

High grade gold and copper results delivered in first drilling at Coogee Project in WA

First assays reveal new high-grade shoots with grades up to 65 g/t gold and 8.53% copper

Highlights

- Javelin's first drilling program at the Coogee Project near Kalgoorlie has intersected multiple high-grade shoots outside the current Resource, with grades up to 65 g/t gold and 8.5% copper
- The new shoots outline mineralisation over a strike length of at least 1km within the larger Coogee gold-copper system; The results include:
 - CORC163: 5m @ 14.22 g/t Au from 143m (includes 1m @ 65 g/t Au from 145m) and 4m @ 1.91% Cu from 144m - has confirmed north-west trending gold-copper mineralised extension from the mined Coogee **Deposit**
 - CORC170: 10m @ 4.55 g/t Au from 91m (includes 1m @ 38.1 g/t Au from 98m) - confirmation of gold extensions below the current mined pit
 - o CORC171: 7m @ 6.42 g/t Au from 108m including 7m @ 2.54% Cu from 108m - has confirmed north-east trending gold-copper mineralised extension from the mined Coogee Deposit
 - o CORC154: 4m @ 2.22 g/t Au from 80m has confirmed lateral extent of gold mineralisation south of the mined Coogee Deposit
- The Coogee Resource currently stands at 3.65Mt at 1.08 g/t Au totalling 126,685 oz of gold and 1.01Mt at 0.41% copper containing 4,133t of copper metal - review process underway for potential resource upgrade
- Eureka drilling program scheduled to commence in March quarter

Javelin Minerals Limited (ASX: JAV) is pleased to announce outstanding assays from its first drilling program at the Coogee Gold-Copper Project near Kalgoorlie in WA.

Phase One of the drilling campaign comprised 2,921m of RC drilling. Phase Two is expected to start in late Q1 following further analysis and interpretation of the results from this initial program to further define the controls of the high-grade shoots of the Coogee deposit, and the high priority exploration targets on Coogee West.

Coogee, which hosts a JORC resource 126,685oz of gold, is located next to the world-class St Ives Goldfield. But the project and exploration targets have not seen a systematic exploration drilling campaign since Ramelius Resources completed mining operations in 2014.

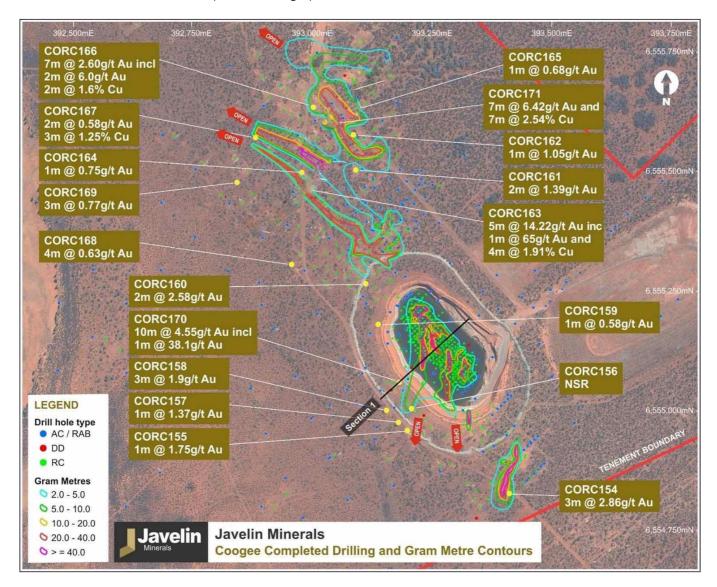


Figure 1 - Location Map showing the Cooqee Project area with the completed drilling, significant intercepts, gram metre contours and section lines

Javelin Executive Chairman Brett Mitchell said: "This is a fantastic start to our exploration program at Coogee. We are focused on Coogee because we saw the potential for it to become a near term WA brownfields exploration success story.

"This view was underpinned by the established presence of a large mineralised system, the current resource, the geology and its location next to the world-class St Ives gold camp.

"We saw the potential to establish a large high-grade gold-copper resource on the edge of Kalgoorlie and these first assays clearly support that view.

"The results reveal new high-grade shoots outside the existing resource, both along strike and below the existing open pit".

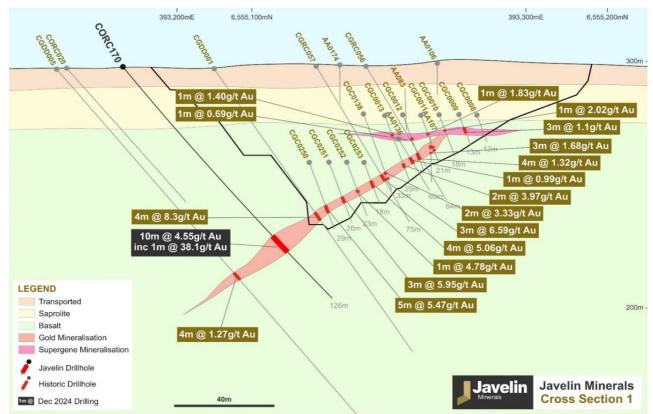
All completed RC drillholes with assay results locations are illustrated in Figure 1. Cross and long sections are shown in Figures 2 & 4, along with the significant drilled intersections shown in Table 1 and Appendix 2.

Table 1: Significant RC Drilling Intersections from Coogee (Intercepts using 0.5 g/t Au and/or 0.5% Cu% cut-off)

Hole ID	From (m)	To (m)	Intercept Width (m)	Grade Summary
CORC154	80	84	4	3m @ 2.86 g/t Au from 80m, incl 1m @ 6.67 g/t Au from 81m
CORC155	135	136	1	1m @ 1.75 g/t Au from 135m
CORC160	122	124	2	2m @ 2.58 g/t Au from 122m, incl 1m @ 4.70 g/t Au from 123m
	147	148	1	1m @ 0.53 g/t Au from 147m
	88	92	4	4m @ 0.78 g/t Au from 88m
CORC163	143	148	5	5m @ 14.22 g/t Au from 143m, incl 1m @ 65.0 g/t Au from 145m
	144	148	4	4m @ 1.91% Cu from 144m
	94	96	2	2m @ 1.09 g/t Au from 94m
	94	96	2	2m @ 1.6% Cu from 94m
CORC166	150	157	7	7m @ 2.60 g/t Au from 150m, incl 2m @ 6.0 g/t Au from 151m
	161	162	1	1m @ 0.91 g/t Au from 161m
	187	189	2	2m @ 0.58 g/t Au from 187m
CORC167	185	188	3	3m @ 1.25% Cu from 187m
CORCIDA	194	195	1	1m @ 1.03g/t Au from 194m
	198	199	1	1m @ 0.71 g/t Au
CORC170	91	101	10	10m @ 4.55 g/t Au from 91m, incl 1m @ 38.1 g/t Au from 98m
	108	115	7	7m @ 6.42 g/t Au & 2.54% Cu from 108m, incl 2m @ 15.90 g/t Au from 108m incl 1m @ 8.53% Cu from 109m
CORC171	130	131	1	1m @ 0.68 g/t Au from 130m
23.377	139	140	1	1m @ 0.50 g/t Au from 139m
	139	142	3	3m @ 0.90% Cu from 139m
	148	150	2	2m @ 2.76 g/t Au from 148m, incl 1m @ 4.47 g/t Au from 148m

