Forrestania Resources Ltd Suite 2, 38 Colin Street West Perth WA 6005

ASX: FRS

Phone +61 8 6391 0113 info@forrestaniaresources.com.au ACN 647 899 698

forrestaniaresources.com.au

19th February 2025

ASX RELEASE

Ada Ann 1m drilling results up to 21g/t Au, confirm highgrade gold mineralisation open in all directions; phase 2 drilling complete.

Highlights:

- 1m assays from the previously released FRS composite drilling results¹ confirm high-grade Au mineralisation, open in all directions, including:
 - o AARC0002 2m @ 10.7g/t Au (from 62m), including 1m @ 21g/t Au
 - o AARC0006 7m @ 2.1g/t Au (from 34m), including 1m @ 7.3g/t Au
 - o AARC0020 6m @ 1.6g/t Au (from 62m), including 1m @ 5.8g/t Au
- Historic drilling results² from Ada Ann include:
 - o AA28 4m @ 12.8g/t Au (from 25m)
 - BR19 16m @ 2.6g/t Au (from 24m)
 - o AA05 6m @ 6.5g/t Au (from 16m)
- The recent 1m results confirm the shallow, high-grade potential at Ada Ann, re-confirming the high-grade results (49g/t Au³) returned from an assayed, historic spoil pile.
- Phase 2 drilling has recently been completed at Ada Ann (14 RC holes for 1017m), testing mineralisation at depth, as well as to the north and south.
- Free gold panned from historically mined, rock samples at Ada Ann.

Forrestania Resources Limited (ASX: FRS) ("FRS" or "the Company") is pleased to announce positive 1m assay results from the Ada Ann prospect, at the Bonnie Vale Project, located near Coolgardie, in Western Australia's prolific Eastern Goldfields. Furthermore, the Company reports the safe and successful completion of the phase 2 drilling at the Ada Ann prospect.

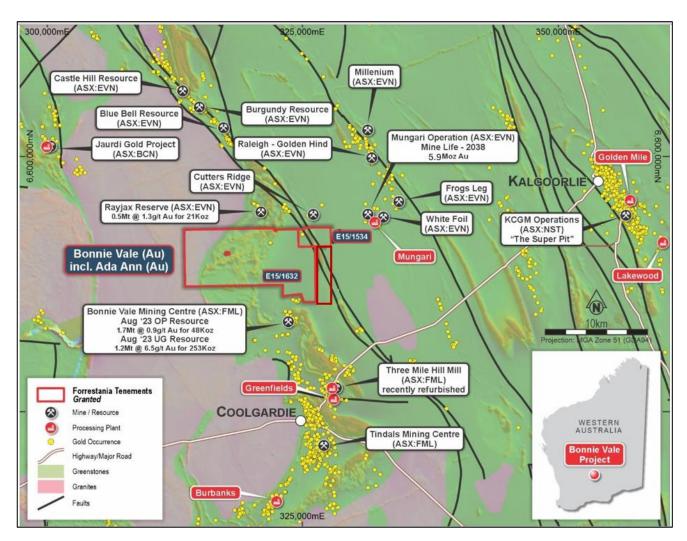
The 1m results, **up to 21g/t Au** build on the success of the maiden drilling programme with confirmation of strong and high-grade Au mineralisation. Additional regional exploration success from geochemical and historic drilling in and around the Christmas Gift⁴ and at Bonnie Vale North

¹ ASX: FRS Ada Ann drilling results confirm gold mineralisation, 13th January 2025

² ASX: FRS Option to acquire Eastern Goldfields tenements, 19th May 2023

³ ASX: FRS Gold samples up to 49g/t Au at Ada Ann Prospect, 10th April 2024

⁴ ASX: FRS Bonnie Vale regional exploration update – rock chips up to 2.7g/t Au, historic drilling up to 14g/t Au, 9th May 2024



prospect areas are helping to turn the Bonnie Vale project area into an area of strong exploration potential.

Forrestania Resources' Chairman John Hannaford commented:

"The results of the 1m splits, with assays up to 21 g/t Au, along with the recently panned gold provide further confirmation of grade and continuity of the Ada Ann mineralisation. This additional highly positive exploration data will be further enhanced by the current phase 2 drilling programme which has just been completed. The Ada Ann prospect continues to grow in scale and stature, and with several nearby processing options & the current gold price environment, the strategic value of the tenement portfolio continues to grow.

With the recent placement and support from existing and new investors, the Company has added momentum to drive exploration on several fronts. We are now also turning our focus back to the Lady Lila gold project within the Forrestania region."

Figure 1. Forrestania Resource's Bonnie Vale Project (E15/1632 & E15/1534) is in close proximity to major gold mines and deposits. Map includes simplified geological interpretation with WA Government magnetics. ASX: EVN Mungari lies ~5km to the east of the Bonnie Vale Project area. (ASX: EVN Mungari mine life taken from ASX: EVN Mungari mine life extended to 15 years - 5th June 2023; Mungari Mineral resource estimate figure of 5.9Moz & Rayjax Ore Reserve taken from ASX: EVN Mungari Mineral Resource & Ore Statement as at 31st December 2023 - 14th February 2024; ASX: FML Bonnie Vale mineral resource update, 26th September 2023).

Bonnie Vale Project, Coolgardie, WA

Ada Ann prospect

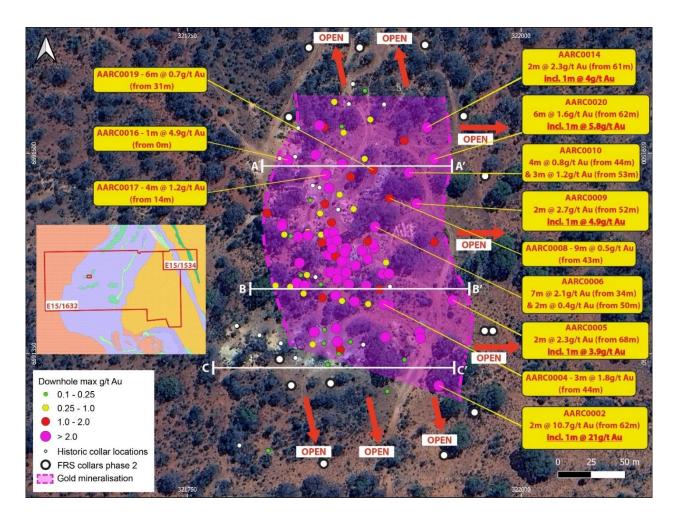
The Company completed its maiden drilling programme (21 RC holes for 1488m) in November 2024 (Figure 2) and is pleased to confirm that the follow up phase 2 programme (Figure 2) has recently been completed (14 RC holes for 1017m) at the Ada Ann prospect (Bonnie Vale Project).

The maiden drilling programme successfully tested and confirmed the historic Au results and also confirmed **consistent**, **open mineralisation at depth and along strike**, with the 1m assay results adding more confidence to the Company's future exploration plans. The second phase of drilling was designed to test the open mineralisation at depth and along strike to the north and south.

Figure 2: Phase 2 collar locations from the recent FRS RC drilling campaign at the Ada Ann prospect.

The 1m sample results from the Company's maiden drilling programme at Ada Ann include:

Hole_ID	Depth_From	Depth_To	Interval Width	Grade (g/t)	Gram/metre
AARC0002	62	64	2	10.74	21.5
AARC0006	34	41	7	2.14	15.0
AARC0020	62	68	6	1.63	9.8
AARC0004	44	47	3	1.82	5.5
AARC0009	52	54	2	2.67	5.3
AARC0017	14	18	4	1.22	4.9
AARC0008	43	52	9	0.52	4.7
AARC0005	68	70	2	2.34	4.7
AARC0014	61	63	2	2.27	4.5
AARC0019	31	37	6	0.65	3.9
AARC0010	53	56	3	1.23	3.7
AARC0010	44	48	4	0.75	3.0
AARC0018	18	20	2	0.82	1.6
AARC0021	40	44	4	0.35	1.4
AARC0006	50	52	2	0.39	0.8


Table 1. All significant drilling intercepts from recent FRS drilling at Ada Ann. All intercepts >1m in width are included in this table. Intercepts are based on a cut-off grade of 0.3g/t Au, allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. Drilling intercept widths reported in this table are down-hole widths and not true widths.

The mineralised, geological model at Ada Ann dips gently to the east with the mineralisation continuing at depth and along strike, in both directions. Down dip, at depth, the drill holes located to the east of the known historic mineralisation (Figure 3) have returned narrow vein, high-grade gold results related to the quartz veining, including several **high-grade 1m intervals**, including:

Hole_ID	Grade (g/t)	Depth (m)	Geological description
AARC0002	21.0	62-63	Schist with biotite alteration, with ~10% quartz veining over 2m
AARC0020	5.84	63-64	Foliated komatiite, with ~15% quartz veining over 7m
AARC0009	4.94	53-54	Altered komatiite, with ~5% iron-stained quartz over 3m
AARC0014	3.98	51-52	Strongly altered basalt, with ~30% quartz over 5m
AARC0005	3.94	69-70	Schist with biotite alteration ~5% quartz over 4m

Table 2. Significant 1m intersections with lithological/geological description and down-hole width of the quartz veining.

Figure 3. Map showing cross section locations as well as historic and recent downhole max results at the Ada Ann prospect with significant FRS downhole max results indicated. Historic RAB hole BR14 is also indicated ~45m south of the main mineralised area. Sections A-A', B-B' and C-C'' are also shown, in relation to the figures below. Drilling intercept widths are down-hole widths and not true widths.

Encouragingly, given the low angle of the mineralisation and with the Au mineralisation estimated to dip at approximately 25°-30°, the true width of the drilling results are potentially very similar in length to the reported down-hole widths (the down-hole widths are estimated to be approximately ~98% of the true width, based on the 60° drill holes). This would suggest that the significant down-hole drilling intercepts seen in Table 1 are close to the actual true width of the mineralisation and confirm the strong mining potential of the Ada Ann prospect.

