ASX Release 24 February 2025 ## Gold to surface, drilling to commence at Tigertown. #### Highlights - - Mapping and sampling completed in January 2025 confirm Tigertown mineralisation continues to surface, with rock chip samples to 3.24g/t Au (TT25_001) and 91g/t Ag (TT25_003) collected from a 3m wide barite vein. - RC drilling is to commence at Tigertown, a shallow gold-silver target located ~1.2km west of Liontown. The program will consist of 7 holes (620m), building on limited historic, wide spaced drilling. - · Notable intersections from past drilling include: - o 17m @ 3.05g/t Au, 40g/t Ag from 22m (LLRC003) - 33m @ 1.95g/t Au, 30g/t Ag from 12m (MWR037) - o **2m @ 6.57g/t Au, 215g/t Ag** from 87m (LLRC004) - Field reconnaissance mapping at Lynx, Cougartown and Cougartown West will continue in parallel with the ongoing drilling programs. Sunshine Metals Limited (ASX:SHN, "Sunshine") will commence 2025 drilling activities at the shallow Tigertown gold prospect, part of the Ravenswood Consolidated Project. Sunshine Managing Director, Dr Damien Keys, commented "The rain has cleared, and we are excited to kick off 2025 drilling activities at Tigertown. Tigertown has been on our radar since we acquired the Greater Liontown project in September 2023, due to encouraging near surface gold and silver intercepts. Our drilling will test immediately along strike from historic intercepts with an aim to define a shallow gold Resource, close to our existing Liontown Resource. Significant step-off potential also remains with silver intersections including 3m @ 796g/t Ag (from 33m, LLRC032) located ~680m along strike of Tigertown to the southeast." Figure 1: Barite vein from Tigertown, adjacent to which sample TT25_003 returned 0.61g/t Au and 91g/t Ag. Cautionary statement: The Company draws attention to the inherent uncertainty in reporting visual results. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. #### **Tigertown** Tigertown is located ~1.2 km west of Liontown (Figure 2), on the southern margin of the newly interpreted Liontown Dome. Effective historical drilling of the main Tigertown vein, is limited to 6 holes (643.5m) targeting an outcropping barite vein network with interstitial gossan. Recently, Sunshine mapped and sampled the vein, returning rock chip assays of up to **3.24g/t Au** (TT25_001) and **91g/t Ag** (TT25_003). Figure 2: Ravenswood Consolidated Project is near infrastructure and the mining hub of Charters Towers in Queensland. This map shows the easily accessed Liontown area ~35km south of Charters Towers. Mineralisation is confirmed from surface to depths of ~100m. Drilling that tests the down-dip extension of the barite veining has returned intersections including: o 2m @ 3.75g/t Au, 58g/t Ag from 14m (LLRC003) And **17m** @ **3.05g/t Au**, **40g/t Ag** from 22m (LLRC003) o **33m @ 1.95g/t Au, 30g/t Ag** from 12m (MWR037) And 1m @ 1.77g/t Au, 35g/t Ag from 49m to EOH (MWR037) 11m @ 1.70g/t Au, 146g/t Ag from 76m (LLRC004) Including **2m @ 6.57g/t Au, 215g/t Ag** from 87m (LLRC004) - 9m @ 1.35g/t Au from 15m (LLRC036) - 2.25m @ 2.16g/t Au, 67g/t Ag from 160.87m (TTD001) Sunshine will initially complete a 7-hole (620m) RC drill program. Of these, 5 holes will test extensions and continuity of mineralisation along the main Tigertown vein. A further 2 holes will test mapped parallel barite veins 30-50m either side of the main Tigertown vein. Other historic drilling in the vicinity of the proposed holes has intersected: - 3m @ 3.41g/t Au, 10g/t Ag from 33m (LLRC036) - 3m @ 3.12g/t Au, 42g/t Ag from 109m (TTD001) And 4.82m @ 1.89g/t Au, 261g/t Ag from 119m (TTD001) Figure 3: Tigertown is located approximately 1.2 km west of Liontown on the southern margin of the newly interpreted Liontown Dome. Historic drilling ~680m south-east, and along strike of Tigertown, has intersected elevated silver with key intersections including: - 3m @ 301g/t Ag from 18m (LLRC032) & 3m @ 796g/t Ag, from 33m (LLRC032) - o **2m @ 440g/t Ag,** from 96m to EOH (LLRC040) - 3m @ 189g/t Ag, from 87m (LLRC048) Drill targets along the broader Tigertown trend will be refined throughout 2025. Figure 4: Tigertown plan view with lode projections and planned holes Figure 5: Plan