Reverse Circulation (RC) Drilling Program

The 18 holes for 2,921m RC drilling program was aimed at identifying extensions of high-grade "shoots" of gold mineralisation immediately below the historical Cooqee Open Pit, and to confirm and extend zones of goldcopper mineralisation at Coogee North. Key points include:


- Drilling has confirmed the presence of multiple high-grade gold and gold-copper "shoots", within the larger Coogee gold-copper system over a strike length of at least 1km (Figure 1).
- The drilling immediately below the Cooqee Open Pit returned a key intersection in hole CORC170 (10m @ 4.55 g/t Au from 91m (includes 1m @ 38.1 g/t Au)) (Figure 2). This thick, high-grade intersection demonstrates the potential for the extension of steeply plunging zones of high-grade mineralisation at the interpreted intersection of the main shear zone, and a series of high angle, cross-cutting structures.
- Previous drilling at Coogee North defined zones of high-grade gold-copper mineralisation in a series of north-plunging stacked structures. The recent drilling intersected a core of high-grade gold-copper mineralisation within a broader trend of lower grade mineralisation. Results include:
 - CORC163: 5m @ 14.22 g/t Au from 143m (includes 1m @ 65 g/t Au from 145m) 3m @ 2.31% Cu from 144m
 - CORC171: 7m @ 6.42 g/t Au from 108m 7m @ 2.54% Cu from 108m (includes 1m @ 8.53% Cu from 109m)
 - CORC166: 7m @ 2.60 g/t Au from 150m (includes 2m @ 6.0 g/t Au from 151m)

Drillholes CORC170 along section 6555060N intersected the main mineralised gold bearing shear zone which hosts the gold mineralisation over Coogee Deposit. Drillhole CORC170 intersected thick, high-grade gold highlighting 10m @ 4.55 g/t Au & from 91m within mineralised altered epidote rock with significant pyrite and moderate veining which including 1m @ 38.1 g/t Au from 98m (Refer to Figure 2). The mineralisation is dipping to the west approximately 45° and remains open to the west.

Figure 2 – Section 1 – Coogee Pit Section, showing the results from CORC170 extending the high-grade gold mineralisation down dip.

CORC162 and CORC163 were designed to drill test the north-east mineralised gold-copper extension from the Coogee Deposit. The mineralised gold-copper lodes are dipping to the west and were intersected along sections 6555465N. Drillhole CORC163 intersected high grade gold mineralisation with **5m @ 14.21 g/t Au** from 143m including **1m @ 65 g/t Au** from 145m. The main lithology hosting the gold-copper mineralisation consisted of strongly metamorphosed magnetite-carbonate-hematite dacite with significant pyrite sulphides.

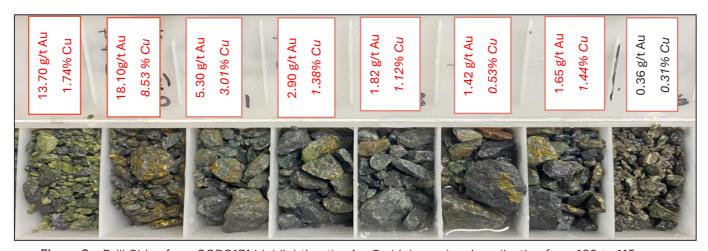


Figure 3 – Drill Chips from CORC171 highlighting the Au-Cu high-grade mineralisation from 109 to 115m

CORC165 and CORC171, located 320m northeast from CORC170, were designed to drill test the north-west mineralised gold-copper extension from the Coogee Deposit. The mineralised gold-copper lodes are dipping westly and were intersected along sections 6555617N and 6555064N. Drillhole CORC171 intersected high-grade gold and copper with 7m @ 6.42 g/t Au & 2.54% Cu from 108m including 2m @ 15.90 g/t Au from 108m and 1m @ 8.53% Cu from 109m. The main lithology hosting the gold-copper mineralisation consisted of strongly metamorphosed epidote rich altered dacite with strong sulphides in the form of chalcopyrite & pyrite. (Fig 3)

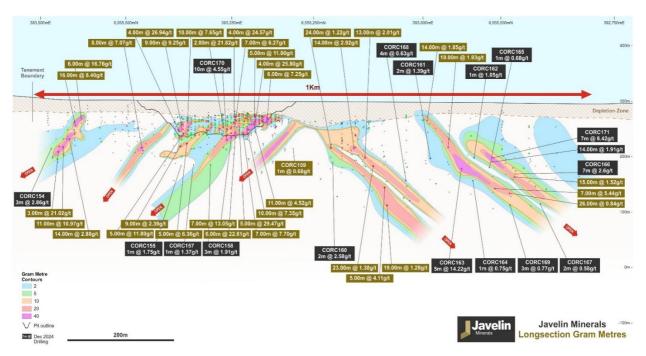


Figure 4 – Long section showing the Coogee Project area with the significant intercepts and Gram metre contours

Next Steps

These results will now be put into a broader context relating to the structural and stratigraphic controls on the high-grade shoots and the gold-copper mineralisation. The results will be used in conjunction with portable XRF information and lithogeochemical analysis to further refine the geological interpretation of the orientation and continuity of high-grade shoots to assisting in targeting the future drill programs.

An extension of this will be integrating these concepts into targeting the wider Coogee Project. This work will be undertaken in parallel with the planned exploration and resource evaluation programs at the Company's Eureka Gold Project located 50km north of Kalgoorlie.

Background on the Coogee Gold Project

The Coogee Gold Project tenements are located in the Eastern Goldfields of WA, 20km northeast of Kambalda, and 55km south of Kalgoorlie on the north side of Lake Lefroy. The region is considered prospective for gold mineralisation and contains a number of historical mines and mineral occurrences.

The Project is situated in a highly fertile greenstone belt with numerous gold deposits and abundant gold occurrences nearby. The Coogee, Salt Creek, Daisy-Milano and Lucky Bay gold deposits, plus the major St lves gold camp are specifically relevant to exploration of the project.

The Coogee gold deposit located within the Project tenements was discovered in the mid-1990's by Sovereign Resources and was subsequently mined by Ramelius Resources Limited (ASX:RMS) (Ramelius) in 2013.

Ramelius mined an open cut pit (approximately 70m deep) at Coogee in 2013, with reported production of 147,400 tonnes at 4.7 g/t Au for a recovered 20,400 ounces of gold. Processing was at the Burbanks Mill (conventional carbon-in-leach processing facility), south of Coolgardie with metallurgical recovery of 96.4%.