These high-grade Au results confirm the history of Ada Ann where it is reported in WAMEX A49504 that Mr. A Stockwell (a local prospector) extracted 150 tonnes of near surface Au ore from a shallow pit (~6m in depth) at Ada Ann, which was treated at the local Kintore Mill of Mr. M Pavlinovich. The gold recovery was reported at ~7g/t Au.

Additionally, immediately after the completion of the phase 2 drilling, ~10kg of quartz bearing rock samples (FR001796 – an altered spinifex textured komatiite with approximately 65% iron-stained quartz veining) were taken from historically mined waste piles around the pit at Ada Ann. This material was hand sampled and collected by FRS geologists. Subsequently, this bulk sample was crushed and hand dollied by a local prospector (Mr. Tim Bates) and the resulting material was then sluiced and hand panned to recover fine, free gold (Figure 4).

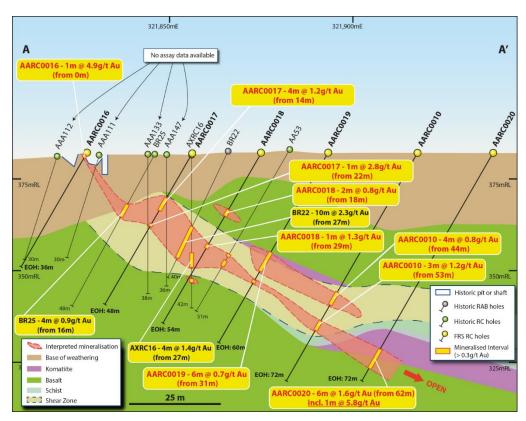
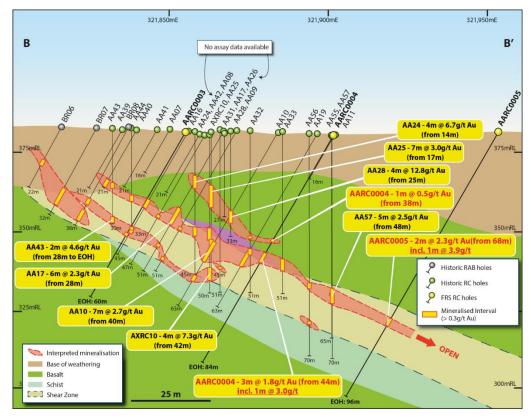


Figure 4. Free gold, panned from rock samples (FR001796) collected at Ada Ann from historic mining waste. Note: visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations or the commercial viability of projects.


Although no visible gold was geologically logged during the Company's first phase of drilling at Ada Ann, AARC0009 returned an assay result of 2m @ 2.67g/t Au from 52m; this included **1m @ 4.94g/t** Au (sample FS017508 – 53-54m). When FS017508 was re-assayed by ALS as a duplicate sample (FS017508_DUP), a result of **9.51g/t Au** was returned, confirming the high-grade mineralisation at Ada Ann and suggesting the presence of free gold at Ada Ann, which has subsequently been visualised in the results of the historic mining waste rock samples collected, crushed, dollied and panned (Figure 4).

With the second phase of drilling completed at Ada Ann, the Company is now eagerly awaiting the results of the 4m composite samples, which are anticipated to be returned in 6-8 weeks.

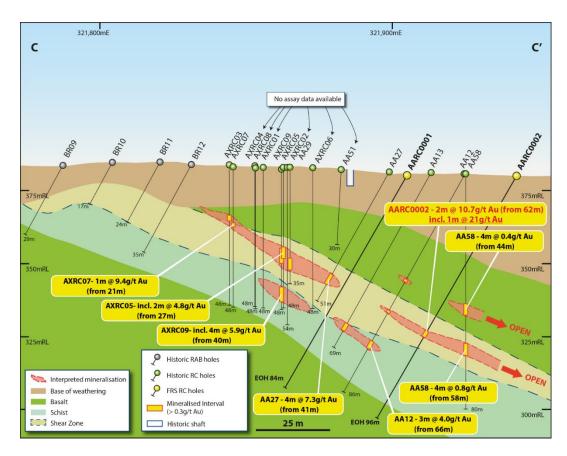


Figure 5. Cross section (A-A'), looking north ~20m along strike, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text). Drilling intercept widths are down-hole widths and not true widths.

Figure 6. Cross section (B-B'), looking north ~25m along strike, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text). Drilling intercept widths are down-hole widths and not true widths.

Figure 7. Cross section (C-C'), looking north ~45m along strike, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text). Drilling intercept widths are down-hole widths and not true widths.

Next steps

The Company has submitted the composite drilling samples from the recent, phase 2 drilling programme at Ada Ann, with results anticipated to be returned within 6-8 weeks. Once these results are returned, the Company will plan further work at Ada Ann and the Bonnie Vale project area, for later in the year.

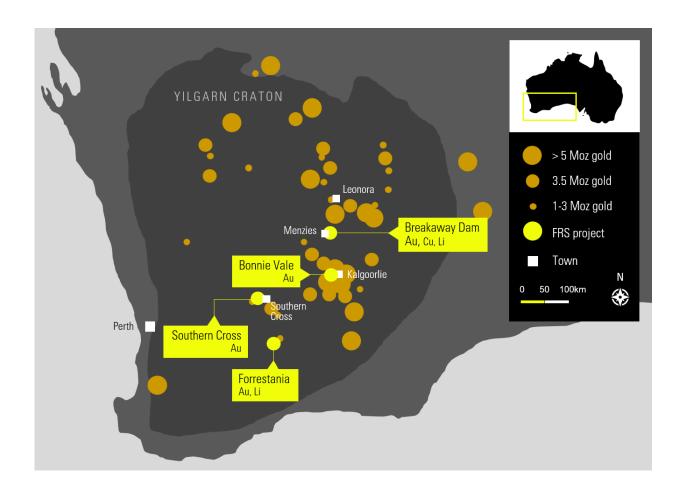
Whilst the second phase results from Ada Ann are awaited, the Company will re-focus its attention on the Lady Lila gold prospect, located in the Forrestania region.

This announcement has been authorised for release by Forrestania Resources' Board.

For further information please contact:

John Hannaford
Chairman
Phone +61(0) 419 042 769
john@forrestaniaresources.com.au

Simon Condon Investor Relations Phone +61(0) 417 021 312 simon@republicpr.com.au


About Forrestania Resources Limited

Forrestania Resources Limited is an Australian resources company exploring for lithium, gold, and nickel in the Forrestania, Southern Cross and Eastern Goldfields regions of Western Australia.

The Eastern Goldfields tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton. In total this includes eleven Exploration Licences and four Exploration Licence Applications, covering a total area of ~1,000km². The tenements are predominately non-contiguous and scattered over 300km length, overlying or on the margins of greenstone belts.

The company's Forrestania Project hosts lithium, gold and nickel prospects in close proximity to the Covalent Mt Holland Lithium Mine, the historic 1Moz Bounty gold deposit and the operating Flying Fox, and Spotted Quoll nickel mines in the well-endowed southern Forrestania Greenstone Belt.

The Southern Cross Project is located in the Southern Cross Greenstone Belt and has significant potential for gold mineralisation.

Competent person's statement

The information in this report that relates to exploration results is based on and fairly represents information compiled by Mr. Ashley Bennett. Mr. Bennett is the Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr. Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

Disclosure

The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Cautionary statement regarding values & forward-looking information

The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. Forrestania Resources does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forward-looking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forwardlooking statements are based upon estimates and opinions at the date the statements are made. Forrestania Resources undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of Forrestania Resources from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. Forrestania Resources, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. If any geochemical sampling data is reported in this announcement, it is not intended to support a mineral resources estimation. Any drilling widths given in this announcement are down-hole widths and do not represent true widths, but a paragraph within the announcement estimates that the true width and down-hole width are similar in size.

Appendix 1 – JORC TABLE 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 All FRS (AARC0001- AARC0021) were completed by RC drilling. Topdrill were the drilling contractor and utilized a Schramm C685. Industry standard practices were applied to the drilling programme and sampling. Representative 4m composite samples were taken from the spoil piles, with a hand size aluminium scoop. These samples were collected in a numbered calico bag, recorded by FRS staff and submitted to ALS Kalgoorlie (sample sizes were approximately 1.5kg up to 2.5kg were collected). 1m single splits were also taken off the rig (in prenumbered calico bags) from the cone splitter and mineralised zones (>0.09g/t Au) were recently submitted to ALS (sample sizes were approximately 1.5kg up to 2.5kg), based on the results from the 4m composites. The sampling details of these samples were recorded by FRS geologists and recorded on paper, spreadsheet and then transferred to the company database. Regular air and manual cleaning of the rig cyclone was undertaken to remove potential contaminants. The 4m composite samples were submitted to ALS Kalgoorlie; these samples were then trucked to ALS Perth, Canning Vale. The composite samples were submitted for Au analysis using AuMe-TL43 (aqua regia); Aqua regia digestion of 25g sample, followed by trace Au and multi-element analyses by ICP-MS and ICP-AES. Subsequently, any composite samples equal to in excess of 0.09ppm Au have had their corresponding 1m samples sent to ALS for analysis by Au-AA25 (fire assay) and a FA-FUS03 (high grade fire assay fusion – if/where required). "Wing samples" were taken either side of any sample in Excess of 0.09ppm Au whereby the corresponding 1m samples from the 4m composites above and below the mineralised sample were also sent to ALS for assay by Au-AA25 (fire assay) and a FA-FUS03 (high grade fire assay fusion – if/where required). The 1m samples were submitted to ALS Kalgoorlie; these samples were then trucked to ALS Perth, Canning Vale. Historical drilling at Ada Ann:<

