ASX ANNOUNCEMENT

27 March 2025

VIKING'S BIFROST AUGER RESULTS DEFINE LARGE >400M GOLD TARGET

- First assays returned for infill shallow auger drilling completed around VKRC0083 (27m at 0.4g/t Au) and VKRC0068 (17m at 1.1g/t Au) has defined a large >400m long >40ppb gold anomaly
- Overlapping arsenic anomaly >400m at 30ppm with >200m at 100ppm provides robust geochemical support
- Auger results suggest Phase 1 drilling may have intersected the margins of a potentially significant gold system
- Further infill auger assays covering the southern part of Bifrost around hole VKRC0103
 which returned 23m at 0.4g/t including 5m at 1.0g/t and 3m at 1.5g/t due in the coming
 weeks
- Phase 2 drilling progressing rapidly with 35 holes for 4,150m drilled as of 26th March at the Central Duplex Target ("CDT") with drilling now following up auger results at Bifrost
- Viking's exploration programme is testing 25km strike length of the Zuleika Shear which hosts Ora Banda Mining's (ASX:OBM) >1.3Moz Riverina/Mulline Camp just 4km to the south-west of the CDT and also the 1.2Moz Davyhurst Camp 40km to the south.

Viking Mines Limited (ASX: VKA) ("Viking" or **"the Company")** is pleased to announce assay results and interpretation for the first 220 samples collected as part of a larger 575 sample infill auger programme completed across prospective targets defined at Bifrost from Phase1 drilling.

Assays have confirmed a large >400m long >40ppb gold anomaly (Figure 1) which overlaps with a >400m long >30ppm Arsenic anomaly (Figure 2). Arsenic has been directly associated with the gold intercepts in bedrock drilling via multielement analysis and is a positive indicator for potential high-grade mineralisation at Bifrost.

The infill auger programme was completed on a 20m x 100m grid and specifically designed to define the target extents and guide the follow up infill drilling strategy. This objective has been successfully achieved, and the results have been used to plan seven follow up drillholes to test the target over 250m strike length across the strongest parts of the anomaly (Figure 1).

Viking Mines Managing Director & CEO Julian Woodcock said:

"I am very pleased with the first results of the infill auger drilling programme and the definition of a large gold and arsenic anomaly at Bifrost. The programme has successfully delivered on its primary objective of defining the target extents and orientation.

The Company can now confidently and effectively place the follow up drillholes to best test the target and expand from the initial discovery drill results received in VKRC0068 of 17m at 1.1g/t.

We have planned an initial follow up programme of 7 drillholes which will be completed as part of the Phase 2 drilling which is currently underway.

The Phase 2 drilling is also testing the CDT as part of our systematic drilling over 25km strike of the Zuleika Shear, located just 4km east of the Riverina Gold mine owned and operated by Ora Banda Mining."

Figure 1; Bifrost target, northern infill auger programme results showing ppb gold contours. Note high >40ppb core which correlates with results from VKRC0068 and VKRC0083. Blue triangles are planned step out drillholes due to be completed by early April 2025. Background image is RTP magnetics.

Figure 2; Bifrost target, northern infill auger programme results showing ppm arsenic contours. Note high >100ppm core with southern edge correlating with results from VKRC0068 and VKRC0083. Blue triangles are planned step out drillholes due to be completed by early April 2025. Background image is RTP magnetics.

FIRST AUGER DRILLING RESULTS - BIFROST TARGET

Assay results have been received and interpreted for the first 220 samples of a larger 575 sample infill auger drilling programme (Figure 1 & Figure 2).

The results have confirmed a large gold anomaly which corelates with the mineralised intercepts returned in drillholes VKRC0068¹ and VKRC0083². These holes intersected 17m at 1.1g/t and 27m at 0.4g/t respectively, with individual samples returning grades up to 3.2g/t Au.

A strong relationship has been established between gold mineralisation and arsenic. This has been determined from multi-element analysis of the samples collected from hole VKRC0083. The combination of the high gold and coincident arsenic anomaly provides further support to the target and has been used to determine the most effective locations for the follow up drilling.

Seven drillholes have been planned which will be completed by early April as part of the phase 2 drill programme (Figure 1). The drillholes have been planned to test underneath the strongest responses of coincident gold/arsenic anomaly. Drilling is to be completed on 80m spaced sections, testing a total strike length of 240m.

PHASE 1 DRILL PROGRAMME FINAL ASSAYS

All gold assays have been received for the remaining two drill traverses (northern and southern lines - Figure 3, Figure 4 & Figure 5) at Bifrost. Several broad ppb level zones have been identified in the drilling as well as individual ppm (g/t) results up to 1.7g/t Au (VKRC0121 from 91m).