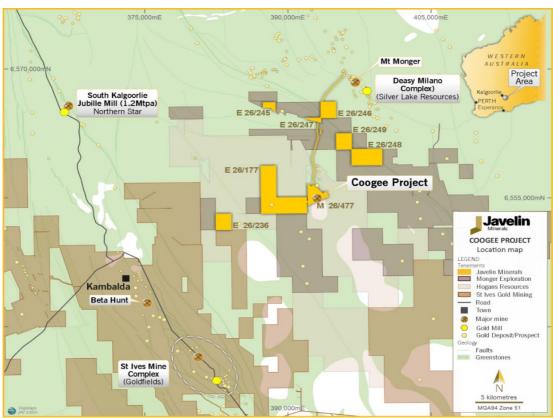


Figure 5 - Location Map showing the Coogee Project area with nearby mills and major infrastructure

Coogee Gold Project Current Mineral Resource Estimate

The existing Coogee Gold Project Mineral Resource Estimate (MRE) now stands at 3.65Mt at 1.08 g/t Au totalling 126,685 ounces of gold and 1.01Mt at 0.41% Cu, containing 4,133t of copper metal (ASX Announcement 26 August 2024: 158% increase in Coogee Gold MRE). Table 2 showing the updated Coogee Mineral Resource as of August 2024 based on tonnes and grades. Table 3 highlights the MRE over the Copper zone has been classified as an Inferred category with a 0.41 g/t copper cut-off. Table 4 shows the MRE based on Mineralised Block Zones.

Table 2: Coogee Gold Deposit Mineral Resource Estimate by Classification as of July 2024 (at a 0.5 g/t Au cut-off)

Classification	Weathering Zone	Volume m³	Density g/cm³	Tonnage t	<i>Grade</i> g/t Au	Contained Metal ounces Au
Indicated	Supergene	7,531	2.10	15,816	1.17	593
Indicated	Primary	350,898	2.70	947,426	1.31	39,969
Inferred	Supergene	11,715	2.10	24,601	0.56	445
illielled	Primary	987,773	2.70	2,666,988	1.00	85,677
Total	Supergene	19,246	2.10	40,417	0.80	1,038

	Fresh	1,338,672	2.70	3,614,414	1.08	125,647
Total		1,357,918	2.69	3,654,831	1.08	126,685

Table 3: Coogee Copper Zone Mineral Resource Estimate by Classification as of July 2024 (at a >2,000 ppm Cu cut-off)

Classification	Weathering Zone	Volume m³	Density g/cm³	Tonnage t	<i>Grade</i> g/t Au	Contained Metal tonnes Cu
Inferred	Primary within Gold Domain	122,358	2.7	330,366	5,546	1,832
Inferred	Supergene	129,402	2.1	271,745	3,619	983
Inferred	Primary without Gold Domain	153,887	2.7	415,494	3,144	1,306
Total		405,647		1,017,606	4,103	4,122

Table 4: Coogee Au Mineral Resource Estimate by Classification of Block Id as of July 2024 (at a 0.5 g/t Au cut-off)

Mineralised Blocks Id	Classification	Volume m³	Density g/cm ³	Tonnage t	<i>Grade</i> g/t Au	Contained Metal ounces Au
	Indicated	185,074	2.68	495,969	1.14	18,190
Northern	Inferred	913,813	2.69	2,461,114	0.98	77,846
	Total	1,098,887	2.69	2,957,084	1.01	96,036
	Indicated	99,695	2.70	268,881	1.36	11,735
Central (under pit)	Inferred	32,918	2.70	88,879	1.09	3,106
(diraci pit)	Total	132,613	2.70	357,759	1.29	14,841
	Indicated	73,660	2.69	198,391	1.67	10,637
Southern	Inferred	52,758	2.68	141,596	1.14	5,171
	Total	126,418	2.69	339,988	1.45	15,808
	Indicated	185,074	2.68	495,969	1.14	18,190
Northern	Inferred	913,813	2.69	2,461,114	0.98	77,846
	Total	1,098,887	2.69	2,957,084	1.01	96,036

This ASX announcement has been authorised for release by the Board of Javelin Minerals Limited.

-ENDS-

For further information, please contact: **Brett Mitchell Executive Chairman** Javelin Minerals Limited info@javelinminerals.com.au

Paul Armstrong **Investor Relations Consultant** Read Corporate paul@readcorporate.com.au

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Pedro Kastellorizos. Mr. Kastellorizos is the Non-Executive Director of Javelin Minerals Limited and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on the information in the form and context in which it appears. Mr Kastellorizos has reviewed all relevant data for the aircore drilling program and reported the results accordingly.

The information in this report / ASX release that relates to Exploration Results, Exploration Targets and Mineral Resources at Eurekais based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resource Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets and Mineral Resources. Mr Gillman is a full-time employee of Odessa Resource Pty Ltd, who specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillam nor Odessa Resource Pty Ltd holds any interest in Javelin Minerals Limited, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this report / ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

Javelin Minerals Limited confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning Exploration Results, Exploration Targets and Mineral Resources included in the original ASX announcements continue to apply and have no materially changed, and the forma and context in which the relevant competent person's findings are presented in this report have not been materially modified from the original ASX announcements.

Forward Statement

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking information is based on certain factors and assumptions management believes to be reasonable at the time such statements are made, including but not limited to, continued exploration activities, commodity prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in commodity prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

References

1993 The Hogans - Lefroy Project. Combined Annual Report. Sovereign Resources Australia. DMIRS Open File Report A39666.

1997 Lake Lefroy Project, E15/416, P15/3825, P15/3826, P26/2739 Combined Annual Report. Cyprus Gold Australia. DMIRS Open File Report A53250.

1997 Lake Lefroy Project, E15/326, E15/356 and E26/65 Combined Annual Report. Cyprus Gold Australia. DMIRS Open File Report A53423.

1998 Annual Technical Report for E26/56. WMC Resources Ltd. DMIRS Open File Report A54823.

1999 Kambalda Project Annual Report 1998. Sovereign Resources Australia. DMIRS Open File Report A57115.

2010 Coogee Project Annual Report 2010. Terrain Minerals Ltd. DMIRS Open File Report A85878.

Page 9

1202 Hay Street West Perth WA 6005

2011 Gladiator Nickel JV Annual Report 2010. Independence Group NL. DMIRS Open File Report A86961. 2013 Coogee Project Annual Report 2013. Terrain Minerals Ltd. DMIRS Open File Report A96898.

2014 Coogee Gold Project Annual Report 2014. Ramelius Resources Ltd. DMIRS Open File Report A103940.

2014 Coogee Project Annual Report 2015. Ramelius Resources Ltd. DMIRS Open File Report A107374.

Report 2016. Ramelius Resources Ltd. DMIRS Open File Report A109126.

