	57	58	1	1.14
ERC12	59	60	1	0.79
ERC15	4	15	11	3.94
ERC15	16	22	6	1.27
ERC15	27	32	5	0.63
ERC15	36	41	5	1.44
ERC16	40	44	4	1.47
ERC16	45	52	7	2.08
ERC17	78	83	5	2.40
ERC18	36	39	3	1.38
ERC18	60	71	11	5.51
ERC20	130	133	3	1.16
ERC20	135	136	1	1.90
ERC20	140	141	1	0.59
ERC21	162	167	5	0.97
ERC22	146	150	4	1.69
ERC23	20	21	1	2.23
ERC23	53	54	1	1.51
ERC24	69	70	1	1.75
ERC25	50	52	2	5.11
ERC25	59	63	4	0.84
ERC25	72	73	1	17.00
ERC26	41	46	5	1.06
ERC62	57	58	1	1.83
ERC62	62	63	1	0.52
ERC62	69	72	3	1.12
ERC39	23	24	1	0.97
ERC39	27	28	1	0.65
ERC39	53	57	4	134.52

ERC62	75	76	1	3.13
ERC62	86	89	3	3.46
ERC63	80	81	1	1.55
ERC64	221	224	3	3.50
ERC64	233	234	1	0.73
ERC65	74	76	2	2.46
ERC65	85	86	1	0.62
ERC66	53	55	2	1.03
ERC66	67	70	3	1.49
ERC67	63	65	2	3.34
ERC67	72	77	5	8.33
ERC68	46	49	3	1.39
ERC69	72	73	1	0.84
ERC69	90	102	12	1.59
ERC69	116	118	2	1.09
ERC70	7	13	6	2.09
ERC70	21	23	2	0.78
ERC72	10	11	1	0.63
ERC72	30	33	3	3.67
ERC72	37	38	1	0.59
ERC72	40	46	6	1.73
ERC73	32	35	3	2.10
ERC73	59	63	4	2.54
ERC74	50	58	8	2.14
ERC74	66	69	3	6.20
ERC74	85	86	1	0.92
ERC74	125	126	1	0.70
WRRC0001	51	64	13	2.23
WRRC0001	75	79	4	1.57
WRRC0002	3	6	3	0.68
WRRC0002	13	14	1	0.50
WRRC0002	51	52	1	0.66
WRRC0003	65	66	1	1.10
WRRC0003	78	79	1	1.96

WRRC0003	102	107	5	1.66
WRRC0004	75	76	1	0.91
WRRC0004	78	79	1	0.52
WRRC0005	6	7	1	0.52
WRRC0005	9	10	1	0.69
WRRC0008	148	156	8	2.51
WRRC0008	232	233	1	0.63
WRRC0008	240	241	1	0.75
WRRC0009	4	7	3	0.73
WRRC0009	9	12	3	0.87
WRRC0009	51	52	1	1.26
WRRC0009	69	70	1	0.75
WRRC0009	99	100	1	0.83
WRRC0010	181	182	1	2.54
WRRC0011	144	146	2	0.84
WRRC0011	152	153	1	1.02
WRRC0011	183	184	1	0.59
WRRC0011	239	244	5	0.59
WRRC0011	247	250	3	1.65
WRRC0011	257	259	2	0.59
WRRC0011	291	292	1	13.22
WRRC0013	8	16	8	1.20
WRRC0017	9	12	3	0.97
WRRC0018	24	29	5	2.88
WRRC0018	42	43	1	0.50
WRRC0018	54	55	1	1.07
WRRC0019	42	46	4	10.99
WRRC0019	74	75	1	0.84
WRRC0021	107	108	1	6.72
WRRC0022	70	71	1	1.29
WRRC0023	48	49	1	0.63
WRRC0023	84	87	3	1.97
WRRC0024	33	34	1	0.76
WRRC0024	36	37	1	0.60

WRRC0024	42	43	1	0.51
WRRC0024	109	110	1	1.35
WRRC0026	0	3	3	0.89
WRRC0027	2	8	6	0.71
WRRC0028	6	10	4	1.44
WRRC0029	2	6	4	1.01
WRRC0029	51	53	2	0.77
WRRC0030	1	8	7	0.94
WRRC0030	27	28	1	3.21
WRRC0030	47	48	1	0.75
WRRC0031	0	2	2	1.32
WRRC0032	6	8	2	0.62
WRRC0033	5	10	5	1.23
WRRC0034	10	11	1	1.56
WRRC0035	3	8	5	1.08
WRRC0036	4	9	5	1.07
WRRC0036	53	54	1	1.00
WRRC0037	4	5	1	0.98
WRRC0037	47	51	4	1.13
WRRC0037	55	56	1	3.46
WRRC0037	59	60	1	0.54
WRRC0038	93	94	1	0.61
WRRC0041	17	18	1	0.97
WRRC0041	37	38	1	0.69
WRRC0041	45	46	1	0.64
WRRC0042	41	42	1	0.71
WRRC0042	75	76	1	0.52
WRRC0051	0	4	4	1.19
WRRC0051	136	140	4	1.47
WRRC0051	247	252	5	2.49
WRRC0051	254	255	1	1.00
WRRC0051	271	275	4	1.63
WRRC0052	114	120	6	2.78
WRRC0053	152	156	4	1.18

WRRC0053	160	164	4	1.12
WRRC0053	201	202	1	0.99
WRRC0053	264	269	5	0.90
WRRC0053	275	276	1	2.67
WRRC0054	0	4	4	1.74
WRRC0054	81	82	1	0.51
WRRC0054	93	96	3	2.52
WRRC0054	140	141	1	2.22
WRRC0059	115	118	3	2.38
WRRC0065	45	46	1	0.54
WRRC0066	171	173	2	0.97
WRRC0066	178	181	3	2.55
WRRC0066	188	189	1	0.75
WRRC0067	264	272	8	1.04
WRRC0067	279	280	1	1.04
WRRC0070	3	4	1	1.57
WRRC0072	8	9	1	0.59
WRRC0072	45	46	1	1.20
WRRC0073	6	10	4	2.39
WRRC0074	0	2	2	0.62
WRRC0074	5	7	2	0.74
WRRC0074	8	12	4	0.57
WRRC0075	10	11	1	0.51
WRRC0075	48	49	1	0.50
WRRC0075	52	53	1	12.99
WRRC0075	54	58	4	0.82
WRRC0075	67	69	2	6.95
WRRC0075	78	79	1	0.62
WRRC0077	88	89	1	6.47
WRRC0077	103	104	1	0.67
WRRC0079	118	119	1	1.38
WRRC0079	130	132	2	2.04
WRRC0079	156	157	1	3.62
WRRC0080	112	116	4	0.75

