

Forrestania Resources Ltd Suite 2, 38 Colin Street West Perth WA 6005

ASX: FRS

Phone +61 8 6391 0113 info@forrestaniaresources.com.au ACN 647 899 698

forrestaniaresources.com.au

24 March 2025

ASX RELEASE

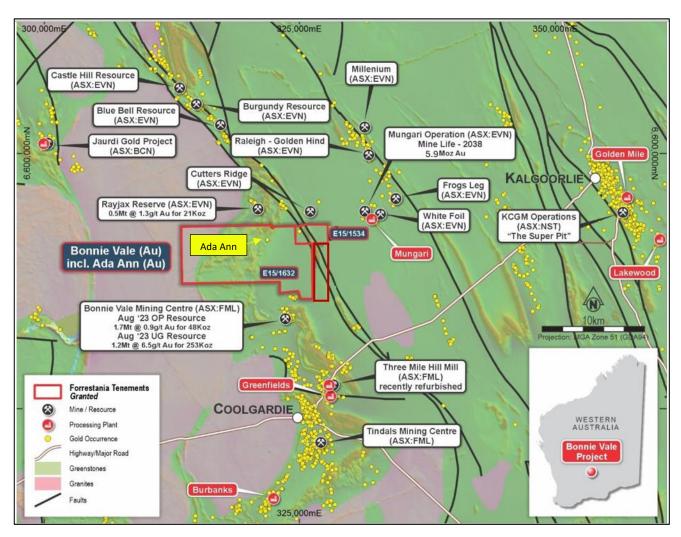
Ada Ann drilling results: 4m @ 16g/t Au intercepted at depth, extends Au mineralisation 60m to the south

Highlights:

- Phase 2 drilling returns highest gram/metre intersection recorded to date (including from historic drilling data), with results including:
 - o AARC0029 4m @ 16.3g/t Au (from 72m) 62.5 grams per metre Au
 - o AARC0024 4m @ 2.6g/t Au (from 52m)
 - AARC0022 4m @ 1.2g/t Au (from 72m)
- Mineralisation footprint extended ~60m south of historic mineralisation and remains open at depth, with the strike of Au mineralisation increased to ~310m.
- Significant FRS results from phase 1 drilling¹ at Ada Ann include:
 - o AARC0002 2m @ 10.7g/t Au (from 62m), including 1m @ 21g/t Au
 - o AARC0006 7m @ 2.1g/t Au (from 34m), including 1m @ 7.3g/t Au
 - AARC0020 6m @ 1.6g/t Au (from 62m), including 1m @ 5.8g/t Au
- Historic drilling results (previously released¹) from Ada Ann include:
 - AA28 4m @ 12.8g/t Au (from 25m)
 - BR19 16m @ 2.6g/t Au (from 24m)
 - AA05 6m @ 6.5g/t Au (from 16m)

Forrestania Resources Limited (ASX: FRS) ("FRS" or "the Company) is pleased to confirm the results from the second phase of drilling at the Ada Ann prospect at the Bonnie Vale Project, near Coolgardie, in Western Australia's prolific Eastern Goldfields.

Having already defined strong, consistent, high-grade Au results from the maiden drilling programme at Ada Ann, the Company is pleased to report continued exploration success with **further high-grade Au drilling results** from the Company's phase 2 drilling programme.


¹ ASX: FRS Ada Ann Au 1m drilling results & phase 2 drilling completed, 19th February 2025

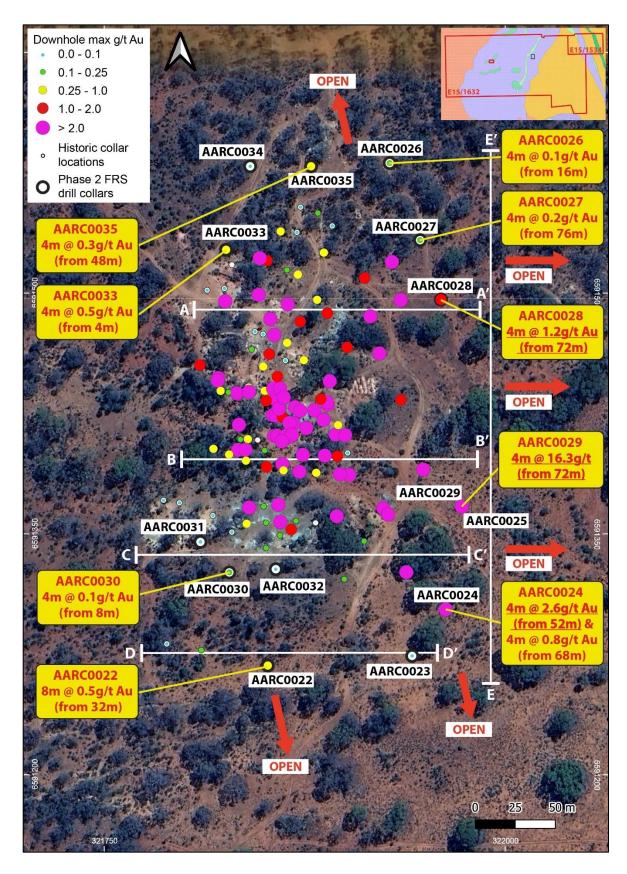
Forrestania Resources' Chairman John Hannaford commented:

"We are very pleased with these significant, high-grade, RC drilling results that extend the Ada Ann mineralisation further to the south and east. With each set of drill results our understanding of the mineralisation and geological controls is evolving. The 4m @ 16g/t Au result in AARC0029 underlines the presence of high-grade gold mineralisation at depth. The 1m samples will further confirm the Au mineralisation.

Overall, the prospectivity of this project continues to grow."

Figure 1. Forrestania Resource's Bonnie Vale Project (E15/1632 & E15/1534) is in close proximity to major gold mines and deposits. Map includes simplified geological interpretation with WA Government magnetics. ASX: EVN Mungari lies ~5km to the east of the Bonnie Vale Project area. (ASX: EVN Mungari mine life taken from ASX: EVN Mungari mine life extended to 15 years - 5th June 2023; Mungari Mineral resource estimate figure of 5.9Moz & Rayjax Ore Reserve taken from ASX: EVN Mungari Mineral Resource & Ore Statement as at 31st December 2023 - 14th February 2024; ASX: FML Bonnie Vale mineral resource update, 26th September 2023.)

Ada Ann – Phase 2 drilling programme


The Company has recently received the 4m composite Au assay results from its phase 2 drilling programme (14 RC holes for 1017m) at the Ada Ann prospect. The drilling was designed to follow up on the results from phase 1 and to increase the mineralisation footprint to the north, south and at depth.

The results from the Company's phase 2 drilling programme at Ada Ann include the **highest** grade (gram per metre) interval seen at Ada Ann (including from historic drilling), confirming the high-grade potential of the prospect:

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AARC0029	72	76	4	16.3	65.2
AA28	25	29	4	12.8	51.2
BR19	24	40	16	2.64	42.2
AA05	16	22	6	6.45	38.7
AA04	4	11	7	5.01	35.1
AA45	8	20	12	2.68	32.2
AA06	19	26	7	4.4	30.8
AA27	41	45	4	7.34	29.4
AXRC10	42	46	4	7.28	29.1
AA20	25	31	6	4.5	27.0
AA24	14	18	4	6.7	26.8
AXRC09	40	44	4	5.9	23.6
BR22	24	34	10	2.28	22.8
AARC0002	62	64	2	10.74	21.5
AA25	17	24	7	2.99	20.9
AA46	4	18	14	1.44	20.2
AA10	40	47	7	2.74	19.2
AA06	32	37	5	3.63	18.2
AA49	14	16	2	8.08	16.2
AA25	35	38	3	5.37	16.1
AARC0006	34	41	7	2.14	15.0

Table 1. All significant drilling intercepts (≥15 grams per metre) from the Ada Ann prospect (including FRS and historic drilling results). All intercepts are based on a cut-off grade of 0.3g/t Au allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. Drilling intercept widths are down-hole widths and not true widths. Holes in bold have been drilled by FRS. Samples were fire assayed and full FRS results and details can be seen within the JORC table and the supplementary data at the end of this announcement.

Figure 2. Historic and recent downhole max results at the Ada Ann prospect with significant FRS downhole max results indicated, along with location of cross and long sections (which can be seen below). Drilling results are down hole width and not true width.

Encouragingly, the drilling programme intersected Au mineralised structures (composite values of ≥0.1g/t Au) in the majority of the drill holes, with the results continuing to confirm open mineralisation at depth and increasing the mineralised (north-south) strike extent from approximately 225m to approximately 310m). Of particular note is drill hole AARC0022 which returned 8m @ 0.5g/t Au (from 32m). This has increased the Au mineralisation by approximately 60m south (of the historic drilling).

As the Au mineralisation continues to extend south, the Company is hopeful of extending the mineralisation further south, to the historic RC hole AA14² (225m south of AARC0022) which returned highly anomalous, historic, composite values including: 4m @ 0.3g/t Au (from 0m), 4m @ 0.1g/t Au (from 4m) and 4m @ 0.1g/t Au (from 32m), but was never followed up, see Figure 3. This drill hole is located within a small area of surface, historic workings.

-

² ASX: FRS 222g/t Au rock chip at the Bonnie Vale Project, Eastern Goldfields, 18th November 2024

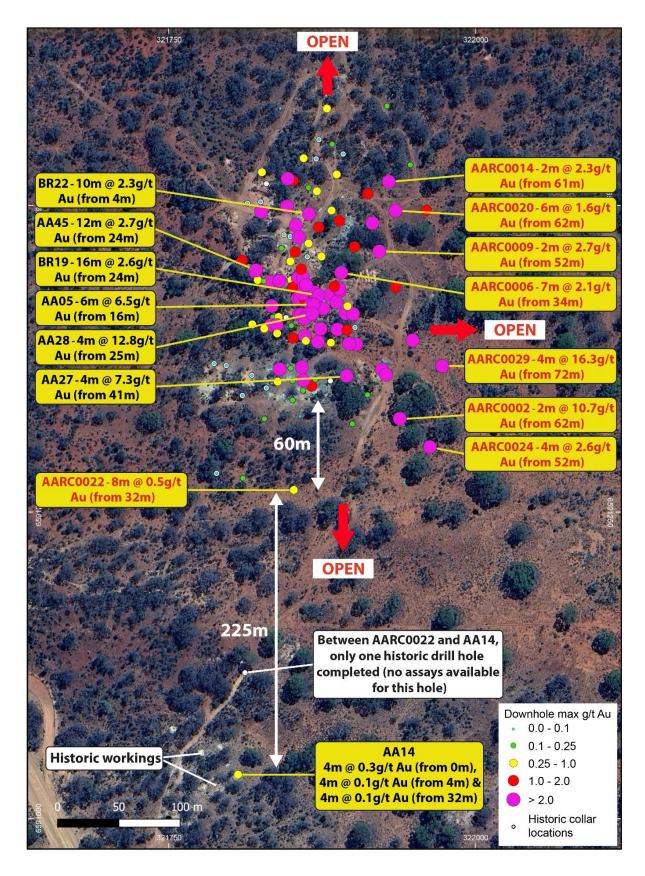


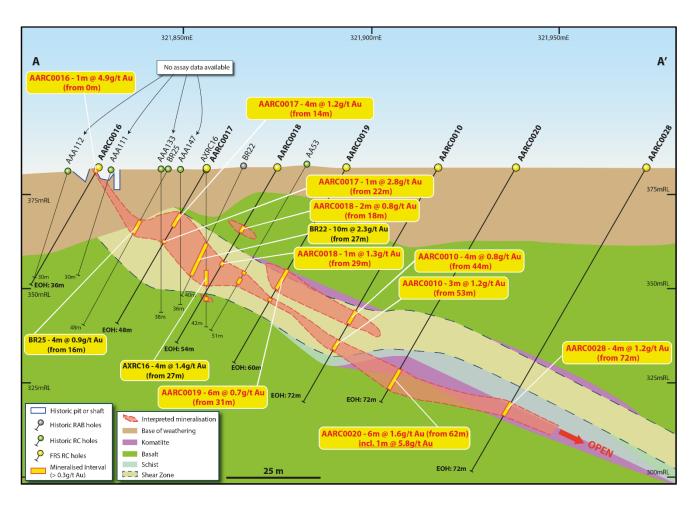
Figure 3. Potential extension to Au mineralisation at Ada Ann with historic drill holes AA14 shown ~225m south of AARC0022; AA14 shows highly anomalous Au values, close to historic workings. Only one historic hole is known to have been drilled between AARC0022 and AA14 with no assays available for that hole.