2017 Lefroy Project Annual Report 2016. Lefroy Exploration Ltd. DMIRS Open File Report A112796.

2017 Coogee Project Annual Report 2017. Ramelius Resources Ltd. DMIRS Open File Report A114010.

2020 Coogee Project - EIS Co-Funded Drilling Report. Serena Minerals Ltd. DMIRS Open File Report A123091.

2021 Coogee Project Annual Report 2021. Victory Mines Ltd. 2021 Half Year Financial Report. Javelin Minerals Ltd.

2022 St Ives Project. Partial Surrender Report - E15/1471. St Ives Gold Mining Company. DMIRS Open File Report A129866.

2022 Partial Surrender Report - E26/183. Monger Exploration Pty Ltd. DMIRS Open File Report A131991.

2023 Final Surrender Report - Eastern Lefroy. Lefroy Exploration Pty Ltd. DMIRS Open File Report A136239.

2023 Coogee Project Annual Report 2023. Javelin Minerals Ltd.

Watchorn, R. B., 1998, Kambalda-St Ives gold deposits, in Berkman, D. A., and Mackenzie, D.H., (eds), Geology of Australian and Papua New Guinean mineral deposits, AUSIMM Monograph 22, 243-254.

Griffin, T. J., and Hickman, A. H., 1988a, Lake Lefroy, W.A. Sheet 3235: Western Australia Geological Survey, 1:100 000 Geological Series.

For further information please refer to previous ASX announcement from Javelin Minerals Ltd

ASX Announcement 26 August 2024: 158% Increase in Coogee Gold MRE

ASX Announcement 19 September 2024: Drilling to start at Coogee Gold-Copper Project in Dec Quarter

ASX Announcement 21 September 2024: Javelin Expands November Drilling at Coogee

ASX Announcement 27 November 2024: Drilling starts at Coogee Gold-Copper Project Kalgoorlie

ASX Announcement 16 December 2024: Maiden drilling program completed at Coogee Project

Appendix 1: Coogee Drill Collars

Hole ID	Easting	Northing	RL	Dip	Azimuth	Depth
CORC154	393415	6554828	302	-90	0	126
CORC155	393199	6554959	299	-60	45	150
CORC156	393210	6555005	299	-60	45	80
CORC157	393179	6554975	299	-60	45	156
CORC158	393155	6555000	300	-60	45	180
CORC159	393139	6555181	300	-60	45	114
CORC160	393112	6555266	301	-60	45	150
CORC161	393093	6555506	300	-60	45	144
CORC162	393088	6555577	301	-60	45	144
CORC163	392972	6555465	298	-60	45	204
CORC164	392980	6555500	297	-60	45	180
CORC165	393042	6555617	300	-60	45	162
CORC166	393003	6555635	300	-60	45	162
CORC167	392880	6555571	299	-60	45	216
CORC168	392958	6555310	298	-60	45	213

CORC169	392845	6555480	301	-60	45	234
CORC170	393185	6555064	299	-50	45	126
CORC171	393025	6555600	300	-60	45	180
CGC0008	393286	6555163	280	-70	42.5	12
CGC0009	393280	6555158	280	-70	42.5	13
CGC0010	393275	6555153	280	-70	42.5	18
CGC0011	393269	6555148	280	-70	42.5	21
CGC0012	393264	6555143	280	-70	42.5	25
CGC0138	393253	6555132	280	-70	42.5	33
CGC0250	393237	6555116	260	-70	42.5	29
CGC0251	393243	6555122	260	-70	42.5	26
CGC0252	393248	6555127	260	-70	42.5	23
CGC0253	393253	6555132	260	-70	42.5	18
CGDD001	393208	6555091	300	-40	45	160
CGDD005	393166	6555045	299	-50	45	285
CGRC056	393252	6555134	301	-60	45	65
CGRC057	393238	6555134	300	-60	45	75
CORC041	393171	6555060	299	-50	42.5	115
CORC108	393006	6555583	300	-60	45	181
CORC109	392979	6555561	299	-60	45	179
CORC143	393035	6555523	300	-60	45	154
AA0169	393243	6555158	305	-60	315.62	64
AA0179	393180.9	6555220	305	-60	135.62	54
AA0208	393426.4	6554905	307	-90	0	66
AAR0011	393141.6	6555546	307	-90	0	79
AAR0025	393324.1	6555082	306	-90	0	57
AAR0027	393302.1	6555061	305	-90	0	69
AAR0101	393427.8	6554922	307	-90	0	59
CGC0025	393270.9	6555167	280	-70	42.5	13
CGC0028	393253.9	6555153	280	-70	42.5	25
CGC0034	393243.2	6555153	281	-70	42.5	29
CGC0052	393239.9	6555171	280	-70	42.5	25
CGC0068	393220	6555173	281	-70	42.5	33
CGC0070	393230.9	6555183	280	-70	42.5	25
CGC0092	393232.5	6555206	280	-70	42.5	18
CGC0098	393222.6	6555207	280	-70	42.5	21
CGC0099	393216.6	6555201	280	-70	42.5	25
CGC0100	393211.7	6555196	281	-70	42.5	29
CGC0225	393229.3	6555161	260	-70	42.5	18
CGC0232	393222.7	6555144	260	-70	42.5	26
CGC0241	393227.2	6555128	261	-70	42.5	29

CGC0249	393226.9	6555117	260	-70	42.5	33
CGC0254	393259.3	6555128	260	-70	42.5	18
CGC0303	393315.5	6555067	67 261 -70		42.5	23
CGRC006	393321	6555096	306	-90	0	50
CGRC054	393233.1	6555185	301	-60	45.6	50
CORC0014	393345.3	6554833	300	-60.31	90	125
CORC027	393366.9	6554817	301	-60	47.93	111
CORC048	393446.5	6554909	303	-59.97	222.44	110
CORC052	393089.1	6555303	299	-59.94	45.13	129
CORC058	393140.4	6555294	300	-60.38	47.17	131
CORC064	393075.9	6555538	301	-83.72	53.74	125
CORC076	393055.9	6555323	299	-59.92	44.7	170
CORC095	392976.3	6555610	300	-60.29	42.94	178
CORC099	392876.1	6555454	297	-59.58	40.3	221
CORC105	393029.5	6555330	298	-60.69	47.25	203
CORC107	393050.7	6555290	299	-59.95	42.14	209
CORC133	392869.8	6555505	297	-60.03	47.76	202
CORC139	393005.6	6555302	298	-60.9	44.4	240
CRC002	393282.5	6555056	300	-90	0	85
CRC016	393327.1	6554982	300	-87	45	100
CRC037	393282.6	6555039	305	-90	0	100

Appendix 2: Coogee Significant Intercepts

	Hole Co-or	dinates (MGA9- 51)	4 Zone	Н	ole Details	;	Intercept Details				
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Depth from (m)	Depth to (m)	Intercept Width (m)	Grade	Grade Summary
CORC154	393415	6554828	302	RC	0	-90	80	84	4	2.22	3m @ 2.86g/t Au from 80m, including 1m @ 6.67 g/t from 81m
CORC155	393199	6554959	299	RC	45	-60	135	136	1	1.75	1m @ 1.75g/t Au from 135m
CORC156	393210	6555005	299	RC	45	-60	-	-	-	-	NSR– didn't reach target due to nearby hole blowout
							4	8	4	0.52	4m @ 0.52g/t Au from 4m
CORC157	393179	6554975	299	RC	45	-60	122	123	1	0.77	1m @ 0.77g/t Au from 122m
							133	134	1	1.37	1m @ 1.37g/t Au from 133m
							120	124	4	0.86	4m @ 0.86g/t Au from 120m
CORC158	393155	6555000	300	RC	45	-60	127	130	3	1.91	3m @ 1.91g/t Au from 127m
							140	145	5	0.66	5m @ 0.66g/t Au from 140m