Criteria	JORC Code Explanation	Commentary
		intervals that were not interpreted to be mineralized were not assayed. Samples are believed to have been assayed by Aqua Regia techniques at Kalgoorlie assay laboratories. Laboratory documentation for all the assays is not available. • After a review of holes AA1-AA51, Gindalbie Metals sampled intervals not sampled previously. This sampling was performed by scoop sampling the bagged individual drill samples still on site, with both individual and composite samples being taken. It was not possible to riffle split the samples (as presumably would-have been the case with Stockwell's original samples) as many of the samples were cemented into hard masses, some were wet and the cost of drying pulverising and splitting the samples was not thought to be warranted. Instead as representative a sample as possible was obtained by breaking up the samples and scoop sampling throughout the sample. • Holes BR1-19 were completed by RAB drilling, drill samples were collected over a 2m interval, via a cyclone, a representative sample was taken using a pipe, composited to 6m samples and sent to Genalysis for fire assay. Historical reports suggest that any sample returning a 6m composite value >0.1g/t Au had the corresponding 2m samples submitted to Genalysis for fire assay, but not all of these 2m assays are available. • Holes BR20-24 were also completed by RAB drilling, one metre samples were collected and then speared, composited over four metre intervals and submitted to Genalysis for gold analysis by AAS (50gm charge). Intervals returning greater than 0.25g/t gold were resampled on a one metre basis and re-assayed, using the same technique. • Holes BR25-29 were drilled by RC; one metre samples were collected and then speared, composited over four metre intervals and submitted to Genalysis by AAS (50gm charge). Intervals returning greater than 0.25g/t gold were resampled on a one metre basis and re-assayed, using the same technique. • Holes BR25-29 were drilled by RC; No other details regarding sampling and assaying tech

	-	/
÷		

Criteria	JORC Code Explanation	Commentary
		by FRS geologists, a representative sample was then taken of this zone and the location GPS'd. Initially, all samples were sampled by ALS for Trace Level Au by aqua regia extraction with ICP-MS finish. 25g nominal sample weight (Au-TL43); a number of these results were over the detection limit and as such, these were re-assayed for Au by 25g Aqua Regia Digestion - Overrange analysis of digested sample (Au-AROR43). • ~10kg of quartz bearing rock samples were taken from historically mined waste piles around the pit at Ada Ann. This material was hand sampled and collected by FRS geologists. Subsequently, this bulk sample was crushed and hand dollied by a local prospector (Mr. Tim Bates) and the resulting material was then sluiced and hand panned to recover fine, free gold.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 All FRS (AARC0001- AARC0021) were completed by RC drilling; RC drilling was typically undertaken using a 5 1/4" hammer bit. Historic holes at Ada Ann were drilled using both RAB and RC rigs (see above for details); due to the historic nature of the reporting, the only details about the Rigs utilised are available for AA52-AA58 which were completed using Mole Pioneer rig with a 4.5 inch sampling hammer and a Schramm rig with a 5 inch face sampling hammer and BR1-19 which utilized a Warman drill rig operated by Westralian Diamond Drilling, BR20-24 drilled with a Mole Pioneer rig from Westralian Diamond Drillers of Boulder. This rig proved unsatisfactory in the hard ground encountered at relatively shallow depths and a Warman RC rig was used for holes BRC25-29.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For all FRS drilling, all percussion sample recoveries were noted in the sampling and geological logs. No significant issues were noted for sample recoveries. Moisture was also logged, but no wet samples were recorded during the programme. No known sampling bias is known to have taken place and no known relationship exists between grade and sample recovery. No known sample bias has been noted in any WAMEX reports for the historic drilling and Ada Ann. For all of the historic drilling at Ada Ann, recovery details are unknown, however site visits have determined that most samples appear to be consistent in size.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. 	 All of the drilled percussion chips from the FRS RC programme were geologically logged by a qualified geologist to a level of detail that could support a mineral resource estimation, mining studies and metallurgical studies. The drilling was logged on site with every metre studied and logged and exported to the Company database.

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques	Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	 Qualitative logging included lithology, alteration and textures; quantitative logging, including sulphide and other mineral percentages. Additionally, each hole was photographed. Full geological logs are unavailable for the historic holes at Ada Ann and details of the logging practice is unknown. Logging data is located on historic WAMEX reports and the data transfer of these logs to the Company database has not been feasible for all holes as many of the logs are illegible. FRS geologists have entered geological data from the historic logs into the Company database.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Representative 4m composite samples were taken throughout the programme. These samples were assayed for gold, by aqua regia. Aqua regia digestion of 25g sample, followed by trace Au and multi-element analyses by ICP-MS and ICP-AES. Samples were sampled dry. RC samples were split using a rig mounted cone splitter, at 1m intervals, to obtain a sample for assay of approximately 3-5kg. The sampling detailed above is considered industry standard and is believed to be representative of the material collected. CRMs (certified reference material) were used for QAQC purposes. Industry CRM standards were inserted every 30 samples by the Company and internal QAQC reviews indicate that all CRMs were within acceptable ranges. Subsequently, any composite samples equal to in excess of 0.09ppm Au have had their corresponding 1m samples sent to ALS for analysis by Au-AA25 (fire assay) and a FA-FUS03 (high-grade fire assay fusion – if/where required). "Wing samples" were taken either side of any sample in Excess of 0.09ppm Au whereby the corresponding 1m samples from the 4m composites above and below the mineralised sample (up and down hole) were also sent to ALS for assay by Au-AA25 (fire assay) and a FA-FUS03 (high grade fire assay fusion – if/where required). For the drilling completed at Ada Ann by BHP Utah, Gindalbie Gold and A Stockwell, the sample preparation (if given in historic WAMEX reports) is detailed within the JORC table. In general, composite samples were taken during most drilling programmes and 1m split samples were taken within mineralized areas, after results had been returned. This is standard industry practice. There is no mention in the historic reports of wet samples.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the	The 1m samples that are being announced here were assayed by ALS Perth using industry standard techniques. The samples were submitted to

Criteria	JORC Code Explanation	Commentary
	 technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	ALS with standards and blanks inserted by Forrestania Resources, approximately every 40 samples and ALS have been asked to complete duplicate sampling approximately every 20 samples. For the original composite sampling CRMs (certified reference material) were used for QAQC purposes. Industry CRM standards were inserted every 30 samples and internal Company QAQC reviews indicate that all CRMs returned results that were within acceptable ranges. Additionally, ALS insert industry blanks, standards and duplicates into their analysis. At Ada Ann for the AA52-AA58 holes: Samples were collected every one metre by splitting a 2-3 kg sample off after passing the one metre drill volume through the rig cyclone. Four metre composites were scoop sampled from the splitter reject for all portions of the holes except for the :zones of interest, in which the individual metre sample was submitted for assay. Samples were submitted to-Amdel Laboratories Kalgoorlie for gold analysis by Aqua Regia techniques with a LLD of 0.02ppm Au. No details of QAQC are given. For AA1-AA52, The 1m sampling was performed by 'scoop sampling the bagged individual drill samples still on site, with both individual and composite samples being taken. It was not possible to riffle split the samples (as presumably would-have been the case with Stockwell's original samples) as many of the samples were cemented into hard masses, some were wet and the cost of drying pulverising and splitting the samples was not thought to be warranted. Instead as representative a sample as possible was obtained by breaking up the samples and scoop sampling throughout the sample. Some 150 samples were submitted to Amdel Laboratories. No QAQC details are given for this or the original composite sampling. For the BR holes: Drill samples over a 2 metre interval were collected via a cyclone; a representative sample was taken utilising a pipe, composited: over 6 metres, bagged and submitted to Genalysis to be analysed for gold using fire assay techniques. Any 6 metre composit
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	A number of holes within the Company drilling programme were designed to both test and verify the historic drilling results. These holes were designed in close proximity to existing high grade,

_	

Criteria	JORC Code Explanation	Commentary
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 historic intersections. Significant intersections from the FRS drilling programme have been validated by the FRS Exploration Manager. All logging was completed on site, whilst drilling using a Toughbook on an excel based logging template. Once complete, this template was sent to the Company database administrator and entered into the Company (access) database. Significant intersections from historic Ada Ann drilling had already been verified internally by the Company from WAMEX reports and ASX releases, but the Company believed it necessary to confirm the results with drilling. Historic drilling data was collected via digital logging hardware and software using in-house logging methodology and codes. Historic logging data was validated and entered into an industry standard master database maintained by the FRS database administrator. All primary data was collected on spread sheets which have been validated for errors and included in the Company's Access database. Assay data has not been adjusted from WAMEX report data, with the exception of coordinates which have been adjusted from historic grids.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All of the recent FRS drilling have had their collars GPS'd using a handheld GPS. All collar details are available in the supplementary data tables below. All holes were downhole surveyed by Topdrill using an industry standard gyro tool. Many of the historic holes at Ada Ann have had their collar locations originally approximated from historic WAMEX reports and associated maps. These hole locations have been verified in the field where possible GPS'd and the collar locations have then been updated, if required. Many collars were missing due to the historic pits removing them. The location of these has been approximated based on known locations, holes, other reference points. Down hole, historic surveys at Ada Ann are unknown. All images relating to drill holes at Ada Ann have the original planned or reported dip and azimuth.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The FSR drill holes have been strategically placed to test historic intersections and to test the potential extent of the mineralisation at depth and along strike. Holes have also been designed laterally (east west) ~20-40m apart across the strike of the mineralisation and approximately 20-50m along the strike of the mineralisation. Holes were also designed according to limitations set out by environmental factors. 4m composite samples have been taken throughout the drill