WRRC0080	165	166	1	0.96
WRRC0080	201	203	2	6.13
WRRC0080	209	210	1	1.67
WRRC0080	217	218	1	1.19
WRRC0081	69	71	2	1.34
WRRC0081	77	79	2	0.75
WRRC0081	99	103	4	0.70
WRRC0081	110	119	9	1.82
WRRC0081	121	123	2	5.39
WRRC0081	127	128	1	2.79
WRRC0081	131	136	5	5.02
WRRC0082	3	5	2	0.68
WRRC0082	74	77	3	8.59
WRRC0082	120	121	1	0.59
WRRC0082	129	130	1	2.97
WRRC0082	131	136	5	1.09
WRRC0083	53	54	1	3.44
WRRC0083	125	127	2	0.67
WRRC0087	36	40	4	0.50
WRRC0090	26	27	1	14.72
WRRC0091	103	104	1	1.32
WRRC0092	112	113	1	1.24
WRRC0094	8	9	1	0.59
WRRC0094	82	86	4	1.40
WRRC0094	99	100	1	4.78
WRRC0095	48	49	1	0.93
WRRC0095	52	58	6	4.17
WRRC0097	29	30	1	0.66
WRRC0098	39	42	3	0.53
WRRC0102	43	45	2	1.88
WRRC0102	54	55	1	0.71
WRRC0102	59	62	3	0.84
WRRC0103	113	115	2	0.91
WRRC0104	151	153	2	0.77

WRRC0104	156	158	2	1.14
WRRC0106	48	52	4	1.73
WRRC0106	63	64	1	0.51
WRRC0106	104	108	4	32.08
WRRC0107	108	109	1	0.93
WRRC0108	169	172	3	1.18
WRRC0109	55	56	1	2.48
WRRC0114	5	6	1	0.58
WRRC0114	112	113	1	0.99
WRRC0115	86	88	2	2.73
WRRC0115	122	123	1	1.02
WRRC0116	66	69	3	1.25
WRRC0116	72	74	2	3.46
WRRC0117	82	83	1	0.55
WRRC0117	85	86	1	0.54
WRRC0121	32	33	1	0.86
WRRC0121	38	43	5	13.88
WRRC0121	87	88	1	0.79
WRRC0122	67	68	1	1.54
WRRC0122	73	75	2	2.68
WRRC0122	92	94	2	1.14
WRRC0122	97	102	5	1.01
WRRC0122	128	129	1	0.58
WRRC0122	133	134	1	43.10
WRRC0123	132	133	1	0.79
WRRC0123	141	142	1	0.74
WRRC0123	143	150	7	0.87
WRRC0124	64	65	1	0.96
WRRC0127	72	77	5	1.45
WRRC0127	80	81	1	0.92
WRRC0127	108	109	1	5.97
WRRC0129	66	68	2	0.68
WRRC0129	109	112	3	0.93
WRRC0130	98	105	7	0.66

WRRC0130	106	107	1	0.79
WRRC0130	112	114	2	0.83
WRRC0131	128	130	2	1.30
WRRC0133	102	103	1	0.73
WRRC0135	129	132	3	48.75
WRRC0136	85	86	1	0.74
WRRC0136	126	127	1	0.84
WRRC0136	162	163	1	0.57
DEK04	112.8	119.5	6.7	8.57
DEK04	120.5	128.3	7.8	1.10
DEK04	131.3	132.5	1.2	5.50
DEK04	133.5	135.1	1.6	1.73
19ERC12	33	38	5	25.62
19ERC01	0	7	7	6.17
19ERC01	13	14	1	0.64
19ERC01	40	41	1	0.76
19ERC02	19	20	1	0.57
19ERC02	25	26	1	1.75
19ERC04	3	4	1	0.55
19ERC04	18	19	1	0.6
19ERC04	27	29	2	3.82
19ERC04	36	37	1	0.59
19ERC04	39	49	10	22.46
19ERC04	52	53	1	0.61
19ERC05	24	25	1	0.67
19ERC05	27	30	3	1.86
19ERC06	3	7	4	2.07
19ERC08	9	10	1	2.16
19ERC08	19	25	6	15.13
19ERC08	27	28	1	0.52
19ERC09	2	3	1	1.82
19ERC09	16	21	5	10.31
19ERC10	7	8	1	0.96
19ERC11	7	8	1	1.07

19ERC11	17	18	1	1.02
19ERC12	33	38	5	128.1
19ERC13	0	2	2	2.87
19ERC14	36	44	8	19.05
19ERC15	0	1	1	0.56
19ERC16	2	3	1	2.73
19ERC16	7	10	3	6.69
19ERC16	11	14	3	2.35
19ERC16	15	19	4	3.12
19ERC17	20	24	4	8.64
19ERC17	26	32	6	22.44
19ERC18	0	1	1	0.76
19ERC18	2	7	5	3.3
19ERC18	23	28	5	18.72
19ERC19	0	3	3	2.89
19ERC19	6	7	1	2.5
19ERC19	11	18	7	6.7
19ERC19	21	26	5	11.61
19ERC20	12	21	9	22.18
19ERC21	34	39	5	3.77
19ERC22	5	7	2	1.23
19ERC22	36	39	3	4.19
19ERC23	21	22	1	0.64
19ERC23	39	42	3	3.41
19ERC23	46	48	2	3.52
19ERC24	4	5	1	0.63
19ERC24	39	40	1	3.05
19ERC25	1	2	1	0.73
19ERC25	6	7	1	0.59
19ERC26	28	29	1	0.82
19ERC26	36	47	11	21.72
19ERC27	0	1	1	0.57
19ERC30	1	2	1	1.18
19ERC30	14	15	1	2.88