High-grade, coarse gold at Ada Ann

The gold at Ada Ann appears to be of a coarse nature, with **free gold** panned¹ (from waste material that was collected from the historic workings) by the Company, after the end of the phase 2 drilling campaign at Ada Ann. The coarse nature of the gold may have an impact on the drilling results with the potential for inconsistent assay results³.

The programme successfully intercepted geologically interesting zones of quartz with biotite and epidote alteration in every hole at the target zones that were predicted and modelled by the Company; however, not all of these zones returned Au mineralisation, potentially due to the coarse nature of the Au mineralisation. As such, the Company is currently awaiting the 1m samples (of the 4m composites) taken from the lithologically interesting, quartz rich areas (predicted target zones), as well as from the zones of Au mineralisation ≥0.1g/t Au. These samples have been sent to ALS for fire assay.

As this is still an early stage exploration programme, with **only 2505m drilled** by the Company to date, the continued success of the geological model gives further credibility to the potential of the Ada Ann prospect. Throughout the second phase of drilling, the geology remained consistent with phase 1, with the lithology generally dipping gently to the east with mineralised contacts continuing at depth and along strike, in both directions.


Drill hole AARC0022 (the first hole in the phase 2 programme) further underlined the mineralisation model returning a composite value of 8m @ 0.5g/t Au (from 32m); this interval was intersected down dip of historic hole BR14 at the predicted target depth. **AARC0022 is located ~60m south of the main area of historic mineralisation**. As can be seen in Figure 7, AARC0023 (~90m east of AARC0022) returned zones of Fe-stained quartz veining within the predicted target zone yet the assays from this section returned low level Au, perhaps indicative of a coarse gold system. These intervals from AARC0023 will have their 1m samples assayed.

Encouragingly, given the low angle of the mineralisation and with the Au mineralisation estimated to dip at approximately 25°-30°, the true width of the recent FRS drilling results are potentially very similar in length to the reported down-hole widths (the down-hole widths are estimated to be approximately ~98% of the true width, based on the 60° drill holes). This would suggest that the significant AARC down-hole drilling intercepts seen in Table 1 are close to the **actual true width of the mineralisation** and once again confirm the strong mining potential of the Ada Ann prospect, as do the increasing **high-grade intersections seen at depth**.

These high-grade Au results confirm the history of Ada Ann where it is reported in WAMEX A49504 that Mr. A Stockwell (a local prospector) extracted 150 tonnes of near surface Au ore from a shallow pit (~6m in depth) at Ada Ann, which was treated at the local Kintore Mill of Mr. M Pavlinovich. The gold recovery was reported at a **very high grade of ~7g/t Au** which backs up the high-grade seen in the drilling.

³ General considerations of sampling and assaying in a coarse gold environment, Dominy S.C. et al, December 2000 (Applied Earth Science IMM Transactions, section B, December 2000)

Figure 4. Cross section (A-A'), looking north ~15m section view, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text). Drilling results are down hole width and not true width.

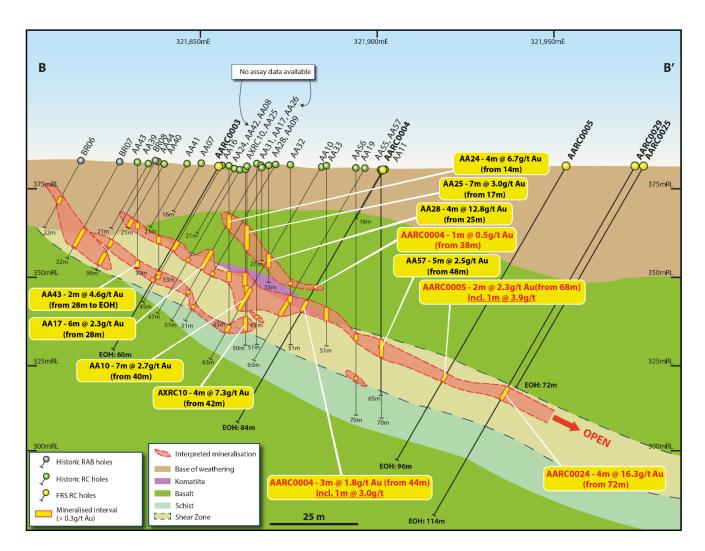
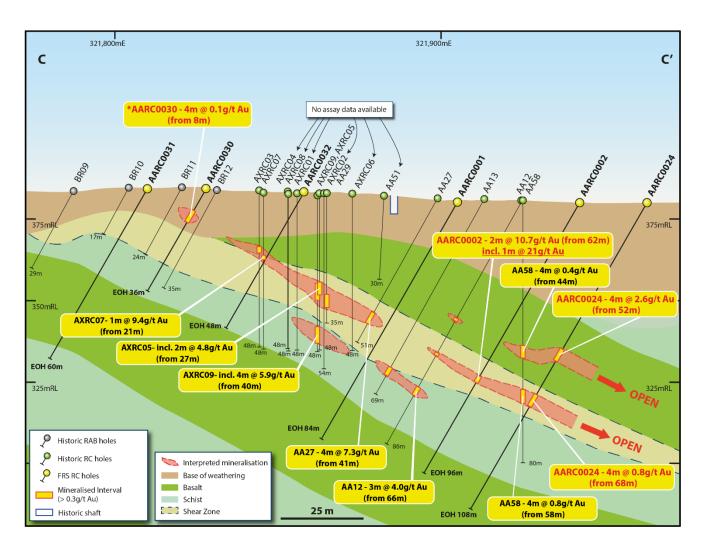



Figure 5. Cross section (B-B'), looking north ~25m section view, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text) — AARC0025 with 4m @ 16g/t Au, open at depth. Drilling results are down hole width and not true width.

Figure 6. Cross section (C-C'), looking north ~65m section view, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text). Drilling results are down hole width and not true width.

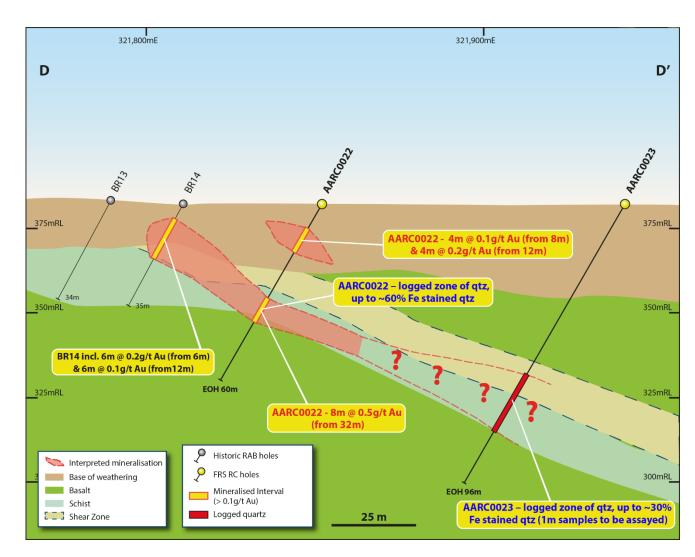
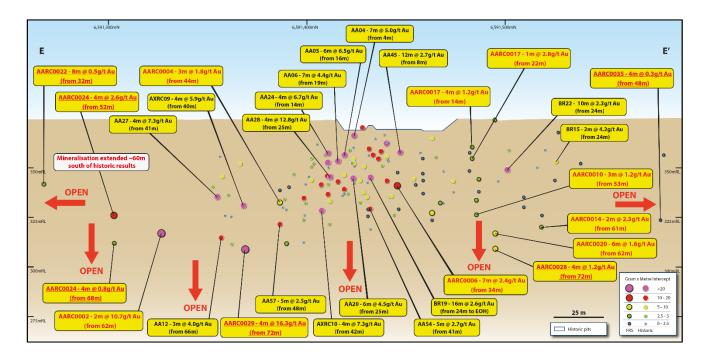



Figure 7. Cross section (D-D'), looking north, ~10m section view, showing interpreted geology and Au mineralisation of historic drilling (black text) and significant, recent FRS drilling (red text). This section shows the continuation of the geological and mineralised model, 60m to the south, with AARC0022 lining up with the historic results from BR14. Drilling results are down hole width and not true width. Note: zones of logged quartz in AARC0023 at predicted target depth (1m assays to be sampled).

Figure 8. Long section (E-E') looking west at the Ada Ann deposit. Significant FRS drilling results in red text, historic drilling values in black. Drilling results are down hole width and not true width

Next steps

The Company recently submitted the 1m splits for assay, from the Ada Ann phase 2 drilling programme, with results anticipated to be returned within 6 weeks.

Following on from this announcement, the Company will await the results of the 1m splits and will then interrogate the data further, with a view to refining targets for future drilling programmes at the Ada Ann prospect and at Bonnie Vale.

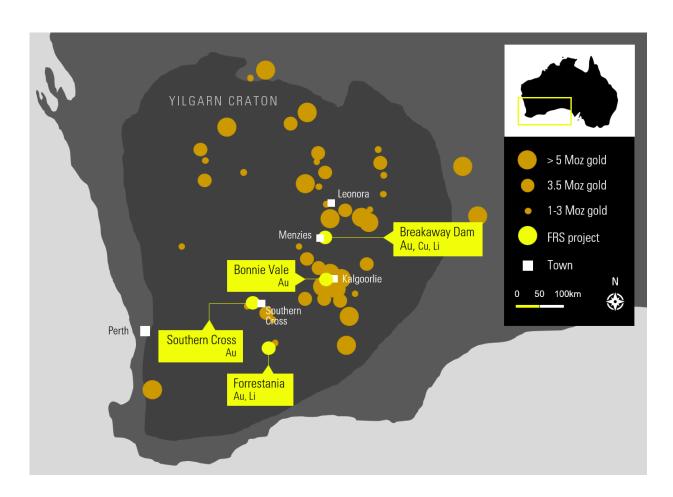
However, in the interim period, the Company will focus its attention on drilling at the Lady Lila prospect⁴.

This announcement has been authorised for release by Forrestania Resources' Board.

For further information please contact:

John Hannaford Chairman Phone +61(0) 419 042 769 john@forrestaniaresources.com.au

⁴ ASX: FRS Lady Lila gold review and market update, 5th March 2025


About Forrestania Resources Limited

Forrestania Resources Limited is an Australian resources company exploring for gold, copper and lithium in the Forrestania, Southern Cross and Eastern Goldfields regions of Western Australia.

The company's Forrestania Project hosts gold and lithium prospects in close proximity to the historic Bounty gold mine, the Covalent Mt Holland Lithium Mine, and the operating Flying Fox, and Spotted Quoll nickel mines in the well-endowed southern Forrestania Greenstone Belt.

The Eastern Goldfields tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton, close to Coolgardie, Menzies and Leonora. In total, this includes twelve Exploration Licences and four Exploration Licence Applications, covering a total area of ~1,000km². The tenements are predominately non-contiguous and scattered over 300km length, overlying or on the margins of greenstone belts.

The Southern Cross Project is located in the Southern Cross Greenstone Belt and has significant potential for gold mineralisation.

Competent person's statement

The information in this report that relates to exploration results is based on and fairly represents information compiled by Mr. Ashley Bennett. Mr. Bennett is the Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr. Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

Disclosure

The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/
The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Cautionary statement regarding values & forward-looking information

The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. Forrestania Resources does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always, identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forwardlooking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forward-looking statements are based upon estimates and opinions at the date the statements are made. Forrestania Resources undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of Forrestania Resources from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. Forrestania Resources, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. If any geochemical sampling data is reported in this announcement, it is not intended to support a mineral resources estimation. Any drilling widths given in this announcement are down-hole widths and do not represent true widths.