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 programme. 1m samples were also taken during the drilling programme as detailed above. The historic samples at Ada Ann were originally composited over various down hole lengths from 2-6m; in most (but not all cases) mineralized zones were then 1m sampled and assayed. At this stage, the data is not being used to create a mineral resource, further drilling will be required. The FRS drilling programme was (with the exception of AARC0015) drilled to the west at -60 in order to test the mineralisation at a perpendicular angle. AARC0015 was drilled vertically due to environmentally limiting factors and the resulting inability to drill to the west at -60. The orientation of drilling and sampling is not anticipated to have any significant biasing effect. The true width has been estimated perpendicular to the mineralisation, with mineralisation at an approximate angle of between 25° and 30°. The majority of historic drill holes reported in this announcement at Ada Ann are generally angled to the west and are interpreted (according to WAMEX reports and previous ASX announcements) to have intersected the mineralised structures approximately perpendicular to their dip. The relationship of the historic holes between the drilling orientation and the orientation of key mineralised structures is not considered to have
Sample security	The measures taken to ensure sample security.	 All 4m composite sample calico bags were collected in green bags which were sealed and taken by FRS geologists to ALS Kalgoorlie, for shipment to ALS Perth. All 1m sample calico bags have been collected in green bags. It is presumed that there were adequate sample security measures undertaken for the historic drilling reported at Ada Ann and Bonnie Vale North.
Audits or reviews	The sampling methods being used are industry standard practice.	 All samples taken by FRS were handled only by FRS geologists or contractors to FRS before they were taken to ALS. No audit or review has been completed on the work reported in this announcement. The historic data that was located within WAMEX has been compiled and loaded into the Forrestania Resources' database with validations where

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Mineral tenementand land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The data in this announcement relates to FRS drilling and historic drilling completed on exploration licence: E15/1632. E15/1632 and E15/1534 are part of an option agreement between Outback Minerals Pty Ltd and Forrestania Resources Limited. The tenements are held securely and no impediments to obtaining a licence to operate have been identified.
Exploration by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Ada Ann prospect has had the following WAMEX reports and known work completed: Loaming operations in the late .1970's led to the sinking of a shallow vertical shaft on GML 15/6729 from which a short crosscut east intersects an auriferous quartz vein dipping ~ 60° east (Fey, 1989). The recorded gold production of-60 tonne at 1.25g/t Au was reported to have come from trenches and pits adjacent to the shaft. Emu Hill held Prospecting Licences P15/96 and P15/97 as part of a Prospectus. These tenements enclosed the present tenement Emu Hill conducted limited surface and underground rock chip and quartz vein sampling and then relinquished the tenements. Coolgardie Mining Associates re-pegged P15/96 and P15/97 as P15/1440 and P 15/1439 respectively as part of their Prospectus. Coolgardie Mining Associates also conducted surface and underground chip sampling. They also established a baseline some 400 metres long through the area of workings, which was used for drilling by subsequent operators. They then relinquished the tenements. During April 1988 BHP-UTAH Minerals International (BHP) under an option to purchase the tenements from a Mr D Skett, drilled 19 RAB holes (BRO1-19) for 573 metres in the vicinity of the workings using the baseline established by Coolgardie Mining Associates. The drilling was performed with a Warman drill rig operated by Westralian Diamond Drilling of Boulder WA. The drilling was undertaken along fences approximately 40 metres apart, with an average of three holes , spaced ten metres apart, completed on each fence. All holes were planned at 60° dip to 295°. Drilling targetted the flat east dipping shear zone. Drill samples over a two metre interval were collected via a cyclone; a representative sample was taken utilising a pipe, composited over six metres, bagged and submitted to Genalysis to be analysed for gold by AAS. Any six metre composite sample returning an assay value greater than 0.1 ppm Au was resampled by collecting the three

/	

Criteria	JORC Code Explanation	Commentary
		submitted to Genalysis for gold by fire assay. Gold mineralisation was intersected in the flat east dipping shear, with sporadic quartz veining within the shear appearing to concentrate the gold (Roche, 1988). The drilling demonstrated the possible spotty coarse gold nature of the mineralisation, with specks of free gold evident when logging and also the poor repeatability of some of the higher grade assays. • P Fey conducted follow up drilling to the BHP drilling in October and November 1988. In the period 23-25 October 1988 five RAB holes (BR20-24) for 210 metres were drilled with a Mole Pioneer rig from Westralian Diamond Drillers of Boulder. This rig proved unsatisfactory in the hard ground encountered at relatively shallow depths and a Warman RC rig was used for holes BRC25-29 totalling 263 metres, drilled between 16-21 November 1988. For all holes except BR20-21 (2 metre samples), one metre samples were collected and then speared, composited over four metre intervals and submitted to Genalysis for gold analysis by AAS (50gm charge). Intervals returning greater than 0.25g/t gold were resampled on a one metre basis and re-assayed, using the same technique. Significant gold mineralisation was found associated with zones of epidotisation and quartz veining (Fey, 1989). The presence of coarse gold was again demonstrated by the considerable spread in the value of repeat assays and free gold was again panned. • This drilling demonstrated that the strike of the flat east dipping shear was in fact more north-south than the north-easterly direction assumed by BHP. • In 1993 A Stockwell pegged cancelled GML's 15/6729 "Ada Ann", and 15/6718 as P15/3443 . Stockwell mounted an RC drill programme to follow up intersections from the BHP and Fey drilling programmes. • Holes AA01-51 were completed by Stockwell for 1892 metres over the central portion of the mineralisation, delineated by previous operators. A few holes were systematically sampled, Stockwell sampling only those portions of the holes he thought would assa

_	

Criteria	JORC Code Explanation	Commentary
		 Amex Resources completed further drilling in 2000, 18 RC holes were completed but AMEX did not confirm the metres drilled and not all details were reported to the ASX. Outback Minerals Pty Ltd completed 3 holes at Bonnie Vale North (E15/1534) in 2022.
Geology	Deposit type, geological setting and style of mineralisation.	 The Bonnie Vale project area is located approximately 12km north of Coolgardie within the Eastern Goldfields Super Terrane of Western Australia's Yilgarn Craton. The project area is made up predominantly of the felsic volcanics of the Black Flag Group, ultramafics of the Hampton Hill Formation which forms part of the Kalgoorlie Group and the Powder Sill Gabbro. Ada Ann is thought to be composed of an ultramafic and shear zone hosted by a basalt. It sits within the Hampton Hill Formation, in close proximity to a geological contact with the Black Flag Group. Additionally, the Kunanalling Shear runs approximately north-west through E15/1534. The drilling results suggest a shear hosted gold system with contact mineralisation on the footwall and hanging wall basalts and schists (respectively).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception dept, hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All material information is summarised in the Tables and Figures included in the body of the announcement and/or within the supplementary data. The supplementary information is available at the end of this announcement, following the JORC table. Historical drilling WAMEX reports: A49504, A2523, A25113, A28449, A109745, A58256 and A54843 were used to confirm data for this report; data includes areas that were previously mapped during historic activities. ASX (Amex Resources) Gold drill intercepts at Ada Ann 8th April 2008. Additional information was found in the AMEX Resources quarterly report for June 2008 and the Aurelia Resources IPO prospectus 2012. The location of historic drilling is based on historical reports and their underlying data. Data for some drill holes, including assay information, hole depth and collar details are missing from some of the historic WAMEX reports. Composite assay grades for AXRC holes have been included, even when the collar locations are unknown as they have previously been released to the ASX: None of the AXRC holes have been used in the cross sections within this announcement. The historic Amex Resources announcement can be found here: https://www.asx.com.au/asxpdf/20080408/pdf/318gn138jg5j59.pdf Several holes at Ada Ann, with AA and BR as a prefix have had their coordinates and collar locations estimated based on historic maps within WAMEX reports and

	/
$\overline{}$	
$\overline{}$	<i>V</i>

Criteria	JORC Code Explanation	Commentary
		the historic collars located at the Ada Ann prospect that correspond and correlate with the collar position on the maps. These have been recorded on a GPS and entered into the FRS database.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All significant intersections that are reported in this announcement are based on a 0.3g/t Au cut-off grade, allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. No metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Historic reports suggest mineralisation dips gently to the east and all holes (with the exception of AARC0015) were drilled to the west at -60° in order to test the mineralisation at a perpendicular angle. As a result of the FRS drilling programmes, the Company believes the mineralisation dips to the east at an angle of between approximately 25° to 30°. Down hole lengths are reported in this announcement, specific true widths are not reported in this announcement, but given the angle of mineralisation (historically reported) and the angle of drilling, the down hole width and true width are potentially very similar. Further drilling is required to determine the true geometry of the mineralisation with respect to the drill hole angle.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate maps with scale are included within the body of the accompanying document. Geological sections have been created from the Company's geological logs of both recent and historic drilling. Other geological maps are courtesy of DMIRS, 1:500000 interpreted bedrock geology of WA.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Representative reporting has been made in the body of the announcement and all assay results are available within the supplementary data. All of the available assay intersections for the historic holes with prefix AA, BR, KSRC, CCRC and AXRC holes have previously been reported in ASX announcements, made by FRS:

1 /
/
\leftarrow
*

Criteria	JORC Code Explanation	Commentary
		 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02793925-6A1202059 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02805177-6A1206868 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02667890-6A1150921 Due to historic, selective sampling, not every metre has been assayed or sampled from the historic holes. Representative reporting of significant intersections is also included in the body of the announcement and in the supplementary data.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	WAMEX reports: A49504, A2523, A25113, A28449, A109745, A58256 and A54843 were used to confirm data for this report. An additional WAMEX report by Outback Minerals was also used for the KSRC holes (the WAMEX report number is unknown as it has only recently been submitted). Also used as reference material and for data: ASX (Amex Resources) Gold drill intercepts at Ada Ann 8 th April 2008.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The company is hopeful of completing further exploration drilling in the near future to confirm the extent of the mineralisation. Further exploration work is also planned across the tenement and the Bonnie Vale project area.

Supplementary data:

Table 3: Phase 2 collar locations for recently completed FRS RC holes (February 2025) at Ada Ann, RL ~380m, MGA94_51, with planned azimuth and dip.