DEK01	82	86	4	6.7
DEK01	138	139	1.27	10.32
DEK02	80	89	8.3	77.38
DEK02	91	93	2	6.01
DEK04	113	120	6.7	57.46
DEK04	121	128	7.8	8.58
DEK04	131	133	1.2	6.6
DEK04	134	135	1.6	2.77
DEK05	80	84	4	3.11
DEK05	88	99	11	20.13
DEK05	101	103	2	1.57
DEK06	111	118	7.45	18.97
DEK06	130	131	1	1.78
DEK07	91	92	1	1.23
DEK07	109	110	1	0.52
DEK09	75	76	1	2.63
DEK09	80	82	2	3.3
DEK1	82	86	4	6.7
DEK1	138	139	1.27	10.32
DEK1	146	147	1	0.68
DEK1	149	155	5.7	4.25
DEK1	158	160	2.4	1.73
DEK11	83	87	3.7	6.09
DEK11	88	89	1	4.43
DEK11	93	95	2	14.45
DEK12	118	121	3	43.72
DEK13b	99	106	6.7	43.1
DEK13b	112	115	2.15	2.11
DEK14	112	121	9	24.88
DEK14	122	123	1	1.55
DEK15	72	73	0.4	0.44
DEK15	80	85	5	26.99
DEK15	86	96	10.45	63.28
DEK16	123	129	5.15	7.21

DEK16	131	136	4.7	3.39
DEK17	84	85	1	1.56
DEK17	105	106	1	1
DEK17	109	115	5.85	11.85
DEK17	116	117	1	0.54
DEK18	121	122	1	0.64
DEK18	124	125	0.78	1.05
DEK19	99	104	5	6.63
DEK19	105	106	1	1.32
DEK19	112	113	1	4.04
DEK19	114	121	6.8	30.06
DEK19	124	125	1	18.2
DEK2	80	89	8.3	77.38
DEK2	91	93	2	6.01
DEK20	88	92	4	7.65
DEK21	210	216	6	8.82
DEK22	127	129	2	1.52
DEK23	232	239	6.55	5.38
DEK24	219	220	1	0.52
DEK25	86	87	1	0.98
DEK25	90	103	13.3	152.14
DEK25	106	108	2	22.69
DEK25	111	117	6	8.09
DEK25	121	124	3.4	31.98
DEK26	115	116	1	1.83
DEK26	120	131	11	36.9
DEK26	132	139	7	59.72
DEK26	141	145	4.05	2.85
DEK27	180	181	1.3	1.35
DEK28	196	198	2	1.9
DEK28	204	208	4	24.66
DEK29	87	93	6	25.54
DEK29	94	98	4	6.26
DEK29	101	102	1	6.4

DEK29	171	176	4.4	6.32
DEK29	187	189	2	16.89
DEK29	191	198	7	7.08
DEK29	201	202	1	6.4
DEK3	89	92	3	5.88
DEK3	94	106	12	52.36
DEK3	107	109	2	1.74
DEK3	114	115	1	0.56
DEK30	137	143	6	14.86
DEK30	148	151	2.7	1.35
DEK30	153	154	1	0.77
DEK30	154	160	6	17.14
DEK31	202	204	2	3.29
DEK32	196	198	2	3.02
DEK32	201	212	10.5	19.9
DEK33	152	157	4.75	53.9
DEK33	158	167	9	25.48
DEK34	178	178	0.35	1.06
DEK34	188	189	0.55	4.42
DEK35	99	100	1	5.78
DEK35	108	109	1	3.26
DEK35	113	116	3	15.89
DEK35	120	121	1.5	0.91
DEK36b	107	109	2	2.1
DEK36b	119	121	2	4.8
DEK37	102	105	3	3.2
DEK37	109	118	8.55	98.4
DEK37	121	123	1.8	5.42
DEK40	122	126	4	7.69
DEK40	128	134	6	6.59
DEK40	136	137	1	1.12
DEK40	142	142	0.4	1.24
DEK41	147	152	5	16.83
DEK41	153	156	3.25	2.23

DEK41	157	158	1	3.14
DEK42	160	165	4.55	39.99
DEK42	170	172	2.05	9.4
DEK43	141	146	4.7	15.62
DEK43	150	153	2.8	4.27
DEK43	154	157	3	2.98
DEK45	104	108	3.8	5.59
DEK45	109	111	2.1	5.57
DEK45	125	128	3	6.26
DEK45	137	139	2	3.62
DEK5	80	84	4	3.11
DEK5	88	99	11	20.13
DEK5	101	103	2	1.57
DEK6	111	118	7.45	18.97
DEK6	130	131	1	1.78
DEK7	91	92	1	1.23
DEK7	109	110	1	0.52
DEK9	75	76	1	2.63
DEK9	80	82	2	3.3

Drilling Collar Table

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
ERC01	332573	6643784	400.3	150	-77	270
ERC02	332600	6643773	397.2	148	-72	280.5
ERC04	332557	6643769	388.7	132	-65	264
ERC05	332596	6643746	392.5	166	-50	266
ERC06	332534	6643695	329.6	100	-87	270
ERC07	332562	6643626	344.8	97	-60	285
ERC08	332598	6643746	392.5	192	-75	266
ERC10	332553	6643604	343.3	82	-70	268
ERC11	332551	6643596	344.6	79	-73	270
ERC12	332550	6643587	346	70	-68	270
ERC15	332507	6643551	353.1	60	-67	255
ERC16	332523	6643547	369.25	70	-67	270