Appendix 1 – JORC TABLE 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 All FRS (AARC0001- AARC0035) were completed by RC drilling. Topdrill were the drilling contractor and utilized a Schramm C685. Industry standard practices were applied to the drilling programme and sampling. Representative 4m composite samples were taken from the spoil piles, with a hand size aluminium scoop. These samples were collected in a numbered calico bag, recorded by FRS staff and submitted to ALS Kalgoorlie (sample sizes were approximately 1.5kg up to 2.5kg were collected). 1m single splits were also taken off the rig (in numbered calico bags) from the cone splitter and may be submitted to the lab at a later date, based on the results from the 4m composites. The details of these samples were recorded by FRS geologists. Regular air and manual cleaning of the rig cyclone was undertaken to remove potential contaminants. The 4m composite samples were submitted to ALS Kalgoorlie; these samples were then trucked to ALS Perth, Canning Vale. AARC0022-AARC0033: Samples were submitted for Au analysis using Au-AA25 methodology (fire assay) which uses a fire assay fusion FA-FUS03, with an AAS finish. AARC0001-AARC0021: Samples were submitted for Au analysis using AuMe-TL43 (aqua regia); Aqua regia digestion of 25g sample, followed by trace Au and multi-element analyses by ICP-MS and ICP-AES. Historical drilling at Ada Ann: Holes with AA1-AA51 were completed by RC drilling, 1m samples were laid on the ground and samples that were thought to be mineralized were sent for assay, some were composited and some were not; other metre intervals that were not interpreted to be mineralized were not assayed. Samples are believed to have been assayed by Aqua Regia techniques at Kalgoorlie assay laboratories. Laboratory documentation for all the assays is not available. After a review of holes AA1-AA51, Gindalbie Metals sampled intervals not sampled previously. This sampling was performed by scoop sampling the bagged individual drill samples still

Criteria	JORC Code Explanation	Commentary
		were wet and the cost of drying pulverising and splitting the samples was not thought to be warranted. Instead as representative a sample as possible was obtained by breaking up the samples and scoop sampling throughout the sample. Soop sampling throughout the sample. Holes BR1-19 were completed by RAB drilling, drill samples were collected over a 2m interval, via a cyclone, a representative sample was taken using a pipe, composited to 6m samples and sent to Genalysis for fire assay. Historical reports suggest that any sample returning a 6m composite value >0.1g/t Au had the corresponding 2m samples submitted to Genalysis for fire assay, but not all of these 2m assays are available. Holes BR20-24 were also completed by RAB drilling, one metre samples were collected and then speared, composited over four metre intervals and submitted to Genalysis for gold analysis by AAS (50gm charge). Intervals returning greater than 0.25g/t gold were resampled on a one metre basis and re-assayed, using the same technique. Holes BR25-29 were drilled by RC; one metre samples were collected and then speared, composited over four metre intervals and submitted to Genalysis for gold analysis by AAS (50gm charge). Intervals returning greater than 0.25g/t gold were resampled on a one metre basis and re-assayed, using the same technique. Holes with prefix AXRC were completed by Amex Resources and the holes were drilled by RC. No other details regarding sampling and assaying techniques are given in the ASX release and only those results announced by AMEX Resources are utilized here. A number of AXRC holes in the cross sections and maps have no known drilling results as AMEX did not release full assay data. For any FRS rock chip/percussion samples: A representative sample was taken of any outcrops sampled by FRS and the location GPS'd. For samples taken from historic spoil piles, a mineralized zone was identified by FRS geologists, a representative sample was then taken of this zone and the location GPS'd. Initially, all samples were
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 All FRS (AARC0001- AARC0035) were completed by RC drilling; RC drilling was typically undertaken using a 5 ¼" hammer bit. Holes at Ada Ann were drilled using both RAB and RC rigs (see above for details); due to the historic nature of the reporting, the only details

	/
r	

Criteria	JORC Code Explanation	Commentary
		about the Rigs utilised are available for AA52-AA58 which were completed using Mole Pioneer rig with a 4.5 inch sampling hammer and a Schramm rig with a 5 inch face sampling hammer and BR1-19 which utilized a Warman drill rig operated by Westralian Diamond Drilling, BR20-24 drilled with a Mole Pioneer rig from Westralian Diamond Drillers of Boulder. This rig proved unsatisfactory in the hard ground encountered at relatively shallow depths and a Warman RC rig was used for holes BRC25-29
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For all FRS drilling, all percussion sample recoveries were noted in the sampling and geological logs. No significant issues were noted for sample recoveries. Moisture was also logged, but no wet samples were recorded during the programme. No known sampling bias is known to have taken place and no known relationship exists between grade and sample recovery, although given the coarse nature of the gold at Ada Ann; this may have a negative affect on the assay values returned. No known sample bias has been noted in any WAMEX reports for the historic drilling and Ada Ann. For all of the historic drilling at Ada Ann, recovery details are unknown, however site visits have determined that most samples appear to be consistent in size.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All of the drilled percussion chips from the FRS RC programmes were geologically logged by a qualified geologist to a level of detail that could support a mineral resource estimation, mining studies and metallurgical studies. The drilling was logged on site with every metre studied and logged and exported to the Company database. Qualitative logging included lithology, alteration and textures; quantitative logging including sulphide and other mineral percentages. Additionally, each holes was photographed. Full geological logs are unavailable for the historic holes at Ada Ann but data has been retrieved and digitized (where possible) from historic logs and sections and details of the logging practice is unknown, but assumed to be industry practice. Logging data is located on historic WAMEX reports and the data transfer of these logs to the Company database has not been feasible for all holes as many of the logs are illegible. FRS geologists have entered geological data from the historic logs into the Company database.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and 	AARC0022-AARC0035): Representative 4m composite samples were taken throughout the programme. These composite samples were assayed for gold by fire assay (Au-AA25 methodology). (AARC0001-AARC0021): Representative 4m composite samples were

$\overline{}$

Criteria	JORC Code Explanation	Commentary
	 appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	taken throughout the programme. These samples were assayed for gold, by aqua regia. Aqua regia digestion of 25g sample, followed by trace Au and multi-element analyses by ICP-MS and ICP-AES. Samples were sampled dry. When the assays were returned, the 1m samples of the mineralised zones were sent to ALS for fire assay (Au-AA25 methodology). • RC samples were split using a rig mounted cone splitter, at 1m intervals, to obtain a sample for assay of approximately 3-5kg. • The sampling detailed above is considered industry standard and is believed to be representative of the material collected. • CRMs (certified reference material) was used for QAQC purposes. Industry CRM standards were inserted every 30 samples and internal QAQC reviews indicate that all CRMs were within acceptable ranges. • For the drilling completed at Ada Ann by BHP Utah, Gindalbie Gold and A Stockwell, the sample preparation (if given in historic WAMEX reports) is detailed within the JORC table. In general, composite samples were taken during most drilling programmes and 1m split samples were taken within mineralized areas, after results had been returned. This is standard industry practice. There is no mention in the historic reports of wet samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 For all FRS drilling programmes, CRMs (certified reference material) was used for QAQC purposes for the composite samples. Industry CRM standards were inserted approximately every 30 samples. For all FRS drilling programmes, CRMs (certified reference material), blank material and duplicates were used for QAQC purposes for the 1m samples. This material was inserted on a regular basis – approximately every 10 samples. ALS insert industry blanks, standards and duplicates into their analysis and no issues were noted with their results. At Ada Ann for the AA52-AA58 holes: Samples were collected every one metre by splitting a 2-3 kg sample off after passing the one metre drill volume through the rig cyclone. Four metre composites were scoop sampled from the splitter reject for all portions of the holes except for the :zones of interest, in which the individual metre sample was submitted for assay. Samples were submitted to-Amdel Laboratories Kalgoorlie for gold analysis by Aqua Regia techniques with a LLD of 0.02ppm Au. No details of QAQC are given. For AA1-AA52, The 1m sampling was performed by 'scoop sampling the bagged individual drill samples still on site, with both individual and

4	

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	composite samples being taken. It was not possible to riffle split the samples (as presumably would-have been the case with Stockwell's original samples) as many of the samples were cemented into hard masses, some were wet and the cost of drying pulverising and splitting the samples was not thought to be warranted. Instead as representative a sample as possible was obtained by breaking up the samples and scoop sampling throughout the sample. Some 150 samples were submitted to Amdel Laboratories. No QAQC details are given for this or the original composite sampling. For the BR holes: Drill samples over a 2 metre interval were collected via a cyclone; a representative sample was taken utilising a pipe, composited: over 6 metres, bagged and submitted to Genalysis to be analysed for gold using fire assay techniques. Any 6 metre composite sample which returned an assay value greater than O.1ppm Au was resampled by collecting the three corresponding 2m samples and submitted to Genalysis to be analysed for gold using fire assay techniques. No details of QAQC are given in the WAMEX report but industry standard is assumed. • A number of holes within the drilling programme were designed to both test the northern and southern extension of the prospect. The holes were designed to step out from the known and FRS drilling. • Significant intersections from the FRS drilling programme have been validated by the FRS Exploration Manager. • All logging was completed on site, whilst drilling using a Toughbook on an excel based logging template. Once complete, this template was sent to the Company database administrator and entered into the Company (access) database. • Significant intersections from historic Ada Ann drilling had already been verified internally by the Company from WAMEX reports and ASX releases, but the Company believed it necessary to confirm the results with drilling. • Historic logging data was collected via digital logging hardware and software using in-house logging methodology and codes. • Historic logg

İ	r

Criteria	JORC Code Explanation	Commentary
		grids.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All of the recent FRS drilling have had their collars GPS'd using a handheld GPS. All collar details are available in the supplementary data tables below. All holes were downhole surveyed by Topdrill using an industry standard gyro tool. Many of the historic holes at Ada Ann have had their collar locations originally approximated from historic WAMEX reports and associated maps. These hole locations have been verified in the field, where possible gps'd and the collar locations have then been updated, if required. Many collars were missing due to the historic pits removing them. The location of these has been approximated based on known locations, holes, other reference points. Down hole, historic surveys at Ada Ann are unknown. All images relating to drill holes at Ada Ann have the original planned or reported dip and azimuth.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The FSR drill holes have been strategically placed to test mineralisation extensions and to test the potential extent of the mineralisation at depth. The holes were also designed based on environmental and POW limitations. Composite samples have been taken throughout the most recent drill programme. The historic samples at Ada Ann were originally composited over various down hole lengths from 2-5m; any mineralized zones were then 1m sampled and assayed. At this stage, the data is not being used to create a mineral resource, further drilling will be required.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The FRS drilling programme was drilled to the west at -60 in order to test the mineralisation at a perpendicular angle. The orientation of drilling and sampling is not anticipated to have any significant biasing effects. The majority of historic drill holes reported in this announcement at Ada Ann are generally angled to the west and are interpreted (according to WAMEX reports and previous ASX announcements) to have intersected the mineralised structures approximately perpendicular to their dip. The relationship of the historic holes between the drilling orientation and the orientation of key mineralised structures is not considered to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	 All 4m composite sample calico bags were collected in green bags which were sealed and taken by FRS geologists to ALS Kalgoorlie, for shipment to ALS Perth. All 1m sample calico bags were subsequently collected in green bags which were sealed and taken by FRS geologists to ALS Kalgoorlie, for shipment to

	/	/
	\leftarrow	
_		

Criteria	JORC Code Explanation	Commentary
Audits or reviews	The sampling methods being used are industry standard practice.	 ALS Perth. It is presumed that there was adequate sample security measures undertaken for the historic drilling reported at Ada Ann and Bonnie Vale North. All samples taken by FRS were handled only by FRS geologists or contractors to FRS before they were taken to ALS. All sampling methods completed by FRS are industry standard practice. No audit or review has been completed on the work reported in this announcement. The historic data that was located within WAMEX has been compiled and loaded into the Forrestania Resources' database with validations where possible, but no audits were undertaken on the historic work with the exception of verifying the location of the historic drill holes (where possible).

