

Exceptional Results at Etango North-East Extends High Grade Uranium Mineralisation

1.0m @ 5,413 ppm U₃O₈ returned from surface trenching

Highlights

- Expanded maiden trenching and sampling programme now complete at the newly named Ondapanda Prospect within the Etango North-East Project in Namibia
- High grade results include:
 - o Trench 1: 46m @ 506 ppm U₃O₈, including:
 - 1m @ 5,413 ppm U₃O₈, and
 - 2m @ 2,084 ppm U₃O₈, and
 - 1m @ 1,100 ppm U₃O₈
 - o Trench 3: 10m @ 367 ppm U₃O₈, including:
 - 1m @ 624 ppm U₃O₈, and
 - 1m @ 562 ppm U₃O₈
 - o Trench 4: 1m @ 511 ppm U₃O₈
 - Trench 6: 1m @ 4,847 ppm U₃O₈
- Etango North-East target area is located along strike from and within the same rock units as Bannerman Energy's (ASX: BMN) world-class Etango Uranium Project
- 132 rock chip samples covering a length of 139m were collected from the extended trenches surrounding the previously reported¹ high grade U₃O₈ mineralisation
- Detailed scintillometer survey has highlighted three key areas of interest:
 - The Ondapanda Prospect over the current high-grade mineralisation and extending to the north, measuring 1,000 metres by 500 metres
 - Newly identified Onkumbwa Prospect, in the south-west, and Pandula Prospect, in south-east areas, of the survey both demonstrate similar characteristics to Ondapanda
 - The Onkumbwa & Pandula Prospects are located on the edges of the survey and further work is planned to explore potential extensions to these zones
- CML now assessing the successful trenching and sampling programme results to identify high priority drill targets for upcoming maiden drilling programme anticipated to commence in Q1

¹ ASX Announcement 18th November 2024, "High Grade Uranium Mineralisation Confirmed in Maiden Sampling Programme at Etango North-East Project, Namibia"

Connected Minerals Limited (ASX: CML) (Connected, Connect Minerals or the Company) is pleased to advise it has completed its extended maiden trenching and sampling programme at the Etango North-East Project (EPL 6933) in Namibia.

Connected Managing Director and CEO Mr Warrick Clent said, "We are very excited by the results from this extended programme at Etango North-East, which is located along strike from, and within the same rock units as Bannerman Energy's world-class Etango Uranium Project.

These outstanding results, from a further 132 rock chip samples, extend the high-grade area of mineralisation identified by the Company from our initial exploration programme. Additionally, with three potential zones identified by the Scintillometer survey, we certainly have multiple targets to focus on in the coming months and build on this promising start.

Given the success to date at Etango North-East, we are looking to commence our maiden drilling programme as soon as possible. As such, we are currently in discussions with multiple drilling firms to identify the earliest date we can commence drilling. We look forward to updating the market with a drilling commencement date shortly."

The expanded Etango North-East trenching and sampling programme followed up on previously reported¹ high grade uranium mineralisation identified in the Company's maiden programme in 2024 and was designed to better understand the target area's mineralisation mechanisms. The target area of the programme covers an area of 1km x 2.5km along strike from and within the same rock units as Bannerman Energy's (ASX: BMN) Etango Uranium Project.

The expanded trenching and sampling programme comprised 132 rock chip samples gathered from 139m of newly extended trenches which were completed around previously reported high grade U_3O_8 mineralisation which included **CMRS4 – 2,086 ppm U_3O_8**.

Latest results indicate exceptionally high-grade uranium mineralisation within alaskite rocks intruded into the Khan formation metasediment rocks (Figures 1 & 2 below). Significant results include:

- o Trench 1: 46m @ 506 ppm U₃O₈, including:
 - 1m @ 5,413 ppm U₃O₈, and
 - 2m @ 2,084 ppm U₃O₈
- o Trench 3: 10m @ 367 ppm U₃O₈, including:
 - 1m @ 624 ppm U₃O₈
- o Trench 4: 1m @ 511 ppm U₃O₈
- Trench 6: 1m @ 4,847 ppm U₃O₈

Figure 1. Interpreted geology and trench locations at the Ondapanda Prospect within the Etango North-East Project

The host rock geology of this area consists mainly of metasediments (schist, feldspathic quartzite, ampibolite rich schist, quartzites and calc silicates) of the Khan Formation. The metasediments in this area are folded and faulted.