view of the Liontown Dome (green surface) showing Tigertown location and historic workings (black/white squares). Figure 6: Plan view of the Liontown Dome, showing contoured soil anomalism (Cu+Zn+Pb in soils) with key prospects and historic drilling results annotated. Areas of outcrop or subcrop (effective soil sampling) are highlighted within the black outlined shapes. #### Office and warehouse relocation Sunshine has recently relocated its head office and warehouse facilities following the expiration of the Mackley Street lease. The new warehouse and yard are located in Charters Towers, closer to the project area thereby saving cost and time. This will serve as a base for field activities. The new head office is a compact workspace situated within walking distance of both the Townsville CBD and the Department of Resources head office. The move to the new warehouse and office will result in ~ 25% annual savings in rent and will improve productivity at site. Figure 8: Charters Towers warehouse and yard #### **Planned activities** The Company has a busy period ahead including the following key activities and milestones: ➤ February 2025: Geophysical survey results from Coronation/Coronation South March 2025: Liontown Dome mapping update March 2025: Drilling results Tigertown March 2025: Gold Coast Gold Conference March-April 2025 Coronation drilling commences #### Sunshine's Board has authorised the release of this announcement to the market. For more information, please contact: Dr Damien Keys Mr Shaun Menezes Managing Director Company Secretary Phone: +61 428 717 466 Phone +61 8 6245 9828 dkeys@shnmetals.com.au smenezes@shnmetals.com.au #### **Competent Person's Statement** The information in this report that relates to Exploration Results is based on, and fairly represents, information compiled by Mr Matt Price, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG) and the Australian Institute of Mining and Metallurgy (AusIMM). Mr Price has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Price consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. # **About Sunshine Metals** Big System Potential. Ravenswood Consolidated Project (Zn-Cu-Pb-Au-Ag-Mo): Located in the Charters Towers-Ravenswood district which has produced over 20Moz Au and 14mt of VMS Zn-Cu-Pb-Au ore. The project comprises: - The newly interpreted Liontown Dome, hosting multiple gold and base metal prospects; - a Zn-Cu-Pb-Au VMS Resource of 7.0mt @ 4.0g/t Au (904koz AuEq) or 11.1% ZnEq (42% Indicated, 58% Inferred¹); - o the under-drilled Liontown Au-rich footwall with significant intersections including: - O 20.0m @ 18.2g/t Au (109m, 24LTRC005) - o 17.0m @ 22.1g/t Au (67m, 23LTRC002) - o **8.0m @ 11.7g/t Au & 0.9% Cu** (115m, LLRC184) - o **8.1m @ 10.7g/t Au** (154m, LTDD22055) - o **16.2m @ 4.54g/t Au, 1.11% Cu** (from 319m, 24LTDD024) - o 5.0m @ 27.9g/t Au, 1.7% Cu (20m, LRC018) - O 2.0m @ 68.6g/t Au (24m, LRC0043) - advanced Au-Cu VMS targets at Coronation and Highway East, analogous to the nearby Highway-Reward Mine (3.9mt @ 5.3% Cu & 1.1g/t Au mined); - overlooked orogenic, epithermal and intrusion related Au potential with numerous historic gold workings and drill ready targets; and *Investigator Project (Cu): Located 100km north of the Mt Isa, home to rich copper-lead-zinc mines that have been worked for almost a century. Investigator is hosted in the same stratigraphy and similar fault architecture as the Capricorn Copper Mine, located 12km north. *Hodgkinson Project (Au-W): Located between the Palmer River alluvial gold field (1.35 Moz Au) and the historic Hodgkinson gold field (0.3 Moz Au) and incorporates the Elephant Creek Gold, Peninsula Gold-Copper and Campbell Creek Gold prospects. *A number of parties have expressed interest in our other quality projects (Investigator Cu and Hodgkinson Au-W). These projects will be divested in an orderly manner in due course. ¹ This announcement contains references to exploration results and estimates of mineral resources that were first reported in Sunshine's ASX announcement dated 11 December 2024. Sunshine confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcement. In relation to estimates of mineral resources, Sunshine confirms