Kaoko Drilling Results consistent with soil geochemistry Analytical results have now been received for samples from the RC drilling campaign recently completed at the Kaoko lithium project, located in northern Namibia. A large surface lithium geochemical anomaly covering 120km² was tested with twenty-eight RC drill holes. The RC holes were drilled on 100m spacings across three north-south orientated lines spaced ~400m apart (Figure 1) to test a 1km strike zone within the anomalous target area. 32% of drill samples returned anomalous lithium values above 100ppm Li. The highest value of 218ppm Li was returned from KARC002 from 33-37m down hole. The analytical results confirm that the sedimentary rocks intersected in drilling contain elevated lithium mineralisation. This suggests that the lithium mineralisation may have been introduced by hydrothermal fluids entering the water column from a volcanic source during sedimentation. The lithium concentrations are considered economically low level, and as such the Company will now review the existing copper targets and consider its options for the project. Figure 1. Location of the Ohevanga lithium anomaly and RC drill collars. ¹ 2024. Tyumentseva *et al.* New genetic type of lithium mineralization. Solid Earth Sciences Journal. Vol 9, Issue 3. For further detailed information refer to Appendix 1 JORC tables, and CAZ:ASX announcement dated 7 October 2024. Table 1. RC drillhole locations, coordinates in WGS84, Zone 33S. | Hole ID | North | East | Dip | Depth | |---------|---------|--------|-----|-------| | KARC001 | 8061800 | 399186 | -90 | 43 | | KARC002 | 8061906 | 399195 | -90 | 43 | | KARC003 | 8061998 | 399182 | -90 | 43 | | KARC004 | 8062117 | 399193 | -90 | 43 | | KARC005 | 8062205 | 399196 | -90 | 43 | | KARC006 | 8062305 | 399196 | -90 | 43 | | KARC007 | 8062406 | 399200 | -90 | 79 | | KARC008 | 8062491 | 399197 | -90 | 43 | | KARC009 | 8061906 | 399578 | -90 | 43 | | KARC010 | 8062009 | 399606 | -90 | 43 | | KARC011 | 8062109 | 399593 | -90 | 43 | | KARC012 | 8062208 | 399594 | -90 | 43 | | KARC013 | 8062306 | 399594 | -90 | 43 | | KARC014 | 8062408 | 399592 | -90 | 43 | | KARC015 | 8062497 | 399585 | -90 | 85 | | KARC016 | 8062605 | 399594 | -90 | 43 | | KARC017 | 8062710 | 399581 | -90 | 43 | | KARC018 | 8062809 | 399584 | -90 | 43 | | KARC019 | 8062111 | 400000 | -90 | 43 | | KARC020 | 8062207 | 399996 | -90 | 43 | | KARC021 | 8062301 | 400002 | -90 | 43 | | KARC022 | 8062355 | 399994 | -90 | 43 | | KARC023 | 8062515 | 400002 | -90 | 79 | | KARC024 | 8062623 | 399989 | -90 | 43 | | KARC025 | 8062710 | 400000 | -90 | 43 | | KARC026 | 8062782 | 399999 | -90 | 43 | | KARC027 | 8062907 | 399997 | -90 | 43 | | KARC028 | 8063010 | 399997 | -90 | 43 | ## Appendix 1 JORC Code, 2012 Edition ## Section 1 Sampling Techniques and Data | Criteria | JORC Code explanation | Commentary | |--------------------------|---|---| | Sampling techniques | Nature and quality of sampling These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. | The Ohevanga Lithium prospect at the Kaoko Project, Namibia has been sampled using Reverse Circulation (RC) drill holes. Holes were drilled on 400m x 100m grid spacings angled -90° designed to test stratigraphy to ~50m depth. A total of 350 samples were collected. Collar positions were located with a handheld GPS with an expected accuracy of ± 3m. RC drilling was used to obtain 1 m samples. Composite samples were then collected by spear sampling 2 or 4 consecutive metres to make up a total weight of approximately 3kg per sample submitted. Samples were prepared at ALS Laboratories in Okahandja Namibia, each 3kg sample was crushed then pulverised to produce a 250 g split. Samples were then shipped to ALS Laboratories in Galway Ireland for analysis by ICP MS for 41 elements using a 0.5g charge | | Drilling
techniques | • Drill type | All drilling was RC with a 5 ¾ inch
face sampling hammer | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. | Sample recovery was estimated visually and by using a spring scale to check sample weights were sufficient. Over 95% of samples were considered to have excellent recovery and all samples were dry. A trailer mounted cone splitter was | | | Whether a relationship exists
between sample recovery and
grade and whether sample bias
may have occurred due to | used to deliver representative samples for each metre drilled Over 95% of RC sample recoveries | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | preferential loss/gain of fine/coarse
material. | were good, no bias is expected for all drilling completed. | | Logging | Whether core and chip samples