The mapping recently completed by the Company has confirmed that the area, as shown in Figure 1 above, is intruded by alaskite (leucogranitic) rocks and currently three different types of alaskite are distinguishable (based on their colour, intrusion size, and grain size).

The highest grade of mineralisation seen to date is associated with the alaskite exposed in Trench 1. This alaskite is close to surface and is dipping at a shallow angle to the west.

It should be noted that the uranium mineralisation within the alaskite units mapped to date bears similarities to the mineralised, stacked sequence of alaskite rocks seen at Bannerman Energy's Etango Project (429Mt @ 225ppm U_3O_8).²

Mineralisation in the alteration zone in the northern three trenches is inferred to be remobilisation of primary uranium which originates from underlying alaskites. Accordingly, there must be a depth source of uranium which contributed to the widespread mineralisation along the alteration / fault zone. At this stage, the extent of the alaskite below surface is unclear.

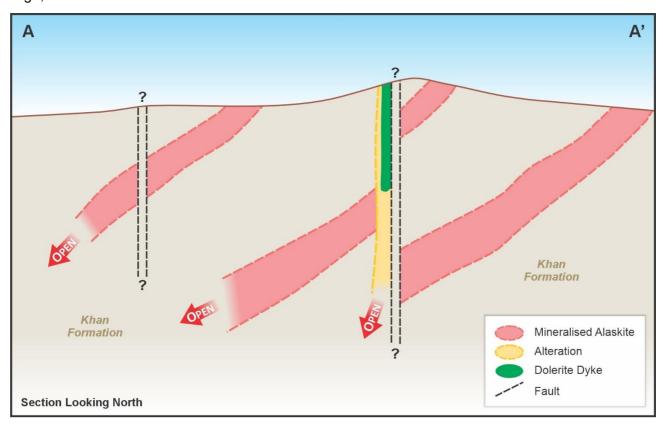


Figure 2. Interpreted geological section from mapping at the Ondapanda Prospect within the Etango North-East Project

Two prominent dolerite subparallel dykes of Karoo Age cut the area in a north-north westerly direction. The dykes form prominent ridges. There is a noticeable discontinuity and/or offset of the older lithologies across these dykes. The metasediments have a change in orientation from south westerly dipping in the northern part of the map area, to southerly in the northeastern part. The alaskites also appear to have been offset across the dykes.

The rock exposed in the trenches is adjacent to the dolerite is a highly altered (chloritic) rock with limonitic veins. The veins range in thickness from a few millimetres to several centimetres. They are steeply dipping and parallel to the dolerite dyke and commonly also form box works structures. These veins often are vuggy, and form druses that are filled with quartz and uranophane.

_

² Bannerman Resources Ltd – ASX:BMN Announcement 6th December 2022, "Etango-8 Definitive Feasibility Study"

The alteration zone identified in the mapping appears to be related to a NNW trending fault zone, which is a zone of structural weakness into which the later dolerites intruded.

Table 1: Significant Intercepts – trenching programme

Trench ID	Start		Fin	Finish		U₃O ₈ ppm	
Trenent is	Easting	Northing	Easting	Northing	(m)	0308 pp	
Trench 1	489440	7495390	489458	7495356	46	506	
including	489442	7495388	489443	7495387	1	5,413	
and	489451	7495378	489452	7495376	2	2,084	
and	489452	7495368	489452	7495367	1	1,100	
Trench 3	489413	7495477	489408	7495483	10	367	
including	489408	7495484	489408	7495483	1	624	
and	489413	7495477	489414	7495476	1	562	
and	489409	7495481	489409	7495480	1	548	
Trench 4	489393	7495522	489394	7495521	1	511	
Trench 6	489441	7495412	489442	7495412	1	4,847	

The Company has also completed a detailed Scintillometer survey which comprised 13,750 survey points on a 25m x 10m grid. The survey has highlighted three key areas of interest:

- Zone 1 (Ondapanda Prospect) over the current high-grade mineralisation, and extending north, measuring 1,000m by 500m, which extends the potential zone of mineralisation away from the currently known areas, shown by the outstanding rock chip/trench sample results that CML has collected to date.
- Zone 2 (Onkumbwa Prospect) located in the south-west of the survey area open to the south & south-west with further exploration to assess the potential of this newly discovered area.
- Zone 3 (Pandula Prospect) located in the south-east of the survey area open to the east with further exploration to assess the potential of this newly discovered area.

