

ASX: VMM MARKET ANNOUNCEMENT

50m @ 8,462ppm TREO From Surface at Cupim South, Ending in Mineralisation of 3,848ppm TREO

Exceptional Step-Out Intercepts Continue at Cupim South

ASX Release: 4 December 2024

Highlights

- RC drilling continues to show exceptionally thick and high-grade results leading up to the pending Resource Upgrade, the majority of which is from the Southern Complex (Cupim South and Centro Sul).
 - CS-RC-0541: 50m @ 8,642ppm TREO^A from surface, ending in mineralisation of 3,848ppm TREO has
 intersected the thickest and highest-grade hole to date at Colossus.
 - Including a higher-grade section starting from surface of 14m @ 15,941ppm TREO and 58ppm Dy-Tb.
- ► Multiple outstanding intercepts >20m thick and >4,000ppm TREO were uncovered, which outlines the outstanding potential within the Cupim South Mining License towards developing a long-life >4,500ppm TREO mine-plan, highlighted below:
 - CS-RC-0412: 42m @ 4,020ppm TREO from surface, including 12m @ 7,260ppm TREO [48% MREO^B] & 145ppm Dy-Tb Oxide
 - CS-RC-0451: 32m @ 4,563ppm TREO from surface, including 6m @ 7,852ppm TREO [22% MREO] & 97ppm Dy-Tb Oxide
 - CS-RC-0318: 20m @ 4,402ppm TREO from 2m, including 8m @ 7,204ppm TREO [29% MREO] & 87ppm Dy-Tb Oxide
 - CS-RC-0562: **24m @ 4,106ppm TREO** from 12m, including 10m @ **5,333ppm TREO** [34% MREO]
 - CS-RC-0552: 20m @ 4,502ppm TREO from 2m, including 8m @ 5,695ppm TREO [34% MREO]
- Further exceptional holes from this set of assays highlight the homogenous thick and high-grade mineralisation across the Southern Complex, which re-iterates these are the best results seen to date:
 - CS-RC-0279: 32m @ 3,364ppm TREO from 14m, including 6m @ 6,732ppm TREO [35% MREO] & 99ppm Dy-Tb Oxide
 - CS-RC-0310: 8m @ 8,571ppm TREO from surface, including 6m @ 9,146ppm TREO [35% MREO] & 143ppm Dy-Tb Oxide
 - CS-RC-0473: 18m @ 4,477ppm TREO from surface, including 6m @ 5,772ppm TREO [27% MREO] & 81ppm Dy-Tb Oxide
 - CS-RC-0558: 38m @ 3,586ppm TREO from 4m, including 14m @ 5,109ppm TREO [28% MREO]
 - CNT-RC-1121: 18m @ 5,490ppm TREO from 14m, including 8m @ 6,978ppm TREO [31% MREO] & 76ppm Dy-Tb Oxide
 - CNT-RC-1078: **10m @ 5,273ppm TREO** from surface [30% MREO]
 - CS-AG-0326: 12m @ 4,341ppm TREO from surface, ending in mineralisation of 5,056ppm TREO
 Ending in 2m @ 5,056ppm TREO [35% MREO] & 74ppm Dy-Tb Oxide
 - CS-AG-0313: 10m @ 4,736ppm TREO from surface, ending in mineralisation of 3,753ppm TREO Including 4m @ 6,069ppm TREO [40% MREO] & 97ppm Dy-Tb Oxide

A Total Rare Earth Oxides ('TREO'): La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3+ Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3

^B Magnetic Rare Earth Oxides ('MREO'): Dy2O3, Gd2O3, Ho2O3, Nd2O3, Pr6O11, Sm2O3, Tb4O7

- This batch of results marks the maiden systematic reverse circulation ('RC') drill program undertaken on the eastern end of the Cupim South Mining Licenses and maiden systematic RC drilling at Centro Sul.
- All assays from systematic grid drilling at Southern Complex have now been received and will be fed into the upgraded resource model, with a substantial resource upgrade expected in the near future.
- On-going environmental and hydrogeological work will continue at the Northern Concessions. Additionally, the Environmental Impact Assessment (EIA) is in its final stages and is expected to be submitted shortly to the environmental authority, SUPRAM.
- The Southern Complex is progressing rapidly through its maiden mixed rare earth carbonate ('MREC') testing program. Following the successful maiden Ionic Leach testing, which achieved the highest ever recoveries seen at Colossus, using a benign reagent concentration of 0.3M AMSUL, pH4.5, room temperature and 30-minute leach time², the Company is anticipating excellent net recoveries from "ore to MREC" using the same cheap and proven flowsheet used for the Northern Concessions.

Chief Executive Officer, Rafael Moreno commented:

"What an exceptional set of results to finish off the drilling program for our much-anticipated resource update. The assay results from the last few months have remarkably gone from strength to strength and delineated an expansive corridor of high-grade rare earth mineralisation that will form the foundation of a valuable mine plan.

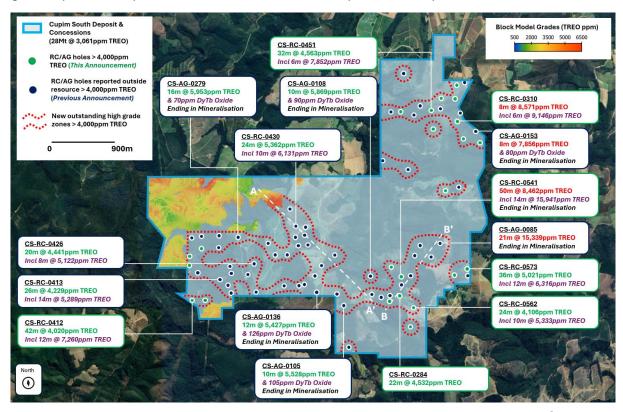
The outstanding grades, depth, MREO/TREO ratio, all bode extremely well for delivering a high MREC basket value across the life of mine, with the initial focus of the Colossus development strategy to mine the high-grade areas in both our Northern and Southern Concessions to maximise project economics and cashflow during the initial years of operations.

With a catalyst-rich few months ahead, the team are excited to showcase the globally significant metrics of the Colossus Project by issuing the updated resource estimate, finalising the mine planning for the Northern and Southern concessions, and culminating in the finalisation of the Scoping Study."

Viridis Mining and Minerals Limited ('Viridis' or 'Company') is pleased to report that the twelfth set of assays has been received within the Colossus Project, presenting the most outstanding set of drilling results seen to date in terms of grade x width — underpinned by CS-RC-0541 intercepting **50m @ 8,462ppm TREO, ending in mineralisation of 3,848ppm TREO.**

The twelfth batch of assays predominantly focused on RC drilling in the eastern half of Cupim South, alongside RC drilling at Centro Sul and hydrogeological drilling within Northern Concessions. This set of assays marks the first campaign of systematic deep drilling within the eastern half of the Cupim South Mining License, which has returned the most impressive results to date at Colossus.

The assays were the last batch of drilling required for the resource upgrade. Viridis has received all the necessary data to progress on the global Colossus resource upgrade, which is expected soon. Next year, Viridis will commence a drilling campaign at the Northern Concessions and Southern Complex to detail high-potential areas and enhance the resource confidence of zones preliminarily identified for mining.

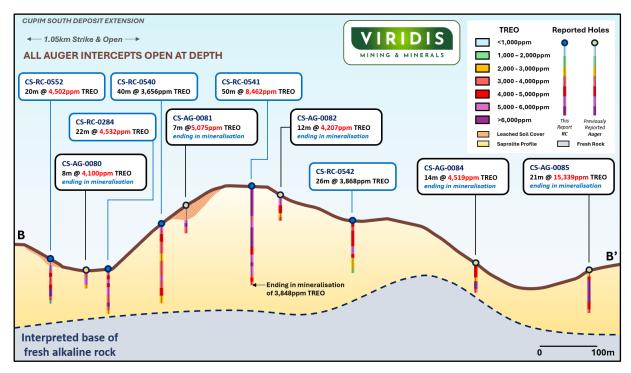

The results have successfully extended the large 4,000ppm+ zone of rare earth element ('REE') mineralisation trend along Cupim South (see Figure 1) while significantly improving upon the previously understood thicknesses of high-grade mineralisation.

Maiden MREC production has also been diligently progressed at the Southern Complex. The Australian Nuclear Science and Technology Organisation (ANSTO) expects to release results of the entire swathe of recoveries through the flowsheet from "ore to MREC" in the near future.

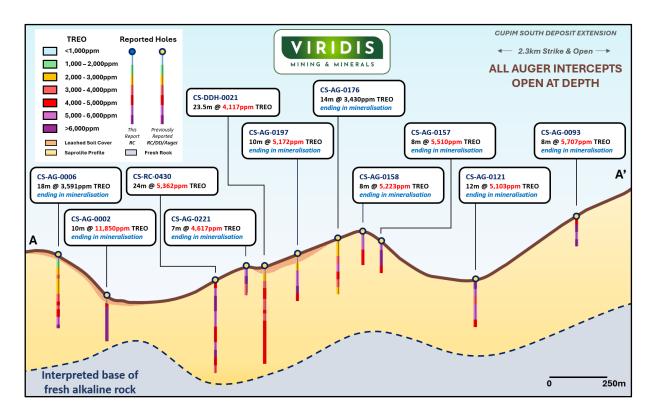
Cupim South

The twelfth batch of assays has delivered exceptional results significantly expanding the resource potential at the Southern Complex - predominantly the Cupim South Mining License, which has returned numerous high-grade step-out intercepts which are far thicker mineralisation profiles than expected.

Figure 1: Highlights of the plan view at Cupim South Deposit and extension with auger & RC drills⁶ within this report. More details on the block model can be found in the VMM ASX announcement on 4 June 2024.