0000450	000100	0555404	000		4.5	0.0	61	62	1	0.58	1m @ 0.58g/t Au from 61m
CORC159	393139	6555181	300	RC	45	-60	112	113	1	0.68	1m @ 0.68g/t Au from 112m
CORC160	393112	6555266	301	RC	45	-60	122	124	2	2.58	2m @ 2.58g/t Au from 122m, including 1m @ 4.7g/t Au from 123m
							147	148	1	0.53	1m @ 0.53g/t Au from 147m
							51	52	1	1.58	1m @ 1.58g/t Au from 51m
							58	59	1	2.7	1m @ 2.7g/t Au from 58m
CORC161	393093	6555506	300	RC	45	-60	117	119	2	0.84	2m @ 0.84g/t Au from 117m
							121	122	1	1.75	1m @ 1.75g/t Au from 121m
							130	132	2	1.39	2m @ 1.39g/t from 130m
							68	69	1	1.05	1m @ 1.05g/t Au from 68m
CORC162	393088	6555577	301	RC	45	-60	72	74	2	0.79	2m @ 0.79g/t Au from 72m
							102	103	1	0.77	1m @ 0.77g/t Au from 102m
							88	92	4	0.78	4m @ 0.78g/t Au from 88m
CORC163	392972	6555465	298	RC	45	-60	143	148	5	14.22	5m @ 14.22g/t Au from 143m, including 1m @ 65.0g/t Au from 145m
							144	148	4	1.91	4m @ 1.91% Cu from 144m
CORC164	392980	6555500	297	RC	45	-60	144	145	1	0.75	1m @ 0.75g/t Au from 144m
CORC165	393042	6555617	300	RC	45	-60	118	119	1	0.68	1m @ 0.68g/t Au from 118m
							94	96	2	1.09	2m @ 1.09g/t Au from 94m
							94	96	2	1.6	2m @ 1.6% Cu from 94m
CORC166	393003	6555635	300	RC	45	-60	150	157	7	2.6	7m @ 2.6g.t Au from 150m, including 2m @ 6.0g/t Au from 151m
							161	162	1	0.91	1m @ 0.91g/t Au from 161m
							187	189	2	0.58	2m @ 0.58g/t Au from 187m
CORC167	392880	6555571	299	RC	45	-60	185	188	3	1.25	3m @ 1.25% Cu from 187m 1m @2.38%Cu from 187m
							194	195	1	1.03	1m @ 1.03g/t Au from 194m
							198	199	1	0.91	1m @ 0.71g/t Au
CORC168	392958	6555310	298	RC	45	-60	168	172	4	0.63	4m @ 0.63g/t Au from 168m. Hole failed to get to

Page 13

											target, to be diamond-tailed
CORC169	392845	6555480	301	RC	45	-60	207	210	3	0.77	3m @ 0.77g/t Au from 207m
CORC170	393185	6555064	299	RC	45	-50	91	101	10	4.55	10m @ 4.55g/t Au from 91m, including 1m @ 38.1g/t from 98m
							108	115	7	5.67	7m @ 6.42g/t Au from 108m, including 2m @ 15.9g/t Au from 108m
0000474	000005	0555000	000	50	45	00	108	115	7	2.54	7m @ 2.54% Cu from 108m, including 1m @ 8.53% Cu from 109m
CORC171	393025	6555600	300	RC	45	-60	130	131	1	0.68	1m @ 0.68g/t Au from 130m
							139	140	1	0.5	1m @ 0.5g/t Au from 139m
							139	142	3	0.90	3m @ 0.90% Cu from 139m
							148	150	2	2.67	2m @ 2.76g/t Au from 148m, including 1m @ 4.47g/t from 148m
CGC0008	393286	6555163	280	RC	42.5	-70	2	3	1	0.6	1m @ 0.6g/t Au from 2m
							1	2	1	1.22	1m @ 1.22g/t Au from 1m
CGC0009	393280	6555158	280	RC	42.5	-70	5	6	1	1.89	1m @ 1.89g/t Au from 5m
							7	8	1	1.16	1m @ 1.16g/t Au from 7m
CGC0010	393275	6555153	280	RC	42.5	-70	6	7	1	2.02	1m @ 2.02g/t Au from 6m
0000011	202200	0555140	200	DO	40.5	70	8	9	1	1.83	1m @ 1.83g/t Au from 8m
CGC0011	393269	6555148	280	RC	42.5	-70	14	17	3	1.69	3m @ 1.68g/t Au from 14m
							10	11	1	0.69	1m @ 0.69g/t Au from 10m
0000010	000004	0555440	000	D.O.	40.5	70	13	15	2	0.53	2m @ 0.53g/t Au from 13m
CGC0012	393264	6555143	280	RC	42.5	-70	17	20	3	4.18	3m @ 4.18g/t Au from 17m
							22	23	1	0.64	1m @ 0.64g/t Au from 22m
0000010	202252	0555407	000	D.C	40.5	70	21	23	2	3.97	2m @3.97g/t Au from 21m
CGC0013	393259	6555137	280	RC	42.5	-70	8	9	1	1.40	1m @ 1.40g/t Au from 8
0000177	000055	0555100	005	D.0	10 =	70	25	27	2	3.33	2m @ 3.33g/t Au from 25m
CGC0138	393253	6555132	280	RC	42.5	-70	29	30	1	0.66	1m @ 0.66g/t Au from 29m
CGC0250	393237	6555116	260	RC	42.5	-70	19	28	9	3.25	9m @ 3.25g/t Au from 19m, including 1m @ 13.8g/t Au from 21m
CGC0251	39324 3	6555122	260	RC	42.5	-70	15	18	3	5.95	3m @ 5.95g/t Au from 15m, including