that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. Metal equivalent calculation on next page. #### Recoverable Gold & Zinc Equivalent calculations The gold and zinc equivalent grades for Greater Liontown (g/t AuEq, % ZnEq) are based on the following prices: US\$2,900t Zn, US\$9,500t Cu, US\$2,000t Pb, US\$2,500oz Au, US\$30oz Ag. Metallurgical metal recoveries are broken into two domains: copper-gold dominant and zinc dominant. Each domain and associated recoveries are supported by metallurgical test work and are: Copper-gold dominant – 92.3% Cu, 86.0% Au, Zinc dominant 88.8% Zn, 80% Cu, 70% Pb, 65% Au, 65% Ag. The AuEq calculation is as follows: AuEq = (Zn grade * Zn recovery * (Zn price \$/t * 0.01/ (Au price \$/oz / 31.103))) + (Cu grade % * Cu recovery % * (Cu price \$/t/ (Au price \$/oz / 31.103))) + (Pb grade % * Pb recovery % * (Pb price \$/t/ (Au price \$/oz / 31.103))) + (Au grade g/t / 31.103 * Au recovery % * ((Ag price \$/oz / 31.103 / (Au price \$/oz / 31.103)))) The ZnEq calculation is as follows: $ZnEq = (Zn \ grade \% * Zn \ recovery) + (Cu \ grade \% * Cu \ recovery \% * (Cu \ price \$/t Zn \ price \$/t * 0.01))) + (Pb \ grade \% * Pb \ recovery \% * (Pb \ price \$/t Zn \ price \$/t * 0.01)) + (Au \ grade \ g/t / 31.103 * Au \ recovery \% * ((Au \ price \$/oz / 31.103) / Zn \ price \$/t * 0.01))) + (Ag \ grade \ g/t / 31.103 * Ag \ recovery \% * ((Ag \ price \$/oz / 31.103) / Zn \ price \$/t * 0.01)).$ For Waterloo transition material, recoveries of 76% Zn, 58% Cu and 0% Pb have been substituted into the ZnEq formula. For Liontown oxide material, recoveries of 44% Zn, 40% Cu and 35% Pb have been substituted into the ZnEq formula. Further metallurgical test work is required on the Liontown oxide domain. It is the opinion of Sunshine and the Competent Person that the metals included in the ZnEq formula have reasonable potential to be recovered and sold. The Ravenswood Consolidated VMS Resource is comprised of 7.0mt @ 1.3g/t Au, 0.9% Cu, 5.5% Zn, 1.7% Pb and 31g/t Ag (11.1% ZnEq). For further details refer to SHN ASX Release, 11 December 2024, "904koz AuEq Resource at Ravenswood Consolidated". #### APPENDIX A - DRILL COLLAR AND SURVEY INFORMATION FOR RESULTS LISTED *Note – Coordinates are reported in GDA94, Zone 55. | Prospect | Hole_ID | Туре | Easting | Northing | Elevation | Azimuth | Dip | Depth
(m) | |-----------|---------|------|---------|-----------|-----------|---------|-----|--------------| | Tigertown | LLRC003 | RC | 401,024 | 7,742,983 | 289 | 13 | -60 | 94 | | Tigertown | LLRC004 | RC | 401,021 | 7,742,933 | 290 | 16 | -60 | 100 | | Tigertown | LLRC032 | RC | 401,593 | 7,742,539 | 286 | 5 | -60 | 100 | | Tigertown | LLRC036 | RC | 400,987 | 7,743,022 | 290 | 5 | -60 | 100 | | Tigertown | LLRC040 | RC | 401,589 | 7,742,489 | 287 | 5 | -60 | 98 | | Tigertown | LLRC048 | RC | 401,786 | 7,742,525 | 301 | 5 | -60 | 100 | | Tigertown | MWR037 | PC | 401,006 | 7,742,990 | 290 | 33 | -60 | 50 | | Tigertown | TTD001 | RC | 401,012 | 7,742,838 | 294 | 13 | -60 | 219.5 | #### APPENDIX B - ROCK CHIP RESULTS AND LOCATIONS *Note – Coordinates are reported in GDA94, Zone 55. | Prospect | Sample ID | Easting | Northing | Elevation | Locality | Au
ppm | Ag
ppm | Cu
ppm | Pb
ppm | Zn
ppm | |-----------|-----------|---------|----------|-----------|----------------------|-----------|-----------|-----------|-----------|-----------| | Tigertown | TT25_001 | 401027 | 7742860 | 300 | Mullock | 3.24 | 2.51 | 1070 | 10650 | 2010 | | Tigertown | TT25_002 | 401017 | 7742864 | 300 | Mullock | 0.01 | 1.18 | 13.6 | 289 | 44 | | Tigertown | TT25_003 | 401026 | 7742996 | 295 | Weathered
Outcrop | 0.64 | 91 | 165.5 | 2180 | 305 | | Tigertown | TT25_004 | 401262 | 7742626 | 299 | Mullock | 0.09 | 0.22 | 56.9 | 843 | 529 | | Tigertown | TT25_005 | 401233 | 7742652 | 296 | Weathered
Outcrop | -0.01 | 0.95 | 10.8 | 143 | 62 | | Tigertown | TT25_006 | 401186 | 7742686 | 297 | Weathered