Hole_ID	NAT_East	NAT_North	Max_Depth	NAT_Azimuth	Dip
AARC0022	321852	6591268	60	270	-60
AARC0023	321942	6591274	96	270	-60
AARC0024	321965	6591306	108	270	-60
AARC0025	321978	6591367	72	270	-60
AARC0026	321928	6591581	90	270	-60
AARC0027	321957	6591528	96	270	-60
AARC0028	321973	6591483	93	270	-60
AARC0029	321973	6591367	114	270	-60
AARC0030	321828	6591326	36	270	-60
AARC0031	321819	6591346	60	270	-60
AARC0032	321857	6591328	48	270	-60
AARC0033	321826	6591527	42	270	-60
AARC0034	321841	6591579	42	270	-60
AARC0035	321879	6591579	60	270	-60

Table 4: Phase 1 collar locations for FRS completed RC holes (November 2024) at Ada Ann, RL ~380m, MGA94_51, with planned azimuth and dip.

Hole_ID	NAT_East	NAT_North	Max_Depth	NAT_Azimuth	Dip
AARC0001	321905	6591321	84	270	-60
AARC0002	321942	6591322	96	270	-60
AARC0003	321855	6591389	60	270	-60
AARC0004	321902	6591389	84	270	-60
AARC0005	321953	6591388	96	270	-60
AARC0006	321896	6591442	84	275	-60
AARC0007	321938	6591431	96	270	-60

Hole_ID	NAT_East	NAT_North	Max_Depth	NAT_Azimuth	Dip
AARC0008	321907	6591462	84	270	-60
AARC0009	321926	6591464	90	270	-60
AARC0010	321918	6591485	72	270	-60
AARC0011	321862	6591540	54	270	-60
AARC0012	321890	6591528	66	270	-60
AARC0013	321914	6591511	72	270	-60
AARC0014	321931	6591521	78	270	-60
AARC0015	321814	6591458	42	0	-90
AARC0016	321827	6591495	36	270	-60
AARC0017	321856	6591484	48	270	-60
AARC0018	321875	6591482	54	270	-60
AARC0019	321893	6591487	60	270	-60
AARC0020	321939	6591496	72	270	-60
AARC0021	321875	6591460	60	270	-60

Table 5: Location of rock samples taken from the Ada Ann prospect that were used as material to be crushed, dollied and panned. RL ~380m, MGA94_51

Sample_ID	NAT_East	NAT_North	Description
FR001796	321869	6591458	Altered, spinifex textured komatiite with approximately 65% iron-stained veining

Table 6: Lithological description of sample FS017508, referenced in the announcement. RL ~380m, MGA94_51

Hole_ID	Depth_From	Depth_To	Comments
AARC0009	52	53	Komatiite with Fe staining, weak biotite alteration & ~20% quartz veining

Table 7: All FRS drilling results from Ada Ann phase 1, showing all results for Au. Intercepts are based on a cut-off grade of 0.3g/t Au allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. Drilling intercept widths are downhole widths and not true widths. N/A indicates <0.01ppm Au.

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0001	0	4	N/A
AARC0001	4	8	N/A
AARC0001	8	12	N/A
AARC0001	12	16	N/A
AARC0001	16	20	N/A
AARC0001	20	24	N/A
AARC0001	24	28	N/A
AARC0001	28	32	0.01
AARC0001	32	36	0.02
AARC0001	36	40	0.04
AARC0001	40	44	0.06
AARC0001	44	45	0.02
AARC0001	45	46	0.03
AARC0001	46	47	0.04
AARC0001	47	48	0.04
AARC0001	48	49	0.03
AARC0001	49	50	0.11
AARC0001	50	51	0.11
AARC0001	51	52	0.05
AARC0001	52	53	0.02
AARC0001	53	54	0.03
AARC0001	54	55	0.02
AARC0001	55	56	0.01
AARC0001	56	60	0.01
AARC0001	60	64	N/A
AARC0001	64	68	0.03
AARC0001	68	72	0.01
AARC0001	72	76	0.01
AARC0001	76	80	0.01
AARC0001	80	84	0.01
AARC0002	0	4	N/A

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0002	4	8	N/A
AARC0002	8	12	N/A
AARC0002	12	16	N/A
AARC0002	16	20	0.01
AARC0002	20	24	0.03
AARC0002	24	28	N/A
AARC0002	28	32	N/A
AARC0002	32	36	0.01
AARC0002	36	40	0.04
AARC0002	40	44	0.01
AARC0002	44	48	N/A
AARC0002	48	52	0.01
AARC0002	52	56	0.01
AARC0002	56	57	0.02
AARC0002	57	58	0.06
AARC0002	58	59	0.01
AARC0002	59	60	0.02
AARC0002	60	61	0.01
AARC0002	61	62	0.02
AARC0002	62	63	21.00
AARC0002	63	64	0.48
AARC0002	64	65	0.24
AARC0002	65	66	0.08
AARC0002	66	67	0.09
AARC0002	67	68	0.06
AARC0002	68	72	0.02
AARC0002	72	76	0.01
AARC0002	76	80	0.04
AARC0002	80	84	0.01
AARC0002	84	88	0.01
AARC0002	88	92	0.01

Hole_ID	Depth From	Depth_To	Au_ppm
AARC0002	92	96	N/A
AARC0003	0	4	N/A
AARC0003	4	8	0.01
AARC0003	8	12	N/A
AARC0003	12	16	N/A
AARC0003	16	20	0.01
AARC0003	20	24	0.02
AARC0003	24	28	0.05
AARC0003	28	32	0.02
AARC0003	32	33	0.02
AARC0003	33	34	0.03
AARC0003	34	35	0.04
AARC0003	35	36	0.02
AARC0003	36	37	0.08
AARC0003	37	38	1.49
AARC0003	38	39	0.03
AARC0003	39	40	0.01
AARC0003	40	41	0.01
AARC0003	41	42	0.01
AARC0003	42	43	0.08
AARC0003	43	44	0.01
AARC0003	44	48	N/A
AARC0003	48	52	N/A
AARC0003	52	56	0.02
AARC0003	56	60	0.01
AARC0004	0	4	0.01
AARC0004	4	8	N/A
AARC0004	8	12	N/A
AARC0004	12	16	N/A
AARC0004	16	20	N/A
AARC0004	20	24	N/A

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0004	24	28	N/A
AARC0004	28	32	N/A
AARC0004	32	33	0.01
AARC0004	33	34	0.01
AARC0004	34	35	0.01
AARC0004	35	36	0.01
AARC0004	36	37	N/A
AARC0004	37	38	0.01
AARC0004	38	39	0.54
AARC0004	39	40	0.01
AARC0004	40	41	0.02
AARC0004	41	42	0.02
AARC0004	42	43	0.05
AARC0004	43	44	0.07
AARC0004	44	45	2.11
AARC0004	45	46	2.95
AARC0004	46	47	0.40
AARC0004	47	48	0.12
AARC0004	48	49	0.15
AARC0004	49	50	0.07
AARC0004	50	51	0.01
AARC0004	51	52	0.02
AARC0004	52	56	0.05
AARC0004	56	60	0.05
AARC0004	60	64	0.02
AARC0004	64	68	0.01
AARC0004	68	72	0.01
AARC0004	72	76	N/A
AARC0004	76	80	0.01
AARC0004	80	84	N/A
AARC0005	0	4	0.01

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0005	4	8	N/A
AARC0005	8	12	N/A
AARC0005	12	16	N/A
AARC0005	16	20	N/A
AARC0005	20	24	N/A
AARC0005	24	28	0.01
AARC0005	28	32	N/A
AARC0005	32	36	N/A
AARC0005	36	40	0.01
AARC0005	40	44	N/A
AARC0005	44	48	N/A
AARC0005	48	52	0.01
AARC0005	52	56	0.01
AARC0005	56	60	0.02
AARC0005	60	64	0.01
AARC0005	64	65	0.04
AARC0005	65	66	0.02
AARC0005	66	67	0.12
AARC0005	67	68	0.04
AARC0005	68	69	0.74
AARC0005	69	70	3.94
AARC0005	70	71	0.10
AARC0005	71	72	0.02
AARC0005	72	73	0.09
AARC0005	73	74	0.01
AARC0005	74	75	0.02
AARC0005	75	76	0.02
AARC0005	76	80	0.06
AARC0005	80	84	0.01
AARC0005	84	88	0.01
AARC0005	88	92	0.05

Hole ID	Depth From	Depth_To	Au_ppm
AARC0005	92	96	0.01
AARC0006	0	4	N/A
AARC0006	4	8	N/A
AARC0006	8	12	N/A
AARC0006	12	16	N/A
AARC0006	16	20	0.02
AARC0006	20	24	0.02
AARC0006	24	25	0.08
AARC0006	25	26	0.06
AARC0006	26	27	0.08
AARC0006	27	28	0.05
AARC0006	28	29	0.19
AARC0006	29	30	0.67
AARC0006	30	31	0.06
AARC0006	31	32	0.04
AARC0006	32	33	0.09
AARC0006	33	34	0.12
AARC0006	34	35	0.58
AARC0006	35	36	0.58
AARC0006	36	37	2.77
AARC0006	37	38	1.00
AARC0006	38	39	1.94
AARC0006	39	40	0.85
AARC0006	40	41	7.28
AARC0006	41	42	0.19
AARC0006	42	43	0.02
AARC0006	43	44	0.10
AARC0006	44	45	0.06
AARC0006	45	46	0.04
AARC0006	46	47	0.12
AARC0006	47	48	0.10