have been geologically and
geotechnically logged to a level of
detail to support appropriate Mineral
Resource estimation, mining studies
and metallurgical studies. | Drill chips were geologically logged
on site by consulting geologists
following the CAZ logging scheme. With all recorded information
loaded to a database and
validated. | | | Whether logging is qualitative or
quantitative in nature. Core (or
costean, channel, etc) photography. The total length and percentage of | Logging is qualitative with colour,
lithology, texture, mineralogy,
mineralization, alteration and other
features. | | | the relevant intersections logged. | All drill holes were logged in full. | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | • 1 metre RC drill samples fall through a cone splitter directly below the trailer mounted cyclone. A 2-3 kg sample is collected in a prenumbered bag and lined up in rows with the corresponding bulk 1 metre sample pile collected by a bag. Samples are composited to 2m or 4m intervals with a PVC spear at the discretion of the logging geologist | | | For all sample types, the nature,
quality and appropriateness of the
sample preparation technique. | All drill samples are dried, crushed
and pulverised to achieve an
average of 85% passing 75µm and
all samples are considered
appropriate for this technique | | | Quality control procedures adopted
for all sub-sampling stages to
maximise representivity of samples. | Duplicate field sample composites
were collected in RC drilling at the
rate of 1:25. | | | Measures taken to ensure that the
sampling is representative of the in
situ material collected, including for
instance results for field
duplicate/second-half sampling. | Appropriate sampling protocols
were used during RC composite
sampling. This included spear
collection at various angles through
bulk 1 metre sample piles to
maximize representivity. | | | Whether sample sizes are
appropriate to the grain size of the | Sample sizes (2kg to 3kg) are
considered to be of a sufficient size
to accurately represent any | | Criteria | JORC Code explanation | Commentary | |--|--|--| | | material being sampled. | potential mineralisation | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Samples were sent to the sample preparation lab in Okahandja for crushing and grinding. Sample pulps were then forwarded to the ALS laboratory in Ireland for analysis. All RC samples were analysed by ICP-MS for 41 elements. NA Field duplicate samples and standards were submitted with each sample batch at a rate of 1:25. The laboratory inserted standards, blanks, and duplicate samples. Results are within tolerable limits. | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | All data has been checked internally by senior CAZ staff No holes were twinned Field data is collected using an excel spreadsheet with internal validation. Validation checks are also completed when loading the data to a company MX Deposit database. No adjustments were made to assay data | | Location of data points | Accuracy and quality of surveys
used to locate drill holes (collar and
down-hole surveys), trenches, mine
workings and other locations used in
Mineral Resource estimation. | Collar positions were located with a
handheld GPS (±3m). No downhole
surveys were taken due to the holes
being shallow, vertical and first
pass. | | | Specification of the grid system used. | All co-ordinates collected are in
UTM WGS84 zone 33S. | | | Quality and adequacy of | • The topographic surface is | | Criteria | JORC Code explanation | Commentary | |---|--|--| | | topographic control. | determined from a digital elevation models and GPS survey data. | | Data
spacing and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Drill lines were spaced approximately 400 metres apart along strike and drill holes were spaced 100m across strike. The data spacing is considered sufficient first pass test for a large anomaly which spans over 120km² No compositing has been undertaken on multiple drill holes | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Drilling vertical holes were used to test the concentrations of potential mineralisation to a set depth below surface within known stratigraphy. It is not believed that drilling orientation has introduced a sampling bias. | | Sample
security | The measures taken to ensure
sample security. | Samples were securely sealed and stored onsite, until delivery to the laboratories. Chain of custody consignment notes and sample submission forms were sent with the samples. Sample submission forms were also emailed to the laboratory and used to keep track of the sample batches. | | Audits or reviews | The results of any audits or reviews