Outcrop | 0.01 | 0.95 | 58.2 | 36.6 | 248 | | Tigertown | TT25_007 | 401090 | 7742833 | 300 | Mullock | 0.01 | 5.48 | 119 | 658 | 370 | | Tigertown | TT25_008 | 401090 | 7742836 | 297 | Mullock | 0.01 | 2.31 | 168 | 685 | 1545 | Table 1, Section 1 Sampling Techniques and Data | Criteria | Explanation | Commentary | |------------------------|---|--| | Sampling techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'in dustry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | DRILLING SHN – RC drill holes were sampled as individual, 1 m length samples from the rig split. Individual metre samples were collected as a 12.5% split collected from the drill rig. Individual RC samples were collected in calico sample bags and grouped into polyweave bags for dispatch (approximately five per bag). Diamond holes were pre-collared as open-hole 8" PCD through the cover sequence before casing off and drilling as HQ3 for completion of the hole. The hole was sampled in full as half core, with sample intervals selected by the SHN Geologist. The samples were sawn longitudinally in half using the onsite core saw. SHN samples are analysed at Australian Laboratory Services (ALS) in Townsville (Prep & Au) and Brisbane (ME) where samples were crushed to sub 6mm, split and pulverised to sub 75µm. A sub sample was collected for a four-acid digest and ICP-OES/MS analysis of 48 elements, including Ag, Cu, Pb and Zn. Samples were assayed for Au using a 30g Fire Assay technique. Assays over 100g Au using this technique were re-assayed using gravimetric analysis. Ba over 1% was reanalysed using XRF. Historic –RC / Percussion samples were typically collected in 1m intervals with all samples sent for assay. Diamond core was reviewed with specific zones selected for assay by the Geologist. These zones were then sawn longitudinally in half, with the half core sample sent for analysis. Core sizes ranged from NQ to HQ. So specific batch information has been located, however industry standard preparation and analysis methods were believed to be used. The majority of the samples were analysed following a three- or four- acid digest and either via Atomic Absorption Spectrum (AAS) or Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) for the analysis of base metals. Gold was analysed via fire assay using either 25 g, 30 g or 50 g charge with an AAS finish was employed. GEOCHEMICAL SAMPLING SHN – Rocks were selected by the field geologist and recorded as either in situ (outcrop), float (alluvial) or fr | | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, | DRILLING SHN – Reverse circulation drilling utilising an 8inch open-hole hammer for first 10m (pre-collar) and a 5.5inch RC hammer for the remainder of the drill hole. Diamond holes were pre-collared as open-hole 8" PCD through the cover sequence before casing off and drilling as HQ3 for completion of the hole. | | Criteria | Explanation | Commentary | |---|--|--| | | whether core is oriented and if so, by what method, etc.). | Historic – Reverse circulation drill holes utilised a 4 ¼ to 5 ½ inch hammer bit. Conventional and wireline diamond drilling techniques were used through the various programs. Core extraction utilised a conventional coring system. Historical core was not oriented. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | DRILLING SHN - RC sample recoveries of less than approximately 80% are noted in the geological/sampling log with a visual estimate of the actual recovery. No such samples were reported within the significant intercept zones. Moisture categorisation was also recorded. No wet samples were noted during the program. Diamond drilling recoveries were complete (100%) across the reported significant intercepts. Historic – No information is available on historical drilling recoveries. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. | DRILLING SHN – The drill core and chip samples from SHN exploration drilling has been geologically and geotechnically logged to a level to support appropriate mineral resource estimation, mining studies and metallurgical studies. Core is logged both qualitatively and quantitatively. Core and chip tray photography is available. Historic – Qualitative logging included lithology, alteration and textures; and Quantitative logging includes sulphide and gangue mineral percentages. GEOCHEMICAL SAMPLING SHN – Rocks have been logged for lithology, alteration, mineralisation and veining and recorded in the SHN Geochemistry Database. Photos are taken of