As seen in Figure 1, CS-RC-0541 intercepted **50m @ 8,462ppm TREO from surface, ending in mineralisation of 3,848ppm TREO,** including a higher graded portion of **14m @ 15,941ppm TREO,** sits in the central-east of the Cupim South Mining License and remains open in multiple directions – with the two closest drilled holes to CS-RC-0541 both being auger holes which have potential to continue to similar depths and improve grades⁴:

- CS-AG-0081: 7m @ 5,075ppm TREO, ending in mineralisation of 3,475ppm TREO
- CS-AG-0082: 12m @ 4,207ppm TREO, ending in mineralisation of 3,218ppm TREO


Given the limited deep drilling around CS-RC-0541, with the two closest holes being auger intercepts, which have only scratched the surface and are yet to uncover the full depth and grade, the area hosts tremendous upside potential. Hence, tighter-spaced Drilling around CS-RC-0541 can reveal a remarkable pocket of mineralisation at the Cupim South Mining License, which will identify the total depth (>50m) and potential extensions of thick, 5,000ppm+ TREO mineralisation around this hole. Furthermore, complementing these findings, the twelfth batch of RC drilling has uncovered significant thick (>20m) and high-grade (>4,000ppm) intercepts which include:

- CS-RC-0412: 42m @ 4,020ppm TREO from surface, including 12m @ 7,260ppm TREO [48% MREO] & 145ppm Dy-Tb Oxide
- CS-RC-0451: 32m @ 4,563ppm TREO from surface, including 6m @ 7,852ppm TREO [22% MREO] & 97ppm Dy-Tb Oxide
- CS-RC-0573: 36m @ 5,021ppm TREO from 8m, including 12m @ 6,316ppm TREO [18% MREO]
- CS-RC-0562: **24m @ 4,106ppm TREO** from 12m, including 10m @ **5,333ppm TREO** [34% MREO]
- CS-RC-0552: **20m @ 4,502ppm TREO** from 2m, including 8m **@ 5,695ppm TREO** [34% MREO]
- CS-RC-0318: 20m @ 4,402ppm TREO from 2m, including 8m @ 7,204ppm TREO [29% MREO] & 87ppm Dy-Tb Oxide

Figure 2: Cross section BB' (looking northwest) at Cupim South from Figure 1 with significant intercepts4,5. 3x Y-Axis exaggeration, grade blocks down-hole were sampled per 2m except for CS-AG-0081 & 085 which had sampling at 1-2m intervals^{4,5}.

Figure 3: Cross section AA' (looking northeast) at Cupim South from Figure 1 with significant intercepts³. 15x Y-Axis exaggeration, grade blocks down-hole were sampled per 1.5-2m except for CS-AG-02 and 06 sampled per $1m^6$.

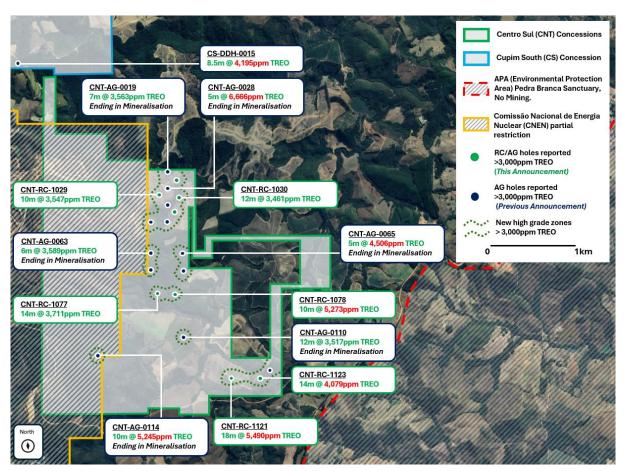
Figures 2 and 3 show the tremendous continuity of grades across a significant strike length at the Cupim South Mining License. Both CS-RC-0541 (50m @ 8,462ppm TREO) and hole CS-RC-0285 (44m @ 3,092ppm TREO) also ended in mineralisation.

More importantly, RC holes from the twelfth batch of assays have continued to show an incredibly vast footprint of both high-grade and valuable MREO mineralisation outside the >20m intercepts mentioned above — critical to establishing a superior basket value and subsequent premium sale price compared to peers, accentuated by:

- CS-RC-0310: 8m @ 8,571ppm TREO [35% MREO]
- CS-RC-0286: Includes 4m @ 6,243ppm TREO [35% MREO]
- CS-RC-0376: 12m @ 4,354ppm TREO [36% MREO]
- CS-RC-0412: Includes 12m @ 7,260ppm TREO [48% MREO]
- CS-RC-0470: 12m @ 4,872ppm TREO [37% MREO]
- CS-RC-0522: 10m @ 4,416ppm TREO [36% MREO]
- CS-RC-0552: Includes 8m @ 5,695ppm TREO [34% MREO]
- CS-RC-0562: Includes 10m @ 5,333ppm TREO [34% MREO]
- CS-RC-0567: Includes 6m @ 4,516ppm TREO [35% MREO]
- CS-RC-0570: 10m @ 4,770ppm TREO [35% MREO]
- CS-RC-0571: 8m @ 5,172ppm TREO [37% MREO]
- CS-RC-1183: 8m @ 4,694ppm TREO [36% MREO]

Step-out drilling to date outside the Cupim South Resource has yielded an incredible set of results that lay the foundation for a significant resource upgrade, highlighted by only a fraction of outstanding intercepts below^{3,4,5,6}:

- CS-RC-0318: 20m @ 4,402ppm TREO from 2m, including 8m @ 7,204ppm TREO [29% MREO]
- CS-RC-0320: **10m @ 6,303ppm TREO from** surface, including 6m @ **7,413ppm TREO** [43% MREO]
- CS-RC-0361: 14m @ 6,644ppm TREO from 8m, including 8m @ 9,472ppm TREO [41% MREO]
- CS-RC-0412: 42m @ 4,020ppm TREO from surface, including 12m @ 7,260ppm TREO [48% MREO]
- CS-RC-0413: 26m @ 4,229ppm TREO from surface, including 14m @ 5,289ppm TREO [39% MREO]
- CS-RC-0426: **20m @ 4,441ppm TREO** from surface, including 8m @ **5,122ppm TREO** [31% MREO]
- CS-RC-0430: **24m @ 5,362ppm TREO** from surface, including 10m @ **6,131ppm TREO** [42% MREO]
- CS-RC-0451: 32m @ 4,563ppm TREO from surface, including 6m @ 7,852ppm TREO [22% MREO]
- CS-RC-0552: **20m @ 4,502ppm TREO** from 2m, including 8m @ **5,695ppm TREO** [34% MREO]
- CS-RC-0562: **24m @ 4,106ppm TREO** from 12m, including 10m @ **5,333ppm TREO** [34% MREO]
- CS-RC-0092: **13m @ 5,292ppm TREO** from 3m, including 6m @ **6,882ppm TREO** [41% MREO]
- CS-AG-0153: 8m @ 7,856ppm TREO from 2m, ending in mineralisation of 6,747ppm TREO
 Ending last 4m @ 10,980ppm TREO and 117ppm Dy-Tb Oxide
- CS-AG-0136: 12m @ 5,427ppm TREO from surface, ending in mineralisation of 5,171ppm TREO
 Including all 12m @ 126ppm Dy-Tb Oxide
- CS-AG-0173: 9m @ 6,551ppm TREO from surface, ending in mineralisation of 4,003ppm TREO
 Including 2m @ 221ppm Dy & Tb Oxide
- CS-AG-0279: 16m @ 5,953ppm TREO from surface, ending in mineralisation of 3,372ppm TREO
 Including 6m @ 105ppm Dy & Tb Oxide
- CS-AG-0197: 10m @ 5,172ppm TREO from 2m, ending in mineralisation of 4,740ppm TREO
 Ending last 4m @ 93ppm Dy & Tb Oxide
- CS-AG-0085: 21m @ 15,339ppm TREO from surface, ending in mineralisation of 3,821ppm TREO
 Including 10m @ 28,425ppm TREO
- CS-AG-0108: 10m @ 5,869ppm TREO from 2m, ending in mineralisation of 7,359ppm TREO
 Including last 4m @ 138ppm Dy-Tb Oxide



Centro Sul

Less than 40% of the Centro Sul License has been tested through drilling with a large zone of >3,000ppm TREO identified. The highest grades are present in three distinct areas: Northern Border, Southeast Zone (Open to north and west) and Western Zone (Open and untested further west and southeast), highlighted with outstanding graded drill holes^{5,6}:

- CNT-RC-1121: 18m @ 5,490ppm TREO from 14m, including 8m @ 6,978ppm TREO [31% MREO] & 76ppm Dy-Tb Oxide
- CNT-RC-1123: 14m @ 4,079ppm TREO from 6m, including 8m @ 4,801ppm TREO [25% MREO]
- CNT-RC-1078: 10m @ 5,273ppm TREO from surface [30% MREO]
- CNT-AG-0114: 10m @ 5,245ppm TREO from surface, ending in mineralisation of 4,883ppm TREO
- CNT-AG-0028: 5m @ 6,666ppm TREO from 10m, ending in mineralisation of 3,501ppm TREO
- CNT-AG-0133: 15m @ 4,199ppm TREO from surface, ending in mineralisation of 2,227ppm TREO

Given the presence of more soil and humic material cover in areas within Centro Sul, drilling to date has shown the grades from RC drilling continue to improve upon depth with significant upside potential to be uncovered through further systematic RC drilling across the entirety of Centro Sul, with only 24% of the Centro Sul license tested with RC drilling to date. Hence, Viridis expects to continue encountering higher grades of mineralisation as it progresses through systematic RC drilling through the entire license. The drilling to date has been sufficient to present an initial resource at Centro Sul, which is expected to be included in the near-term Colossus resource upgrade.

Figure 4: Highlights of the plan view at Centro Sul with auger & RC drills^{4,5,6} within this report.