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Mineral tenementand land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The data in this announcement relates to FRS drilling and historic drilling completed on exploration licence: E15/1632. E15/1632 and E15/1534 are part of an option agreement between Outback Minerals Pty Ltd and Forrestania Resources Limited. The tenements are held securely and no impediments to obtaining a licence to operate have been identified.
Exploration by other parties	Acknowledgment and appraisal of exploration by other parties.	 The Ada Ann prospect has had the following WAMEX reported and known work completed: Loaming operations in the late .1970's led to the sinking of a shallow vertical shaft on GML 15/6729 from which a short crosscut east intersects an auriferous quartz vein dipping ~ 60° east (Fey, 1989). The recorded gold production of-60 tonne at 1.25g/t Au was reported to have come from trenches and pits adjacent to the shaft. Emu Hill held Prospecting Licences P15/96 and P15/97 as part of a Prospectus. These tenements enclosed the present tenement Emu Hill conducted limited surface and underground rock chip and quartz vein sampling and then relinquished the tenements. Coolgardie Mining Associates re-pegged P15/96 and P15/97 as P15/1440 and P 15/1439 respectively as part of their Prospectus. Coolgardie Mining Associates

	/
	_
	/
Z	
/	

Criteria	JORC Code Explanation	Commentary
		also conducted surface and underground chip sampling. They also established a baseline some 400 metres long through the area of workings, which was used for drilling by subsequent operators. They then relinquished the tenements. • During April 1988 BHP-UTAH Minerals International (BHP) under an option to purchase the tenements from a Mr D Skett, drilled 19 RAB holes (BRO1-19) for 573 metres in the vicinity of the workings using the baseline established by Coolgardie Mining Associates. The drilling was performed with a Warman drill rig operated by Westralian Diamond Drilling of Boulder WA. • The drilling was undertaken along fences approximately 40 metres apart, with an average of three holes , spaced ten metres apart, completed on each fence. All holes were planned at 60° dip to 295°. Drilling targetted the flat east dipping shear zone. Drill samples over a two metre interval were collected via a cyclone; a representative sample was taken utilising a pipe, composited over six metres, bagged and submitted to Genalysis to be analysed for gold by AAS. Any six metre composite sample returning an assay value greater than 0.1 ppm Au was resampled by collecting the three corresponding two metre samples and submitted to Genalysis for gold by fire assay. Gold mineralisation was intersected in the flat east dipping shear, with sporadic quartz veining within the shear appearing to concentrate the gold (Roche, 1988). The drilling demonstrated the possible spotty coarse gold nature of the mineralisation, with specks of free gold evident when logging and also the poor repeatability of some of the higher grade assays. • P Fey conducted follow up drilling to the BHP drilling in October and November 1988. In the period 23-25 October 1988 five RAB holes (BR20-24) for 210 metres were drilled with a Mole Pioneer rig from Westralian Diamond Drillers of Boulder. This rig proved unsatisfactory in the hard ground encountered at relatively shallow depths and a Warman RC rig was used for holes BRC25-29 totalling 263 metres, drilled b

7
$\overline{}$

Criteria	JORC Code Explanation	Commentary
		 In 1993 A Stockwell pegged cancelled GML's 15/6729 "Ada Ann", and 15/6718 as P15/3443. Stockwell mounted an RC drill programme to follow up intersections from the BHP and Fey drilling programmes. Holes AA01-51 were completed by Stockwell for 1892 metres over the central portion of the mineralisation, delineated by previous operators. A few holes were also completed further south near old pits and costeans. None of the holes were systematically sampled, Stockwell sampling only those portions of the holes he thought would assay. Samples are believed to have been assayed by Aqua Regia techniques at Kalgoorlie assay laboratories. Laboratory documentation for all the assays is not available. This drilling highlighted the presence of steeper quartz vein hosted mineralisation in the hanging wall of the flat east dipping shear as well as intersecting mineralisation in the flat shear itself. Following completion of the drilling Stockwell commenced a small mining operation on the steep east dipping quartz veins intersected by the drilling. A small pit was dug to a depth of six metres from which 150 tonnes averaging 7 g/t Au was treated at the Kintore mill of M Pavlinovich (pers. comm. A Stockwell). Gindalbie completed 7 RC holes for 451m in 1996: AA52-AA58. Amex Resources completed further drilling in 2000, 18 RC holes were completed but AMEX did not confirm the metres drilled and not all details were reported to the ASX. Outback Minerals PTY Ltd completed 3 holes at Bonnie Vale North (E15/1534) in 2022.
Geology	Deposit type, geological setting and style of mineralisation.	 The Bonnie Vale project area is located approximately 12km north of Coolgardie within the Eastern Goldfields Super Terrane of Western Australia's Yilgarn Craton. The project area is made up predominantly of the felsic volcanics of the Black Flag Group, ultramafics of the Hampton Hill Formation which forms part of the Kalgoorlie Group and the Powder Sill Gabbro. Ada Ann is thought to be composed of an ultramafic and shear zone hosted by a basalt. It sits within the Hampton Hill Formation, in close proximity to a geological contact with the Black Flag Group. Additionally, the Kunanalling Shear runs approximately north-west through E15/1534. The drilling results suggest a gently (east) dipping, shear hosted gold system with contact mineralisation on the footwall and hanging wall basalts and schists (respectively).
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	All material information is summarised in the Tables and Figures included in the body of the announcement and/or within the supplementary data. The

Criteria	JORC Code Explanation	Commentary
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception dept, hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	supplementary information is available at the end of this announcement, following the JORC table. Historical drilling WAMEX reports: A49504, A2523, A25113, A28449, A109745, A58256 and A54843 were used to confirm data for this report; data includes areas that were previously mapped during historic activities. ASX (Amex Resources) Gold drill intercepts at Ada Ann 8th April 2008. Additional information was found in the AMEX Resources quarterly report for June 2008 and the Aurelia Resources IPO prospectus 2012. The location of historic drilling is based on historical reports and their underlying data. Data for some drill holes, including assay information, hole depth and collar details are missing from some of the historic WAMEX reports. Composite assay grades for AXRC holes have been included, even when the collar locations are unknown as they have previously been released to the ASX: None of the AXRC holes have been used in the cross sections within this announcement. The historic Amex Resources announcement can be found here: https://www.asx.com.au/asxpdf/20080408/pdf/318gn138jg5j59.pdf Several holes at Ada Ann, with AA and BR as a prefix have had their coordinates and collar locations estimated based on historic maps within WAMEX reports and the historic collars located at the Ada Ann prospect that correspond and correlate with the collar position on the maps. These have been recorded on a GPS and entered into the FRS database.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All significant intersections that are reported in this announcement are based on a 0.3g/t Au cut-off grade, allowing for internal dilution by two "waste" or sub-grade samples. No metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Historic reports suggest mineralisation dips at -60 to the east and all holes completed by FRS, to date (with the exception of AARC0015) were drilled to the west at -60 in order to test the mineralisation at a perpendicular angle. Down hole lengths are reported in this announcement, true width is not reported in this announcement, but given the angle of mineralisation (historically reported)

	/	/
ì		
ı	Z	

Criteria	JORC Code Explanation	Commentary
		 and the angle of drilling, the down hole width and true width are potentially similar lengths. Further drilling is required to determine the true geometry of the mineralisation with respect to the drill hole angle.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate maps with scale are included within the body of the accompanying document. Geological sections have been created from the Company's geological logs of both recent and historic drilling. Other geological maps are courtesy of DMIRS, 1:500000 interpreted bedrock geology of WA.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Representative reporting has been made in the body of the announcement and all assay results are available within the supplementary data. All of the available assay intersections for the historic holes with prefix AA, BR, and AXRC holes have previously been reported in ASX announcements, made by FRS: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02793925-6A1202059 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02805177-6A1206868 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02667890-6A1150921 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02914458-6A1252000 https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02902433-6A1246689 Due to historic, selective sampling, not every metre has been assayed or sampled from the historic holes. Representative reporting of significant intersections is also included in the body of the announcement and in the supplementary data.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or	WAMEX reports: A49504, A2523, A25113, A28449, A109745, A58256 and A54843 were used to confirm data for this report. An additional WAMEX report by Outback Minerals was also used for the KSRC holes (the WAMEX report number is unknown as it has only recently been submitted), Also used as reference

	/	/
		<i>V</i>
г		

Criteria	JORC Code Explanation	Commentary
	contaminating substances.	material and for data: ASX (Amex Resources) Gold drill intercepts at Ada Ann 8 th April 2008.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The company is hopeful of completing further exploration drilling in the near future to confirm the extent of the mineralisation. Further exploration work is also planned across the tenement and the Bonnie Vale project area.

Supplementary data

Table 2: Collar locations for phase 2, FRS, completed RC drill holes at Ada Ann, MGA94_51.

Hole_ID	Max_Depth	NAT_East	NAT_North	NAT_RL	Azimuth	Dip
AARC0022	60	321852	6591268	377	-60	269
AARC0023	96	321942	6591274	376	-60	268
AARC0024	108	321963	6591303	377	-61	270
AARC0025	72	321973	6591369	376	-61	271
AARC0026	90	321928	6591581	376	-60	270
AARC0027	96	321947	6591533	376	-60	270
AARC0028	93	321960	6591496	376	-61	268
AARC0029	114	321973	6591369	376	-60	270
AARC0030	36	321828	6591326	376	-60	270
AARC0031	60	321810	6591345	376	-60	270
AARC0032	48	321857	6591328	376	-61	270
AARC0033	42	321826	6591527	377	-60	270
AARC0034	42	321841	6591579	376	-61	271
AARC0035	60	321879	6591579	376	-60	270

Table 3: Ada Ann, phase 2 FRS drilling results showing all composite sample results for Au. (The individual 1m samples have not been assayed yet). Table shows down hole width and not true width.

Hole_ID	From	То	Au_ppm
AARC0022	0	4	0.01
AARC0022	4	8	<0.01
AARC0022	8	12	0.12
AARC0022	12	16	0.16
AARC0022	16	20	0.02
AARC0022	20	24	0.01
AARC0022	24	28	0.07
AARC0022	28	32	0.02
AARC0022	32	36	0.44
AARC0022	36	40	0.52
AARC0022	40	44	0.02
AARC0022	44	48	0.01
AARC0022	48	52	0.01
AARC0022	52	56	0.01
AARC0022	56	60	0.04
AARC0023	0	4	0.01
AARC0023	4	8	0.01
AARC0023	8	12	0.01
AARC0023	12	16	0.01
AARC0023	16	20	0.01
AARC0023	20	24	0.01
AARC0023	24	28	0.01
AARC0023	28	32	<0.01
AARC0023	32	36	0.01
AARC0023	36	40	0.01
AARC0023	40	44	0.01
AARC0023	44	48	0.01

AARCOO23 48 52 0.01 AARCOO23 56 0.02 AARCOO23 56 60 0.01 AARCOO23 60 64 0.04 AARCOO23 68 72 <0.01 AARCOO23 72 76 <0.01 AARCOO23 76 80 0.02 AARCOO23 76 80 0.02 AARCOO23 88 92 0.01 AARCOO23 88 92 0.01 AARCOO23 88 92 0.01 AARCOO24 0 4 0.01 AARCOO24 4 8 12 <0.01 AARCOO24 16 20 0.01 AARCOO24 16 20 0.01 AARCOO24 20 24 0.01 AARCOO24 24 28 0.01 AARCOO24 26 32 0.03 AARCOO24 36 40 0.01 AARCOO24 40 44 0.01 AARCOO24 46 40 0.01 AARCOO24 46 68 0.01 AARCOO24 66 60 0.01 AARCOO24 66 64 0.01 AARCOO24 66 68 72 0.81 AARCOO24 68 72 0.81	Hole ID	From	То	Au_ppm
AARC0023 52 56 0.02 AARC0023 56 60 0.01 AARC0023 60 64 0.04 AARC0023 64 68 0.05 AARC0023 68 72 <0.01	_			
AARCO023 56 60 0.01 AARCO023 60 64 0.04 AARCO023 64 68 0.05 AARCO023 68 72 <0.01				
AARCO023 60 64 0.04 AARCO023 64 68 0.05 AARCO023 68 72 <0.01 AARCO023 72 76 <0.01 AARCO023 76 80 0.02 AARCO023 80 84 <0.01 AARCO023 88 92 0.01 AARCO023 88 92 0.01 AARCO023 88 92 0.01 AARCO024 0 4 0.01 AARCO024 8 12 <0.01 AARCO024 12 16 <0.01 AARCO024 16 20 0.01 AARCO024 16 20 0.01 AARCO024 20 24 0.01 AARCO024 20 24 0.01 AARCO024 28 32 0.03 AARCO024 28 32 0.03 AARCO024 36 40 0.01 AARCO024 36 40 0.01 AARCO024 48 52 0.01 AARCO024 48 52 0.01 AARCO024 49 44 0.01 AARCO024 40 44 0.01 AARCO024 40 44 0.01 AARCO024 52 56 2.63 AARCO024 56 60 0.01 AARCO024 60 64 0.01 AARCO024 66 68 72 0.81				
AARC0023 64 68 0.05 AARC0023 68 72 <0.01				
AARCO023 68 72 <0.01				
AARCO023 76 80 0.02 AARC0023 80 84 <0.01				
AARC0023 76 80 0.02 AARC0023 80 84 <0.01				
AARC0023 80 84 <0.01				
AARC0023 84 88 <0.01				
AARC0023 88 92 0.01 AARC0023 92 96 <0.01				
AARC0023 92 96 <0.01		_		
AARC0024 0 4 0.01 AARC0024 4 8 <0.01				
AARC0024 4 8 <0.01				
AARC0024 8 12 <0.01		0		
AARC0024 12 16 <0.01	AARC0024	4		<0.01
AARC0024 16 20 0.01 AARC0024 20 24 0.01 AARC0024 24 28 0.01 AARC0024 28 32 0.03 AARC0024 32 36 0.02 AARC0024 36 40 0.01 AARC0024 40 44 0.01 AARC0024 44 48 0.01 AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024		12	<0.01
AARC0024 20 24 0.01 AARC0024 24 28 0.01 AARC0024 28 32 0.03 AARC0024 32 36 0.02 AARC0024 36 40 0.01 AARC0024 40 44 0.01 AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	12	16	<0.01
AARC0024 24 28 0.01 AARC0024 28 32 0.03 AARC0024 32 36 0.02 AARC0024 36 40 0.01 AARC0024 40 44 0.01 AARC0024 44 48 0.01 AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	16	20	0.01
AARC0024 28 32 0.03 AARC0024 32 36 0.02 AARC0024 36 40 0.01 AARC0024 40 44 0.01 AARC0024 44 48 0.01 AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	20	24	0.01
AARC0024 32 36 0.02 AARC0024 36 40 0.01 AARC0024 40 44 0.01 AARC0024 44 48 0.01 AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	24	28	0.01
AARC0024 36 40 0.01 AARC0024 40 44 0.01 AARC0024 44 48 0.01 AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	28	32	0.03
AARC0024 40 44 0.01 AARC0024 44 48 0.01 AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	32	36	0.02
AARC0024 44 48 0.01 AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	36	40	0.01
AARC0024 48 52 0.01 AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	40	44	0.01
AARC0024 52 56 2.63 AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	44	48	0.01
AARC0024 56 60 0.01 AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	48	52	0.01
AARC0024 60 64 0.01 AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	52	56	2.63
AARC0024 64 68 0.01 AARC0024 68 72 0.81	AARC0024	56	60	0.01
AARC0024 68 72 0.81	AARC0024	60	64	0.01
	AARC0024	64	68	0.01
AARC0024 72 76 0.03	AARC0024	68	72	0.81
	AARC0024	72	76	0.03