Zones 2 and 3 are both located on the edges of the survey area and demonstrate similar characteristics to Zone 1. CML is currently planning further exploration to test the possible extensions of these zones.

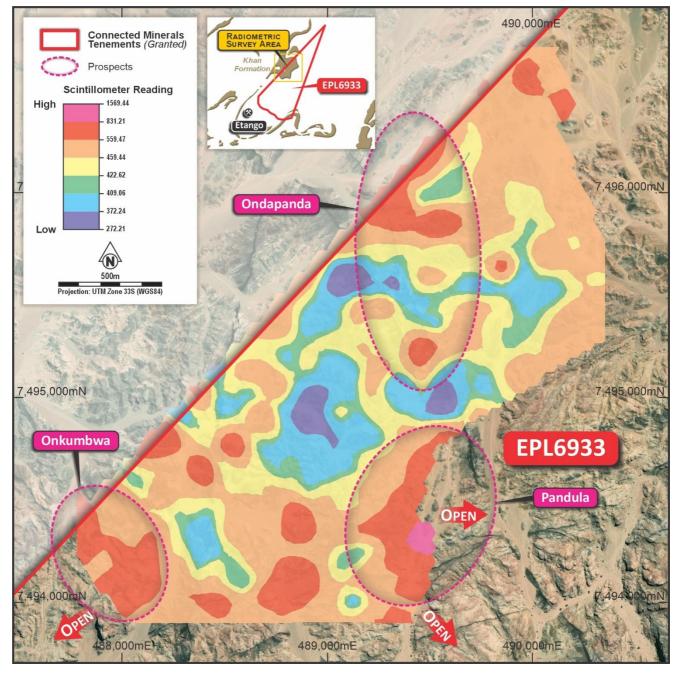


Figure 3. Scintillometer radiometric survey results from within the Etango North-East Project

Future Work Programme

Connected is currently reviewing the impressive results of the sampling and mapping of the trenches, in addition to the Scintillometer survey to identify drill targets.

The Company is in discussions with potential drilling companies with a view to commencing its maiden drill programme at Etango North-East as soon as possible.

This announcement has been authorised for release by the Board of Directors.

For further information, please contact:

Warrick Clent
Managing Director
+61 8 6211 5099

info@connectedminerals.com.au

Ben Creagh NWR Communications +61 (0) 417 464 233

benc@nwrcommunications.com.au

About Connected Minerals Limited

Connected Minerals Limited (ASX: CML) is an Australian-headquartered company which has commenced a new strategic direction focused on the exploration and potential development of a portfolio of projects in Namibia and Western Australia. The Company is targeting uranium discoveries through two granted exclusive prospecting licences (EPL) and one EPL application in the most prolific uranium producing province in Namibia. Connected Minerals has also acquired 100% of the legal and beneficial ownership in three granted exploration licences in Western Australia which demonstrate multi-commodity potential.

Competent Person's Statement and Previously Reported Information

The information in the referenced announcements footnoted at 1 above that relate to exploration results have previously been released on the ASX. The Company confirms that it is not aware of any information or data that materially affects the information included in the market announcements, and that all material assumptions and technical parameters continue to apply. The Company confirm that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

The information in this announcement that relates to exploration results is based on and fairly represents information and supporting documentation, and has been reviewed and approved by Mr Herbert Roesener, a competent person who is a member of the South African Council for Natural Scientific Professions (SACNAP), a JORC Recognised Professional Organisation. Mr Roesener is a consultant to Connected Minerals Limited. Mr Roesener has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the JORC Code. Mr Roesener has provided his prior written consent as to the form and context in which the exploration results and the supporting information are presented in this announcement.