CNEN Administrative Zone

The Centro Sul license also hosts a partial administrative restriction established by Comissão Nacional de Energia Nuclear ('CNEN'), which is the National Nuclear Energy Commission in Brazil (as seen in Figure 4); this partial restriction was placed as a safety procedure to monitor radioactivity due to the presence of a historic Uranium (U) mine, located westwards from the Centro Sul Prospect. No Uranium ore has been extracted or processed since the 1990s, and this facility is currently under a decommissioning process.

Given the negligible levels of radioactive contents found in Centro Sul so far, corresponding to the Poços de Caldas Complex background, there is no impediment or impact on Colossus' exploration or development strategy from the CNEN Administrative Zone vicinities.

Viridis is currently preparing a Preliminary Information Report ('PIR') to be submitted to CNEN (National Nuclear Energy Commission) - **CNEN Norm NN 4.01** and **CNEN Resolution 208/2016**. This report will detail radiological assessments of the ore and the mineral processing activities, ensuring compliance with Brazilian regulations regarding the radioactivity levels of its raw materials and MREC production processes. These assessments align with national laws, guaranteeing that Viridis meet all safety and regulatory requirements for any potential radioactive content.

APA Zone

No part of Centro Sul falls within the nearby Environmental Protection Area ('APA') Ecological Sanctuary of Serra da Pedra Branca (established by Municipal Law of Caldas/MG no 1.973/2006) in which mining is restricted.

Around the APA zone, there is a 3km buffer zone which covers a portion of Centro Sul, however mining is permitted within the buffer zone, provided the environmental impact assessment is completed and approved.

Future Work

With all assays now received for the updated resource estimate, BNA Consultoria has commenced updating the Colossus resource model.

In parallel, Viridis and ANSTO continue to make important progress on the MREC testing program from the Southern Complex. Following the impressive initial leaching results, Viridis is well placed to replicate the industry-leading recoveries at its Northern Concessions maiden MREC, which returned 76% MREO recoveries from ore to final MREC¹.

Subsequently, upon completion of Southern Concessions' MREC and resource upgrade, the Company will complete mine planning targeting the high-grade areas in the Northern and Southern Concessions. Once complete, the Company anticipates finalisation of its scoping study while continuing to progress the Environmental Impact Assessment, a key milestone in its permitting process.

Approved for release by the Board of Viridis Mining and Minerals Ltd.

Contacts

For more information, please visit our website, <u>www.viridismining.com.au</u> or contact:

Carly Terzanidis

Company Secretary
Tel: + 61 3 9071 1847

Email: cosec@viridismining.com.au

Rafael Moreno

Chief Executive Officer
Tel: + 61 3 9071 1847

Email: rafaelm@viridismining.com.au

About Viridis Mining and Minerals

Viridis Mining and Minerals Limited is a resource exploration and development company with assets in Brazil, Canada and Australia. The Company's Projects comprise:

- The Colossus Project, which the Company considers to be prospective for Rare Earth Elements;
- The South Kitikmeot Project, which the Company considers to be prospective for gold;
- The Boddington West Project, which the Company considers to be prospective for gold;
- The Bindoon Project, which the Company considers to be prospective for nickel, copper and platinum group elements; and
- The Poochera and Smoky Projects, which the Company considers prospective for kaolin-halloysite.

Maiden Mineral Resource Estimate

Colossus Project Maiden Resource Estimate at 1,000pm Cut-Off

Category	License	Million Tonnes (Mt)	TREO (ppm)	Pr6011 (ppm)	Nd2O3 (ppm)	Tb407 (ppm)	Dy2O3 (ppm)	MREO (ppm)	MREO/TREO
	Northern Concessions (NC)	50	2,511	145	441	5	25	616	25%
Indicated	Cupim South (CS)	10	3,014	204	612	6	31	853	28%
muicateu	Capao Da Onca (CDO)	2	2,481	152	414	4	22	592	24%
	Indicated Sub-Total	62	2,590	154	467	5	26	653	25%
	Northern Concessions (NC)	97	2,519	151	473	5	26	656	26%
	Cupim South (CS)	18	3,087	199	620	6	34	859	28%
Inferred	Ribeirao (RA)	19	2,544	159	455	4	24	642	25%
	Capao Da Onca (CDO)	5	2,393	132	358	4	22	517	22%
	Inferred Sub-Total	139	2,591	158	486	5	27	675	26%
GLC	BAL RESOURCE (INDICATED & INFERRED)	201	2,590	157	480	5	27	668	26%

Table 1: Maiden Mineral Resource Estimate for Colossus REE Project using 1,000ppm TREO Cut-Off Grade. The resource model excludes leached/soil clays, transitional horizon and material under 300ppm MRE⁶.

Competent Person Statement

Dr. José Marques Braga Júnior, the in-country Executive Director of Viridis' Brazilian subsidiary (Viridis Mineração Ltda), compiled and evaluated the technical information in this release and is a member of the Australian Institute of Geoscientists (AIG) (MAusIMM, 2024, 336416), accepted to report in accordance with ASX listing rules. Dr Braga has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting of Regulation, Exploration Results, Mineral Resources, and Ore Reserves. Dr Braga consents to including matters in the report based on information in the form and context in which it appears.

The Company confirms that it is unaware of any new information or data that materially affects the information included in the market announcements referred to in this release and that all material assumptions and technical information referenced in the market announcement continue to apply and have not materially changed.

All announcements referred to throughout can be found on the Company's website - viridismining.com.au.

Forward-Looking Statements

This announcement contains 'forward-looking information' based on the Company's expectations, estimates and projections as of the date the statements were made. This forward-looking information includes, among other things, statements concerning the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions and that the Company's results or performance may differ materially. Forward-looking information is subject to known and unknown risks, uncertainties, and other factors that may cause the Company's actual results, level of activity, performance or achievements to materially differ from those expressed or implied by such forward-looking information.

References

- 1.VMM announcement dated 24 September 2024 'Colossus Maiden Mixed Rare Earth Carbonate (MREC) Product'
- 2. VMM announcement dated 14 November 2024 'Southern Complex Achieves Highest Ever Ionic Recoveries'
- 3. VMM announcement dated 12 June 2024 'Step-Out Drilling Multiplies Cupim South High-Grade Footprint'
- 4. VMM announcement dated 30 July 2024 'Cupim South Step-Out Drilling Delivers Best Results Seen at Colossus'
- 5. VMM announcement dated 28 August 2024 'Cupim South Delivers 21m @ 15,339ppm TREO'
- 6. VMM announcement dated 30 October 2024 'Cupim South Drilling Paves Way for Major Resource Upgrade
- 7. VMM announcement dated 04 June 2024 'Globally Significant Maiden MRE for Colossus IAC Project'

APPENDIX A: DRILL LOCATIONS

Auger and RC Hole coordinates of assays reported within this announcement: All holes were drilled vertically.

Hole Number	Northing	Easting	Elevation (m)	Туре	Final Depth (m)	ANM_ID
CDP-RC-1176	7581957	339826	1391	RC	28	007.737/1959
CDP-RC-1182	7581016	340229	1303	RC	19	007.737/1959
CH-AG-0015	7569803	333753	1288	AG	4	833.618/1996
CH-AG-0016	7569781	333915	1307	AG	7	833.618/1996
CH-AG-0017	7569783	334114	1311	AG	6	833.618/1996
CJ-RC-1178	7585055	339857	1256	RC	20	830.113/2006
CJ-RC-1179	7585806	339785	1305	RC	37	830.113/2006
CNT-RC-1021	7572731	347275	1280	RC	35	830.711/2006
CNT-RC-1022	7572724	347482	1242	RC	19	830.711/2006
CNT-RC-1029	7572544	347269	1299	RC	21	830.711/2006
CNT-RC-1030	7572519	347505	1237	RC	15	830.711/2006
CNT-RC-1037	7572376	347351	1253	RC	6	830.711/2006
CNT-RC-1038	7572333	347474	1273	RC	27	830.711/2006
CNT-RC-1045	7572136	347266	1310	RC	8	830.711/2006
CNT-RC-1046	7572123	347482	1313	RC	34	830.711/2006
CNT-RC-1053	7571965	347257	1339	RC	21	830.711/2006
CNT-RC-1054	7571955	347475	1319	RC	28	830.711/2006
CNT-RC-1061	7571729	347274	1330	RC	25	830.711/2006
CNT-RC-1062	7571729	347490	1293	RC	32	830.711/2006
CNT-RC-1069	7571481	347220	1273	RC	11	830.711/2006
CNT-RC-1070	7571531	347489	1267	RC	27	830.711/2006
CNT-RC-1077	7571355	347287	1261	RC	18	830.711/2006
CNT-RC-1078	7571333	347459	1239	RC	15	830.711/2006
CNT-RC-1085	7571113	347269	1231	RC	12	830.711/2006
CNT-RC-1086	7571119	347464	1220	RC	24	830.711/2006
CNT-RC-1093	7570931	347282	1264	RC	26	830.711/2006
CNT-RC-1094	7570928	347485	1250	RC	32	830.711/2006
CNT-RC-1101	7570736	347280	1262	RC	22	830.711/2006
CNT-RC-1102	7570722	347477	1279	RC	43	830.711/2006
CNT-RC-1109	7570538	347289	1227	RC	25	830.711/2006