all submitted samples. | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, | DRILLING SHN & Historic – RC samples were split using a rig-mounted cone splitter on 1m intervals to obtain a sample for assay, of approximate weight 3 – 5kg. Samples were pulverised to sub-75µm to produce a representative sub-sample for analysis. Core samples were sawn longitudinally in half using an automated core saw and dispatched to the laboratory for analysis. Samples were crushed to sub-6mm, split and pulverised to sub-75µm to produce a representative sub-sample for analysis. GEOCHEMICAL SAMPLING SHN: Sample size of 1 – 2kg is deemed representative as a "point sample" within a referenced outcrop or location. They are not deemed representative of the entire outcrop or prospect as a whole. No SHN QC procedures are used for rock chips. Samples have utilised the laboratory in-house QAQC protocols. | | Criteria | Explanation | Commentary | |--|---|--| | | including for instance results for field duplicate/second-half sampling. | | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | | | Quality of
assay data
and
Laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | DRILLING SHN – Samples are assayed using a 30g fire assay for gold with AAS finish, which is considered appropriate for this style of mineralisation. Fire assay is considered total assay for gold. Assays reporting over 100g/t Au were re-assayed using gravimetric methods to report a final assay. The QAQC procedures involved Blanks, Field Duplicates and CRMs inserted at a rate of 1 in 10 and it is considered that acceptable levels of accuracy and precision were established for the purposes of mineral resource estimation. All other elements are assayed using an ICP-MS/OES, with overrange Ba reported by XRF. No QAQC issues were identified during the reporting of the SHN assays. Historic – Historical assays have not been validated through re-assay. Assay methods are considered appropriate for exploration drilling. No Quallity Assurance and Quality Control is available for historical drillholes within this report. Since 2007 it is considered that acceptable levels of accuracy and precision have been established. Given that reputable licensed laboratories were utilised it is considered that acceptable levels of accuracy and precision were established. GEOCHEMICAL SAMPLING SHN – Rock chips were assayed using a 30g fire assay for gold with AAS finish, which is considered appropriate for this style of mineralisation. Fire assay is considered total assay for gold. All other elements were assayed using an ICP-MS/OES. | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data | DRILLING SHN – No new drill holes reported within this document have been twinned or were designed as twinned holes. Verification of significant intercepts has been undertaken internally by alternative company personnel. Historic – Documentation and information regarding data entry procedures, data verification, and data storage (physical and electronic) protocols is unknown. GEOCHEMICAL SAMPLING SHN – All rock chips are considered valid for that point location only if outcrop, or as an example of ore/waste material if mullock | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine | DRILLING SHN – Drilled holes have been surveyed using a handheld GPS. Coordinates are displayed within GDA94, Zone 55 format. Downhole surveys were conducted with an industry-standard gyroscopic survey tool. | | Criteria | Explanation | Commentary | |---|--|--| | | workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Historic – Historic drill collar locations were determined by a variety of methods in different programmes and included DGPS pickup of 105 historical collars in the area by Liontown Resources in 2007. Historic down hole surveys were taken using Eastman single shot cameras. | | | | GEOCHEMICAL SAMPLING | | | | SHN – Sample locations are located as points using handheld GPS in GDA94, Zone 55 | | Data