ERC17	332562	6643624	345.2	94	-55	277
ERC18	332534	6643717	330.3	80	-90	0
ERC19	332580	6643926	433.1	150	-60	271
ERC20	332592	6643875	432.98	174	-60	272
ERC21	332628	6643824	431.12	186	-60	274
ERC22	332520	6643480	429.2	174	-90	0
ERC23	332467	6643581	360.5	78	-90	0
ERC24	332457	6643621	364.4	78	-90	0
ERC25	332457	6643630	363.8	78	-90	0
ERC26	332455	6643640	365	78	-90	0
ERC27	332556	6643596	343.2	120	-90	0
ERC28	332539	6643568	344.1	120	-90	0
ERC29	332572	6643495	428.2	174	-65	273.5
ERC30	332570	6643495	428.4	151	-50	273.5
ERC31	332564	6643484	428.5	162	-50	267.5
ERC32	332563	6643484	428.6	168	-65	267.5
ERC33	332555	6643475	428.7	150	-50	270
ERC34	332556	6643475	428.7	156	-65	270
ERC35	332526	6643558	351.5	102	-90	0
ERC36	332571	6643788	400.4	156	-60	271
ERC37	332553	6643801	403	103	-75	293
ERC38	332506	6643922	433.63	115	-60	269
ERC39	332385	6644449	429.91	97	-60	270
ERC39a	332406	6644448	429.62	76	-60	270
ERC40	332425	6644447	430.09	109	-60	270
ERC41	332360	6644360	429.16	78	-60	270
ERC42	332380	6644359	429.71	101	-60	270
ERC43	332401	6644359	429.69	139	-60	270
ERC44	332443	6643983	430.2	115	-60	235
ERC45	332421	6644002	429.61	79	-60	235
ERC46	332375	6644450	429.57	54	-60	270
ERC47	332394	6644449	429.83	66	-60	270
ERC48	332386	6644439	429.41	60	-60	270
ERC49	332384	6644459	430.58	60	-60	270
ERC50	332346	6644358	429.22	90	-60	270
ERC51	332376	6644479	429.96	90	-60	270
ERC52	332374	6644529	430.44	52	-60	270

FDOE	22222	0044451	400.00	11.4	00	00
ERC53	332330	6644451	428.89	114	-60	90
ERC54	332385	6644444	429.52	66	-60	270
ERC55	332380	6644450	430.46	66	-60	270
ERC56	332390	6644449	429.64	66	-60	270
ERC57	332385	6644455	430.45	66	-60	270
ERC58	332392	6644528	430.09	65	-60	270
ERC59	332412	6644528	431.09	83	-60	270
ERC60	332376	6644631	431.49	51	-60	270
ERC61	332535	6643695	327	96	-75	233
ERC62	332541	6643683	329.6	102	-75	230
ERC63	332540	6643684	329.2	93	-72	212
ERC65	332602	6643561	400	140	-60	270
ERC66	332569	6643786	400	130	-60	270
ERC67	332566	6643787	400	130	-50	286
ERC68	332569	6643786	400	130	-50	250
ERC69	332569	6643786	401	130	-50	292
ERC70	332569	6643779	384	40	-70	270
ERC71	332529	6643778	385	50	-60	275
ERC72	332539	6643777	386	80	-60	275
ERC73	332553	6643769	388	100	-60	275
ERC74	332552	6643769	388	130	-65	270
ERC75	332570	6643788	400	55	-75	251
ERC76	332344	6644340	429.58	100	-60	270
ERC77	332360	6644340	429.27	100	-60	270
ERC78	332380	6644337	429.85	100	-60	270
ERC79	332403	6644341	430.14	100	-60	270
WRRC0001	332521	6643448	429.45	151	-60	277
WRRC0002	332478	6643455	428.51	100	-55	273
WRRC0003	332530	6643452	429.91	160	-75	275
WRRC0004	332461	6643430	428.22	100	-55	275
WRRC0005	332496	6643428	429.28	120	-55	276
WRRC0006	332442	6643398	425.45	80	-55	272
WRRC0007	332480	6643399	428.48	100	-55	272
WRRC0008	332700	6643806	426.43	340	-63	257
WRRC0009	332531	6643884	430.58	120	-60	273
WRRC0010	332657	6643859	427.86	230	-61	271
WRRC0011	332684	6643695	429.32	330	-56	250

WRRC0013	332554	6643348	444.29	272	-60	272
WRRC0014	332867	6642690	421.39	200	-57	274
WRRC0015	332848	6642604	419.31	200	-57	272
WRRC0017	332376	6644448	426.09	75	-60	268
WRRC0018	332391	6644470	426.48	90	-57	273
WRRC0019	332412	6644473	426.65	120	-57	272
WRRC0021	332337	6644400	425.2	120	-57	272
WRRC0022	332373	6644399	425.44	120	-57	266
WRRC0023	332399	6644399	425.94	150	-57	269
WRRC0024	332400	6644436	426.16	141	-51	275
WRRC0025	332411	6643849	431.78	30	-60	270
WRRC0026	332431	6643844	435.06	55	-60	270
WRRC0026	332431	6643844	435.06	55	-60	270
WRRC0027	332454	6643850	434.44	65	-60	270
WRRC0028	332477	6643851	433.32	80	-60	270
WRRC0029	332495	6643847	432.28	90	-60	270
WRRC0030	332518	6643846	431.23	90	-60	245
WRRC0031	332427	6643862	434.1	30	-60	272
WRRC0031	332427	6643862	434.1	30	-60	272
WRRC0032	332444	6643861	435.14	55	-60	270
WRRC0033	332466	6643860	434.18	65	-60	270
WRRC0034	332487	6643859	433.09	90	-60	270
WRRC0035	332509	6643861	431.96	100	-60	273
WRRC0036	332530	6643859	430.82	110	-60	270
WRRC0037	332550	6643857	429.94	120	-61	271
WRRC0038	332600	6643853	429.17	160	-61	273
WRRC0039	332341	6644329	425.95	80	-57	270
WRRC0040	332368	6644328	426.14	100	-57	273
WRRC0041	332341	6644378	425.13	90	-60	270
WRRC0042	332374	6644375	425.61	120	-60	273
WRRC0043	332266	6644550	425.61	100	-57	273
WRRC0044	332317	6644550	426.23	100	-60	270
WRRC0045	332341	6644520	426.34	100	-57	270
WRRC0046	332395	6644501	426.87	100	-60	270
WRRC0047	332446	6644508	427.58	150	-57	270
WRRC0048	332486	6643923	431.25	75	-55	270
WRRC0049	332444	6643984	427.03	80	-60	270