of sampling techniques and data. | No external audits on sampling
techniques and data have been
completed. A review of QAQC data
has been carried out by company
geologists. | ## Section 2 Reporting of Exploration Results | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Kaoko critical minerals project EPL6667 is located in northern Namibia. The tenement is held in joint venture with Cazaly 95% and local geological company KDN Geo Consulting CC 5 %. The tenement was renewed for a 2-year term to 8 June 2025. Cazaly has the required Environmental Clearance Certificate for EPL6667 to allow for ongoing exploration activities. There are no known impediments. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Rio Tinto Namibia Pty Ltd conducted work in the area in 1993-95 and drilled Cu/Zn mineralization in the area south of the Kaoko Project now held by Celsius Resources Ltd. Regional geochemical sampling was conducted by Kunene Resources Ltd and First Quantum Minerals Ltd (JV) in 2011-15 on broad 1km x 1km and 1 km x 500m grids. Kunene also interpreted regional geophysical data, Landsat Data and Satellite imagery, as well as completed geological mapping in the area. Other historical work includes oil gas and uranium exploration in the area. | | Geology | Deposit type, geological setting
and style of mineralisation. | At this early stage, the potential deposit style is considered to be sedimentary hosted. Sedimentary lithium deposits accumulate as lithium is transported into basins where it reacts with other minerals creating chemical bonds weaker than that found in spodumene (pegmatites) and stronger than | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | | those found in brines. | | | | The Kaoko Belt consists of
sedimentary rocks of the Damaran
Supergroup deposited during rifting
and over lie the Congo Craton. | | Drill hole
Information | A summary of all information
material to the understanding of
the exploration results including a
tabulation of the following
information for all Material drill
holes. | See body of the report for drill hole
location and depth | | Data
aggregation
methods | In reporting Exploration Results,
weighting averaging techniques,
maximum and/or minimum grade
truncations (eg cutting of high
grades) and cut-off grades are
usually Material and should be
stated. | No data aggregation methods were applied | | | Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | | | | The assumptions used for any
reporting of metal equivalent
values should be clearly stated. | | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the | Flat lying sedimentary units are interpreted to host lithium mineralisation at the Ohevanga prospect. Drill results would suggest this geometry to be sound. Gentle | | | mineralisation with respect to the drill hole angle is known, its nature should be reported. | isoclinal folding varies along the
drill grid and would have some
moderate effect on the true width of | | | If it is not known and only the down
hole lengths are reported, there
should be a clear statement to this
effect (eg 'down hole length, true | mineralisation. These zones intersected in this first pass drilling are of low grade. | | Criteria | JORC Code explanation | Commentary | |---|---|---| | | width not known'). | | | Diagrams | Appropriate maps and sections
(with scales) and tabulations of
intercepts should be included for
any significant discovery being
reported. These should include, but
not be limited to a plan view of drill
hole collar locations and
appropriate sectional views. | Refer to the body of the announcement. | | Balanced
reporting | Where comprehensive reporting of
all Exploration Results is not
practicable, representative
reporting of both low and high
grades and/or widths should be
practiced to avoid misleading
reporting of Exploration Results. | Assay results include low grade
mineralisation which explains the
lithium in soil target for this part of
the Ohevanga drilling. The report is
considered balanced and provided
in context | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All material information available has been reported by the Company in its announcements on the project to date. | | Further work | The nature and scale of further planned work (e.g.; tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | No further drilling is planned. The company will review existing copper targets and consider its options for the project. |