Hole Number	Northing	Easting	Elevation (m)	Туре	Final Depth (m)	ANM_ID
CNT-RC-1110	7570530	347489	1259	RC	15	830.711/2006
CNT-RC-1117	7570323	347280	1205	RC	31	830.711/2006
CNT-RC-1118	7570359	347406	1224	RC	40	830.711/2006
CNT-RC-1119	7570324	347712	1202	RC	14	830.711/2006
CNT-RC-1130	7570127	347299	1205	RC	30	830.711/2006
CNT-RC-1131	7570128	347482	1214	RC	43	830.711/2006
CNT-RC-1132	7570149	347707	1205	RC	19	830.711/2006
CNT-RC-1133	7572721	347667	1223	RC	22	832.429/2023
CNT-RC-1134	7572551	347694	1233	RC	16	832.429/2023
CS-AG-0308	7576146	344136	1307	AG	6	833.560/1996
CS-AG-0309	7576135	343966	1333	AG	12	833.560/1996
CS-AG-0310	7576186	344325	1288	AG	9	833.560/1996
CS-AG-0311	7576583	344533	1262	AG	6	830.518/2023
CS-AG-0313	7575322	343283	1403	AG	10	830.464/1982
CS-AG-0315	7574661	343463	1451	AG	11	830.464/1982
CS-AG-0319	7575909	346235	1268	AG	3	830.340/1979
CS-AG-0324	7576948	346258	1310	AG	6	830.340/1979
CS-AG-0325	7577368	346430	1373	AG	12	830.340/1979
CS-AG-0326	7577617	346365	1365	AG	12	830.340/1979
CS-AG-0327	7577179	346287	1330	AG	7	830.340/1979
CS-AG-0328	7578667	347010	1303	AG	8	830.747/2023
CS-AG-0334	7577543	346368	1351	AG	5	830.340/1979
CS-AG-0340	7576773	346833	1398	AG	4	830.464/1982
CS-RC-0278	7574331	346371	1484	RC	40	830.464/1982
CS-RC-0279	7574618	346656	1477	RC	50	830.464/1982
CS-RC-0280	7574917	346917	1418	RC	47	830.464/1982
CS-RC-0281	7575202	347168	1388	RC	22	830.464/1982
CS-RC-0284	7574883	346373	1417	RC	26	830.464/1982
CS-RC-0285	7575184	346652	1472	RC	50	830.464/1982
CS-RC-0286	7575745	347224	1396	RC	22	830.464/1982
CS-RC-0287	7576017	347516	1354	RC	9	830.464/1982
CS-RC-0290	7575436	346337	1402	RC	40	830.464/1982
CS-RC-0292	7576034	346956	1394	RC	21	830.464/1982
CS-RC-0293	7576325	347230	1339	RC	11	830.464/1982
CS-RC-0295	7575158	345562	1295	RC	22	830.464/1982
CS-RC-0299	7576606	346941	1404	RC	17	830.464/1982
CS-RC-0308	7576857	346637	1378	RC	14	830.464/1982
CS-RC-0309	7577173	346937	1455	RC	12	830.464/1982
CS-RC-0310	7577449	347200	1384	RC	12	830.464/1982
CS-RC-0317	7577789	346952	1394	RC	17	830.464/1982
CS-RC-0318	7578017	347208	1284	RC	25	830.464/1982
CS-RC-0328	7578023	346756	1360	RC	30	830.464/1982
CS-RC-0376	7575454	343267	1401	RC	18	830.464/1982

Hole Number	Northing	Easting	Elevation (m)	Туре	Final Depth (m)	ANM_ID
CS-RC-0377	7575552	343445	1372	RC	50	830.464/1982
CS-RC-0411	7578320	346621	1261	RC	14	830.464/1982
CS-RC-0412	7574792	343339	1483	RC	50	830.464/1982
CS-RC-0421	7578152	346795	1307	RC	17	830.464/1982
CS-RC-0422	7578288	346926	1299	RC	22	830.464/1982
CS-RC-0440	7577739	346670	1437	RC	16	830.464/1982
CS-RC-0441	7577858	346797	1416	RC	27	830.464/1982
CS-RC-0442	7577992	347007	1306	RC	16	830.464/1982
CS-RC-0451	7577613	346802	1445	RC	50	830.464/1982
CS-RC-0452	7577871	347087	1338	RC	18	830.464/1982
CS-RC-0468	7577000	346511	1373	RC	28	830.464/1982
CS-RC-0469	7577170	346650	1383	RC	18	830.464/1982
CS-RC-0470	7577345	346817	1431	RC	21	830.464/1982
CS-RC-0472	7577664	346933	1407	RC	50	830.464/1982
CS-RC-0473	7577789	347171	1331	RC	23	830.464/1982
CS-RC-0482	7576984	346790	1419	RC	19	830.464/1982
CS-RC-0483	7577298	347073	1436	RC	6	830.464/1982
CS-RC-0498	7576880	346939	1446	RC	50	830.464/1982
CS-RC-0499	7577007	346982	1453	RC	34	830.464/1982
CS-RC-0500	7577196	347277	1387	RC	22	830.464/1982
CS-RC-0501	7577356	347364	1374	RC	35	830.464/1982
CS-RC-0507	7576487	346806	1379	RC	32	830.464/1982
CS-RC-0520	7576229	346877	1383	RC	13	830.464/1982
CS-RC-0521	7576313	346953	1407	RC	20	830.464/1982
CS-RC-0522	7576455	347028	1375	RC	20	830.464/1982
CS-RC-0529	7575330	346230	1418	RC	38	830.464/1982
CS-RC-0531	7575916	346779	1356	RC	24	830.464/1982
CS-RC-0532	7576179	347122	1362	RC	14	830.464/1982
CS-RC-0534	7574212	345404	1451	RC	23	830.464/1982
CS-RC-0535	7574344	345542	1394	RC	13	830.464/1982
CS-RC-0537	7574611	345786	1369	RC	19	830.464/1982
CS-RC-0540	7575055	346272	1445	RC	50	830.464/1982
CS-RC-0541	7575188	346377	1471	RC	50	830.464/1982
CS-RC-0542	7575336	346514	1405	RC	50	830.464/1982
CS-RC-0543	7575455	346655	1415	RC	26	830.464/1982
CS-RC-0545	7575747	347030	1421	RC	20	830.464/1982
CS-RC-0546	7575890	347086	1426	RC	37	830.464/1982
CS-RC-0547	7576038	347226	1415	RC	12	830.464/1982
CS-RC-0548	7576178	347351	1339	RC	7	830.464/1982
CS-RC-0549	7576309	347469	1271	RC	26	830.464/1982
CS-RC-0551	7574509	346001	1421	RC	18	830.464/1982
CS-RC-0552	7574829	346215	1417	RC	34	830.464/1982
CS-RC-0553	7575038	346527	1447	RC	50	830.464/1982

Hole Number	Northing	Easting	Elevation (m)	Туре	Final Depth (m)	ANM_ID
CS-RC-0554	7575326	346801	1447	RC	50	830.464/1982
CS-RC-0555	7575611	347062	1428	RC	26	830.464/1982
CS-RC-0556	7575883	347364	1421	RC	19	830.464/1982
CS-RC-0557	7574075	345717	1392	RC	16	830.464/1982
CS-RC-0558	7574149	345961	1433	RC	50	830.464/1982
CS-RC-0559	7574333	346015	1450	RC	30	830.464/1982
CS-RC-0561	7574568	346395	1472	RC	50	830.464/1982
CS-RC-0562	7574753	346552	1453	RC	50	830.464/1982
CS-RC-0563	7574903	346641	1456	RC	50	830.464/1982
CS-RC-0564	7575043	346805	1423	RC	10	830.464/1982
CS-RC-0565	7575185	346941	1438	RC	50	830.464/1982
CS-RC-0566	7575325	347085	1404	RC	36	830.464/1982
CS-RC-0567	7575462	347222	1397	RC	30	830.464/1982
CS-RC-0568	7575624	347344	1371	RC	4	830.464/1982
CS-RC-0569	7574205	346236	1479	RC	50	830.464/1982
CS-RC-0570	7574471	346519	1461	RC	22	830.464/1982
CS-RC-0571	7574766	346801	1449	RC	50	830.464/1982
CS-RC-0572	7575058	347086	1394	RC	20	830.464/1982
CS-RC-0573	7575318	347356	1389	RC	50	830.464/1982
CS-RC-0574	7574043	346389	1431	RC	17	830.464/1982
CS-RC-0575	7574197	346532	1459	RC	35	830.464/1982
CS-RC-0576	7574327	346613	1457	RC	50	830.464/1982
CS-RC-0577	7577448	346797	1431	RC	16	830.464/1982
CS-RC-0580	7578462	347023	1312	RC	33	830.747/2023
CS-RC-0581	7578601	347145	1266	RC	22	830.747/2023
CS-RC-0582	7578504	346856	1251	RC	19	830.747/2023
CS-RC-1169	7574596	343573	1476	RC	41	831.129/2023
CS-RC-1183	7574742	343870	1459	RC	32	831.129/2023
CT-RC-1175	7584805	340613	1271	RC	39	830.927/2016
FZ-RC-1173	7584366	341783	1274	RC	33	009.031/1966
FZ-RC-1177	7583029	340427	1307	RC	50	009.031/1966
CDP-RC-1191	7581778	339001	1288	RC	24	007.737/1959
CNT-RC-1122	7570260	348297	1260	RC	50	830.711/2006
FZ-RC-0172	7584908	342116	1312	RC	50	009.031/1966
FZ-RC-0173	7584901	342250	1296	RC	50	009.031/1966
FZ-RC-0181	7584743	342278	1297	RC	35	009.031/1966
FZ-RC-0188	7584613	341710	1283	RC	33	009.031/1966
FZ-RC-0189	7584557	341994	1281	RC	31	009.031/1966
FZ-RC-0190	7584561	342141	1283	RC	20	009.031/1966
CNT-RC-1120	7570285	347989	1249	RC	50	830.711/2006
CNT-RC-1121	7570350	348156	1257	RC	42	830.711/2006
CNT-RC-1123	7570333	348522	1252	RC	30	830.711/2006
CS-AG-0314	7574797	343567	1434	AG	8	831.129/2023

Hole Number	Northing	Easting	Elevation (m)	Туре	Final Depth (m)	ANM_ID
CS-AG-0316	7574536	345452	1375	AG	6	830.464/1982
CS-AG-0320	7575734	346069	1326	AG	2	830.464/1982
CS-AG-0321	7575509	346150	1346	AG	3	830.464/1982
CS-AG-0322	7575591	346504	1358	AG	11	830.464/1982
CS-AG-0329	7576659	347195	1354	AG	8.5	830.464/1982
CS-AG-0331	7577034	347462	1291	AG	8	830.464/1982
CS-AG-0332	7576947	347587	1238	AG	5	830.464/1982
CS-AG-0333	7577111	347581	1246	AG	4	830.464/1982
CS-AG-0335	7577622	347019	1381	AG	10	830.464/1982
CS-AG-0336	7577421	346949	1431	AG	2	830.464/1982
CS-AG-0337	7577145	347370	1341	AG	4	830.464/1982
CS-AG-0339	7576868	347116	1381	AG	8	830.464/1982
CS-AG-0341	7575689	346636	1334	AG	3	830.464/1982
FZ-RC-0170	7584945	341777	1308	RC	50	009.031/1966
FZ-RC-0171	7584913	341909	1317	RC	50	009.031/1966
FZ-RC-1184	7585073	341894	1305	RC	20	009.031/1966

Table 2: Drill log table. All holes were drilled vertically from topsoil, depths have been rounded to the nearest 0.5m and include soils, clays and penetration into hard-rock (for RC/DDH)

APPENDIX B: ASSAY RESULTS COMPILED

Auger Drilling: All holes were drilled vertically.