WRRC0051	332673	6643739	429.26	295	-67	274
WRRC0051	332673	6643739	429.26	295	-67	274
WRRC0052	332599	6643953	429.88	200	-61	269
WRRC0053	332685	6643695	429.31	330	-66	251
WRRC0054	332552	6643476	428.02	200	-60	290
WRRC0055	332528	6644499	428.3	150	-60	210
WRRC0056	332518	6644418	427.21	150	-60	210
WRRC0057	332278	6644531	425.53	150	-60	200
WRRC0058	332283	6644588	426.11	150	-60	200
WRRC0059	332647	6644120	431.08	130	-60	268
WRRC0061	332993	6642500	417.57	150	-60	270
WRRC0062	333244	6642543	417.25	178	-60	270
WRRC0064	332551	6644302	429.64	250	-61	270
WRRC0065	332426	6644135	427.89	150	-57	267
WRRC0066	332620	6643431	445.49	214	-57	270
WRRC0067	332682	6643485	446.41	290	-62	289
WRRC0070	332437	6643875	434.44	30	-60	269
WRRC0071	332454	6643877	434.59	30	-60	270
WRRC0072	332469	6643876	433.76	80	-60	271
WRRC0073	332494	6643872	432.6	80	-60	270
WRRC0074	332507	6643872	431.94	90	-60	270
WRRC0075	332550	6643878	430.02	110	-60	273
WRRC0077	332350	6644265	427.06	150	-55	272
WRRC0078	332419	6644265	429.29	150	-55	270
WRRC0079	332637	6643803	427.95	192	-55	279
WRRC0080	332660	6643804	427.2	250	-68	275
WRRC0081	332520	6643476	429.35	190	-60	329
WRRC0082	332550	6643475	428.27	170	-52	285
WRRC0083	332559	6643576	350.97	140	-55	200
WRRC0085	332481	6643226	422.89	154	-55	270
WRRC0086	332672	6643002	421.53	200	-55	270
WRRC0087	332361	6644638	427.68	46	-55	271
WRRC0088	332469	6643891	433.52	75	-60	266
WRRC0089	332507	6643894	431.36	85	-60	269
WRRC0090	332515	6643926	429.94	80	-60	269
WRRC0091	332573	6643930	429.63	120	-60	270
WRRC0092	332555	6643399	439.85	180	-60	274

WRRC0093	332518	6643396	435.59	140	-61	273
WRRC0094	332551	6643429	436.69	170	-59	266
WRRC0095	332427	6644481	427.02	100	-61	272
WRRC0096	332416	6644573	428.18	100	-56	270
WRRC0097	332423	6644527	427.59	100	-55	273
WRRC0098	332428	6644501	427.28	100	-61	267
WRRC0099	332507	6643960	427.94	78	-61	276
WRRC0100	332556	6643951	428.32	120	-59	271
WRRC0101	332508	6643999	427.2	60	-59	273
WRRC0102	332556	6644000	428.51	102	-61	271
WRRC0103	332607	6644000	430.47	150	-62	270
WRRC0104	332655	6644000	430.28	192	-60	270
WRRC0105	332530	6644056	427.41	60	-60	270
WRRC0106	332576	6644058	428.69	120	-58	271
WRRC0107	332624	6644058	430.43	150	-60	275
WRRC0108	332675	6644060	430.99	180	-60	275
WRRC0109	332596	6644126	429.91	108	-60	275
WRRC0110	332596	6644194	432.69	102	-60	272
WRRC0111	332655	6644197	432.42	150	-60	273
WRRC0112	332325	6644422	425.22	120	-55	273
WRRC0113	332362	6644421	425.66	120	-55	271
WRRC0114	332401	6644421	425.83	150	-55	272
WRRC0115	332466	6644479	427.34	150	-53	272
WRRC0116	332467	6644501	427.73	156	-55	271
WRRC0117	332482	6644529	428.4	115	-54	271
WRRC0118	332524	6644593	430.51	120	-54	272
WRRC0119	332474	6644557	428.86	150	-53	270
WRRC0120	332455	6644430	426.68	150	-56	272
WRRC0121	332512	6643469	429.01	120	-54	272
WRRC0122	332548	6643471	428.27	150	-60	270
WRRC0123	332554	6643471	428.08	174	-75	271
WRRC0124	332164	6644624	424.51	102	-55	270
WRRC0125	332075	6644471	423.22	60	-55	271
WRRC0126	332115	6644471	423.6	60	-56	268
WRRC0127	332584	6644028	429.35	148	52	268
WRRC0128	332620	6644058	430.22	190	-56	271
WRRC0129	332587	6644079	429.07	130	-56	274

I .						
WRRC0130	332485	6644487	427.79	160	-55	270
WRRC0131	332527	6644501	428.33	196	-51	271
WRRC0132	332517	6644529	428.84	178	-54	272
WRRC0133	332500	6644558	429.43	148	-56	272
WRRC0134	332442	6644466	426.94	118	-55	270
WRRC0135	332473	6644441	426.92	148	-57	268
WRRC0136	332500	6644464	427.58	178	-57	268
DEK01	332592	6643527	426.00	169.5	-60	0
DEK02	332535	6643609	425.80	125.0	-60	0
DEK03	332551	6643609	425.70	117.8	-60	0
DEK04	332578	6643607	425.50	136.1	-60	0
DEK05	332541	6643629	425.93	105.0	-60	0
DEK06	332576	6643628	425.68	132.7	-60	0
DEK07	332553	6643649	426.10	110.0	-60	0
DEK08	332580	6643647	425.85	130.1	-60	0
DEK09	332537	6643669	426.45	85.0	-60	0
DEK1	332592	6643527	426.00	169.5	-60	0
DEK10	332598	6643667	425.93	134.0	-60	0
DEK11	332535	6643689	426.90	102.8	-60	0
DEK12	332555	6643688	426.80	133.2	-60	0
DEK13b	332549	6643589	425.00	115.7	-60	0
DEK14	332569	6643588	425.00	130.5	-60	0
DEK15	332524	6643710	428.00	97.3	-60	0
DEK16	332576	6643708	428.00	136.1	-60	0
DEK17	332549	6643577	425.50	122.6	-60	0
DEK18	332567	6643577	425.35	131.3	-60	0
DEK19	332552	6643548	425.40	126.8	-60	0
DEK2	332535	6643609	425.80	125.0	-60	0
DEK20	332552	6643528	425.30	96.7	-60	0
DEK21	332680	6643603	430.00	239.7	-60	0
DEK22	332610	6643776	427.00	150.0	-60	0
DEK23	332639	6643685	430.00	246.7	-60	0
DEK24	332675	6643581	430.00	229.0	-60	0
DEK25	332552	6643719	428.00	129.8	-60	0
DEK26	332583	6643727	427.00	150.0	-60	0
DEK27	332628	6643725	427.00	233.3	-60	0
DEK28	332664	6643774	431.20	220.4	-60	0