Hole ID	From	То	Au_ppm
AARC0024	76	80	0.12
AARC0024	80	84	0.19
AARC0024	84	88	0.11
AARC0024	88	92	0.04
AARC0024	92	96	0.01
AARC0024	96	100	0.01
AARC0024	100	104	0.01
AARC0024	104	108	<0.01
AARC0025	0	4	0.01
AARC0025	4	8	<0.01
AARC0025	8	12	<0.01
AARC0025	12	16	0.01
AARC0025	16	20	0.01
AARC0025	20	24	0.01
AARC0025	24	28	0.01
AARC0025	28	32	0.01
AARC0025	32	36	0.02
AARC0025	36	40	0.01
AARC0025	40	44	<0.01
AARC0025	44	48	<0.01
AARC0025	48	52	0.02
AARC0025	52	56	0.01
AARC0025	56	60	0.01
AARC0025	60	64	0.01
AARC0025	64	68	0.01
AARC0025	68	72	0.03
AARC0026	0	4	0.01
AARC0026	4	8	0.01
AARC0026	8	12	0.01
AARC0026	12	16	0.01
AARC0026	16	20	0.11

Hole_ID	From	То	Au_ppm
AARC0026	20	24	0.05
AARC0026	24	28	0.01
AARC0026	28	32	0.02
AARC0026	32	36	<0.01
AARC0026	36	40	<0.01
AARC0026	40	44	<0.01
AARC0026	44	48	<0.01
AARC0026	48	52	<0.01
AARC0026	52	56	0.01
AARC0026	56	60	<0.01
AARC0026	60	64	0.01
AARC0026	64	68	0.01
AARC0026	68	72	0.01
AARC0026	72	76	0.01
AARC0026	76	80	0.01
AARC0026	80	84	0.01
AARC0026	84	88	<0.01
AARC0026	88	90	<0.01
AARC0027	0	4	<0.01
AARC0027	4	8	<0.01
AARC0027	8	12	<0.01
AARC0027	12	16	<0.01
AARC0027	16	20	<0.01
AARC0027	20	24	0.01
AARC0027	24	28	0.01
AARC0027	28	32	<0.01
AARC0027	32	36	<0.01
AARC0027	36	40	<0.01
AARC0027	40	44	0.01
AARC0027	44	48	0.01
AARC0027	48	52	0.01

Hole_ID	From	То	Au_ppm
AARC0027	52	56	0.01
AARC0027	56	60	0.01
AARC0027	60	64	<0.01
AARC0027	64	68	0.01
AARC0027	68	72	0.01
AARC0027	72	76	0.02
AARC0027	76	80	0.19
AARC0027	80	84	0.03
AARC0027	84	88	<0.01
AARC0027	88	92	0.01
AARC0027	92	96	0.01
AARC0028	0	4	0.01
AARC0028	4	8	0.02
AARC0028	8	12	<0.01
AARC0028	12	16	0.01
AARC0028	16	20	0.01
AARC0028	20	24	0.01
AARC0028	24	28	0.01
AARC0028	28	32	0.01
AARC0028	32	36	0.01
AARC0028	36	40	0.02
AARC0028	40	44	0.02
AARC0028	44	48	0.01
AARC0028	48	52	0.01
AARC0028	52	56	0.01
AARC0028	56	60	0.02
AARC0028	60	64	0.02
AARC0028	64	68	0.03
AARC0028	68	72	0.02
AARC0028	72	76	1.24
AARC0028	76	80	0.05

Hole_ID	From	То	Au_ppm
AARC0028	80	84	0.03
AARC0028	84	88	0.01
AARC0028	88	93	0.03
AARC0029	0	4	0.02
AARC0029	4	8	0.01
AARC0029	8	12	0.01
AARC0029	12	16	0.01
AARC0029	16	20	0.01
AARC0029	20	24	0.02
AARC0029	24	28	0.06
AARC0029	28	32	0.02
AARC0029	32	36	0.02
AARC0029	36	40	0.02
AARC0029	40	44	<0.01
AARC0029	44	48	0.02
AARC0029	48	52	<0.01
AARC0029	52	56	0.01
AARC0029	56	60	0.02
AARC0029	60	64	0.02
AARC0029	64	68	0.01
AARC0029	68	72	0.04
AARC0029	72	76	16.3
AARC0029	76	80	0.19
AARC0029	80	84	0.02
AARC0029	84	88	0.01
AARC0029	88	92	0.04
AARC0029	92	96	0.03
AARC0029	96	100	0.02
AARC0029	100	104	0.04
AARC0029	104	108	0.02
AARC0029	108	112	0.01

Hole_ID	From	То	Au_ppm
AARC0029	112	114	0.01
AARC0030	0	4	0.03
AARC0030	4	8	0.02
AARC0030	8	12	0.12
AARC0030	12	16	0.02
AARC0030	16	20	0.01
AARC0030	20	24	0.01
AARC0030	24	28	0.01
AARC0030	28	32	0.02
AARC0030	32	36	0.02
AARC0031	0	4	0.02
AARC0031	4	8	0.01
AARC0031	8	12	0.02
AARC0031	12	16	0.02
AARC0031	16	20	0.02
AARC0031	20	24	0.02
AARC0031	24	28	0.03
AARC0031	28	32	0.01
AARC0031	32	36	0.01
AARC0031	36	40	0.01
AARC0031	40	44	0.02
AARC0031	44	48	0.02
AARC0031	48	52	0.02
AARC0031	52	56	0.02
AARC0031	56	60	0.02
AARC0032	0	4	0.01
AARC0032	4	8	0.01
AARC0032	8	12	0.01
AARC0032	12	16	<0.01
AARC0032	16	20	0.01
AARC0032	20	24	0.01

Hole_ID	From	То	Au_ppm
AARC0032	24	28	0.03
AARC0032	28	32	0.06
AARC0032	32	36	0.05
AARC0032	36	40	0.02
AARC0032	40	44	0.01
AARC0032	44	48	0.01
AARC0033	0	4	0.05
AARC0033	4	8	0.52
AARC0033	8	12	0.02
AARC0033	12	16	0.02
AARC0033	16	20	0.02
AARC0033	20	24	0.02
AARC0033	24	28	0.02
AARC0033	28	32	0.01
AARC0033	32	36	<0.01
AARC0033	36	40	<0.01
AARC0033	40	42	<0.01
AARC0034	0	4	0.02
AARC0034	4	8	<0.01
AARC0034	8	12	0.01
AARC0034	12	16	0.09
AARC0034	16	20	0.07
AARC0034	20	24	0.08
AARC0034	24	28	0.02
AARC0034	28	32	0.01
AARC0034	32	36	0.01
AARC0034	36	40	0.01
AARC0034	40	42	<0.01
AARC0035	0	4	0.01
AARC0035	4	8	0.01
AARC0035	8	12	<0.01

Hole_ID	From	То	Au_ppm
AARC0035	12	16	0.01
AARC0035	16	20	0.01
AARC0035	20	24	<0.01
AARC0035	24	28	<0.01
AARC0035	28	32	0.07
AARC0035	32	36	0.02
AARC0035	36	40	0.04
AARC0035	40	44	0.06
AARC0035	44	48	0.04
AARC0035	48	52	0.28
AARC0035	52	56	0.02
AARC0035	56	60	0.01

Table 4: Collar locations for previously reported, (phase 1) FRS, RC drill holes at Ada Ann, MGA94_51.

Hole_ID	Max_Depth	NAT_East	NAT_North	NAT_RL	Azimuth	Dip
AARC0001	84	321900	6591322	376	-61	270
AARC0002	96	321938	6591326	375	-61	271
AARC0003	60	321851	6591392	376	-61	268
AARC0004	84	321897	6591387	375	-61	268
AARC0005	96	321949	6591390	375	-60	270
AARC0006	84	321891	6591445	376	-60	273
AARC0007	96	321935	6591433	376	-60	265
AARC0008	84	321901	6591466	377	-61	273
AARC0009	90	321922	6591462	376	-60	272
AARC0010	72	321916	6591486	377	-60	271
AARC0011	54	321860	6591538	378	-61	270
AARC0012	66	321887	6591525	378	-60	270
AARC0013	72	321912	6591509	377	-60	271
AARC0014	78	321929	6591519	377	-60	269
AARC0015	42	321810	6591455	377	-90	0

Hole_ID	Max_Depth	NAT_East	NAT_North	NAT_RL	Azimuth	Dip
AARC0016	36	321825	6591495	378	-61	269
AARC0017	48	321854	6591484	377	-60	269
AARC0018	54	321872	6591482	377	-60	270
AARC0019	60	321889	6591487	377	-60	268
AARC0020	72	321935	6591496	376	-60	269
AARC0021	60	321874	6591458	377	-60	272

Table 5: Ada Ann, phase 1 FRS drilling results showing all sample results for Au. Table shows down hole width and not true width.

Hole_ID	From	То	Au_ppm
AARC0001	0	4	<0.01
AARC0001	4	8	<0.01
AARC0001	8	12	<0.01
AARC0001	12	16	<0.01
AARC0001	16	20	<0.01
AARC0001	20	24	<0.01
AARC0001	24	28	<0.01
AARC0001	28	32	<0.01
AARC0001	32	36	0.02
AARC0001	36	40	0.04
AARC0001	40	44	0.06
AARC0001	44	45	0.02
AARC0001	45	46	0.03
AARC0001	46	47	0.04
AARC0001	47	48	0.04
AARC0001	48	49	0.03
AARC0001	49	50	0.11
AARC0001	50	51	0.11
AARC0001	51	52	0.05

Hole_ID	From	То	Au_ppm
AARC0001	52	53	0.02
AARC0001	53	54	0.03
AARC0001	54	55	0.02
AARC0001	55	56	0.01
AARC0001	56	60	<0.01
AARC0001	60	64	<0.01
AARC0001	64	68	0.03
AARC0001	68	72	<0.01
AARC0001	72	76	0.01
AARC0001	76	80	<0.01
AARC0001	80	84	<0.01
AARC0002	0	4	<0.01
AARC0002	4	8	<0.01
AARC0002	8	12	<0.01
AARC0002	12	16	<0.01
AARC0002	16	20	<0.01
AARC0002	20	24	0.03
AARC0002	24	28	<0.01
AARC0002	28	32	<0.01
AARC0002	32	36	0.01
AARC0002	36	40	0.04
AARC0002	40	44	0.01
AARC0002	44	48	<0.01
AARC0002	48	52	0.01
AARC0002	52	56	0.01
AARC0002	56	57	0.02
AARC0002	57	58	0.06
AARC0002	58	59	0.01
AARC0002	59	60	0.02
AARC0002	60	61	0.01
AARC0002	61	62	0.02

Hole_ID	From	То	Au_ppm
AARC0002	62	63	21.00
AARC0002	63	64	0.48
AARC0002	64	65	0.24
AARC0002	65	66	0.08
AARC0002	66	67	0.09
AARC0002	67	68	0.06
AARC0002	68	72	0.02
AARC0002	72	76	0.01
AARC0002	76	80	0.04
AARC0002	80	84	0.01
AARC0002	84	88	0.01
AARC0002	88	92	0.01
AARC0002	92	96	<0.01
AARC0003	0	4	<0.01
AARC0003	4	8	0.01
AARC0003	8	12	<0.01
AARC0003	12	16	<0.01
AARC0003	16	20	0.01
AARC0003	20	24	0.02
AARC0003	24	28	0.05
AARC0003	28	32	0.02
AARC0003	32	33	0.02
AARC0003	33	34	0.03
AARC0003	34	35	0.04
AARC0003	35	36	0.02
AARC0003	36	37	0.08
AARC0003	37	38	1.49
AARC0003	38	39	0.03
AARC0003	39	40	0.01
AARC0003	40	41	0.01
AARC0003	41	42	0.01