Table 2: Trench coordinates (WGS84 Zone 33 South)

Sample	Start		Finish		Longth	Datum
ID	Easting	Northing	Easting	Northing	Length	Datuili
Trench 1	489434	7495397	489470	7495326	92m	s_
Trench 3	489414	7495476	489407	7495486	14m	Z33
Trench 4	489394	7495521	489393	7495522	3m	
Trench 5	489388	7495536	489384	7495538	7m	WGS84
Trench 6	489445	7495413	489434	7495410	12m	M

Note: Trench 2 (11m length) was excavated but not sampled as the lithology was not considered prospective

Table 3: Sample Details and Assay Results

Sample ID	Sample Type	Easting - trench sample start	Northing - trench sample start	Easting - trench sample end	Northing - trench sample end	Interval (m)	Datum	U₃O ₈ ppm
CMRS0030		489452	7495367	489453	7495367	1.0		143
CMRS0031		489453	7495367	489454	7495366	1.0		246
CMRS0032		489454	7495366	489454	7495365	1.0		196
CMRS0033		489454	7495365	489455	7495364	1.0		696
CMRS0034		489455	7495364	489455	7495363	1.0		356
CMRS0035		489455	7495363	489455	7495362	1.0		353
CMRS0036		489455	7495362	489456	7495361	1.0		335
CMRS0037		489456	7495361	489456	7495360	1.0		222
CMRS0038	ď	489456	7495360	489457	7495359	1.0		241
CMRS0039	Trench rock chip	489457	7495359	489457	7495358	1.0	3_S	289
CMRS0040	ock	489457	7495358	489458	7495357	1.0	_Z33_	748
CMRS0041	ch r	489458	7495357	489458	7495356	1.0	S84	501
CMRS0042	ren	489458	7495356	489459	7495355	1.0	WGS84	368
CMRS0043	Ī	489459	7495355	489459	7495354	1.0		270
CMRS0044		489459	7495354	489460	7495353	1.0		191
CMRS0045		489460	7495353	489460	7495352	1.0		193
CMRS0046		489460	7495352	489461	7495351	1.0		110
CMRS0047		489461	7495351	489461	7495351	1.0		158
CMRS0048		489461	7495351	489462	7495350	1.0		412
CMRS0049		489462	7495350	489462	7495349	1.0		231
CMRS0050		489456	7495358	489455	7495358	1.0		108
CMRS0051		489457	7495358	489456	7495358	1.0		140

Sample ID	Sample Type	Easting - trench sample start	Northing - trench sample start	Easting - trench sample end	Northing - trench sample end	Interval (m)	Datum	U₃O ₈ ppm
CMRS0052		489458	7495355	489459	7495355	1.0		367
CMRS0053		489459	7495355	489460	7495356	1.0		151
CMRS0054		489460	7495356	489461	7495356	1.0		103
CMRS0055		489461	7495356	489462	7495357	1.0		87
CMRS0056		489462	7495357	489463	7495357	1.0		29
CMRS0057		489462	7495349	489462	7495348	1.0		458
CMRS0058		489462	7495348	489463	7495347	1.0		553
CMRS0059		489463	7495347	489464	7495346	1.0		251
CMRS0060		489464	7495346	489464	7495345	1.0		251
CMRS0061		489464	7495345	489465	7495345	1.0		113
CMRS0062		489465	7495345	489465	7495344	1.0		139
CMRS0063		489465	7495344	489466	7495343	1.0		81
CMRS0064		489466	7495343	489466	7495342	1.0		113
CMRS0065		489466	7495342	489466	7495341	1.0		94
CMRS0066		489466	7495341	489467	7495340	1.0		91
CMRS0067		489467	7495340	489467	7495339	1.0		91
CMRS0068		489467	7495339	489468	7495338	1.0		94
CMRS0069		489468	7495338	489469	7495338	1.0		64
CMRS0070		489469	7495338	489469	7495337	1.0		100
CMRS0071		489469	7495337	489470	7495336	1.0		103
CMRS0072		489470	7495336	489470	7495335	1.0		117
CMRS0073		489470	7495335	489470	7495333	1.0		120
CMRS0074		489470	7495333	489470	7495333	1.0		52
CMRS0075		489470	7495333	489470	7495332	1.0		44
CMRS0076		489470	7495332	489470	7495331	1.0		66
CMRS0077		489470	7495331	489471	7495330	1.0		92
CMRS0078		489471	7495330	489471	7495329	1.0		75
CMRS0079		489471	7495329	489472	7495328	1.0		87
CMRS0080		489472	7495328	489471	7495327	1.0		105
CMRS0081		489471	7495327	489471	7495326	1.0		81
CMRS0082		489471	7495326	489470	7495326	1.0		123
CMRS0083		489407	7495487	489407	7495486	1.0		41
CMRS0084		489407	7495486	489408	7495485	1.0		118
CMRS0085		489408	7495485	489408	7495484	1.0		193
CMRS0086		489408	7495484	489408	7495483	1.0		624
CMRS0087		489408	7495483	489408	7495482	1.0		277
CMRS0088		489408	7495482	489409	7495481	1.0		346