DEK29	332674	6643803	429.90	209.1	-60	0
DEK3	332551	6643609	425.70	117.8	-60	0
DEK30	332598	6643597	430.00	165.2	-60	0
DEK31	332654	6643594	430.00	210.1	-60	0
DEK32	332631	6643696	430.00	216.8	-60	0
DEK33	332643	6643785	431.05	175.0	-60	0
DEK34	332667	6643824	430.40	193.7	-60	0
DEK35	332571	6643738	429.00	153.0	-60	0
DEK36	332611	6643736	430.00	90.0	-60	0
DEK36b	332609	6643806	431.29	209.0	-60	0
DEK37	332559	6643698	427.00	128.0	-60	0
DEK38	332531	6643740	430.00	129.0	-60	0
DEK39	332590	6643597	430.00	126.0	-60	0
DEK4	332578	6643607	425.50	136.1	-60	0
DEK40	332585	6643597	430.00	173.2	-60	0
DEK41	332611	6643746	428.50	203.7	-60	0
DEK42	332594	6643697	430.00	175.0	-60	0
DEK43	332589	6643707	428.00	169.0	-60	0
DEK44	332637	6643600	426.00	200.0	-60	0
DEK45	332567	6643658	426.00	138.5	-60	0
DEK5	332541	6643629	425.93	105.0	-60	0
DEK6	332576	6643628	425.68	132.7	-60	0
DEK7	332553	6643649	426.10	110.0	-60	0
DEK8	332580	6643647	425.85	130.1	-60	0
DEK9	332537	6643669	426.45	85.0	-60	0
19ERC12	332528	6643651	333.86	38	-60	270

JORC CODE, 2012 EDITION - TABLE 1 REPORT

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad	Historic drilling by various companies included reverse circulation (RC) drill samples which were collected and split in even metre intervals when sample was dry. Wet samples were speared or on occasion scoop sampled. RC drill chips from each metre were examined visually and logged by the geologist. Duplicate samples were collected at 1 m intervals by scoop sampling reject bags. Based on the historical drilling reviewed from Javelin through

Criteria	JORC Code explanation	Commentary
	meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	WAMEX files, drilling commenced from 1982, which included Vacuum, Augur, open hole percussion/ RAB, RC and diamond core drilling (mostly NQ, also PQ and HQ). Sampling methods included chip samples collected and split in even 1 metre or 4 metre composite intervals for dry samples. Wet samples were speared or on occasion scoop sampled. Diamond core was half core sampled at selected intervals where the geologist recorded Samples are collected from rig mounted cyclone cone splitter at 1m intervals. Duplicate samples are collected from reject bags every 10m (by spear sampling). Calico samples are weighed to ensure minimum size of 2.5kg are collected. Current QAQC protocols include the analysis of field duplicates and the insertion of appropriate commercial standards (I, e., certified reference material (CRM). Sample protocols where they are described from historical reports sourced from WAMEX followed by historic operators are in line with industry standards at the time. RC drilling was used to obtain 1 m samples from which a 1 m samples (mineralisation zones) or 2m and 4m composite samples (waste zones) of approximately 2.5 to 5kg was also collected.
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	For the 2020-2021 drilling the RC rig specs are as follows: Schramm T450 RC rig - 5 ½ inch diameter face sampling hammer LC36 KWL700 RC rig (for deep holes) – 5 inch face sampling hammer X350 RC rig - 4½ inch diameter face sampling hammer; drilling since May 2021) Historically, the project has been drilled using rotary air blast (RAB), percussion (Perc), reverse circulation (RC) and diamond core drilling (DD) over numerous campaigns by several companies. The majority of holes are on a grid either infilling within or surrounding historical pit and underground (UG) workings or extending along strike into geochemical or geophysical (areomag) anomalies. The recent programs drilled in 2020 and 2021 have all been RC drilling. The majority of drill holes 270° MGA grid.
Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.		RC sample recovery is visually assessed and recorded in drill logs. RC drilling programs showed good recoveries. From WAMEX records, descriptions noted that the majority of DD drilling had good recoveries >90%, although several holes recorded recoveries of ~50% or lower within highly fractured quartz vein intervals, and also where there was intersection of historical UG workings. RC samples were visually checked for recovery, moisture, and contamination. A cyclone and splitter were used to provide a uniform sample and these were routinely cleaned. Wet samples and logged barren zone, 4 m composites were speared to obtain the most representative sample possible. Sample recoveries are mostly high with only a very small number of wet samples recorded by geologists. No significant

Criteria	JORC Code explanation	Commentary
		sample loss has been recorded with a corresponding increase in Au present. No sample bias is anticipated, and no preferential loss/gain of grade material has been noted
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	RC chips are geologically logged at 1 metre intervals. RC chip trays have been stored for future reference. Detailed logging exists for more recent drilled prior to WRD holes (18EKDD, and 19ERC prefix holes, but most of the historical RC and DD holes drilled do not have the logging digitally recorded in WRD database files provided, although the WAMEX files do contain PDF copies of RC and DD geology logs WRD RC chip logging included the recording of colour, lithology, regolith, oxidation state, colour, alteration, mineralisation, and veining/quartz content. The entire length of each hole was logged. Previous RC and DD drilling completed by previous owners contained similar detailed geological descriptions in PDF logs. Remaining core was examined from the 18EKDD drilling program at the Eureka project field office. The core remaining is in good condition but has been poorly labelled, with intervals and hole identification often indistinguishable as no aluminium tags or more permanent markers were used on core blocks or to label the core trays. Percentage of drilling logged that was used in the 2021 MRE are record as follows: 2020-21 RC drilling –WRRC holes = 96% logged, abandoned holes not logged records in WRD DB 19ERC prefix – RC drilling 93% logged records in WRD DB 18EKDD – RC/DD drilling 88% logged records in WRD DB 18EKDD – RC/DD drilling - 8% logged records in WRD DB
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to	DEK, WEK – RC/DD drilling – 8% logged records in WRD DB Previous companies have conducted diamond drilling; WAMEX records have noted that ½ core sampling was mostly conducted, generally in highly selective intervals based RC chips were collected from rig mounted cyclone cone splitter as 1m samples. 2 and 4m composites using a sample scoop were taken from the 1m RC plastic sample bags. Samples were generally dry. 1m RC samples are also speared. At the commercial laboratory, RC samples are dried at minimum 60° C. If the sample weight is greater than 3 kg, the sample is riffle split. It is then pulverised to a grind size where 85% of the sample passes 75 micron. Field QAQC procedures included the insertion of CRMs and field duplicates for RC drilling after every 10 samples. CRMs represented approximately 5% of total samples. Field duplicates were collected during the RC drilling