Hole_ID	Depth From	Depth_To	Au_ppm
AARC0006	48	49	0.03
AARC0006	49	50	0.02
AARC0006	50	51	0.32
AARC0006	51	52	0.46
AARC0006	52	53	0.08
AARC0006	53	54	0.02
AARC0006	54	55	0.01
AARC0006	55	56	0.02
AARC0006	56	60	0.02
AARC0006	60	64	N/A
AARC0006	64	68	N/A
AARC0006	68	72	N/A
AARC0006	72	76	N/A
AARC0006	76	80	N/A
AARC0006	80	84	N/A
AARC0007	0	4	N/A
AARC0007	4	8	N/A
AARC0007	8	12	N/A
AARC0007	12	16	N/A
AARC0007	16	20	0.01
AARC0007	20	24	N/A
AARC0007	24	28	N/A
AARC0007	28	32	0.01
AARC0007	32	36	0.02
AARC0007	36	40	0.02
AARC0007	40	44	0.01
AARC0007	44	45	0.02
AARC0007	45	46	0.02
AARC0007	46	47	0.02
AARC0007	47	48	0.01
AARC0007	48	49	0.03

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0007	49	50	0.02
AARC0007	50	51	0.57
AARC0007	51	52	0.03
AARC0007	52	53	0.03
AARC0007	53	54	0.11
AARC0007	54	55	1.32
AARC0007	55	56	0.02
AARC0007	56	57	0.02
AARC0007	57	58	0.04
AARC0007	58	59	0.03
AARC0007	59	60	0.08
AARC0007	60	61	0.04
AARC0007	61	62	0.03
AARC0007	62	63	0.16
AARC0007	63	64	0.03
AARC0007	64	68	0.01
AARC0007	68	72	0.05
AARC0007	72	76	0.01
AARC0007	76	80	0.06
AARC0007	80	84	0.02
AARC0007	84	88	N/A
AARC0007	88	92	N/A
AARC0007	92	96	N/A
AARC0008	0	4	N/A
AARC0008	4	8	N/A
AARC0008	8	12	N/A
AARC0008	12	16	N/A
AARC0008	16	20	N/A
AARC0008	20	24	N/A
AARC0008	24	28	0.02
AARC0008	28	32	0.03

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0008	32	33	0.02
AARC0008	33	34	0.03
AARC0008	34	35	0.02
AARC0008	35	36	0.03
AARC0008	36	37	0.04
AARC0008	37	38	0.10
AARC0008	38	39	0.20
AARC0008	39	40	0.07
AARC0008	40	41	0.02
AARC0008	41	42	0.09
AARC0008	42	43	0.07
AARC0008	43	44	1.19
AARC0008	44	45	0.70
AARC0008	45	46	0.38
AARC0008	46	47	0.05
AARC0008	47	48	0.18
AARC0008	48	49	1.08
AARC0008	49	50	0.39
AARC0008	50	51	0.03
AARC0008	51	52	0.68
AARC0008	52	53	0.04
AARC0008	53	54	0.01
AARC0008	54	55	0.01
AARC0008	55	56	0.02
AARC0008	56	60	0.02
AARC0008	60	64	0.01
AARC0008	64	68	0.01
AARC0008	68	72	N/A
AARC0008	72	76	N/A
AARC0008	76	80	N/A
AARC0008	80	84	N/A

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0009	0	4	0.01
AARC0009	4	8	N/A
AARC0009	8	12	N/A
AARC0009	12	16	N/A
AARC0009	16	20	N/A
AARC0009	20	24	0.01
AARC0009	24	28	0.02
AARC0009	28	32	0.01
AARC0009	32	36	0.01
AARC0009	36	40	0.02
AARC0009	40	44	0.01
AARC0009	44	48	0.05
AARC0009	48	49	0.04
AARC0009	49	50	0.04
AARC0009	50	51	0.05
AARC0009	51	52	0.05
AARC0009	52	53	0.40
AARC0009	53	54	4.94
AARC0009	54	55	0.08
AARC0009	55	56	0.03
AARC0009	56	57	0.07
AARC0009	57	58	0.49
AARC0009	58	59	0.02
AARC0009	59	60	0.04
AARC0009	60	64	0.03
AARC0009	64	68	0.01
AARC0009	68	72	0.01
AARC0009	72	76	N/A
AARC0009	76	80	N/A
AARC0009	80	84	N/A
AARC0009	84	88	N/A

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0009	88	90	N/A
AARC0010	0	4	0.01
AARC0010	4	8	N/A
AARC0010	8	12	N/A
AARC0010	12	16	N/A
AARC0010	16	20	N/A
AARC0010	20	24	N/A
AARC0010	24	28	0.01
AARC0010	28	32	0.01
AARC0010	32	33	N/A
AARC0010	33	34	0.02
AARC0010	34	35	0.01
AARC0010	35	36	0.01
AARC0010	36	37	0.02
AARC0010	37	38	0.01
AARC0010	38	39	0.01
AARC0010	39	40	0.02
AARC0010	40	41	0.10
AARC0010	41	42	0.10
AARC0010	42	43	0.02
AARC0010	43	44	0.08
AARC0010	44	45	2.41
AARC0010	45	46	0.08
AARC0010	46	47	0.02
AARC0010	47	48	0.50
AARC0010	48	49	0.03
AARC0010	49	50	0.02
AARC0010	50	51	0.03
AARC0010	51	52	0.09
AARC0010	52	53	0.06
AARC0010	53	54	0.49

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0010	54	55	0.99
AARC0010	55	56	2.21
AARC0010	56	57	0.06
AARC0010	57	58	0.04
AARC0010	58	59	0.02
AARC0010	59	60	0.02
AARC0010	60	64	0.01
AARC0010	64	68	0.01
AARC0010	68	72	0.02
AARC0011	0	4	0.01
AARC0011	4	8	N/A
AARC0011	8	12	N/A
AARC0011	12	16	N/A
AARC0011	16	20	N/A
AARC0011	20	21	0.05
AARC0011	21	22	0.13
AARC0011	22	23	0.02
AARC0011	23	24	0.01
AARC0011	24	25	0.09
AARC0011	25	26	0.06
AARC0011	26	27	0.35
AARC0011	27	28	0.08
AARC0011	28	29	0.06
AARC0011	29	30	0.15
AARC0011	30	31	0.02
AARC0011	31	32	0.01
AARC0011	32	36	0.01
AARC0011	36	40	0.02
AARC0011	40	44	0.02
AARC0011	44	48	N/A
AARC0011	48	52	N/A

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0011	52	54	N/A
AARC0012	0	4	0.01
AARC0012	4	8	N/A
AARC0012	8	12	N/A
AARC0012	12	16	N/A
AARC0012	16	20	N/A
AARC0012	20	24	0.01
AARC0012	24	28	0.02
AARC0012	28	29	0.05
AARC0012	29	30	0.04
AARC0012	30	31	0.05
AARC0012	31	32	0.07
AARC0012	32	33	0.06
AARC0012	33	34	0.07
AARC0012	34	35	0.26
AARC0012	35	36	0.33
AARC0012	36	37	0.18
AARC0012	37	38	0.07
AARC0012	38	39	0.06
AARC0012	39	40	0.01
AARC0012	40	41	0.02
AARC0012	41	42	N/A
AARC0012	42	43	N/A
AARC0012	43	44	N/A
AARC0012	44	48	N/A
AARC0012	48	52	0.01
AARC0012	52	56	N/A
AARC0012	56	60	N/A
AARC0012	60	64	N/A
AARC0012	64	66	N/A
AARC0013	0	4	0.01

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0013	4	8	N/A
AARC0013	8	12	N/A
AARC0013	12	16	N/A
AARC0013	16	20	N/A
AARC0013	20	24	N/A
AARC0013	24	28	0.03
AARC0013	28	32	0.01
AARC0013	32	36	0.01
AARC0013	36	40	0.01
AARC0013	40	41	0.01
AARC0013	41	42	N/A
AARC0013	42	43	0.03
AARC0013	43	44	0.07
AARC0013	44	45	1.20
AARC0013	45	46	0.04
AARC0013	46	47	0.04
AARC0013	47	48	0.01
AARC0013	48	49	0.01
AARC0013	49	50	0.03
AARC0013	50	51	0.30
AARC0013	51	52	0.01
AARC0013	52	53	N/A
AARC0013	53	54	0.02
AARC0013	54	55	N/A
AARC0013	55	56	N/A
AARC0013	56	60	N/A
AARC0013	60	64	N/A
AARC0013	64	68	N/A
AARC0013	68	72	N/A
AARC0014	0	4	0.01
AARC0014	4	8	N/A

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0014	8	12	N/A
AARC0014	12	16	N/A
AARC0014	16	20	N/A
AARC0014	20	24	N/A
AARC0014	24	28	0.01
AARC0014	28	32	0.01
AARC0014	32	36	0.01
AARC0014	36	40	0.01
AARC0014	40	44	0.03
AARC0014	44	45	N/A
AARC0014	45	46	N/A
AARC0014	46	47	0.01
AARC0014	47	48	0.02
AARC0014	48	49	N/A
AARC0014	49	50	0.01
AARC0014	50	51	0.09
AARC0014	51	52	0.04
AARC0014	52	53	0.03
AARC0014	53	54	0.04
AARC0014	54	55	0.02
AARC0014	55	56	0.71
AARC0014	56	57	0.01
AARC0014	57	58	N/A
AARC0014	58	59	N/A
AARC0014	59	60	0.01
AARC0014	60	61	0.22
AARC0014	61	62	3.98
AARC0014	62	63	0.55
AARC0014	63	64	0.09
AARC0014	64	65	0.08
AARC0014	65	66	0.02