spacing and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade | DRILLING SHN – No specified spacing was undertaken by the SHN reconnaissance drilling reported herein. Historic – LLRC drill holes are typically spaced 40 – 50m apart at the Tigertown prospect. | | | continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | GEOCHEMICAL SAMPLING SHN – No data spacing has been applied to the rock chip samples due to the nature of the technique. | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | DRILLING SHN & Historic – Drill holes were oriented perpendicular to the perceived strike of the host lithologies or lodes. Drill holes were drilled at a dip based on the logistics and dip of target to be tested. Orientation of drilling was designed to not bias sampling. GEOCHEMICAL SAMPLING SHN – Rock samples are collected as "point" samples with no bearing on overall orientation of the possible structure. | | Sample
security | The measures taken to ensure sample security. | SHN – RC drill samples were collected by the Drill Contractor and then collected on site by the SHN Field Technician. The sample was then validated against a pre-prepared sample sheet to ensure the sample matched the correct interval. Samples were then collected into groups of five and placed in a labelled polyweave bag. The samples were then dispatched from site directly to the lab by SHN field personnel. Diamond core samples are collected at the time of cutting by the SHN Field Technician and validated against a pre-prepared sample sheet. In both cases, samples were then collected into groups of five and placed in a labelled polyweave bag. The samples were then dispatched from site directly to the lab by SHN field personnel. | | | | Historic – Sample security for historic programmes lack information and cannot be validated. GEOCHEMICAL SAMPLING | | Criteria | Explanation | Commentary | |-------------------|---|--| | | | SHN – Samples were numbered in the field at the time of collection. The samples are photographed at the time of collection and are then transported by SHN to the laboratory. No third party was involved with the handling of the sample between collection and drop off. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits have been carried out on the reported drill or geochemistry results herein. Internal validation of results has taken place. | ### **Section 2 - Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | Explanation | Commentary | |---|---|--| | Mineral tenement and land tenure status | , | Ravenswood Consolidated Exploration Permits are: EPMs 10582, 12766, 14161, 16929, 18470, 18471, 18713, 25815, 25895, 26041, 26152, 26303, 26304, 26718, 27537, 27520, 27824, 27825, 28237, 28240, Mining Lease 10277 and Mining Lease Applications 100221, 100290 and 100302 for a total of 1326km2. The tenements are in good standing and no known impediments exist. These leases are held in their entirety by Sunshine (Ravenswood) Pty Ltd and Sunshine (Triumph) Pty Ltd, 100% owned subsidiaries of Sunshine Metals Ltd. | | | wilderness or national park and environmental settings. | The Liontown Resource is located in its entirety on ML 10277 and EPM 14161 and under Mining Lease Applications MLA 100290 and MLA 100302. The Thalanga mill and mining operation was abandoned by administrators to Red River Resources. A restricted area has | | | The security of the tenure held at the time of reporting along with any known impediments | been placed over the mill, dumps and tailings facilities. The Queensland Department of Environment is now responsible for the rehabilitation of the aforementioned facilities. There are no known other Restricted Areas located within the tenure. | | | to obtaining a licence to operate in the area. | The tenure reported within exists on the recognised native land of the Jangga People #2 claim. | | | | A 0.8% Net Smelter Return (NSR) royalty is payable to Osisko Ventures Ltd and a 0.7% NSR royalty payable to the Guandong Guangxin Mine Resources Group Co Ltd (GMRG) on sale proceeds of product extracted from EPM 14161. | | | | Five third-party Mining Leases are present exist on these Exploration Permits – named MLs 1571, 1734, 1739 and 10028 (Thalanga Copper Mines Pty Ltd) and 100021 (Clyde Ian Doxford). | | | | The Lighthouse Project consists of EPMs 25617 and 26705. All EPMs are owned 100% by BGM Investments Pty Ltd, a wholly owned subsidiary of Rockfire Resources Limited. No current Mining Leases exist on the tenure. South-eastern blocks on EPM 26705 are situated within the Burdekin Falls Dam catchment area. Sunshine Metals has the option to earn 75% of the project. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Exploration activities have been carried out by Nickel Mines (1970-1973), Esso (1982-1983), Great Mines (1987), Pancontinental (1994-1995), and Liontown Resources (2007). Work programs included surface mapping, and sampling, costeans, drilling and geophysics. | | Criteria | Explanation | Commentary | |--------------------------|---|--| | | | | | Geology | Deposit type, geological setting and style of mineralisation. | Drilling activities will assist in determining geological setting and style of mineralisation. However, current interpretation is as follows: | | | | TIGERTOWN Tigertown is believed to be a Au-Ag bearing Volcanogenic Massive Sulphide deposit located within the Trooper Creek Formation. It is hosted in a sequence of volcanics and sediments with mineralisation hosted in stratiform, baritic lodes which trend northwest-southeast. | | Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: | All drill data presented in this release is compiled in Appendix 1. | | | easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. | | | | If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case | | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. | All grades and intercepts referred to in this document are as reported in their associated historical documents. No further adjustments or assumptions have been made. For the nearby Liontown Resource, gold and zinc equivalent grades for Greater Liontown (g/t AuEq, % ZnEq) are based on the following prices: | | | Where aggregate intercepts incorporate short lengths of high grade results and longer | US\$2,900t Zn, US\$9,500t Cu, US\$2,000t Pb, US\$2,500oz Au, US\$30oz Ag. Metallurgical metal recoveries are broken into two domains: copper-gold dominant and zinc dominant. | | Criteria | Explanation | Commentary | |---|--|--| | | lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Each domain and associated recoveries are supported by metallurgical test work and are: Copper-gold dominant – 92.3% Cu, 86.0% Au, Zinc dominant 88.8% Zn, 80% Cu, 70% Pb, 65% Au, 65% Ag. The AuEq calculation is as follows: AuEq = (Zn grade% * Zn recovery * (Zn price \$/t * 0.01/ (Au price \$/oz / 31.103))) + (Cu grade % * Cu recovery % * (Cu price \$/t/ (Au price \$/oz / 31.103))) + (Au grade g/t / 31.103 * Au recovery %) + (Ag grade g/t / 31.103 * Ag recovery % * ((Ag price \$/oz / 31.103 / (Au price \$/oz / 31.103))) The ZnEq calculation is as follows: ZnEq = (Zn grade% * Zn recovery) + (Cu grade % * Cu recovery % * ((Cu price \$/t/ Zn price \$/t/ Zn price \$/t * 0.01))) + (Pb grade % * Pb recovery % * (Pb price \$/t/ Zn pri | | Relationship between mineralisation widths and intercept length | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. • If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | All widths reported herein are downhole width only, with no true widths reported. However, all drill holes are interpreted to have intercepted the lodes at an optimal angle. More data will be required to accurate assess the true orientation of the mineralisation. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | All relevant diagrams are located within the body of this report | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to | All drill intercepts are recorded within the body of this report | | Criteria | Explanation | Commentary | | |------------------------------------|---|--|--| | | avoid misleading reporting of Exploration Results. | | | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All meaningful and material data is reported within the body of the report. Relevant reports for this release are: • ASX: SHN, 28 th January 2025, New interpretation near Liontown firms up targets • ASX: SHN, 13th November 2024, Shallow Gold Zone at Coronation • ASX: SHN, 8 th May 2023, Fully Funded Acquisition of Greater Liontown | | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Future work programs will be reviewed following the upcoming drilling campaign and may include Induced Polarisat geophysics and additional drilling. | |