											1m @ 13.1g/t Au from 17m
							2	3	1	1.34	1m @ 1.34g/t Au from 2m
CGC0252	393248	6555127	260	RC	42.5	-70	12	13	1	4.78	1m @ 4.78g/t Au from 12m
CGC0253	393253	6555132	260	RC	42.5	-70	8	12	4	5.07	4m @ 5.07g/t Au from 8m, including 1m @ 10.5g/t Au from 9m
							68	69	1	0.57	1m @ 0.57 g/t Au from 68m
CGDD001	393208	6555091	300	DD	45	-40	71	77	6	5.68	6m @ 5.68g/t Au from 71m, including 1m @ 28.0g/t Au from 75m
							125	126	1	0.53	1m @ 0.53g/t Au from 125m
							83	84	1	1.43	1m @ 1.43g/t Au from 83m
							110	112	2	2.03	2m @ 2.03g/t Au from 110m
							113	114	1	0.67	1m @ 0.67g/t Au from 113m
CGDD005	393166	6555045	299	DD	45	-50	138	139	1	0.54	1m @ 0.54g/t Au from 138m
							150	155.3	5.3	0.59	5.3m @ 0.59g/t Au from 150m, including 0.3m @ 2.35g/t Au from 150m
CGRC056	393252	6555134	301	RC	45	-60	42	46	4	1.32	4m @ 1.32g/t Au from 42m
							30	31	1	0.99	1m @ 0.99g/t Au from 30m
CGRC057	393238	6555134	300	RC	45	-60	44	45	1	0.97	1m @ 0.97g/t Au from 44m
CGRCGS/	383236	0333134	300	KC	43	-00	52	55	3	6.59	3m @ 6.59g/t from 52m, including 1m @ 16.3g/t Au from 53m
CORC041	393171	6555060	299	RC	42.5	-50	-	-	-	-	NSI
							87	88	1	0.6	1m @ 0.6g/t Au from 87m
							124	130	6	3.89	6m @ 3.89g/t Au from 124m, including 2m @ 9.85g/t Au from 125m
CORC108	393006	6555583	300	RC	45	-60	135	136	1	4.1	1m @ 4.1g/t Au from 135m
							163	167	4	4.77	4m @ 4.77g/t Au from 163m, including 1m @ 10.1g/t Au from 164m And
CORC109	392979	6555561	299	RC	45	-60	103	104	1	0.91	1m @ 0.91g/t Au from 103m
CODC142	303035	6555500	300	RC	45	-60	85	86	1	0.90	1m @ 0.90g/t Au from 85m
CORC143	393035	6555523	300	RC	40	-60	112	113	1	0.87	1m @ 0.87g/t Au from 112m

ABN 39 151 900 855

							121	122	1	0.65	1m @ 0.65g/t Au from 121m
							137	138	1	0.59	1m @ 0.59g/t Au from 137m
							142	148	6	1.73	6m @ 1.73g/t Au from 142m
AA0169	39324 3	6555158	305		316	-60	42	56	14	4.58	14m @ 4.58g/t Au from 42
AA0179	393181	6555220	305		136	-60	30	38	8	2.51	8m @ 2.51g/t Au from 30m
AA0208	393426	6554905	307		0	-90	38	54	16	8.40	16m @ 8.40g/t Au from 38m
							30	44			14m @1.85g/t Au
AAR0011	393142 39332	6555546	307		0	-90	40	49	14	1.85	from 30m 9m @ 9.25g/t Au
AAR0025	4	6555082	306		0	-90	62	67	9	9.25	from 40m 5m @ 11.80g/t Au
AAR0027	393302	6555061	305		0	-90	31	37	5	11.80	from 62m 6m @ 16.76g/t Au
AAR0101	393428	6554922	307		0	-90	6	10	6	16.76	from 31m 4m @ 24.57g/t Au
CGC0025	393271	6555167	280		43	-70			4	24.57	from 6m
CGC0028	393254	6555153	280		43	-70	18	25	7	6.27	7m @ 6.27g/t Au from 18m
CGC0034	39324 3	6555153	281		43	-70	24	29	5	29.47	5m @ 29.47g/t Au from 24m
CGC0052	393240	6555171	280		43	-70	2	11	9	5.75	9m @ 5 .75g/t Au From 2m
CGC0068	393220	6555173	281		43	-70	20	30	10	4.70	10m @ 4.70g/t Au From 20m
CGC0070	393231	6555183	280		43	-70	16	20	4	25.02	4m @ 25.02g/t Au form 16m
CGC0092	393232	6555206	280		43	-70	4	15	11	17.52	11m @ 17.52g/t Au from 4m
0000000	202022	0555007	000	DO	40	70	11	17	0	7.05	6m @ 7.25g/t Au
CGC0098	393223	6555207	280	RC RC	43	-70	14	22	6	7.25	from 11m 8m @ 15.76g/t Au
CGC0099	393217	6555201	280	RC	43	-70	19	29	8	15.76	from 14m 10m @ 7.19g/t Au
CGC0100	393212	6555196	281	RC	43	-70	6	16	10	7.19	from 19m 10m @ 7.35g/t Au
CGC0225	393229	6555161	260	RC	43	-70	16	23	10	7.35	from 6m 7m @ 7.70g/t Au
CGC0232	393223	6555144	260	RC	43	-70	21	27	7	7.70	from 16m 6m @ 22.61g/t Au
CGC0241	393227	6555128	261	RC	43	-70	23	30	6	22.61	from 21m 7m @ 15.65g/t Au
CGC0249	393227	6555117	260	RC	43	-70	6	8	7	15.65	from 23m 2m @ 21.82g/t Au
CGC0254	393259	6555128	260		43	-70	13	17	2	21.83	from 6m
CGC0303	393315	6555067	261	RC	43	-70			4	26.94	4m @ 26.94g/t Au from 13m
CGRC006	393321	6555096	306	RC	0	-90	35	45	10	7.65	10m @ 7.65g/t Au from 35m
CGRC054	39323 3	6555185	301	RC	46	-60	31	36	5	17.47	5m @ 17.47g/t Au from 31m
	393345	6554833	300	RC	90	-60	104	107	3	21.02	3m @ 21.02g/t Au from 104m
CORC014				RC	4.0	-60	93	104	11	10.97	11m @ 10.97g/t Au from 93m
CORC014	393367	6554817	301		48	-00					
	393367 39344 6	6554817 6554909	301	RC	222	-60	77	91	14	2.88	14m @ 2.88g/t Au from 77m

CORC058	393140	6555294	300	RC	47	-60	87	111	24	1.22	24m @ 1.22g/t Au from 87m
CORC064	393076	6555538	301	RC	54	-84	75	94	19	1.93	19m @ 1.93g/t Au from 75m
CORC076	393056	6555323	299	RC	45	-60	122	145	23	1.38	23m @ 1.38g/t Au from 122m
CORC095	392976	6555610	300	RC	43	-60	149	164	15	1.52	15m @ 1.52g/t Au from 149m
CORC099	392876	6555454	297	RC	40	-60	174	181	7	5.44	7m @ 5.44g/t Au from 174m
CORC105	393030	6555330	298	RC	47	-61	173	178	5	4.11	5m @ 4.11g/t Au from 173m
CORC107	393051	6555290	299	RC	42	-60	109	122	13	2.01	13m @ 2.01g/t Au from 109m
CORC108	393006	6555583	300	RC	44	-61	117	131	14	1.91	14m @ 1.91g/t Au from 117m
CORC133	392870	6555505	297	RC	48	-60	172	198	26	0.83	26m @ 0.84g/t Au from 172m
CORC139	393006	6555302	298	RC	44	-61	202	221	19	1.28	19m @ 1.28g/t Au from 202m
CRC002	393282	6555056	300	RC	0	-90	74	79	5	6.36	5m @ 6.36g/t Au from 74m
CRC016	393327	6554982	300	RC	45	-87	81	89	8	7.07	8m @ 7.07g/t Au from 81m
CRC037	393283	6555039	305	RC	0	-90	77	86	9	2.39	9m @ 2.39g/t Au from 77m

JORC CODE, 2012 EDITION - TABLE 1 REPORT

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g	For the recent reverse circulation (RC) drilling (during November-December 2024), holes were sampled initially as 4 m "scoop" composites outside of the ore zone, and 1m samples within the ore zone. These composites, alongside 1m split samples from within the ore zone, were submitted to Bureau Veritas for Au analysis. These 4m composites and 1m split samples generally weighed between 2.0-2.5kg. Historic RC drilling was sampled at 1m intervals, with sub-samples collected from a riffle or cone splitter. Occasional wet samples were not split but collected in a plastic bag and spear sampled.