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0014	66	67	0.02
AARC0014	67	68	N/A
AARC0014	68	72	N/A
AARC0014	72	76	N/A
AARC0014	76	78	N/A
AARC0015	0	4	0.02
AARC0015	4	8	N/A
AARC0015	8	12	N/A
AARC0015	12	16	N/A
AARC0015	16	20	N/A
AARC0015	20	24	0.03
AARC0015	24	28	0.01
AARC0015	28	29	0.01
AARC0015	29	30	0.03
AARC0015	30	31	0.01
AARC0015	31	32	0.01
AARC0015	32	33	1.18
AARC0015	33	34	0.01
AARC0015	34	35	N/A
AARC0015	35	36	0.01
AARC0015	36	37	0.01
AARC0015	37	38	N/A
AARC0015	38	39	N/A
AARC0015	39	40	0.02
AARC0015	40	42	0.02
AARC0016	0	1	4.89
AARC0016	1	2	0.16
AARC0016	2	3	0.05
AARC0016	3	4	0.04
AARC0016	4	5	0.04
AARC0016	5	6	0.03

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0016	6	7	0.07
AARC0016	7	8	0.02
AARC0016	8	12	N/A
AARC0016	12	16	N/A
AARC0016	16	20	N/A
AARC0016	20	24	0.02
AARC0016	24	28	0.01
AARC0016	28	32	N/A
AARC0016	32	36	N/A
AARC0017	0	4	0.03
AARC0017	4	8	0.06
AARC0017	8	9	0.01
AARC0017	9	10	N/A
AARC0017	10	11	0.01
AARC0017	11	12	0.03
AARC0017	12	13	N/A
AARC0017	13	14	0.20
AARC0017	14	15	1.64
AARC0017	15	16	2.50
AARC0017	16	17	0.42
AARC0017	17	18	0.31
AARC0017	18	19	0.08
AARC0017	19	20	0.11
AARC0017	20	21	0.25
AARC0017	21	22	0.20
AARC0017	22	23	2.80
AARC0017	23	24	0.07
AARC0017	24	25	0.01
AARC0017	25	26	0.02
AARC0017	26	27	0.05
AARC0017	27	28	0.01

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0017	28	32	0.02
AARC0017	32	36	0.01
AARC0017	36	40	0.01
AARC0017	40	44	0.01
AARC0017	44	48	0.01
AARC0018	0	4	0.02
AARC0018	4	8	N/A
AARC0018	8	12	0.01
AARC0018	12	13	0.02
AARC0018	13	14	0.01
AARC0018	14	15	0.02
AARC0018	15	16	0.01
AARC0018	16	17	0.01
AARC0018	17	18	0.17
AARC0018	18	19	0.72
AARC0018	19	20	0.91
AARC0018	20	21	0.05
AARC0018	21	22	0.05
AARC0018	22	23	0.04
AARC0018	23	24	0.02
AARC0018	24	25	0.01
AARC0018	25	26	0.08
AARC0018	26	27	0.06
AARC0018	27	28	0.08
AARC0018	28	29	0.16
AARC0018	29	30	1.27
AARC0018	30	31	0.04
AARC0018	31	32	0.09
AARC0018	32	33	0.04
AARC0018	33	34	0.09
AARC0018	34	35	0.14

Hole_ID	Depth From	Depth_To	Au_ppm
AARC0018	35	36	0.27
AARC0018	36	40	0.02
AARC0018	40	44	0.01
AARC0018	44	48	0.01
AARC0018	48	52	N/A
AARC0018	52	54	0.01
AARC0019	0	4	0.01
AARC0019	4	8	N/A
AARC0019	8	12	N/A
AARC0019	12	16	N/A
AARC0019	16	20	0.01
AARC0019	20	24	0.01
AARC0019	24	25	0.01
AARC0019	25	26	0.02
AARC0019	26	27	0.03
AARC0019	27	28	0.01
AARC0019	28	29	0.05
AARC0019	29	30	0.04
AARC0019	30	31	0.08
AARC0019	31	32	0.40
AARC0019	32	33	0.47
AARC0019	33	34	1.39
AARC0019	34	35	0.70
AARC0019	35	36	0.46
AARC0019	36	37	0.48
AARC0019	37	38	0.22
AARC0019	38	39	0.05
AARC0019	39	40	0.15
AARC0019	40	41	0.12
AARC0019	41	42	0.46
AARC0019	42	43	0.03

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0019	43	44	0.03
AARC0019	44	45	0.04
AARC0019	45	46	0.04
AARC0019	46	47	0.06
AARC0019	47	48	0.01
AARC0019	48	52	0.01
AARC0019	52	56	0.01
AARC0019	56	60	N/A
AARC0020	0	4	0.01
AARC0020	4	8	0.01
AARC0020	8	12	N/A
AARC0020	12	16	N/A
AARC0020	16	20	N/A
AARC0020	20	24	N/A
AARC0020	24	28	N/A
AARC0020	28	32	0.01
AARC0020	32	36	N/A
AARC0020	36	40	N/A
AARC0020	40	44	N/A
AARC0020	44	48	0.01
AARC0020	48	52	0.03
AARC0020	52	56	0.02
AARC0020	56	57	0.01
AARC0020	57	58	0.01
AARC0020	58	59	N/A
AARC0020	59	60	0.01
AARC0020	60	61	0.01
AARC0020	61	62	0.02
AARC0020	62	63	1.64
AARC0020	63	64	5.84
AARC0020	64	65	0.30

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0020	65	66	0.06
AARC0020	66	67	0.02
AARC0020	67	68	1.92
AARC0020	68	69	0.02
AARC0020	69	70	0.02
AARC0020	70	71	0.01
AARC0020	71	72	0.02
AARC0021	0	4	0.02
AARC0021	4	8	0.01
AARC0021	8	12	0.01
AARC0021	12	16	0.03
AARC0021	16	17	0.02
AARC0021	17	18	0.03
AARC0021	18	19	0.04
AARC0021	19	20	0.06
AARC0021	20	21	0.16
AARC0021	21	22	0.37
AARC0021	22	23	0.26
AARC0021	23	24	0.14
AARC0021	24	25	0.10
AARC0021	25	26	0.07
AARC0021	26	27	0.04
AARC0021	27	28	0.04
AARC0021	28	29	0.02
AARC0021	29	30	0.04
AARC0021	30	31	0.41
AARC0021	31	32	0.03
AARC0021	32	33	0.18
AARC0021	33	34	0.08
AARC0021	34	35	0.85
AARC0021	35	36	0.04

Hole_ID	Depth_From	Depth_To	Au_ppm
AARC0021	36	37	0.04
AARC0021	37	38	0.03
AARC0021	38	39	0.02
AARC0021	39	40	0.02
AARC0021	40	41	0.40
AARC0021	41	42	0.61
AARC0021	42	43	0.10
AARC0021	43	44	0.30
AARC0021	44	45	0.03
AARC0021	45	46	0.03
AARC0021	46	47	0.03
AARC0021	47	48	0.01
AARC0021	48	49	0.04
AARC0021	49	50	0.02
AARC0021	50	51	0.02
AARC0021	51	52	0.05
AARC0021	52	56	N/A
AARC0021	56	60	N/A

Table 8: All historic collar locations the at Ada Ann prospect (previously released), RL ~380m, MGA94_51.

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	Dip	Azimuth
AA01	RC	26	321857	6591434	-60	270
AA02	RC	47	321869	6591429	-60	270
AA03	RC	51	321881	6591427	-60	270
AA04	RC	41	321855	6591424	-60	270
AA05	RC	47	321868	6591419	-60	270
AA06	RC	52	321876	6591416	-60	270
AA07	RC	16	321850	6591402	-60	270
AA08	RC	47	321861	6591394	-60	270

Hole_ID	Hole_Type	Max Depth	NAT East	NAT North	Dip	Azimuth
AA09	RC	51	321871	6591402	-60	270
AA10	RC	63	321884	6591401	-60	270
AA10	RC	16	321902	6591400	-60	270
AA11 AA12	RC	86	321902	6591366	-60	255
AA13	RC	69		6591346	-60	255
			321913			
AA14	RC	57	321807	6591037	-60	255
AA15	RC	62	321885	6591421	-60	270
AA16	RC	45	321856	6591411	-60	270
AA17	RC	51	321867	6591409	-60	270
AA18	RC	58	321890	6591429	-60	270
AA19	RC	63	321896	6591410	-60	270
AA20	RC	33	321857	6591424	-90	0
AA21	RC	33	321861	6591423	-90	0
AA22	RC	49	321865	6591419	-90	0
AA24	RC	45	321858	6591411	-90	0
AA25	RC	45	321863	6591411	-90	0
AA26	RC	27	321867	6591411	-90	0
AA27	RC	51	321898	6591362	-60	255
AA28	RC	33	321869	6591411	-90	0
AA29	RC	40	321865	6591353	-90	0
AA31	RC	51	321866	6591390	-90	0
AA32	RC	51	321875	6591389	-90	0
AA33	RC	51	321885	6591387	-90	0
AA34	RC	20	321833	6591438	-90	0
AA35	RC	20	321840	6591441	-90	0
AA36	RC	20	321850	6591439	-90	0
AA37	RC	20	321855	6591441	-90	0
AA38	RC	20	321860	6591441	-90	0
AA39	RC	21	321835	6591409	-60	270
AA40	RC	21	321840	6591409	-60	270
AA41	RC	21	321846	6591407	-60	270