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)	EOH Grade
	CH-AG-0015	NSI							
Cachoerinihas	CH-AG-0016	0.0	7.0	7.0	1,969	25%	419	22	1,127
	CH-AG-0017	2.0	6.0	4.0	2,277	23%	430	23	2,121
	CS-AG-0308	0.0	6.0	6.0	2,067	25%	423	27	1,812
	CS-AG-0309	2.0	12.0	10.0	3,698	34%	1105	41	4,168
	CS-AG-0310	0.0	9.0	9.0	1,711	23%	325	23	1,432
	CS-AG-0311	NSI							
	CS-AG-0313	0.0	10.0	10.0	4,736	37%	1462	70	3,753
	incl.	2.0	6.0	4.0	6,069	40%	2029	97	6,126
	CS-AG-0314	0.0	8.0	8.0	4,029	35%	1243	59	3,635
	CS-AG-0316	0.0	6.0	6.0	3,315	20%	513	29	2,276
	CS-AG-0320	0.0	2.0	2.0	1,877	22%	342	18	1,877
Cupim South	CS-AG-0321	0.0	3.0	3.0	2,363	28%	562	25	1,837
	CS-AG-0322	0.0	4.0	4.0	1,388	26%	287	20	1,188
	CS-AG-0329	NSI							
	CS-AG-0331	6.0	8.0	2.0	2,808	19%	437	22	2,808
	CS-AG-0332	NSI							
	CS-AG-0333	0.0	4.0	4.0	5,734	20%	1037	36	6,367
	CS-AG-0335	8.0	10.0	2.0	2,188	16%	286	20	2,188
	CS-AG-0336	0.0	2.0	2.0	2,421	27%	541	27	2,421
	CS-AG-0337	0.0	4.0	4.0	3,665	20%	634	29	4,051
	CS-AG-0339	NSI							

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)	EOH Grade
	CS-AG-0341	0.0	3.0	3.0	2,752	26%	596	34	2,467
	CS-AG-0315	0.0	11.0	11.0	3,247	19%	492	23	4,921
	CS-AG-0319	0.0	3.0	3.0	2,164	22%	398	24	2,130
	CS-AG-0324	0.0	6.0	6.0	1,723	22%	301	19	1,354
	CS-AG-0325	4.0	12.0	8.0	2,792	17%	404	24	3,474
	CS-AG-0326	0.0	12.0	12.0	4,341	32%	1206	53	5,056
	incl.	10.0	12.0	2.0	5,056	35%	1492	74	5,056
	CS-AG-0327	0.0	7.0	7.0	3,771	23%	623	100	4,695
	incl.	4.0	7.0	3.0	4,748	23%	747	153	4,695
	CS-AG-0328	0.0	8.0	8.0	1,916	21%	330	19	1,928
	CS-AG-0334	0.0	5.0	5.0	2,537	20%	435	24	2,499
	CS-AG-0340	0.0	4.0	4.0	1,566	21%	262	15	1,323

Table 3: REE assays from auger drilling hosted within weathered clays, 1000ppm TREO cut-off, up-to 2m dilution. Material such as Hard-Rock excluded as they do not retain any potential lonic Clay recovery properties. DyTb and NdPr grades presented are in Oxide converted form. Figures were rounded to the nearest 0.5m for length and the nearest whole number for 'ppm'.

APPENDIX C: ASSAY RESULTS COMPILED

RC Drilling: All holes were drilled vertically.

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
Northern	CDP-RC-1176	10.0	26.0	16.0	2,094	22%	383	21
Concessions	CDP-RC-1182	2.0	8.0	6.0	2,867	26%	624	25
	CDP-RC-1191	0.0	24.0	24.0	1,907	26%	406	21
	CJ-RC-1178	8.0	10.0	2.0	1,199	22%	209	15
	CJ-RC-1179	2.0	18.0	16.0	2,835	30%	708	44
	incl.	4.0	14.0	10.0	3,538	33%	942	58
	CT-RC-1175	14.0	16.0	2.0	1,370	23%	248	18
	FZ-RC-0170	24.0	44.0	20.0	1,872	28%	427	23
	FZ-RC-0171	10.0	50.0	40.0	2,742	35%	816	40
	incl.	18.0	30.0	12.0	3,829	39%	1,235	59
	FZ-RC-0172	4.0	38.0	34.0	2,988	29%	740	41
	incl.	16.0	26.0	10.0	4,109	37%	1,222	65
	FZ-RC-0173	8.0	36.0	28.0	2,680	26%	571	33
	FZ-RC-1184	2.0	16.0	14.0	2,768	27%	612	33
	FZ-RC-0181	2.0	28.0	26.0	2,895	26%	602	38
	incl.	4.0	20.0	16.0	3,198	26%	665	38
	FZ-RC-0188	2.0	12.0	10.0	3,987	37%	1,217	63
	FZ-RC-0189	6.0	22.0	16.0	2,557	29%	626	38
	FZ-RC-0190	2.0	12.0	10.0	2,223	27%	503	30
	FZ-RC-1173	8.0	24.0	16.0	1,655	24%	320	19
	FZ-RC-1177	20.0	34.0	14.0	1,608	21%	283	17

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
Centro Sul	CNT-RC-1021	12.0	24.0	12.0	2,026	22%	370	31
	CNT-RC-1022	2.0	14.0	12.0	3,299	23%	696	30
	CNT-RC-1029	8.0	18.0	10.0	3,547	28%	785	63
	incl.	12.0	18.0	6.0	3,852	27%	794	88
	CNT-RC-1030	0.0	12.0	12.0	3,461	30%	875	56
	CNT-RC-1037	0.0	4.0	4.0	1,113	15%	135	10
	CNT-RC-1038	14.0	20.0	6.0	3,552	28%	851	42
	CNT-RC-1045	0.0	2.0	2.0	1,411	21%	245	13
	CNT-RC-1046	16.0	22.0	6.0	2,670	19%	426	26
	CNT-RC-1053	6.0	14.0	8.0	2,481	27%	578	24
	CNT-RC-1054	14.0	22.0	8.0	2,113	23%	423	18
	CNT-RC-1061	6.0	12.0	6.0	2,273	28%	565	19
	CNT-RC-1062	10.0	16.0	6.0	2,864	25%	623	21
	CNT-RC-1069	0.0	2.0	2.0	1,576	23%	301	18
	CNT-RC-1070	0.0	4.0	4.0	1,717	18%	276	15
	CNT-RC-1077	0.0	14.0	14.0	3,711	27%	900	34
	incl.	6.0	14.0	8.0	4,496	30%	1,183	42
	CNT-RC-1078	0.0	10.0	10.0	5,273	30%	1,368	47
	CNT-RC-1085	4.0	6.0	2.0	2,186	27%	487	27
	CNT-RC-1086	0.0	8.0	8.0	1,424	23%	253	19
	CNT-RC-1093	0.0	18.0	18.0	2,193	27%	468	36
	CNT-RC-1094	0.0	22.0	22.0	2,298	18%	349	19
	CNT-RC-1101	0.0	18.0	18.0	2,083	24%	411	24
	CNT-RC-1102	2.0	28.0	26.0	2,152	25%	425	34
	CNT-RC-1109	14.0	25.0	11.0	1,287	21%	216	17
	CNT-RC-1110	2.0	8.0	6.0	1,763	21%	310	17
	CNT-RC-1117	4.0	8.0	4.0	1,794	21%	298	25
	CNT-RC-1118	0.0	2.0	2.0	1,909	24%	347	33
	CNT-RC-1120	0.0	38.0	38.0	2,517	19%	430	25
	incl.	26.0	36.0	10.0	4,486	24%	905	47
	CNT-RC-1121	14.0	32.0	18.0	5,490	26%	1,300	53
	incl.	24.0	32.0	8.0	6,978	31%	1,758	76
	CNT-RC-1122	20.0	32.0	12.0	2,852	20%	478	22
	CNT-RC-1123	6.0	20.0	14.0	4,079	23%	792	27
	CNT-RC-1119	0.0	4.0	4.0	1,902	18%	287	18
	CNT-RC-1130	NSI						
	CNT-RC-1131	0.0	8.0	8.0	2,202	22%	405	19
	CNT-RC-1132	NSI						
	CNT-RC-1133	2.0	12.0	10.0	2,830	27%	642	33
	CNT-RC-1134	10.0	14.0	4.0	3,241	27%	736	38
Cupim South	CS-RC-0278	20.0	34.0	14.0	2,969	24%	600	29