Hole_ID	From	То	Au_ppm
AARC0003	42	43	0.08
AARC0003	43	44	0.01
AARC0003	44	48	<0.01
AARC0003	48	52	<0.01
AARC0003	52	56	0.02
AARC0003	56	60	0.01
AARC0004	0	4	0.01
AARC0004	4	8	<0.01
AARC0004	8	12	<0.01
AARC0004	12	16	<0.01
AARC0004	16	20	<0.01
AARC0004	20	24	<0.01
AARC0004	24	28	<0.01
AARC0004	28	32	<0.01
AARC0004	32	33	0.01
AARC0004	33	34	0.01
AARC0004	34	35	0.01
AARC0004	35	36	0.01
AARC0004	36	37	-0.01
AARC0004	37	38	0.01
AARC0004	38	39	0.54
AARC0004	39	40	0.01
AARC0004	40	41	0.02
AARC0004	41	42	0.02
AARC0004	42	43	0.05
AARC0004	43	44	0.07
AARC0004	44	45	2.11
AARC0004	45	46	2.95
AARC0004	46	47	0.40
AARC0004	47	48	0.12
AARC0004	48	49	0.15

Hole ID	From	То	Au_ppm
AARC0004	49	50	0.07
AARC0004	50	51	0.01
AARC0004	51	52	0.02
AARC0004	52	56	0.05
AARC0004	56	60	0.05
AARC0004	60	64	0.02
AARC0004	64	68	0.01
AARC0004	68	72	0.01
AARC0004	72	76	<0.01
AARC0004	76	80	0.01
AARC0004	80	84	<0.01
AARC0005	0	4	0.01
AARC0005	4	8	<0.01
AARC0005	8	12	<0.01
AARC0005	12	16	<0.01
AARC0005	16	20	<0.01
AARC0005	20	24	<0.01
AARC0005	24	28	0.01
AARC0005	28	32	<0.01
AARC0005	32	36	<0.01
AARC0005	36	40	0.01
AARC0005	40	44	<0.01
AARC0005	44	48	<0.01
AARC0005	48	52	0.01
AARC0005	52	56	0.01
AARC0005	56	60	0.02
AARC0005	60	64	0.01
AARC0005	64	65	0.04
AARC0005	65	66	0.02
AARC0005	66	67	0.12
AARC0005	67	68	0.04

Hole_ID	From	То	Au_ppm
AARC0005	68	69	0.74
AARC0005	69	70	3.94
AARC0005	70	71	0.10
AARC0005	71	72	0.02
AARC0005	72	73	0.09
AARC0005	73	74	0.01
AARC0005	74	75	0.02
AARC0005	75	76	0.02
AARC0005	76	80	0.06
AARC0005	80	84	0.01
AARC0005	84	88	0.01
AARC0005	88	92	0.05
AARC0005	92	96	0.01
AARC0006	0	4	<0.01
AARC0006	4	8	<0.01
AARC0006	8	12	<0.01
AARC0006	12	16	<0.01
AARC0006	16	20	0.02
AARC0006	20	24	0.02
AARC0006	24	25	0.08
AARC0006	25	26	0.06
AARC0006	26	27	0.08
AARC0006	27	28	0.05
AARC0006	28	29	0.19
AARC0006	29	30	0.67
AARC0006	30	31	0.06
AARC0006	31	32	0.04
AARC0006	32	33	0.09
AARC0006	33	34	0.12
AARC0006	34	35	0.58
AARC0006	35	36	0.58

Hole ID	From	То	Au_ppm
AARC0006	36	37	2.77
AARC0006	37	38	1.00
AARCOOO6	38	39	1.94
AARCOOOG	39	40	0.85
AARCOOO6	40	41	7.28
AARCOOO6	41	42	0.19
AARC0006	42	43	0.02
AARC0006	43	44	0.10
AARC0006	44	45	0.06
AARC0006	45	46	0.04
AARC0006	46	47	0.12
AARC0006	47	48	0.10
AARC0006	48	49	0.03
AARC0006	49	50	0.02
AARC0006	50	51	0.32
AARC0006	51	52	0.46
AARC0006	52	53	0.08
AARC0006	53	54	0.02
AARC0006	54	55	0.01
AARC0006	55	56	0.02
AARC0006	56	60	0.02
AARC0006	60	64	<0.01
AARC0006	64	68	<0.01
AARC0006	68	72	<0.01
AARC0006	72	76	<0.01
AARC0006	76	80	<0.01
AARC0006	80	84	<0.01
AARC0007	0	4	<0.01
AARC0007	4	8	<0.01
AARC0007	8	12	<0.01
AARC0007	12	16	<0.01
		•	•

Hole_ID	From	То	Au_ppm
AARC0007	16	20	0.01
AARC0007	20	24	<0.01
AARC0007	24	28	<0.01
AARC0007	28	32	0.01
AARC0007	32	36	0.02
AARC0007	36	40	0.02
AARC0007	40	44	0.01
AARC0007	44	45	0.02
AARC0007	45	46	0.02
AARC0007	46	47	0.02
AARC0007	47	48	0.01
AARC0007	48	49	0.03
AARC0007	49	50	0.02
AARC0007	50	51	0.57
AARC0007	51	52	0.03
AARC0007	52	53	0.03
AARC0007	53	54	0.11
AARC0007	54	55	1.32
AARC0007	55	56	0.02
AARC0007	56	57	0.02
AARC0007	57	58	0.04
AARC0007	58	59	0.03
AARC0007	59	60	0.08
AARC0007	60	61	0.04
AARC0007	61	62	0.03
AARC0007	62	63	0.16
AARC0007	63	64	0.03
AARC0007	64	68	0.01
AARC0007	68	72	0.05
AARC0007	72	76	0.01
AARC0007	76	80	0.06

Hole ID	From	То	Au_ppm
AARCOOO7	80	84	0.02
AARC0007	84	88	<0.01
AARC0007	88	92	<0.01
AARC0007	92	96	<0.01
AARC0008	0	4	<0.01
AARC0008	4	8	<0.01
AARC0008	8	12	<0.01
AARC0008	12	16	<0.01
AARC0008	16	20	<0.01
AARC0008	20	24	<0.01
AARC0008	24	28	0.02
AARC0008	28	32	0.03
AARC0008	32	33	0.02
AARC0008	33	34	0.03
AARC0008	34	35	0.02
AARC0008	35	36	0.03
AARC0008	36	37	0.04
AARC0008	37	38	0.10
AARC0008	38	39	0.20
AARC0008	39	40	0.07
AARC0008	40	41	0.02
AARC0008	41	42	0.09
AARC0008	42	43	0.07
AARC0008	43	44	1.19
AARC0008	44	45	0.70
AARC0008	45	46	0.38
AARC0008	46	47	0.05
AARC0008	47	48	0.18
AARC0008	48	49	1.08
AARC0008	49	50	0.39
AARC0008	50	51	0.03

Hala ID	Гиона	Ta	A., 1010100
Hole_ID	From	To	Au_ppm
AARC0008	51	52	0.68
AARC0008	52	53	0.04
AARC0008	53	54	0.01
AARC0008	54	55	0.01
AARC0008	55	56	0.02
AARC0008	56	60	0.02
AARC0008	60	64	0.01
AARC0008	64	68	0.01
AARC0008	68	72	<0.01
AARC0008	72	76	<0.01
AARC0008	76	80	<0.01
AARC0008	80	84	<0.01
AARC0009	0	4	0.01
AARC0009	4	8	<0.01
AARC0009	8	12	<0.01
AARC0009	12	16	<0.01
AARC0009	16	20	<0.01
AARC0009	20	24	0.01
AARC0009	24	28	0.02
AARC0009	28	32	0.01
AARC0009	32	36	0.01
AARC0009	36	40	0.02
AARC0009	40	44	0.01
AARC0009	44	48	0.05
AARC0009	48	49	0.04
AARC0009	49	50	0.04
AARC0009	50	51	0.05
AARC0009	51	52	0.05
AARC0009	52	53	0.40
AARC0009	53	54	4.94
AARC0009	54	55	0.08

Hole ID	From	То	Au_ppm
AARC0009	55	56	0.03
AARC0009	56	57	0.07
AARC0009	57	58	0.49
AARC0009	58	59	0.02
AARC0009	59	60	0.02
AARC0009	60	64	0.04
AARC0009	64		
		68 72	0.01
AARCOOO9	68		0.01
AARCOOO9	72	76	<0.01
AARC0009	76	80	<0.01
AARC0009	80	84	<0.01
AARC0009	84	88	<0.01
AARC0009	88	90	<0.01
AARC0010	0	4	0.01
AARC0010	4	8	<0.01
AARC0010	8	12	<0.01
AARC0010	12	16	<0.01
AARC0010	16	20	<0.01
AARC0010	20	24	<0.01
AARC0010	24	28	0.01
AARC0010	28	32	0.01
AARC0010	32	33	<0.01
AARC0010	33	34	0.02
AARC0010	34	35	0.01
AARC0010	35	36	0.01
AARC0010	36	37	0.02
AARC0010	37	38	0.01
AARC0010	38	39	0.01
AARC0010	39	40	0.02
AARC0010	40	41	0.10
AARC0010	41	42	0.10

Hole_ID	From	То	Au_ppm
AARC0010	42	43	0.02
AARC0010	43	44	0.08
AARC0010	44	45	2.41
AARC0010	45	46	0.08
AARC0010	46	47	0.02
AARC0010	47	48	0.50
AARC0010	48	49	0.03
AARC0010	49	50	0.02
AARC0010	50	51	0.03
AARC0010	51	52	0.09
AARC0010	52	53	0.06
AARC0010	53	54	0.49
AARC0010	54	55	0.99
AARC0010	55	56	2.21
AARC0010	56	57	0.06
AARC0010	57	58	0.04
AARC0010	58	59	0.02
AARC0010	59	60	0.02
AARC0010	60	64	0.01
AARC0010	64	68	0.01
AARC0010	68	72	0.02
AARC0011	0	4	0.01
AARC0011	4	8	<0.01
AARC0011	8	12	<0.01
AARC0011	12	16	<0.01
AARC0011	16	20	<0.01
AARC0011	20	21	0.05
AARC0011	21	22	0.13
AARC0011	22	23	0.02
AARC0011	23	24	0.01
AARC0011	24	25	0.09

Hole_ID	From	То	Au_ppm
AARC0011	25	26	0.06
AARC0011	26	27	0.35
AARC0011	27	28	0.08
AARC0011	28	29	0.06
AARC0011	29	30	0.15
AARC0011	30	31	0.02
AARC0011	31	32	0.01
AARC0011	32	36	0.01
AARC0011	36	40	0.02
AARC0011	40	44	0.02
AARC0011	44	48	<0.01
AARC0011	48	52	<0.01
AARC0011	52	54	<0.01
AARC0012	0	4	<0.01
AARC0012	4	8	<0.01
AARC0012	8	12	<0.01
AARC0012	12	16	<0.01
AARC0012	16	20	<0.01
AARC0012	20	24	0.01
AARC0012	24	28	0.02
AARC0012	28	29	0.05
AARC0012	29	30	0.04
AARC0012	30	31	0.05
AARC0012	31	32	0.07
AARC0012	32	33	0.06
AARC0012	33	34	0.07
AARC0012	34	35	0.26
AARC0012	35	36	0.33
AARC0012	36	37	0.18
AARC0012	37	38	0.07
AARC0012	38	39	0.06

Hole ID	From	То	Au_ppm
AARC0012	39	40	0.01
AARC0012	40	41	0.02
AARC0012	41	42	<0.01
AARC0012	42	43	<0.01
AARC0012	43	44	<0.01
AARC0012	44	48	<0.01
AARC0012	48	52	0.01
AARC0012	52	56	<0.01
AARC0012	56	60	<0.01
AARC0012	60	64	<0.01
AARC0012	64	66	<0.01
AARC0013	0	4	0.01
AARC0013	4	8	<0.01
AARC0013	8	12	<0.01
AARC0013	12	16	<0.01
AARC0013	16	20	<0.01
AARC0013	20	24	<0.01
AARC0013	24	28	0.03
AARC0013	28	32	0.01
AARC0013	32	36	0.01
AARC0013	36	40	0.01
AARC0013	40	41	0.01
AARC0013	41	42	<0.01
AARC0013	42	43	0.03
AARC0013	43	44	0.07
AARC0013	44	45	1.20
AARC0013	45	46	0.04
AARC0013	46	47	0.04
AARC0013	47	48	0.01
AARC0013	48	49	0.01
AARC0013	49	50	0.03