Hole_ID	Hole_Type	Max Depth	NAT East	NAT North	Dip	Azimuth
AA42	RC	21	321859	6591410	-60	270
AA43	RC	30	321832	6591403	-90	0
AA44	RC	33	321838	6591401	-90	0
AA45	RC	30	321821	6591447	-90	0
AA46	RC	36	321821	6591446	-60	200
AA47	RC	30	321823	6591439	-60	270
AA48	RC	39	321827	6591438	-60	270
AA49	RC	24	321840	6591438	-60	210
AA51	RC	30	321882	6591357	-60	185
AA52	RC	50	321852	6591520	-60	270
AA53	RC	51	321883	6591496	-60	272
AA54	RC	65	321889	6591432	-90	0
AA55	RC	65	321901	6591410	-90	0
AA56	RC	70	321894	6591398	-90	0
AA57	RC	70	321901	6591386	-90	0
AA58	RC	80	321924	6591362	-90	0
AAA111	RC	30	321831	6591498	-70	300
AAA112	RC	30	321819	6591496	-70	300
AAA113	RC	30	321833	6591519	-70	300
AAA130	RC	60	321899	6591418	-90	0
AAA133	RC	38	321844	6591476	-90	0
AAA147	RC	36	321849	6591475	-90	0
AAA149	RC	45	321864	6591469	-90	0
AXRC01	RC	48	321855	6591342	-90	0
AXRC02	RC	54	321864	6591350	-90	0
AXRC03	RC	48	321844	6591357	-90	0
AXRC04	RC	48	321852	6591358	-90	0
AXRC05	RC	48	321862	6591359	-90	0
AXRC06	RC	48	321872	6591359	-90	0
AXRC07	RC	48	321845	6591366	-90	0
AXRC08	RC	48	321853	6591368	-90	0

Hole_ID	Hala Time	Man Danth	NAT Foot	NIAT Novel	D:	A =
	Hole_Type	Max_Depth	NAT_East	NAT_North	Dip	Azimuth
AXRC09	RC	48	321862	6591369	-90	0
AXRC10	RC	50	321862	6591406	-90	360
AXRC16	RC	42	321856	6591474	-90	0
BR01	RAB	20	321842	6591465	-60	290
BR02	RAB	25	321853	6591462	-60	290
BR03	RAB	30	321863	6591458	-60	290
BR04	RAB	36	321851	6591433	-60	290
BR05	RAB	20	321859	6591428	-60	290
BR06	RAB	22	321816	6591401	-60	290
BR07	RAB	32	321827	6591400	-60	290
BR08	RAB	36	321837	6591395	-60	290
BR09	RAB	29	321787	6591371	-60	290
BR10	RAB	17	321804	6591364	-60	290
BR11	RAB	24	321820	6591358	-60	290
BR12	RAB	35	321831	6591347	-60	290
BR13	RAB	34	321789	6591282	-60	290
BR14	RAB	35	321811	6591278	-60	290
BR15	RAB	26	321849	6591521	-60	290
BR16	RAB	34	321874	6591552	-60	290
BR17	RAB	38	321883	6591547	-60	290
BR18	RAB	40	321897	6591537	-60	290
BR19	RAB	40	321868	6591425	-60	290
BR20	RAB	48	321871	6591537	-60	295
BR21	RAB	46	321866	6591520	-60	292
BR22	RAB	40	321866	6591492	-60	305
BR23	RAB	46	321858	6591448	-60	292
BR24	RAB	30	321885	6591434	-60	290
BR25	RC	48	321846	6591499	-60	290
BR26	RC	50	321867	6591515	-60	290
BR27	RC	45	321849	6591455	-60	290
BR28	RC	72	321862	6591435	-60	290

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	Dip	Azimuth
BR29	RC	48	321834	6591418	-60	298

Table 8: All significant intercepts for Ada Ann, including historic drilling results along with grams per metre. Intercepts are based on a cut-off grade of 0.3g/t Au allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. Drilling intercept widths are down-hole widths and not true widths.

Hole_ID	Depth_From	Depth_To	Interval width	Grade (g/t)	Gram/metre
AA28	25	29	4	12.8	51.2
BR19	24	40	16	2.64	42.2
AA05	16	22	6	6.45	38.7
AA04	4	11	7	5.01	35.1
AA45	8	20	12	2.68	32.2
AA06	19	26	7	4.4	30.8
AA27	41	45	4	7.34	29.4
AXRC10	42	46	4	7.28	29.1
AA20	25	31	6	4.5	27.0
AA24	14	18	4	6.7	26.8
AXRC09	40	44	4	5.9	23.6
BR22	24	34	10	2.28	22.8
AARC0002	62	64	2	10.74	21.5
AA25	17	24	7	2.99	20.9
AA46	4	18	14	1.44	20.2
AA10	40	47	7	2.74	19.2
AA06	32	37	5	3.63	18.2
AA49	14	16	2	8.08	16.2
AA25	35	38	3	5.37	16.1
AARC0006	34	41	7	2.14	15.0
BR04	14	28	14	1.06	14.8
AA17	28	34	6	2.3	13.8
AA54	41	46	5	2.65	13.3

Hole_ID	Depth_From	Depth_To	Interval width	Grade (g/t)	Gram/metre
BR05	0	6	6	2.19	13.1
AA01	15	23	8	1.56	12.5
AXRC10	29	33	4	3.12	12.5
AA57	48	53	5	2.47	12.4
AA12	66	69	3	4.03	12.1
AA34	8	20	12	0.99	11.9
BR28	31	37	6	1.93	11.6
AA22	32	36	4	2.63	10.5
AA18	41	45	4	2.47	9.9
AARC0020	62	68	6	1.63	9.8
AA02	23	29	6	1.62	9.7
AXRC05	27	29	2	4.83	9.7
AXRC07	21	22	1	9.42	9.4
AA43	28	30	2	4.58	9.2
BR15	24	26	2	4.15	8.3
AA24	30	33	3	2.7	8.1
AA20	17	20	3	2.58	7.7
AA03	29	39	10	0.73	7.3
AA05	30	31	1	6.83	6.8
AA02	40	42	2	3.34	6.7
BR23	29	37	8	0.77	6.2
AA38	15	20	5	1.22	6.1
AA19	43	48	5	1.15	5.8
AXRC16	27	31	4	1.42	5.7
AARC0004	44	47	3	1.82	5.5
AARC0009	52	54	2	2.67	5.3
BR02	4	14	10	0.52	5.2
AA04	23	25	2	2.56	5.1
BR28	42	44	2	2.5	5.0
AARC0016	0	1	1	4.89	4.9

Hole ID	Depth_From	Depth_To	Interval width	Grade (g/t)	Gram/metre
		· -			-
AARC0017	14	18	4	1.22	4.9
AA12	42	43	1	4.8	4.8
AARC0005	68	70	2	2.34	4.7
AARC0008	43	52	9	0.52	4.7
AA16	35	37	2	2.32	4.6
AA32	37	39	2	2.3	4.6
AARC0014	61	63	2	2.27	4.5
AA09	46	47	1	4.51	4.5
BR02	18	22	4	1.07	4.3
AA43	17	19	2	2.12	4.2
AA44	21	23	2	2.04	4.1
BR24	22	28	6	0.68	4.1
AARC0019	31	37	6	0.65	3.9
AARC0010	53	56	3	1.23	3.7
AA29	31	35	4	0.88	3.5
AA03	46	47	1	3.51	3.5
BR29	15	16	1	3.5	3.5
BR25	16	20	4	0.86	3.4
AA15	39	43	4	0.85	3.4
AA58	58	62	4	0.83	3.3
AA56	47	49	2	1.57	3.1
AA37	16	20	4	0.77	3.1
AARC0010	44	48	4	0.75	3.0
AA08	29	30	1	2.97	3.0
AARC0017	22	23	1	2.8	2.8
AA55	50	51	1	2.76	2.8
BR07	22	26	4	0.68	2.7
BR28	52	56	4	0.68	2.7
AA40	18	21	3	0.82	2.5
AA52	16	20	4	0.61	2.4

Hole_ID	Depth_From	Depth_To	Interval width	Grade (g/t)	Gram/metre
AAA130	34	38	4	0.57	2.3
AA49	7	11	4	0.56	2.2
AA33	40	44	4	0.54	2.2
AA47	4	8	4	0.52	2.1
AXRC16	34	35	1	2.05	2.1
AA10	52	54	2	1.02	2.0
AA20	11	14	3	0.68	2.0
BR05	18	20	2	0.98	2.0
AA04	35	36	1	1.93	1.9
AA23	15	16	1	1.91	1.9
AA12	54	55	1	1.88	1.9
AA53	33	37	4	0.46	1.8
AA54	53	54	1	1.76	1.8
BR29	24	26	2	0.88	1.8
AA58	44	48	4	0.42	1.7
AARC0018	18	20	2	0.82	1.6
BR26	26	29	3	0.54	1.6
AAA149	22	26	4	0.4	1.6
AAA149	38	42	4	0.4	1.6
AARC0003	37	38	1	1.49	1.5
AARC0021	40	44	4	0.35	1.4
AA21	20	21	1	1.33	1.3
AARC0007	54	55	1	1.32	1.3
AA37	8	12	4	0.32	1.3
AARC0018	29	30	1	1.27	1.3
AA05	41	42	1	1.23	1.2
AA16	25	28	3	0.41	1.2
AARC0013	44	45	1	1.2	1.2
AA56	59	60	1	1.18	1.2
AARC0015	32	33	1	1.18	1.2

Hole_ID	Depth_From	Depth_To	Interval width	Grade (g/t)	Gram/metre
BR27	17	19	2	0.57	1.1
BR08	30	32	2	0.52	1.0
AA35	18	20	2	0.45	0.9
AARC0021	34	35	1	0.85	0.9
BR06	12	14	2	0.42	8.0
AARC0006	50	52	2	0.39	8.0
AARC0014	55	56	1	0.71	0.7
AARC0006	29	30	1	0.67	0.7
AA31	43	44	1	0.66	0.7
AXRC03	17	19	2	0.3	0.6
AA17	41	42	1	0.58	0.6
AA09	35	36	1	0.57	0.6
AARC0007	50	51	1	0.57	0.6
AARC0004	38	39	1	0.54	0.5
AA18	34	35	1	0.49	0.5
AARC0009	57	58	1	0.49	0.5
AARC0019	41	42	1	0.46	0.5
AARC0021	30	31	1	0.41	0.4
AARC0021	21	22	1	0.37	0.4
AARC0011	26	27	1	0.35	0.4
AARC0012	35	36	1	0.33	0.3
AARC0013	50	51	1	0.3	0.3