Sample ID	Sample Type	Easting - trench sample start	Northing - trench sample start	Easting - trench sample end	Northing - trench sample end	Interval (m)	Datum	U₃O ₈ ppm
CMRS0089		489409	7495481	489409	7495480	1.0		548
CMRS0090		489409	7495480	489410	7495479	1.0		262
CMRS0091		489410	7495479	489410	7495479	1.0		311
CMRS0092		489410	7495479	489411	7495478	1.0		254
CMRS0093		489411	7495478	489412	7495477	1.0		179
CMRS0094		489412	7495477	489413	7495477	1.0		304
CMRS0095		489413	7495477	489414	7495476	1.0		562
CMRS0096		489414	7495476	489414	7495475	1.0		107
CMRS0097		489393	7495523	489393	7495522	1.0		51
CMRS0098		489393	7495522	489394	7495521	1.0		511
CMRS0099		489394	7495521	489394	7495520	1.0		29
CMRS0100		489384	7495539	489384	7495538	1.0		52
CMRS0101		489384	7495538	489385	7495538	1.0		93
CMRS0102		489385	7495538	489386	7495538	1.0		142
CMRS0103		489386	7495538	489387	7495538	1.0		101
CMRS0104		489387	7495538	489387	7495537	1.0		92
CMRS0105		489387	7495537	489388	7495536	1.0		71
CMRS0106		489388	7495536	489388	7495535	1.0		33
CMRS0107		489436	7495410	489437	7495410	1.0		182
CMRS0108		489437	7495410	489438	7495411	1.0		167
CMRS0109		489438	7495411	489439	7495411	1.0		249
CMRS0110		489439	7495411	489440	7495412	1.0		118
CMRS0111		489440	7495412	489441	7495412	1.0		38
CMRS0112		489441	7495412	489442	7495412	1.0		4847
CMRS0113		489442	7495412	489443	7495413	1.0		78
CMRS0114		489443	7495413	489444	7495413	1.0		267
CMRS0115		489444	7495413	489445	7495413	1.0		14
CMRS0116		489445	7495413	489446	7495414	1.0		15
CMRS0117		489433	7495410	489434	7495410	1.0		37
CMRS0118		489434	7495410	489435	7495410	1.0		55
CMRS0119		489435	7495410	489436	7495410	1.0		112
CMRS0120		489434	7495397	489434	7495396	1.0		276
CMRS0121		489434	7495396	489434	7495395	1.0		1851
CMRS0122		489434	7495395	489435	7495395	1.0		64
CMRS0123		489435	7495395	489436	7495394	1.0		129
CMRS0124		489436	7495394	489437	7495393	1.0		35
CMRS0125		489437	7495393	489437	7495393	1.0		29