Hole ID	From	То	Au_ppm
AARC0013	50	51	0.30
AARC0013	51	52	0.01
AARC0013	52	53	<0.01
AARC0013	53	54	0.02
AARCOO13	54	55	<0.02
	_		
AARC0013	55	56	<0.01
AARCOO13	56	60	<0.01
AARCOO13	60	64	<0.01
AARC0013	64	68	<0.01
AARC0013	68	72	<0.01
AARC0014	0	4	0.01
AARC0014	4	8	<0.01
AARC0014	8	12	<0.01
AARC0014	12	16	<0.01
AARC0014	16	20	<0.01
AARC0014	20	24	<0.01
AARC0014	24	28	0.01
AARC0014	28	32	0.01
AARC0014	32	36	0.01
AARC0014	36	40	0.01
AARC0014	40	44	0.03
AARC0014	44	45	<0.01
AARC0014	45	46	<0.01
AARC0014	46	47	0.01
AARC0014	47	48	0.02
AARC0014	48	49	<0.01
AARC0014	49	50	0.01
AARC0014	50	51	0.09
AARC0014	51	52	0.04
AARC0014	52	53	0.03
AARC0014	53	54	0.04

Hole_ID	From	То	Au_ppm
AARC0014	54	55	0.02
AARC0014	55	56	0.71
AARC0014	56	57	0.01
AARC0014	57	58	<0.01
AARC0014	58	59	<0.01
AARC0014	59	60	0.01
AARC0014	60	61	0.22
AARC0014	61	62	3.98
AARC0014	62	63	0.55
AARC0014	63	64	0.09
AARC0014	64	65	0.08
AARC0014	65	66	0.02
AARC0014	66	67	0.02
AARC0014	67	68	<0.01
AARC0014	68	72	<0.01
AARC0014	72	76	<0.01
AARC0014	76	78	<0.01
AARC0015	0	4	0.02
AARC0015	4	8	<0.01
AARC0015	8	12	<0.01
AARC0015	12	16	<0.01
AARC0015	16	20	<0.01
AARC0015	20	24	0.03
AARC0015	24	28	0.01
AARC0015	28	29	0.01
AARC0015	29	30	0.03
AARC0015	30	31	0.01
AARC0015	31	32	0.01
AARC0015	32	33	1.18
AARC0015	33	34	0.01
AARC0015	34	35	<0.01

Hole_ID	From	То	Au_ppm
AARC0015	35	36	0.01
AARC0015	36	37	0.01
AARC0015	37	38	<0.01
AARC0015	38	39	<0.01
AARC0015	39	40	0.02
AARC0015	40	42	0.02
AARC0016	0	1	4.89
AARC0016	1	2	0.16
AARC0016	2	3	0.05
AARC0016	3	4	0.04
AARC0016	4	5	0.04
AARC0016	5	6	0.03
AARC0016	6	7	0.07
AARC0016	7	8	0.02
AARC0016	8	12	<0.01
AARC0016	12	16	<0.01
AARC0016	16	20	<0.01
AARC0016	20	24	0.02
AARC0016	24	28	0.01
AARC0016	28	32	<0.01
AARC0016	32	36	<0.01
AARC0017	0	4	0.03
AARC0017	4	8	0.06
AARC0017	8	9	0.01
AARC0017	9	10	<0.01
AARC0017	10	11	0.01
AARC0017	11	12	0.03
AARC0017	12	13	<0.01
AARC0017	13	14	0.20
AARC0017	14	15	1.64
AARC0017	15	16	2.50

Hole_ID	From	То	Au_ppm
AARC0017	16	17	0.42
AARC0017	17	18	0.31
AARC0017	18	19	0.08
AARC0017	19	20	0.11
AARC0017	20	21	0.25
AARC0017	21	22	0.20
AARC0017	22	23	2.80
AARC0017	23	24	0.07
AARC0017	24	25	0.01
AARC0017	25	26	0.02
AARC0017	26	27	0.05
AARC0017	27	28	0.01
AARC0017	28	32	0.02
AARC0017	32	36	0.01
AARC0017	36	40	0.01
AARC0017	40	44	0.01
AARC0017	44	48	0.01
AARC0018	0	4	0.02
AARC0018	4	8	<0.01
AARC0018	8	12	0.01
AARC0018	12	13	0.02
AARC0018	13	14	0.01
AARC0018	14	15	0.02
AARC0018	15	16	0.01
AARC0018	16	17	0.01
AARC0018	17	18	0.17
AARC0018	18	19	0.72
AARC0018	19	20	0.91
AARC0018	20	21	0.05
AARC0018	21	22	0.05
AARC0018	22	23	0.04

Hole ID	From	То	Au nom
			Au_ppm
AARCOO18	23	24	0.02
AARC0018	24	25	0.01
AARC0018	25	26	0.08
AARC0018	26	27	0.06
AARC0018	27	28	0.08
AARC0018	28	29	0.16
AARC0018	29	30	1.27
AARC0018	30	31	0.04
AARC0018	31	32	0.09
AARC0018	32	33	0.04
AARC0018	33	34	0.09
AARC0018	34	35	0.14
AARC0018	35	36	0.27
AARC0018	36	40	0.02
AARC0018	40	44	0.01
AARC0018	44	48	0.01
AARC0018	48	52	<0.01
AARC0018	52	54	0.01
AARC0019	0	4	0.01
AARC0019	4	8	<0.01
AARC0019	8	12	<0.01
AARC0019	12	16	<0.01
AARC0019	16	20	0.01
AARC0019	20	24	0.01
AARC0019	24	25	0.01
AARC0019	25	26	0.02
AARC0019	26	27	0.03
AARC0019	27	28	0.01
AARC0019	28	29	0.05
AARC0019	29	30	0.04
AARC0019	30	31	0.08

Hole ID	From	То	Au nnm
	From		Au_ppm
AARC0019	31	32	0.40
AARC0019	32	33	0.47
AARC0019	33	34	1.39
AARC0019	34	35	0.70
AARC0019	35	36	0.46
AARC0019	36	37	0.48
AARC0019	37	38	0.22
AARC0019	38	39	0.05
AARC0019	39	40	0.15
AARC0019	40	41	0.12
AARC0019	41	42	0.46
AARC0019	42	43	0.03
AARC0019	43	44	0.03
AARC0019	44	45	0.04
AARC0019	45	46	0.04
AARC0019	46	47	0.06
AARC0019	47	48	0.01
AARC0019	48	52	0.01
AARC0019	52	56	0.01
AARC0019	56	60	<0.01
AARC0020	0	4	0.01
AARC0020	4	8	0.01
AARC0020	8	12	<0.01
AARC0020	12	16	<0.01
AARC0020	16	20	<0.01
AARC0020	20	24	<0.01
AARC0020	24	28	<0.01
AARC0020	28	32	0.01
AARC0020	32	36	<0.01
AARC0020	36	40	<0.01
AARC0020	40	44	<0.01

Hole_ID	From	То	Au_ppm
AARC0020	44	48	0.01
AARC0020	48	52	0.03
AARC0020	52	56	0.02
AARC0020	56	57	0.01
AARC0020	57	58	0.01
AARC0020	58	59	<0.01
AARC0020	59	60	0.01
AARC0020	60	61	0.01
AARC0020	61	62	0.02
AARC0020	62	63	1.64
AARC0020	63	64	5.84
AARC0020	64	65	0.30
AARC0020	65	66	0.06
AARC0020	66	67	0.02
AARC0020	67	68	1.92
AARC0020	68	69	0.02
AARC0020	69	70	0.02
AARC0020	70	71	0.01
AARC0020	71	72	0.02
AARC0021	0	4	0.02
AARC0021	4	8	0.01
AARC0021	8	12	0.01
AARC0021	12	16	0.03
AARC0021	16	17	0.02
AARC0021	17	18	0.03
AARC0021	18	19	0.04
AARC0021	19	20	0.06
AARC0021	20	21	0.16
AARC0021	21	22	0.37
AARC0021	22	23	0.26
AARC0021	23	24	0.14

Hole_ID	From	То	Au_ppm
AARC0021	24	25	0.10
AARC0021	25	26	0.07
AARC0021	26	27	0.04
AARC0021	27	28	0.04
AARC0021	28	29	0.02
AARC0021	29	30	0.04
AARC0021	30	31	0.41
AARC0021	31	32	0.03
AARC0021	32	33	0.18
AARC0021	33	34	0.08
AARC0021	34	35	0.85
AARC0021	35	36	0.04
AARC0021	36	37	0.04
AARC0021	37	38	0.03
AARC0021	38	39	0.02
AARC0021	39	40	0.02
AARC0021	40	41	0.40
AARC0021	41	42	0.61
AARC0021	42	43	0.10
AARC0021	43	44	0.30
AARC0021	44	45	0.03
AARC0021	45	46	0.03
AARC0021	46	47	0.03
AARC0021	47	48	0.01
AARC0021	48	49	0.04
AARC0021	49	50	0.02
AARC0021	50	51	0.02
AARC0021	51	52	0.05
AARC0021	52	56	<0.01
AARC0021	56	60	<0.01

Table 6: Geology logs showing the quartz veining from phase 2 drilling at Ada Ann for AARC0022 and AARC0023, seen in Figure 7. Highlighted zones are indicated on the cross section.

Hole_ID	Depth_From	Depth_To	Vein1_Code	Vein1_pct	Comments
AARC0022	0	2			colluvium surface
AARC0022	2	8			clayish area
AARC0022	8	12			Opal? Chalcedony?
AARC0022	12	18			saprolite
AARC0022	18	19	qz	15	schist with qz
AARC0022	19	22	qz	90	schist with qz
AARC0022	22	24	qz	30	schist with qz
AARC0022	24	32			schist
AARC0022	32	35			basalt
AARC0022	35	37	qz	25	basalt with qz
AARC0022	37	39	qz	65	basalt with iron stained qz
AARC0022	39	40	qz	20	basalt with iron stained qz
AARC0022	40	48			strong foliated basalt
AARC0022	48	50	qz	15	basalt with qz and ep alt
AARC0022	50	54			fol basalt with fe alt
AARC0022	54	60			fol basalt with py??
AARC0023	0	3			colluvium surface
AARC0023	3	10			clayish area
AARC0023	10	17			clayish area
AARC0023	17	20			saprolite
AARC0023	20	22	qtz-carb	15	green mafic, weathered with qz carb?
AARC0023	22	23	qz	5	weather mafic with qz
AARC0023	23	24	qz	30	weather mafic with qz
AARC0023	24	25	qz	5	weather mafic with qz
AARC0023	25	28	qz	3	saprock qz
AARC0023	28	29			basalt but very fine return
AARC0023	29	30			basalt
AARC0023	30	42	qz	5	weathered basalt with qz

Hole_ID	Depth_From	Depth_To	Vein1_Code	Vein1_pct	Comments
AARC0023	42	44			basalt
AARC0023	44	55	qz	3	ultramafic schist, weathered with qz
AARC0023	55	57	qz	3	schist weathered qz
AARC0023	57	60	qz	10	schist bi alt qz
AARC0023	60	63	qz	20	schist bi alteration fe stained qz
AARC0023	63	64	qz	30	schist bi alteration fe stained qz
AARC0023	64	66	qz	5	Basalt/Schist qz
AARC0023	66	77	qz	2	basalt foliated
AARC0023	77	78	qz	15	basalt foliated with fe alteration and qz
AARC0023	78	79			foliated basalt
AARC0023	79	80			foliated basalt cl alteration
AARC0023	80	84	qz	5	foliated basalt with qz
AARC0023	84	87	qz	40	foliated basalt with blocky qz
AARC0023	87	90	qz	5	foliated basalt with qz
AARC0023	90	94			foliated basalt
AARC0023	94	96	qz	2	foliated basalt with qz

Table 7: All significant intercepts from Ada Ann (including historic drilling results) along with grams per metre. Intercepts are based on a cut-off grade of 0.3g/t Au allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. Drilling intercept widths are down-hole widths and not true widths.