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
	CS-RC-0279	14.0	46.0	32.0	3,364	25%	749	51
	incl.	34.0	40.0	6.0	6,732	35%	1,965	99
	CS-RC-0280	2.0	34.0	32.0	2,474	20%	388	25
	CS-RC-0281	0.0	18.0	18.0	4,197	11%	412	17
	CS-RC-0284	0.0	22.0	22.0	4,532	15%	537	54
	CS-RC-0285	6.0	50.0	44.0	3,092	12%	330	16
	incl.	8.0	20.0	12.0	3,737	14%	420	28
	CS-RC-0286	4.0	16.0	12.0	3,706	30%	1,020	39
	incl.	10.0	14.0	4.0	6,243	35%	1,933	68
	CS-RC-0287	0.0	2.0	2.0	1,922	18%	286	15
	CS-RC-0290	0.0	26.0	26.0	2,387	23%	472	25
	CS-RC-0292	0.0	4.0	4.0	3,667	33%	971	62
	CS-RC-0293	0.0	8.0	8.0	1,507	24%	302	17
	CS-RC-0295	0.0	2.0	2.0	2,447	22%	437	27
	CS-RC-0299	0.0	4.0	4.0	1,858	24%	371	21
	CS-RC-0308	0.0	6.0	6.0	2,002	22%	358	22
	CS-RC-0309	0.0	2.0	2.0	1,841	26%	387	21
	CS-RC-0310	0.0	8.0	8.0	8,571	35%	2,468	122
	incl.	2.0	8.0	6.0	9,146	35%	2,623	143
	CS-RC-0317	0.0	12.0	12.0	4,353	28%	1,067	44
	CS-RC-0318	2.0	22.0	20.0	4,402	23%	908	56
	incl.	6.0	14.0	8.0	7,204	29%	1,698	87
	CS-RC-0328	0.0	4.0	4.0	2,072	22%	371	19
	CS-RC-0376	0.0	12.0	12.0	4,354	36%	1,368	49
	CS-RC-0377	0.0	18.0	18.0	4,080	32%	1,139	43
	incl.	2.0	12.0	10.0	4,702	34%	1,409	46
	CS-RC-0411	0.0	6.0	6.0	1,819	20%	297	17
	CS-RC-0412	0.0	42.0	42.0	4,020	30%	1,185	61
	incl.	28.0	40.0	12.0	7,260	48%	<i>2,7</i> 93	145
	CS-RC-0421	0.0	4.0	4.0	1,947	22%	348	17
	CS-RC-0422	0.0	2.0	2.0	1,401	22%	251	18
	CS-RC-0440	0.0	2.0	2.0	2,212	22%	411	20
	CS-RC-0441	6.0	18.0	12.0	2,685	24%	576	24
	CS-RC-0442	0.0	12.0	12.0	2,366	17%	319	21
	CS-RC-0451	0.0	32.0	32.0	4,563	17%	670	41
	incl.	20.0	26.0	6.0	7,852	22%	1,532	97
	CS-RC-0452	0.0	4.0	4.0	2,181	21%	381	20
	CS-RC-0468	4.0	14.0	10.0	3,161	27%	746	38
	CS-RC-0469	2.0	10.0	8.0	2,771	21%	496	24
	CS-RC-0470	0.0	12.0	12.0	4,872	37%	1,521	61
	CS-RC-0472	0.0	28.0	28.0	3,971	20%	623	26

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
	CS-RC-0473	0.0	18.0	18.0	4,477	23%	893	49
	incl.	10.0	16.0	6.0	5,772	27%	1,306	81
	CS-RC-0482	0.0	6.0	6.0	1,940	30%	498	25
	CS-RC-0483	NSI						
	CS-RC-0498	22.0	24.0	2.0	1,828	36%	558	25
	CS-RC-0499	10.0	18.0	8.0	2,611	25%	591	29
	CS-RC-0500	0.0	10.0	10.0	4,409	25%	930	40
	CS-RC-0501	6.0	32.0	26.0	3,794	25%	850	37
	incl.	22.0	30.0	8.0	6,126	32%	1,624	69
	CS-RC-0507	0.0	12.0	12.0	1,822	23%	330	27
	CS-RC-0520	0.0	8.0	8.0	1,256	18%	181	12
	CS-RC-0521	0.0	10.0	10.0	1,521	22%	278	14
	CS-RC-0522	2.0	12.0	10.0	4,416	36%	1,369	36
	CS-RC-0529	0.0	8.0	8.0	4,930	28%	1,221	59
	CS-RC-0531	0.0	8.0	8.0	3,649	29%	888	64
	incl.	2.0	6.0	4.0	5,031	34%	1,352	93
	CS-RC-0532	0.0	4.0	4.0	1,897	23%	359	21
	CS-RC-0534	0.0	6.0	6.0	1,657	24%	325	19
	CS-RC-0535	0.0	6.0	6.0	2,001	25%	401	29
	CS-RC-0537	0.0	6.0	6.0	2,899	23%	541	53
	CS-RC-0540	0.0	40.0	40.0	3,656	12%	352	24
	incl.	20.0	36.0	16.0	3,988	13%	421	25
	CS-RC-0541	0.0	50.0	50.0	8,462	10%	631	33
	incl.	0.0	14.0	14.0	15,941	5%	732	58
	CS-RC-0542	0.0	26.0	26.0	3,868	15%	456	37
	incl.	6.0	16.0	10.0	5,181	13%	537	49
	CS-RC-0543	0.0	14.0	14.0	2,230	26%	522	36
	CS-RC-0545	4.0	16.0	12.0	2,864	25%	681	23
	incl.	10.0	16.0	6.0	3,552	33%	1,043	27
	CS-RC-0546	4.0	10.0	6.0	2,021	18%	279	25
	CS-RC-0547	0.0	4.0	4.0	1,765	24%	343	19
	CS-RC-0548	0.0	4.0	4.0	1,337	23%	246	14
	CS-RC-0549	0.0	14.0	14.0	2,382	24%	472	28
	CS-RC-0551	0.0	12.0	12.0	2,286	23%	454	34
	CS-RC-0552	2.0	22.0	20.0	4,502	30%	1,230	40
	incl.	10.0	18.0	8.0	5,695	34%	1,711	52
	CS-RC-0553	4.0	30.0	26.0	3,509	24%	688	31
	incl.	6.0	16.0	10.0	4,275	23%	849	34
	CS-RC-0554	26.0	36.0	10.0	1,967	26%	437	24
	CS-RC-0555	4.0	22.0	18.0	2,070	19%	316	23
	CS-RC-0556	6.0	14.0	8.0	2,903	28%	709	29

Prospect	Hole	From (m)	To (m)	Length (m)	TREO (ppm)	MREO %	Nd-Pr (ppm)	Dy-Tb (ppm)
	CS-RC-0557	2.0	12.0	10.0	3,534	30%	866	53
	incl.	2.0	8.0	6.0	4,076	31%	1,051	59
	CS-RC-0558	4.0	42.0	38.0	3,586	22%	748	25
	incl.	18.0	32.0	14.0	5,109	28%	1,312	35
	CS-RC-0559	2.0	20.0	18.0	3,055	18%	458	19
	incl.	14.0	18.0	4.0	4,248	19%	680	22
	CS-RC-0561	10.0	26.0	16.0	3,164	23%	626	25
	incl.	14.0	20.0	6.0	5,310	25%	1,147	27
	CS-RC-0562	12.0	36.0	24.0	4,106	28%	1,041	49
	incl.	20.0	30.0	10.0	5,333	34%	1,608	69
	CS-RC-0563	0.0	42.0	42.0	2,438	17%	351	18
	CS-RC-0564	2.0	6.0	4.0	2,416	27%	534	31
	CS-RC-0565	28.0	42.0	14.0	2,078	23%	375	33
	CS-RC-0566	8.0	20.0	12.0	2,948	29%	714	39
	incl.	12.0	18.0	6.0	3,749	30%	935	50
	CS-RC-0567	14.0	26.0	12.0	3,444	31%	968	35
	incl.	18.0	24.0	6.0	4,516	35%	1,371	47
	CS-RC-0568	0.0	2.0	2.0	1,668	21%	298	12
	CS-RC-0569	16.0	24.0	8.0	2,351	15%	283	16
	CS-RC-0570	0.0	10.0	10.0	4,770	35%	1,449	59
	incl.	0.0	6.0	6.0	6,176	38%	1,958	71
	CS-RC-0571	12.0	32.0	20.0	3,609	29%	940	43
	incl.	16.0	24.0	8.0	5,172	37%	1,587	68
	CS-RC-0572	2.0	6.0	4.0	2,555	18%	376	25
	CS-RC-0573	8.0	44.0	36.0	5,021	16%	657	23
	incl.	8.0	20.0	12.0	6,316	18%	883	31
	CS-RC-0574	2.0	6.0	4.0	1,375	23%	263	13
	CS-RC-0575	0.0	10.0	10.0	2,493	21%	395	41
	CS-RC-0576	6.0	34.0	28.0	2,819	18%	386	31
	incl.	16.0	22.0	6.0	5,863	17%	<i>7</i> 56	62
	CS-RC-0577	0.0	8.0	8.0	2,868	25%	588	33
	CS-RC-0580	0.0	8.0	8.0	3,445	16%	444	34
	CS-RC-0581	0.0	14.0	14.0	2,029	22%	393	17
	CS-RC-0582	0.0	2.0	2.0	1,278	18%	186	12
	CS-RC-1169	2.0	41.0	39.0	2,441	26%	508	30
	incl.	8.0	26.0	18.0	2,727	23%	514	32
	CS-RC-1183	4.0	20.0	16.0	3,553	33%	1,031	43
	incl.	10.0	18.0	8.0	4,694	36%	1,442	56

Table 4: REE assays from RC drilling hosted within weathered clays, 1,000ppm TREO cut-off, up to 2m dilution. RC denotes Adapted Reverse Circulation Drill Holes. The DyTb and NdPr grades presented are in Oxide-converted form. Figures were rounded to the nearest 0.5m for length and the nearest whole number for 'ppm'.