Sample ID	Sample Type	Easting - trench sample start	Northing - trench sample start	Easting - trench sample end	Northing - trench sample end	Interval (m)	Datum	U₃O ₈ ppm
CMRS0126		489437	7495393	489438	7495392	1.0		41
CMRS0127		489438	7495392	489439	7495391	1.0		50
CMRS0128		489439	7495391	489440	7495391	1.0		37
CMRS0129		489440	7495391	489440	7495390	1.0		67
CMRS0130		489440	7495390	489441	7495389	1.0		450
CMRS0131		489441	7495389	489442	7495388	1.0		791
CMRS0132		489442	7495388	489442	7495388	1.0		375
CMRS0133		489442	7495388	489443	7495387	1.0		5413
CMRS0134		489443	7495387	489443	7495386	1.0		228
CMRS0135		489443	7495386	489444	7495385	1.0		142
CMRS0136		489444	7495385	489445	7495384	1.0		189
CMRS0137		489445	7495384	489445	7495383	1.0		205
CMRS0138		489445	7495383	489446	7495383	1.0		555
CMRS0139		489446	7495383	489447	7495382	1.0		279
CMRS0140		489447	7495382	489447	7495381	1.0		124
CMRS0141		489447	7495381	489448	7495381	1.0		136
CMRS0142		489448	7495381	489449	7495380	1.0		169
CMRS0143		489449	7495380	489449	7495379	1.0		101
CMRS0144		489449	7495379	489450	7495378	1.0		356
CMRS0145		489450	7495378	489451	7495378	1.0		301
CMRS0146		489451	7495378	489451	7495377	1.0		2465
CMRS0147		489451	7495377	489452	7495376	1.0		1704
CMRS0148		489452	7495376	489451	7495375	1.0		390
CMRS0149		489451	7495375	489451	7495374	1.0		329
CMRS0150		489451	7495374	489451	7495373	1.0		401
CMRS0151		489451	7495373	489451	7495372	1.0		570
CMRS0152		489451	7495372	489451	7495371	1.0		320
CMRS0153		489451	7495371	489451	7495370	1.0		264
CMRS0154		489450	7495370	489451	7495370	1.0		54
CMRS0155		489452	7495371	489453	7495371	1.0		133
CMRS0156		489453	7495371	489453	7495372	1.0		137
CMRS0157		489453	7495372	489454	7495372	1.0		206
CMRS0158		489451	7495370	489453	7495371	1.0		172
CMRS0159		489451	7495370	489451	7495369	1.0		427
CMRS0160		489451	7495369	489452	7495368	1.0		239
CMRS0161		489452	7495368	489452	7495367	1.0		1100

JORC Code, 2012 Edition. Table 1 Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Trench and channel sampling is completed as representative cut samples across measured intervals (1 metre) with hammer or hammer and chisel techniques. This announcement discusses the findings of an expanded exploration programme comprising trench/channel sampling, detailed geological mapping, a close-spaced scintillometer radiometric survey, and a drone photogrammetry/Digital Terrain Model survey with a view to determining the uranium potential of licence EPL6933 in Namibia (Etango NE Project). Alaskite was identified in outcrop and trenches. The trench and channel sampling were restricted to outcrop of potential uranium bearing rocks i.e. Alaskites and alteration zones Samples were dispatched to ALS Laboratory Namibia (Pty) Ltd in North Okahandja, Namibia for sample preparation before the sample pulps were then forwarded by the laboratory to ALS Geochemistry in Edenvale, Johannesburg, South Africa for analysis. Scintillometer survey results were obtained using a Scintillation Gamma Radiameter (SGR) from GF Instruments with a Nal(Tl) detector with a diameter of 51 x 51 mm.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, 	In relation to this announcement no drilling has been conducted as yet and no drill assays are being reported

	•	<u>.</u>		
	H	A	4	
	d			
1			M	

Criteria	JORC Code explanation	Commentary
	whether core is oriented and if so, by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	In relation to this announcement no drilling sampling has been conducted as yet and no drill assays are being reported
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Trench/channel samples are geologically logged using qualitative descriptions for lithology, alteration, mineralogy, and presence and type of uranium-bearing minerals noted for each sample.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for 	 Trench samples were submitted in their entirety for analysis, no subsampling was completed. Trench samples were dispatched to ALS Laboratory Namibia (Pty) Ltd in North Okahandja, Namibia for sample preparation using method PUL-31 (85% <75um) before the sample pulps were then forwarded by the laboratory to ALS Geochemistry in Edenvale, Johannesburg, South Africa for analysis. The samples were systematically sampled and taken as continuous 1 metre interval channel samples horizontally along one wall of each of the new trenches. Samples were approximately 1.7kg to 3.1kg in weight. The samples were considered generally representative of the trench being sampled