Criteria	JORC Code explanation	Commentary
	charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	For the most recent drilling (Nov/Dec 2024) the Coogee deposit was drilled with RC drilling using a 138mm diameter bit. Historically the Coogee deposit has been drilled with a combination of Aircore (AC), Reverse Circulation (RC) and Diamond core drilling (DD). The primary method of drilling has been RC (5 3/8-inch face sampling hammer) with only minor DD. RAB and AC holes exist and have been used to assist with geological interpretation but have not been used for grade interpolation for the mineral resource estimate.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	For the most recent drilling (Nov/Dec 2024) recovery was was monitored while drilling through visual inspection. Historic core recovery (Ramelius from 2012 onward) was generally excellent (≈100%). Minor wet intervals occur and can affect RC sample recovery, although most recent drilling has been with rigs of sufficient capacity to provide dry chip samples. Chip sample recovery is generally not logged.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	Logging has been completed for all DD and RC drilling both recent and historic, including rock type, grain size, texture, colour, foliation, mineralogy, alteration, sulphide and veining, with a detailed description written for many intervals. All logging was of a level sufficient in detail to support resource estimation. Historic RC holes were logged at 1m intervals to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.

Criteria JORC Code explanation Commentary

Sub-sampling techniques and sample preparation

If core, whether cut or sawn and whether quarter, half or all core taken.

If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.

For all sample types, the nature, quality and appropriateness of the sample preparation technique.

Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.

Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes appropriate to the grain size of the material being sampled.

For the most recent drilling (Nov/Dec 2024) RC samples were split for every metre at 1m intervals with a cone splitter mounted beneath the cyclone. Initial sample submission was for 4m scoop sample composites outside the ore zone, with 1m split sample submitted within the ore zone.

Certified Reference Materials (CRMs), RC field duplicates, and blanks, were submitted at a combined ratio of 1:20 with the 1m samples, with 2 CRMs and duplicates each per 100 1m samples and 1 blank per 100 1m samples. Additionally, an appropriate CRM was submitted at the end of every 4m composite section submitted. The grade ranges of the submitted CRMs were selected based on the expected grade and economic grade ranges.

Samples were sorted and dried in ovens. Each sample was then pulverized to 90% passing 75um to create a 40g charge for fire assay analysing for Au. 202 select samples also underwent mixed acid digest (including hydrofluoric, nitric, hydrochloric and perchloric acid) with an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analysis for Copper (Cu) only.

Laboratory standards were taken at the pulverizing stage and selective repeats conducted at the laboratory's discretion.

Historic RC samples were split for every metre drilled with either a cone splitter mounted beneath the cyclone, or a riffle splitter mounted on the rig. Initial sample submission was for 4 m (spear sample) composites, with the 1 m splits sent for assay of the 4 m composite returned anomalous results. Sample weights were generally between 3 to 4 kg.

Most historical diamond core samples were half core of 1 m length, although some samples were less than 1 m (minimum 20 cm) to account for geological contacts.

Where field duplicates were taken the core was cut into two quarters. Field duplicates for RC samples were taken from the secondary sampling port on the cone splitter, which was opposite the primary sampling port.

All samples were sorted and dried in ovens for up to 8 hours (approx. +/-) at 105°C. Primary sample preparation has been by crushing the whole sample. For RC samples, the whole sample was crushed to a nominal 3mm Boyd crush. For diamond core the whole sample was crushed to a nominal 10mm (primary crush) and then further crushed to a nominal 3mm. All samples were then split with a riffle splitter

Criteria	JORC Code explanation	Commentary
		to obtain a sub-fraction, a nominal 2 kg sample where possible. All material was retained after splitting. Samples were then milled using a robotic preparation system to 90% passing - 75um.
		Laboratory standards were taken at the pulverizing stage and selective repeats conducted at the laboratory's discretion. For both recent and historic drilling, sample size was considered appropriate for the grainsize and style of mineralisation.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Historic 1m split RC samples and all historic diamond core samples have been analysed for Au (10 ppb) and Cu (1 ppm) – for Au, the samples have been analysed by firing a 40g or 50g portion of the sample with an ICP-OES or AAS finish. Copper was determined by 4-acid digest with an ICP-OES finish. The primary laboratory used for all recent and some historical assaying was Bureau Veritas in Canning Vale, WA. The most recent drilling (Nov/Dec 2024) submitted its samples to Bureau Veritas in Kalgoorlie, WA. These samples were analysed for Au (10ppb), with 202 selected samples analysed for Cu (1ppm) as well. Au analysis consisted of fire assay of a 40g pulverised sample with an Atomic Absorption Spectrometry (AAS) finish. Cu analysis consisted of a mixed-acid digest with an ICP-OES finish Previous operators used commercial laboratories such as Amdel, ALS, SGS, Kalgoorlie Assay and Genalysis, and included umpire laboratory checks between these labs. Standards (Certified Reference Materials – CRMs) were submitted with a minimum 3/100 samples, blanks minimum 2/100 samples, duplicates minimum 2/100 samples for RC and DD drilling.
		Various OREAS Certified Reference Materials standards have been used, ranging from 0.2 ppm up to 5.30 ppm Au. The range of values for the CRMs are appropriate for the mineralisation grade and style. Analysis of the CRM and filed duplicate data show the sampling is unbiased and suitable for use in mineral
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data	resource estimation. All data has been checked internally for correctness by senior consultants and contractors. There have been no twinned holes drilled at this point, although there is very closely spaced RC grade control at various orientations drilling that confirms the continuity of mineralisation.