APPENDIX D: DRILL LOCATIONS OF HOLES REPORTED IN THIS ANNOUNCEMENT

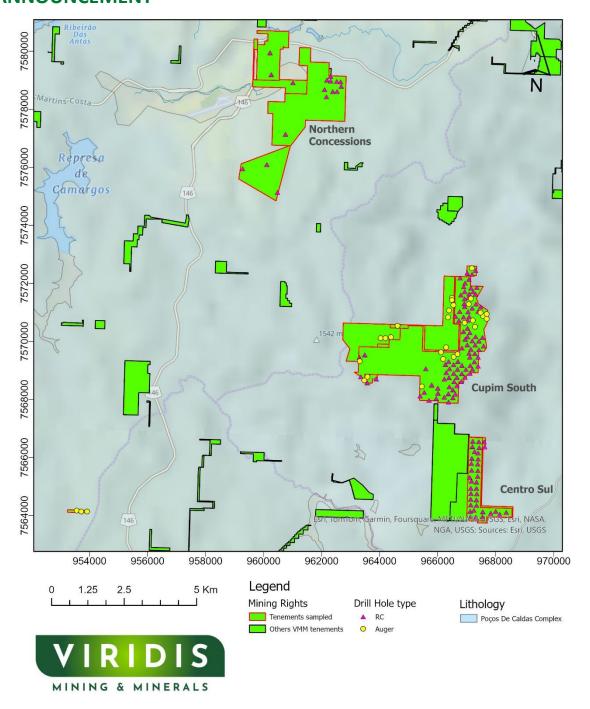


Figure 5: Location of all drill holes reported within this announcement.

Appendix E: JORC Code, 2012 Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g.	The areas were sampled using the powered auger and Reverse Circulation drills.
techniques	cut channels, random chips, or	Auger drill holes:
	specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc).	 Each drill site was cleaned, removing leaves and roots from the surface. Tarps were placed on either side of the hole, and samples of soil and saprolite were collected every 2m in advance. They were logged, photographed, and subsequently bagged in plastic bags, and each sample was identified.
	These examples should not be taken as limiting the broad meaning of	Reverse Circulation drill holes:
	sampling.	Samples were collected and identified from every 2 metres of the RC rig.
	 Include reference to measures taken to ensure sample retrospectivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed 	All samples were sent for preparation to the contracted laboratories, ALS or SGS, in Vespasiano-MG, Brazil.
Drilling techniques	 Information. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Powered Auger: • Powered auger drilling employed a motorised post-hole digger with a 2 to 4-inch diameter. All holes were drilled vertically. The maximum depth achieved was 12 metres, the minimum was 2 metres, and the average was 6.8 metres, providing the hole did not encounter fragments of rocks/boulders within the weathered profile and/or excessive water. Final depths were recorded according to the length of rods in the hole.
		Reverse Circulation:
		RC drilling was conducted using an Atlas Copco EXPLORAC R50 RC Machine configured with a 4.75-inch diameter. The drill site preparation included clearing, levelling the ground, and delineating the drilling area. The RC rig conducted drilling within each hole and terminated upon intercepting transitional material or fresh rock. RC drilling was used predominantly in a systematic manner, forming a grid with 200m spacing. Samples were collected from every 2 metres of the RC rig and sent for preparation to the contracted laboratories, ALS or SGS.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures are taken to maximise sample recovery and ensure the representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Estimated visually based on the sample recovered per 2m interval drilled. Recoveries ranged from 82% to 100%. If estimates dropped below 75% recovery in a 2m interval, the field crew aborted the drill hole and redrilled the hole. Reverse Circulation recovery: Every 2m sample is collected in plastic buckets and weighed. Each sample averages approximately 30kg, which is considered acceptable given the hole diameter and the specific density of the material. 99% of the samples had more than 85% recovery.
Logging	Have core and chip samples been geologically and geotechnically logged to a level of detail to support appropriate mineral resource	Geological descriptions are made using a tablet with the MX Deposit system, which directly connects the geological descriptions to the database in the MX Deposit system managed by the Viridis geologist team.

Criteria	JORC Code explanation	Commentary		
	estimation, mining studies, and metallurgical studies? • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • The total length and percentage of the relevant intersections logged.	 Material is described in a drilling bulletin every 2m and photographed. The description is made according to tactile-visual characteristics, such as material (soil, colluvium, saprolite, rock fragments), material colour, predominant particle size, presence of moisture, indicator minerals, and extra observations. The chip trays of all drilled holes have a digital photographic record and are retained at the core facility in Poços de Caldas. All drill holes are photographed and stored at the core facility in Pocos de Caldas. Reverse Circulation drilling: A geologist logs the material at the drill rig or core facility. Logging focuses on the soil (humic) horizon, saprolite/clay zones, and transition boundaries. Other parameters recorded include grain size, texture, and colour, which can help identify the parent rock before weathering. Due to the nature of the drilling, logging is done at 2m intervals. 2m samples weighing approximately 30kg are collected in a bucket and presented for sampling and logging. The chip trays of all drilled holes have a digital photographic record and are retained at the core facility in Poços de Caldas. 		
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Collection and Labeling: Samples of clayey soil, regolith, and saprolite were collected at 2m intervals, placed into clear plastic bags, sealed, and labelled. Weighing and Lab Analysis: The samples were weighed and sent to SGS Geosol for analysis. Sample Preparation (PRP102_E): Upon arrival at the lab, samples were dried at 105°C, crushed to 75% less than 3 mm, homogenised, and passed through a Jones riffle splitter (250g to 300g). This aliquot was then pulverised in a steel mill until over 95% had a size of 150 microns. Analysis (IMS95A): Samples were fused with lithium metaborate and read using the ICP-MS method to determine the rare earth elements assays. Reverse Circulation: Collection and Labeling: Samples of clayey soil, regolith, saprolite, and transitional material were collected at 2m intervals, placed in transparent plastic bags, sealed, and labelled. Weighing and Lab Analysis: The samples were weighed and sent for analysis at the SGS laboratory. Sample Preparation (PRP102_E): Upon arrival at the lab, samples were dried at 105°C, crushed to 75% less than 3 mm, homogenised, and passed through a Jones riffle splitter (250g to 300g). This aliquot was then pulverised in a steel mill until over 95% had a size of 150 microns. Analysis (IMS95A): Samples were fused with lithium metaborate and read using the ICP-MS method to determine the rare earth elements assays. 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Auger and RC samples were analysed at the SGS Geosol laboratory in batches of approximately 40 samples containing control samples (duplicate, blank, and standards). The sample preparation method employed was PRP102_E: the samples were dried at 105° C, crushed to 75% less than 3 mm, homogenised, and passed through a Jones riffle splitter (250g to 300g). This aliquot was then pulverised in a steel mill until over 95% had a size of 150 microns. • ICP95A - Determination by Fusion with Lithium Metaborate - ICP MS for Major Oxides. Some elements and their detection limits include: Al $_2O_3$ 0,01 - 75 (%) Ba $10 - 100,000$ (ppm) Fe $_2O_3$ 0,01 - 75 (%) K_2O 0,01 - 25 (%) Na $_2O$ 0,01 - 30 (%) P_2O_5 0,01 - 25 (%) TiO $_2$ 0,01 - 25 (%) V 5 - 10,000 (ppm) CaO 0,01 - 60 (%) Cr_2O_3 0,01 - 10 (%) MgO 0,01 - 30 (%) MnO 0,01 - 10 (%) SiO $_2$ 0,01 - 90 (%) Sr $10 - 100,000$ (ppm)		

Criteria	JORC Code explanation	Comm	entary			
			Zn	5 – 10,000 (ppm)	Zr	10 – 100,000 (ppm)
		•		: Loss on Ignition (LO		mined by calcining the sample at
		•	Mass S _t	: Lithium Metaborat Dectrometry (ICP MS) was emplo ion limits for	lowed by Inductively Coupled Plasma byed to determine concentrations of r some elements include: by 0.05 – 1,000 (ppm)
			Gd	0.05 – 1,000 (ppm) н	lo 0.05 – 1,000 (ppm)
			Nd	0.1 – 10,000 (ppm		
			Th	0.1 – 10,000 (ppm	,	m 0.05 – 1,000 (ppm)
			Yb	0.1 – 1,000 (ppm)	E	,
			Er	0.05 – 1,000 (ppm) Lu	u 0.05 – 1,000 (ppm)
			La	0.1 – 10,000 (ppm) TI	b 0.05 – 1,000 (ppm)
			Sm	0.1 – 1,000 (ppm)	Υ	0.05 – 1,0000 (ppm)
			U	0.05 – 10,000 (ppi	n)	
		accura	cy and preci	, ,	a. Internally,	o control procedures, ensuring the the the laboratory uses duplicate
Verification of sampling	The verification of significant intersections by either independent		Significant in company pe		yet been ind	dependently verified by alternative
and assaying	 or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, and data storage (physical and 		entry proced discrepancie	ures. Data verifications of the second second results of the secon	on procedure ectified. All (protocol with standardised data es ensure that any anomalies or data is stored in physical forms, such atabases with regular backups.
	electronic) protocols. • Discuss any adjustment to assay		 The only adjustments to the data were made- transforming the eler into the oxide values. The conversion factors used are included in th 			
	data.			Element O	xide	Factor
				Се	CeO ₂	1.2284
				La	La₂O₃	1.1728
				Sm	Sm ₂ O ₃	1.1596
				Nd	Nd_2O_3	1.1664
				Pr	Pr ₆ O ₁₁	1.2082
				Dy	Dy_2O_3	1.1477
				Eu	Eu ₂ O ₃	1.1579
				Y	Y ₂ O ₃	1.2699
				Tb	Tb4O7	1.1762
				Gd	Gd ₂ O ₃	1.1526
				Ho	Ho ₂ O ₃	1.1455
				Er _	Er ₂ O ₃	1.1435
				Tm	Tm ₂ O ₃	1.1421
				Yb ,	Yb₂O₃	1.1387
			The TDEO /T	Lu	Lu ₂ O ₃	1.1371
			oxides: CeO_2 Sm_2O_3 , Tb_4O the following Tb_4O_7 . And for	, Dy ₂ O ₃ , Er ₂ O ₃ , Eu ₂ O ₃ , 7, Tm ₂ O ₃ , Y ₂ O ₃ , Yb ₂ O ₃ 7 oxides were conside	Gd ₂ O ₃ , Ho ₂ o . For the MR ered: Dy ₂ O ₃ , Rare Earth O	rmined by the sum of the following O3, La ₂ O3, Lu ₂ O3, Nd ₂ O3, Pr ₆ O11, REO (Magnetic Rare Earth Oxides), Gd ₂ O ₃ , Ho ₂ O ₃ , Nd ₂ O ₃ , Pr ₆ O11, Sm ₂ O ₃ , Oxides) we consider: Dy ₂ O ₃ , Er ₂ O ₃ , 2 _{O3} , Y ₂ O ₃ and Yb ₂ O ₃ .
		l l		rom auger drilling or EO cut-off and 2m di		dix were reported within clays with
		I	REO assays o		reported w	oithin clays with 1,000ppm TREO cut-
		•	Grades (ppm) were rounded to th	e nearest w	hole figure, and lengths (m) were