	•	•	•	
•	9	Ç		
C	O	0		

Criteria	JORC Code explanation	Commentary
	field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	 Scintillometer survey points were preset on a 25m x 10m pattern, with all points being located using a Garmin handheld GPS unit. All measurements were recorded in countsper-second (cps) on paper in the field before being collated into a excel spreadsheet for further analysis
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Trench samples were dispatched to ALS Laboratory Namibia (Pty) Ltd in North Okahandja, Namibia for sample preparation using method PUL-31 (85% <75um) before the sample pulps were then forwarded by the laboratory to ALS Geochemistry in Edenvale, Johannesburg, South Africa for analysis method U-XRF05 (pressed pellet analysed by wavelength dispersive XRF for U). The laboratory has reported the use of standards, duplicates, and blanks as part of the analyses for QA/QC. All reported QAQC results were within acceptable limits. No standards or blanks were submitted by the company Scintillometer survey results were obtained using a Scintillation Gamma Radiameter (SGR) from GF Instruments with a NaI(TI) detector with a diameter of 51 x 51 mm. with a measuring range and resolution of up to 250000 cps, resolution 0.1 cps.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All significant assay results have been verified against the results reported by ALS Global Ltd in Johannesburg, Republic of South Africa by two experienced company personnel. All primary data has been uploaded into the company's data storage with standard data entry protocols checked and verified by two experienced company personnel.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system 	 Trench/channel sample points were determined on referenced orthophotographs which is considered appropriate for the nature of the trench sampling. Scintillometer survey points were preset on a 25m x 10m pattern, with all points being located using a Garmin handheld GPS unit.

	•	<u>.</u>		
	H	A	4	
	d			
1			M	

Criteria	JORC Code explanation	Commentary
	used.Quality and adequacy of topographic control.	Co-ordinates are provided in the World Geodetic System 1984 (WGS84) Zone 33S.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Reported channel samples have been collected as continuous samples with each sample representing a 1 metre interval along the trench. No attempt has been made to demonstrate geological or grade continuity between sample points.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The orientation of the trenching and channel sampling is where possible perpendicular to the mapped orientation of the geologic units in the area but it must be stressed that the trenching is of itself an exploration tool designed to increase the knowledge of the underlying lithological units. The digging of the trenches was completed manually and the trench orientations were dictated by the ease of digging.
Sample security	The measures taken to ensure sample security.	• For the current sampling programme, the sample chain of custody is managed by Connected Minerals. All samples were collected in the field at the project site in number-coded small plastic bags/secure labelled plastic bags by Connected Minerals's geological and field personnel. All samples were delivered directly to the associated carrier, Formula Courier Service, by Connected Minerals personnel before being transported to the ALS Laboratory Namibia (Pty) Ltd in North Okahandja, Namibia for sample preparation. Sample pulps were then despatched by ALS internal transfers to ALS Global in Edenvale, Johannesburg, south Africa.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No review of the sampling techniques has been undertaken.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Connected Minerals Ltd granted Exclusive Prospecting Licence (EPL) 6933 is located in the Erongo Region of Namibia, approximately 35km east of the town of Swakopmund. Connected Minerals is not aware of any existing impediments nor of any potential impediments which may impact ongoing exploration and development activities on EPL6933
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 A search and compilation of historic exploration has been completed. Work included minor trenching, although it has been difficult to ascertain who completed this trenching or the mineralisation that this trenching was investigating.
Geology	Deposit type, geological setting and style of mineralisation.	 Potential for uranium bearing leucogranite ("alaskite") mineralisation. Etango NE Project geological setting - The geology consists largely of Abbabis Formation basement (MAB) with overlying Kahn Formation gneisses located on the western margin of the tenement. Field observations by Roesener indicate the Khan formation is intruded by various stages of leucogranites/alaskites with thicknesses of 30cm to 2m.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	Not applicable

	-		
•		Q	
		À	

Criteria	JORC Code explanation	Commentary
	 down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Not applicable
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the 	Not applicable
	mineralisation with respect to the drill hole angle is known, its nature should be reported. • If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery	Maps are included in the body of the announcement.

	3	• • //
•		
		•

Criteria	JORC Code explanation	Commentary
	being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This announcement discusses the findings of recent reconnaissance sampling and associated assays only.
Other substantive	Other exploration data, if	Not applicable
exploration data	meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Connected Minerals are currently planning further exploration programmes, including potential drilling, to further assess the potential for uranium bearing rocks over its Etango NE Project.