Criteria	JORC Code explanation	Commentary
	verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Historical drilling was captured using Field Marshall software, with the data loaded directly into the central database. Recent drilling has been recorded using Field Marshall software on field laptops. Assay results were loaded electronically, directly from the assay laboratory. All drillhole data has been visually validated prior to resource estimation. All drillhole information is stored graphically and digitally in MS excel and MS access formats. No adjustments have been made to assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	For drilling completed prior to 2020 and post 2020 data collars were surveyed using DGPS equipment or by the mine site surveyors to sub 0.5 m accuracy. For the recent drilling, holes were set out and picked up using RTK GPS by qualified surveyors. Datum: Geodetic Datum of Australia 94 (GDA94) Projection: Map Grid of Australia (MGA) Zone: Zone 51 For recent drilling (2020 onwards) dip and azimuth readings have been completed using a north seeking gyro survey (Reflex or Axis) for all holes where possible. For the Ramelius drilling (~2012 – 2013), deeper holes were surveyed by gyro, with shorter grade control holes using the collar compass and clinometer readings at surface. Topographic surfaces have been generated from aerial photogrammetry or detailed surveys. Some older drillhole RL data has been adjusted to match accurate topography.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The majority of the central and southern part of Coogee drilling is on a 20 m section by 10 m on section spacing, with some infill to 5 m on lines in core high grade zones and/or selected 12.5 m sections within the pit. In the northern part of the deposit, the drill spacing is mostly on 40 m spaced sections, with holes at 20 m to 40 m along section, with occasional infill holes on 20 m spaced sections. The most recent drilling (Nov/Dec 2024) was done mostly as infill around previously drilled holes or extensions of previously drilled lines, resulting in a drill spacing for these holes of 10-20m around historic holes. All previously reported sample/intercept composites have been length weighted

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Mineralisation dips at 30° to the west and strikes north south. The majority of historic exploration drill holes are oriented at 60° towards grid east, and therefore the downhole intercepts discussed in previous announcements are very close to the true widths of the mineralised shoots and is unbiased. The most recent drillholes (Nov/Dec 2024) were mostly drilled dipping -60° towards 45°, with one vertical hole and one hole dipping -50° but maintaining a 45° azimuth. This should similarly result in intercepts being close to true width.
Sample security	The measures taken to ensure sample security.	Chain of custody was managed by company representatives and is considered appropriate. The laboratory receipts received samples against the sample dispatch documents and issues a reconciliation report for every sample batch. Historical (pre-2012) sample security is not recorded.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audits or reviews have been conducted apart from internal company review.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments	The tenement (M26/477) is 100% owned by Javelin Minerals Limited and is in good standing and there are no known impediments to obtaining a licence to operate in the area. There are no overriding royalties other than the standard government royalties for the relevant minerals. There are no other material issues affecting the tenements. All granted tenements are in good standing and there are no impediments to operating in the area.

ASX:JAV

Page 22

Criteria	JORC Code explanation		Commentary					
	to obtaining a licence to operate in the area.							
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Much of the drilling data at Coogee is historical, with work undertaken by Harmony Gold (2002), Ramelius Resources (2012-2015), Serena Minerals (2019), Sovereign Resources (1996-1999), Terrain Minerals (2016) and View Resources (2004). Ramelius, Sovereign and View conducted extensive work, with only minor drilling by the other parties. Most of the Harmony and Ramelius drilling was in the area that would become the pit, including grade control drilling. Statistical analysis of the historical drilling with the more recent drilling by Victory Mines (now Javelin Minerals) shows that the Au grade distributions are comparable, and that all the drilling data is suitable to use for mineral estimation.						
Geology	Deposit type, geological setting, and style of mineralisation.	The Coogee gol Mineralisation is Pit exposures s alteration, coars as an Archaean sedimentary layer plunging shoots	d/copper dep hosted within show the lod the pyrite-hem- structurally her within the v	osit is hosted by a a shallow (-30° e zone to be atite mineralisat losted lode gold volcanic sequence	y felsic da P) west di associate ion and f I deposit	acitic an pping lo ed with oliation. possibly	d rhyolitic de/shear z sericite-ch It is interp occurring	units. one. Ilorite reted on a
Drill holeA summary of all informationInformationinformation material to the understanding of the exploration results including a tabulation of the following information for all		Mines Quarterly The drill hole info	ormation has	been inserted ar	nd tubula		•	
	Material drill holes:	Hole ID	Easting	Northing	RL	Dip	Azimuth	Depth
	o easting and northing of the drill hole collar	CORC154	393415	6554828	302	-90	0	126
	o elevation or RL	CORC155	393199	6554959	299	-60	45	150
	(Reduced Level –	CORC156	393210	6555005	299	-60	45	80
	o elevation above sea level in metres) of the	CORC157	393179	6554975	299	-60	45	156
	drill hole collar	CORC158	393155	6555000	300	-60	45	180
	o dip and azimuth of the hole	CORC159	393139	6555181	300	-60	45	114
	o down hole length and	CORC160	393112	6555266	301	-60	45	150
	interception depth o hole length.	CORC161	393093	6555506	300	-60	45	144
	o noic iongui.	CORC162	393088	6555577	301	-60	45	144
	If the exclusion of this	CORC163	392972	6555465	298	-60	45	204
	information is justified on the basis that the	CORC164	392980	6555500	297	-60	45	180
	information is not	CORC165	393042	6555617	300	-60	45	162
	Material and this	CORC166	393003	6555635	300	-60	45	162
	exclusion does not detract from the	CORC167	392880	6555571	299	-60	45	216
	understanding of the	CORC168	392958	6555310	298	-60	45	213
	report, the Competent	CORC169	392845	6555480	301	-60	45	234
	Person should clearly						1	

Criteria	JORC Code explanation	Commentary						
	explain why this is the	CORC170	393185	6555064	299	-50	45	126
	case.	CORC171	393025	6555600	300	-60	45	180
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut- off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high- grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Top-cuts have not been applied to previously announced drilling results. Aggregated sample assays calculated using a length weighted average. Gold equivalent values were not used for previous reporting of exploration results.						
Relationship between mineralisation widths and intercept lengths Diagrams	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). Appropriate maps and sections (with scales)	Mineralisation dips at 30° to the west and strikes north south. The majority of the exploration drill holes are oriented at 60° towards grid east, and therefore the downhole intercepts discussed in previous announcements are very close to the true widths of the mineralised shoots. Refer to figures in previous announcements. For the most recent drilling program (Nov/Dec 2024), refer to Figures 1-2.						
	and tabulations of intercepts should be included for any	program (1101/L	. 55 252-11, 10	.s. to 1 igui 60 1 2				

Criteria	JORC Code explanation	Commentary
	significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Drill collar plan and cross section are located as Figures 1 to 2 with intersections >0.5 g/t gold and 0.5% Copper are detailed in Table 1 and Appendix 2. Long Section is shown in Figure 4.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant results above the stated reporting criteria have previously been reported, not just the higher-grade intercepts. This is also true for the most recent drilling results (see Table 1). All Exploration Results are reported. Table 1 and Appendix 2 of the announcement contains significant intersections. Significant intersections are continuous intervals of sampling where each individual sample is of an individual grade greater than 0.5% Cu and 0.5 g/t Au.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Groundwater, and geotechnical studies have not commenced as part of the assessment of the project.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or largescale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas,	The results will be used in conjunction with portable XRF information and lithogeochemical analysis to further refine the geological interpretation of the orientation and continuity of high-grade shoots to assisting in targeting the future drill programs

Criteria	JORC Code explanation	Commentary
	provided this information is not commercially sensitive.	