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AARC0029	72	76	4	16.3	65.2
AA28	25	29	4	12.8	51.2
BR19	24	40	16	2.64	42.2
AA05	16	22	6	6.45	38.7
AA04	4	11	7	5.01	35.1
AA45	8	20	12	2.68	32.2
AA06	19	26	7	4.4	30.8
AA27	41	45	4	7.34	29.4
AXRC10	42	46	4	7.28	29.1

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AA20	25	31	6	4.5	27.0
AA24	14	18	4	6.7	26.8
AXRC09	40	44	4	5.9	23.6
BR22	24	34	10	2.28	22.8
AARC0002	62	64	2	10.74	21.5
AA25	17	24	7	2.99	20.9
AA46	4	18	14	1.44	20.2
AA10	40	47	7	2.74	19.2
AA06	32	37	5	3.63	18.2
AA49	14	16	2	8.08	16.2
AA25	35	38	3	5.37	16.1
AARC0006	34	41	7	2.14	15.0
BR04	14	28	14	1.06	14.8
AA17	28	34	6	2.3	13.8
AA54	41	46	5	2.65	13.3
BR05	0	6	6	2.19	13.1
AA01	15	23	8	1.56	12.5
AXRC10	29	33	4	3.12	12.5
AA57	48	53	5	2.47	12.4
AA12	66	69	3	4.03	12.1
AA34	8	20	12	0.99	11.9
BR28	31	37	6	1.93	11.6
AA22	32	36	4	2.63	10.5
AARC0024	52	56	4	2.63	10.5
AA18	41	45	4	2.47	9.9
AARC0020	62	68	6	1.63	9.8
AA02	23	29	6	1.62	9.7
AXRC05	27	29	2	4.83	9.7
AXRC07	21	22	1	9.42	9.4
AA43	28	30	2	4.58	9.2
BR15	24	26	2	4.15	8.3

Hole ID	Depth From	Depth_To	IntervalWidth	Grade	Gram/metre
AA24	30	33	3	2.7	8.1
AA20	17	20	3	2.58	7.7
AA03	29	39	10	0.73	7.3
AA05	30	31	1	6.83	6.8
AA02	40	42	2	3.34	6.7
BR23	29	37	8	0.77	6.2
AA38	15	20	5	1.22	6.1
AA19	43	48	5	1.15	5.8
AXRC16	27	31	4	1.42	5.7
AARC0004	44	47	3	1.82	5.5
AARC0009	52	54	2	2.67	5.3
BR02	4	14	10	0.52	5.2
AA04	23	25	2	2.56	5.1
BR28	42	44	2	2.5	5.0
AARC0028	72	76	4	1.24	5.0
AARC0016	0	1	1	4.89	4.9
AARC0017	14	18	4	1.22	4.9
AA12	42	43	1	4.8	4.8
AARC0008	43	52	9	0.52	4.7
AARC0005	68	70	2	2.34	4.7
AA16	35	37	2	2.32	4.6
AA32	37	39	2	2.3	4.6
AARC0014	61	63	2	2.27	4.5
AA09	46	47	1	4.51	4.5
BR02	18	22	4	1.07	4.3
AA43	17	19	2	2.12	4.2
BR24	22	28	6	0.68	4.1
AA44	21	23	2	2.04	4.1
AARC0019	31	37	6	0.65	3.9
AARC0022	32	40	8	0.48	3.8
AARC0010	53	56	3	1.23	3.7

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AA29	31	35	4	0.88	3.5
AA03	46	47	1	3.51	3.5
BR29	15	16	1	3.5	3.5
BR25	16	20	4	0.86	3.4
AA15	39	43	4	0.85	3.4
AA58	58	62	4	0.83	3.3
AARC0024	68	72	4	0.81	3.2
AA56	47	49	2	1.57	3.1
AA37	16	20	4	0.77	3.1
AARC0010	44	48	4	0.75	3.0
AA08	29	30	1	2.97	3.0
AARC0017	22	23	1	2.8	2.8
AA55	50	51	1	2.76	2.8
BR07	22	26	4	0.68	2.7
BR28	52	56	4	0.68	2.7
AA40	18	21	3	0.82	2.5
AA52	16	20	4	0.61	2.4
AAA130	34	38	4	0.57	2.3
AA49	7	11	4	0.56	2.2
AA33	40	44	4	0.54	2.2
AA47	4	8	4	0.52	2.1
AARC0033	4	8	4	0.52	2.1
AXRC16	34	35	1	2.05	2.1
AA20	11	14	3	0.68	2.0
AA10	52	54	2	1.02	2.0
BR05	18	20	2	0.98	2.0
AA04	35	36	1	1.93	1.9
AA23	15	16	1	1.91	1.9
AA12	54	55	1	1.88	1.9
AA53	33	37	4	0.46	1.8
BR29	24	26	2	0.88	1.8

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AA54	53	54	1	1.76	1.8
AA58	44	48	4	0.42	1.7
AARC0018	18	20	2	0.82	1.6
BR26	26	29	3	0.54	1.6
AAA149	22	26	4	0.4	1.6
AAA149	38	42	4	0.4	1.6
AARC0003	37	38	1	1.49	1.5
AARC0021	40	44	4	0.35	1.4
AA21	20	21	1	1.33	1.3
AARC0007	54	55	1	1.32	1.3
AA37	8	12	4	0.32	1.3
AARC0018	29	30	1	1.27	1.3
AA16	25	28	3	0.41	1.2
AA05	41	42	1	1.23	1.2
AARC0013	44	45	1	1.2	1.2
AA56	59	60	1	1.18	1.2
AARC0015	32	33	1	1.18	1.2
BR27	17	19	2	0.57	1.1
BR08	30	32	2	0.52	1.0
AA35	18	20	2	0.45	0.9
AARC0021	34	35	1	0.85	0.9
BR06	12	14	2	0.42	0.8
AARC0006	50	52	2	0.39	0.8
AARC0014	55	56	1	0.71	0.7
AARC0006	29	30	1	0.67	0.7
AA31	43	44	1	0.66	0.7
AXRC03	17	19	2	0.3	0.6
AA17	41	42	1	0.58	0.6
AA09	35	36	1	0.57	0.6
AARC0007	50	51	1	0.57	0.6
AARC0004	38	39	1	0.54	0.5

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AA18	34	35	1	0.49	0.5
AARC0009	57	58	1	0.49	0.5
AARC0019	41	42	1	0.46	0.5
AARC0021	30	31	1	0.41	0.4
AARC0021	21	22	1	0.37	0.4
AARC0011	26	27	1	0.35	0.4
AARC0012	35	36	1	0.33	0.3
AARC0013	50	51	1	0.3	0.3

Table 8: All historic collar locations the at Ada Ann prospect (previously released), MGA94_51.

Hole_ID	Hole Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Azimuth	Dip
AA01	RC	26	321857	6591434	376	270	-60
AA02	RC	47	321869	6591429	376	270	-60
AA03	RC	51	321881	6591427	376	270	-60
AA04	RC	41	321855	6591424	375	270	-60
AA05	RC	47	321868	6591419	376	270	-60
AA06	RC	52	321876	6591416	377	270	-60
AA07	RC	16	321850	6591402	376	270	-60
AA08	RC	47	321861	6591394	378	270	-60
AA09	RC	51	321871	6591402	376	270	-60
AA10	RC	63	321884	6591401	377	270	-60
AA11	RC	16	321902	6591400	376	270	-60
AA12	RC	86	321924	6591366	376	255	-60
AA13	RC	69	321913	6591346	376	255	-60
AA14	RC	57	321807	6591037	374	255	-60
AA15	RC	62	321885	6591421	374	270	-60
AA16	RC	45	321856	6591411	373	270	-60

Hole_ID	Hole Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Azimuth	Dip
AA17	RC	51	321867	6591409	376	270	-60
AA18	RC	58	321890	6591429	376	270	-60
AA19	RC	63	321896	6591410	376	270	-60
AA20	RC	33	321857	6591424	375	0	-90
AA21	RC	33	321861	6591423	376	0	-90
AA22	RC	49	321865	6591419	374	0	-90
AA24	RC	45	321858	6591411	376	0	-90
AA25	RC	45	321863	6591411	376	0	-90
AA26	RC	27	321867	6591411	376	0	-90
AA27	RC	51	321898	6591362	376	255	-60
AA28	RC	33	321869	6591411	376	0	-90
AA29	RC	40	321865	6591353	378	0	-90
AA31	RC	51	321866	6591390	377	0	-90
AA32	RC	51	321875	6591389	377	0	-90
AA33	RC	51	321885	6591387	375	0	-90
AA34	RC	20	321833	6591438	373	0	-90
AA35	RC	20	321840	6591441	377	0	-90
AA36	RC	20	321850	6591439	376	0	-90
AA37	RC	20	321855	6591441	376	0	-90
AA38	RC	20	321860	6591441	376	0	-90
AA39	RC	21	321835	6591409	376	270	-60
AA40	RC	21	321840	6591409	376	270	-60
AA41	RC	21	321846	6591407	376	270	-60
AA42	RC	21	321859	6591410	376	270	-60
AA43	RC	30	321832	6591403	376	0	-90
AA44	RC	33	321838	6591401	376	0	-90
AA45	RC	30	321821	6591447	376	0	-90
AA46	RC	36	321821	6591446	378	200	-60
AA47	RC	30	321823	6591439	377	270	-60

Hole_ID	Hole Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Azimuth	Dip
AA48	RC	39	321827	6591438	377	270	-60
AA49	RC	24	321840	6591438	375	210	-60
AA51	RC	30	321882	6591357	373	185	-60
AA52	RC	50	321852	6591520	377	270	-60
AA53	RC	51	321883	6591496	376	272	-60
AA54	RC	65	321889	6591432	376	0	-90
AA55	RC	65	321901	6591410	376	0	-90
AA56	RC	70	321894	6591398	375	0	-90
AA57	RC	70	321901	6591386	375	0	-90
AA58	RC	80	321924	6591362	375	0	-90
AAA111	RC	30	321831	6591498	373	300	-70
AAA112	RC	30	321819	6591496	377	300	-70
AAA113	RC	30	321833	6591519	376	300	-70
AAA130	RC	60	321899	6591418	376	0	-90
AAA133	RC	38	321844	6591476	373	0	-90
AAA147	RC	36	321849	6591475	377	0	-90
AAA149	RC	45	321864	6591469	373	0	-90
AXRC01	RC	48	321855	6591342	377	0	-90
AXRC02	RC	54	321864	6591350	376	0	-90
AXRC03	RC	48	321844	6591357	376	0	-90
AXRC04	RC	48	321852	6591358	373	0	-90
AXRC05	RC	48	321862	6591359	377	0	-90
AXRC06	RC	48	321872	6591359	376	0	-90
AXRC07	RC	48	321845	6591366	373	0	-90
AXRC08	RC	48	321853	6591368	377	0	-90
AXRC09	RC	48	321862	6591369	376	0	-90
AXRC10	RC	50	321862	6591406	376	360	-90
AXRC16	RC	42	321856	6591474	376	0	-90
BR01	RAB	20	321842	6591465	376	290	-60

Hole_ID	Hole Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Azimuth	Dip
BR02	RAB	25	321853	6591462	376	290	-60
BR03	RAB	30	321863	6591458	376	290	-60
BR04	RAB	36	321851	6591433	376	290	-60
BR05	RAB	20	321859	6591428	376	290	-60
BR06	RAB	22	321816	6591401	376	290	-60
BR07	RAB	32	321827	6591400	376	290	-60
BR08	RAB	36	321837	6591395	376	290	-60
BR09	RAB	29	321787	6591371	376	290	-60
BR10	RAB	17	321804	6591364	376	290	-60
BR11	RAB	24	321820	6591358	376	290	-60
BR12	RAB	35	321831	6591347	376	290	-60
BR13	RAB	34	321789	6591282	376	290	-60
BR14	RAB	35	321811	6591278	376	290	-60
BR15	RAB	26	321849	6591521	376	290	-60
BR16	RAB	34	321874	6591552	376	290	-60
BR17	RAB	38	321883	6591547	376	290	-60
BR18	RAB	40	321897	6591537	376	290	-60
BR19	RAB	40	321868	6591425	376	290	-60
BR20	RAB	48	321871	6591537	376	295	-60
BR21	RAB	46	321866	6591520	376	292	-60
BR22	RAB	40	321866	6591492	376	305	-60
BR23	RAB	46	321858	6591448	376	292	-60
BR24	RAB	30	321885	6591434	376	290	-60
BR25	RC	48	321846	6591499	376	290	-60
BR26	RC	50	321867	6591515	376	290	-60
BR27	RC	45	321849	6591455	376	290	-60
BR28	RC	72	321862	6591435	376	290	-60
BR29	RC	48	321834	6591418	376	298	-60

Table 9: Full Au drilling results from historic hole AA14. Drilling intercept widths are down hole width and not true width.

Hole_ID	Depth_From	Depth_To	Au_ppm
AA14	0	4	0.29
AA14	4	8	0.14
AA14	8	12	0.04
AA14	12	16	0.03
AA14	16	20	0.02
AA14	20	24	0.03
AA14	24	28	0.03
AA14	28	32	0.02
AA14	32	36	0.11
AA14	36	40	0.03
AA14	40	44	0.02
AA14	44	48	0.07
AA14	48	52	0.02
AA14	52	57	0.04