Criteria	JORC Code explanation	Commentary
	the grain size of the material being sampled.	programs in 2020-21. Duplicate samples are submitted at a rate of one duplicate submitted for every 10 samples. Duplicates samples represent approximately 5% of total samples. Based on statistical analysis of the field duplicate results, there is no evidence to suggest the samples are not representative. A sample size of between 2.5 and 5 kg was collected. This size is considered appropriate, and representative of the material being sampled given the width and continuity of the intersections, and the grain size of the material being collected.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Both single 1 metre samples and 2 m or 4 m composite samples have been analysed using a 30g fire assay technique with an AAS finish. No geophysical tools etc. have been used at Eureka. Field QAQC procedures include the insertion of both field duplicates and CRMs. No blanks were inserted by TIN. Assay results to date have been satisfactory and demonstrate an acceptable level of accuracy and precision. Laboratory QAQC involves the use of internal certified reference standards, blanks, splits, and replicates. Analysis of these results to date show an acceptable level of precision and accuracy.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	All significant intersections were assessed by Javelin Minerals through current access and historical databases. Version 2024 Micoomine has been used to delineate gold grades above 0.5 g/t Au level from the Javelin geologist as part of the over verification of assay results comparing to the historically significant intersections previously reported. No specific twinned holes have been drilled to date. Recent drilling from 2018 to the current programs have some infill holes in close proximity to historical drilling, and mostly confirm the presence of Au mineralisation, and also intersect significant mineralisation where historical hole intervals that were not sampled. Field data and logging is collected and entered using Toughbook field computers. The data is sent via a SharePoint site, to a contract database administrator for validation and compilation into an MS Access database. No adjustments have been made to assay data apart from values below the detection limit which are assigned a value of negative the detection limit for the 2021 MRE work.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All recently drilled hole collars have been surveyed by handheld GPS (Garmin 64 GPS) to an accuracy of about 3m. The drill holes are then picked up using a DGPS by Cardno Spectrum Survey, Kalgoorlie at the completion of each drill program. Downhole surveying is conducted by the drilling contractor, using EZ-Shot single shot downhole camera at 30 m intervals at the completion of each hole The grid system is MGA_GDA94 Zone 51. Topographic datum is AHD71(Australian Height Datum 1971). The topographic surfaces include a very high resolution DTM surface (LiDAR survey) was initially used for hole collar location verification.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Historical exploration and drilling at Eureka targeted discrete areas based on surface geochemical and geophysical anomalies, historical workings that identified the location of host mineralisation. Consequently, current drilling is not grid based, but across the historical open pit and UG workings the drill spacing is nominally 10m N x 10m E. Extensions to the north and south have been nominally drilled at 20m N x 20m/10m spaced drilling. The mineralised domains have sufficient continuity in both, and classification applied under the 2012 JORC Code Four metre composite samples were collected from RC drill holes within the logged barren intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drill hole collars are set-out on the MGA grid and drill lines were generally at E- W direction Drilling sections are orientated perpendicular to the strike of the overall shear orientation and mineralised host rocks. Several shallow dipping vein structures are noted in the southern pit wall, but overall, the mineralised vein structures appear parallel to sub-parallel with the shear orientation from north to south.
Sample security	The measures taken to ensure sample security.	All samples are selected, cut, and bagged in tied numbered calico bags, grouped in larger tied plastic bags, and placed in large sample cages with a sample submission sheet to
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data is validated by the contract database administrator whilst loading into the Javelin MS Access database.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and Land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Project acquisition comprises 4 mining licences M24/0584, M24/0585, M24/0586 and M24/0189 and 3 prospecting licence P24/5116, P24/5549 and P24/5548. The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Discovery and initial UG workings commenced 1897. UG mining up to 1941 produced 797 oz Au from 809 tonnes at 27g/t Au. More recently, the tenement area has been previously explored by numerous companies including: CSR (1982-83) – included 4.4km of RC drilling West Coast Holdings (WCH) (1984-87) – Surface geochemistry (including Augur drilling), aero-mag surveys, vacuum drilling, Percussion, DC and DD drilling; surface mapping and gridding; evaluation and mining of oxide resources Open Pit) and evaluation of UG resources – open pit mining produced 45,865 tonnes at 4.64g/t Au, for 6,842 oz Au (WCH, 1986). Glengarry Mining NL (1994) – Aeromag Interpretation, RAB Drilling Jasper Mining NL (+ JV partners) (1996-2004) – UG mine refurbishment & trial mining from November 1998 to June 1999 – approx. 400t @ 6g/t Au from 80m Level (JMM, 2000); Project management plan (1998-99) Sherlock Bay Nickel Corp (SBNC) (2004-2006) – Ground Mag survey; gridding; surface mapping; RC drilling (ERC) International Gold P/L (2007-2010) – Mag-radiometric survey, Augur drilling; UG design study (41,000 t @ 10.1 g/t, 13.3k Oz Au) Central Iron Ore Ltd (2011-14) – Resource evaluation (451,000y @ 4.4g/t, 64,200 oz Au);
Geology	Deposit type, geological setting, and style of mineralisation.	Geophysical data review. The Eureka gold deposit occurs on the eastern limb of the major south-east plunging Goongarrie-Mt. Pleasant Anticline. The eastern limb consists predominantly of north-north-west trending mafic and ultramafic lithologies, with minor thin mainly interflow sediments, bounded to the west by pre-to syntectonic granitoid forming the core of the regional anticline.