Criteria	JORC Code explanation	Commentary
		rounded to the nearest 0.5m.
		 For some samples exceeding 1000 ppm, over-limit analysis for Nd and Pr (praseodymium) was necessary.
Location of	Accuracy and quality of surveys used	Auger and RC collars
data points	to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 The positioning of the drill has been achieved with high precision using a GPS RTK (Real-Time Kinematic) system CHC i73. This sophisticated GPS provides real-time corrections. The horizontal accuracy in RTK is 8 mm + 1 ppm RMS, and the Vertical accuracy is 15 mm + 1 ppm RMS, with a startup time of under 10 seconds and a Startup Reliability greater than 99.9%. The project's grid system is based on the SIRGAS 2000 UTM coordinate system. This universal grid system facilitates consistent data interpretation and integration with other geospatial datasets. Benchmark and control points were established within the project area to ensure the quality and reliability of the topographic location data.
Data	Data spacing for reporting of	Auger drilling collar
spacing and distribution	spacing Exploration Results. and Whether the data spacing and	 The auger drilling was conducted on a regular grid with 200 x 200 metres spacing. This grid spacing provides a detailed exploration framework suitable for the area of interest. It aims to assist in defining our initial resource and offer a foundational understanding of the geological and grade continuity in the targeted zone. Auger samples were collected at 2.0m intervals. RC drilling collars
		 Reverse circulation (RC) drilling is carried out on a structured grid with 200 x 200 metres spacing. This grid pattern is tailored to facilitate a comprehensive exploration strategy suitable for the designated area, with the primary goal of enhancing our understanding of the mineral distribution and geological consistency across the target zone. The broader spacing of 200 x 200 metres for the RC drilling is strategically chosen to cover a larger area efficiently while still providing valuable insights into the potential mineralisation patterns and geological features. RC samples were collected at 2.00m composites. No sample compositing has been applied to report the exploration results. Each sample is treated and reported individually to maintain the highest level of detail and accuracy.
Orientation of data about geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of crucial mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 All drill holes were vertically oriented, which is deemed appropriate given the nature of the deposit. The deposit in question is a supergene deposit with a much larger areal extent than the thickness of the mineralised body. This type of deposit tends to be horizontally extensive with relatively consistent thickness. Given the vast area extent of the deposit and its relatively consistent thickness, vertical drilling is best suited to achieve unbiased sampling. This orientation allows for consistent intersecting of the horizontal mineralised zones and provides a representative view of the overall geology and mineralisation. There is no indication that drilling orientation has introduced any sampling bias about the crucial mineralised structures. The drilling orientation aligns well with the deposit's known geology, ensuring accurate representation and unbiased sampling of the mineralised zones. Any potential bias due to drilling orientation is considered negligible in this context.
Sample security	The measures taken to ensure sample security.	 All samples were collected by field personnel and carefully packed in labelled plastic bags. Once packaged, the samples were transported directly to SGS- GEOSOL, Brazil. The samples were secured during transportation to ensure no tampering, contamination, or loss. Chain of custody was maintained from the field to the laboratory, with proper documentation accompanying each batch of samples to ensure transparency and traceability of the entire sampling process. Using a reputable laboratory further reinforces the sample security and integrity of the assay results.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Two site visits were carried out by Volodymyr Myadzel from BNA Mining Solutions, one on 18-19 March 2024 and the other on 25-26 October 2024, to inspect drilling and sampling procedures, verify survey methods, inspect the storage shed, verify geological records, review QAQC procedures and review the geologic model. He concluded in both visits that the procedures applied for the exploration work follow the best practices in the mining industry.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section).

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership, including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All samples were acquired from tenements that Viridis Mining and Minerals Ltd owned. The sampled tenements are highlighted in Appendix D's map and Appendix A's collar table.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical exploration in the area comprises notable endeavors by various entities: The Colossus project is geologically intertwined with the Caldeira Project, sharing the same geological context. Varginha Mineração previously undertook regional drilling exercises, utilising a powered auger drill rig to produce open holes. This historical data provides essential context and complements current exploration efforts in understanding the region's geological potential.
Geology	Deposit type, geological setting and style of mineralisation.	 The geology of the region where the deposit is located can be summarised as follows: Deposit Nature: The deposit under study is recognised as an lonic Adsorption Clay Rare Earth Element (REE) deposit. Its spatial positioning is within and adjacent to the renowned Poços De Caldas Alkaline massif complex. Poços de Caldas Complex: This geological entity stands as one of the most extensive alkaline massif intrusions globally, enveloping an area of roughly 800 km². It stretches across the Brazilian states of São Paulo and Minas Gerais. From a macro perspective, it portrays a near-circular structure with an approximate diameter of 30 km. This formation resembles a collapsed caldera. Delving deeper, the dominant rocks within the alkaline complex encompass phonolite, nepheline syenites, sodalite syenites, and many volcanic rocks. This diverse geological setting has played a crucial role in dictating mineral occurrences and potential mining prospects. REE Mineralisation: The specific REE mineralisation highlighted in this disclosure leans towards the lonic Clay type. Evidence pointing to this is mainly derived from its occurrence within the saprolite/clay zone of the weathering profile of the Alkaline granite basement. The enriched MREO (Medium Rare Earth Oxides) composition also attests to this classification. Relevant Additional Information: The lonic Adsorption Clay Rare Earth Element deposits, particularly in regions like Poços de Caldas, have recently gained significant attention due to the global demand surge for rare earths, have vital applications in modern technologies such as renewable energy systems, electronics, and defence apparatus. The ability of these deposits to offer relatively environmentally friendly mining prospects compared to traditional hard rock REE mines further enhances their appeal. Given the strategic importance of REEs in modern industries, a thorough understanding and exploration of such geologies becomes paramou
Drill hole Information	A summary of all information material to the understanding of the exploration results, including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	Auger Drilling Total number of holes: 31 Total meterage drilled: 210.5 m RC Drilling: Total number of holes: 144 Total meterage drilled: 4,132 m

Criteria	JORC Code explanation	Commentary
	 Dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Presented in Appendix A, B and C of this Report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Data collected for this project includes surface geochemical analyses, geological mapping, and auger and RC sample results. Data were compiled without selective exclusion. All analytical methods and aggregation were done according to industry best practices, as detailed in previous discussions.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Given the nature of the deposit, which is a supergene deposit with a much larger areal extent than its thickness, the vertical drilling orientation is suitable for accurately representing the mineralised zones. All drill holes are vertical and are appropriate for the deposit type, ensuring unbiased sampling of the mineralisation. Due to the mineralisation's geometry and the drill holes' vertical orientation, downhole lengths can be considered close representations of the true widths of the mineralised zones. However, further studies would be required for absolute precision. In cases where there might be a discrepancy between downhole lengths and true widths, it should be noted that "downhole length, true width not known."
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The data presented in this report helps readers better understand the information. Various diagrams and supplementary information are included in the document, enhancing the clarity and accessibility of the geological findings and exploration results.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The data presented in this report strives to provide a transparent and holistic view of the exploration activities and findings. All the information, ranging from sampling techniques, geological context, prior exploration work, and assay results, has been reported comprehensively. Where relevant, cross-references to previous announcements have been provided to ensure continuity and clarity. Including diagrams, such as geological maps and tables, supports a more in-depth understanding of the data. It's noteworthy to mention that while positive results have been highlighted, the nature of the samples, particularly their origin from either saprolitic clays or bauxite, has been distinctly reported to ensure a balanced view. This report faithfully represents the exploration activities and findings without undue bias or omission.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no additional substantive exploration data to report currently.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	With all assays now received for the updated resource estimate, BNA Consultoria has commenced updating the Colossus resource model.

Criteria	JORC Code explanation	Commentary
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 In parallel, Viridis and ANSTO continue to make significant progress on the MREC testing program from its Southern Concessions. Following the impressive initial leaching results, Viridis is well placed to replicate the industry-leading recoveries at its Northern Concessions maiden MREC, which returned 76% MREO recoveries from ore to final MREC1. Subsequently, upon completion of Southern Concessions' MREC and resource upgrade, the Company will complete mine planning targeting the high-grade areas in the Northern and Southern Concessions. Once complete, the Company anticipates finalisation of its scoping study while continuing to progress the Environmental Impact Assessment, a key milestone in its permitting process.