Criteria	JORC Code explanation	Commentary
		To the east, the Bardoc-Broad Arrow Synform occurring between the major Goongarrie- Mt. Pleasant and Scotia-Kanowma Anticlines is subject to significant disruption by the broad Bardoc Tectonic Zone.
		This zone consists of multiple shear zones occurring within intercalated felsic, mafic and ultramafic lithologies in the vicinity of the synformal axis. The Bardoc Tectonic Zone is host to the Paddington and Bardoc gold deposits.
		Local Geology and Mineralisation
		The Eureka deposit is located within a sequence of mafic and ultramafic rocks forming part of the Kalgoorlie – Menzies greenstone belt. The layered sequence is approximatley 6 km wide with a northerly trend. The sequence is intruded by east-west trending Proterozoic mafic dykes and is bunded to the east and west by complex granitic plutons.
		In the vicinity of the Eureka Mine the sequence has a generally easterly dip of 65° to 70°, parallel by the regional foliation. Regional metamorphism of the sequence is lower greenschist facies.
		Two distinct shale units are present, the western or footwall unit being the Copper Mine Shale which marks the top of the sill and the hanging wall unit, an interflow unit amongst the basalt.
		Weathering profile is extensive with the deepest weathering along the main shear zones and contacts causing a weathering trough of highly oxidised rock that extends down the main shear to the bottom of the pit exposures. Both the north end and south end exposures of the pit show massive and blocky clay altered rock masses bounded by narrow, highly sheared zones, commonly containing limonitic quartz veining. The quartz vein hosted shears run parallel or sub-parallel to the main N-S shear trend, and less commonly cross cutting, shallow dipping quartz veins.
		High grade gold mineralisation at Eureka is associated with veining within the altered lower mafics. The vein system typically consists of quartz, carbonate and sulphide and has a variable thickness of up to 20m. The mineralisation exploited in the open pit consists of a number of lens shaped shoots up to 10m wide within an intensely sheared zone some 30m wide.

Criteria	JORC Code explanation	Commentary
Drill hole	A summary of all information	All relevant drill hole details were presented in ASX release in Appendix 1
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	All reported assays have been length weighted if appropriate. No top cuts have been applied. A nominal 0.5g/t Au lower cut off has been applied, with only intersections >0.5g/t considered significant. High grade Au intervals lying within broader zones of Au mineralisation are reported as included intervals. In calculating the zones of mineralisation, a maximum of 2 metres of internal dilution is allowed. Metal equivalent values have not been used. Only gold grade is reported.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	The mineralised zones vary in strike between the Main and North prospects. Gold mineralisation is steeply dipping in the Main zone but more shallow drilling in the North prospect. Drill hole orientation reflects the change in strike of the rocks. Reported down hole intersections are believed to approximate true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figure 3 and Table 1 have been presented within the announcement outlining locations of priority untested exploraiontargets.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The results have been sourced from the historical reports and have been substantially documented.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Available open file company airborne geophysical surveys was conducted using the Western Australia Department of Mines, Industry, Regulation and Safety (DMIRS) online systems which provides records of previous geophysical surveys and exploration activities. The search revealed that the project area has been subject to a number of high resolution airborne geophysical surveys. An initial data search over the project area revealed that high resolution "multi- client" aeromagnetic data was available for purchase. This was purchased from Geoimage and delivered directly to CORE. The data was originally flown for Goldfields Exploration in 1995 by Kevron Geophysics. The survey lines were flown at 075-255° with 40m line spacings and a 40m flying height. The data acquired included magnetics, radiometrics and digital terrain (DTM). A listing of the survey specifications are delivered with this memo along with the data purchased from Geoimage.Magnetic and Radiometric and DTM Data The aeromagnetic data was processing was to highlight and better define controlling structures, lithological variations and subtle magnetic responses. All magnetic data was

Criteria	JORC Code explanation	Commentary
		reduced to the pole (with the exception of the analytic signal) and are explained further below;
		The first vertical derivative (1VD) is theoretically the rate of change of the magnetic field with increasing height. In practice it has two desirable effects. Firstly, it tends to sharpen and separate magnetic anomalies. Secondly it makes the mean background level of the data equal to zero. The horizontal derivatives were also calculated for the principal orthogonal directions (X+Y). These look at the major signal components in the X (East-West) and Y (North-South) directions and may assist in the better definition of lithological units and structures oriented in these directions.
		2VD The second vertical derivative (2VD) essentially applies the first vertical derivative on the data twice and is the rate of change of the rate of change of the magnetic field with increasing height. It sharpens and separates anomalies even further and is also symmetric about zero.
		AGC Automatic gain control (AGC) was performed on the vertical derivatives in order to enhance magnetic features within the dataset. It is a process whereby all magnetic anomalies or features within a dataset are reduced/increased to similar amplitudes. This is very useful for extracting fine detail from datasets that are otherwise dominated by one or two high amplitude features, as is sometimes the case where magnetite bodies are present.
		AS Analytic Signal (AS) is the square root of the sum of the square of the derivatives in the three principal component directions i.e. X, Y, Z. The filter essentially converts all magnetic responses to positive features and places the magnetic anomaly directly above the source. This can also be an effective filter where there is remanent magnetisation and it also enhances near surface responses. The downside of this filter is that dip information cannot be readily interpreted from the data.
		TDR Tilt Derivative (TDR) normalises data ranges, enhances subtle features and is the result of the difference between the total horizontal derivatives (X,Y) and the vertical derivative (Z). It is a good edge detection filter, but features may not be positioned directly above the source.
		RTP Reduction to the Pole (RTP) takes into account the magnetisation due to the earth's field and corrects for this. The result is that the magnetic anomaly is shifted so that it is over the source giving rise to the response. However, the RTP correction is mathematically unstable at low latitudes and results in a smearing or lengthening of north south trending magnetic anomalies.
		Significant processing of the magnetic data has yielded three sets of products. The first set of grids is commonly used in geophysics to enhance structures and features. The second set of grids are advanced combinations of the first set. The third set combines the standard and advanced products using advanced raster image display techniques All products are derived from the Total Magnetic Intensity (TMI) grid.

Criteria	JORC Code explanation	Commentary
		Standard 1st Set (grids maps and images):
		1VD = First Vertical Derivative
		2VD = Second Vertical Derivative
		1XD = First Derivative in the X (90 degrees, +X) direction
		1YD = First Derivative in the Y (0 degrees, +Y) direction
		RTP = Reduction To the Pole (inclination: -64.2, declination 1.1)
		TDR = Tilt Derivative
		AS = Analytic Signal
		AGC = Analytic Gain Control
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Planned further work includes additional drilling to test magnetic anomalies and geochemical trends at depth.