Although the tenor of results is lower than that seen in the central two traverses previously reported^{1,2,3}, the results confirm the presence of regional gold pathways. Given the wide spaced nature of the drilling, the results have identified further target horizons requiring follow up along strike.

The Company has completed a review of all the RC chips from the Phase 1 programme and has selected ~200 samples for additional geochemical analysis with the objective of identifying which of the elevated gold zones contain other pathfinder mineralisation. These results will be used to inform future sampling and drill planning to assist vectoring towards prospective structures.

The primary objective of the Phase 1 drill programme was to identify gold bearing pathways along any of the multiple structural positions interpreted from the airborne magnetics. **This objective** has been successfully achieved with highly positive results and the identification of a new mineralised gold bearing system². This drilling has provided priority targets for follow up exploration.

The Company cannot emphasise enough the scale of the Bifrost area being tested (>3.6km) and the significance of the success of encountering gold at both ppm and ppb levels. With an aggressive, systematic and effective follow up exploration programme underway we are focussed on the discovery of new gold deposits.

³ ASX Announcement 25 February 2025 - Viking Hits Gold in 2nd Regional Drill Traverse, 1.7km South

¹ ASX Announcement 18 February 2025 - Viking Confirms Gold Discovery at Northern Duplex Greenfields Target

 $^{^2}$ ASX Announcement 3 February 2025 - Viking Discovers Gold at Northern Duplex Greenfields Target

Figure 3; Map showing the 4 drill traverses at the Bifrost Target and significant results received to date annotated. Note the substantial distances between the drill traverses. The mineralised zones intercepted in holes VKRC0103, VKRC0083 and VKRC0068 coincide with the first magnetic low horizon west of the Zuleika Shear.

Figure 4; Schematic Geological Section of the Southern Drill Traverse at the Bifrost Target. Note annotated zones of anomalism and peak assay of 1.7g/t Au in VKRC0121.

Figure 5; Schematic Geological Section of the Northern Drill Traverse at the Bifrost Target. Note annotated zones of anomalism and peak assay of 1.2g/t Au in VKRC0130.

PHASE 2 DRILL PROGRAMME

Viking is well advanced with the Phase 2 drill programme, with 35 holes for 4,150m completed as of 26^{th} March. Approximately 15 holes remain to be drilled for a further ~1,800m.

The Phase 2 programme initially commenced on the CDT (Figure 6), which is defined by complex structures observed in the magnetic geophysics and combined with a large >6km >10ppb near surface gold in auger anomaly⁴.

⁴ ASX Announcement 12 March 2025 - Viking Commences ~6,000M RC Drilling Programme at First Hit

A substantial arsenic anomaly also flanks the gold anomaly. Based on knowledge gained from the Phase 1 drill programme at Bifrost and the identified association of arsenic with the mineralisation, the Company interprets this as an additional indicator to the potential of this target.

Initial drilling at the CDT is now completed across 4 wide spaced traverses, with the reminder of the Phase 2 drill programme now focussed on follow up targets defined at Bifrost. At the current rate of productivity, it is expected that Phase 2 drilling activities will be completed early April.

NEXT STEPS

The Company continues to advance exploration activities with the objective of the discovery of new gold deposits on the highly prospective tenement package at the Riverina East Project (formerly the First Hit Project). The following activities are underway;

- Completion of Phase 2 drill programme which encompasses the first pass drill testing of the CDT and follow up drilling at the Bifrost Target.
- Ongoing delivery of samples to the laboratory for analysis of all samples collected as part the Phase 2 drill programme.
- Interpretation and reporting of the remaining assays from the infill auger programme at the Bifrost Target.
- Completion of high-resolution magnetic geophysics to assist targeting and structural interpretation to provide focus areas for follow up drilling over this large expansive target area
- Completion of the First Hit Mine underground mining assessment.

We look forward to providing updates to the market as advancements are made with the Project.

END

This announcement has been authorised for release by the Board of the Company.

Julian Woodcock Managing Director and CEO

Viking Mines Limited

For further information, please contact: Michaela Stanton-Cook - Company Secretary **Viking Mines Limited** +61 8 6245 0870

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Viking Mines Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Viking Mines Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Competent Persons Statement - Exploration Results

Information in this release that relates to Exploration Results is based on information compiled by Mr Julian Woodcock, who is a Member and of the Australian Institute of Mining and Metallurgy (MAusIMM(CP) - 305446). Mr Woodcock is a full-time employee of Viking Mines Ltd. Mr Woodcock has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Woodcock consents to the disclosure of the information in this report in the form and context in which it appears.

Figure 6; Map showing the 25km strike length of the Zuleika Shear controlled by Viking, the location of known gold deposits, and the structurally complex geological targets being tested for gold mineralisation. Background image is 1VD-RTP magnetics.

FIRST HIT PROJECT, WESTERN AUSTRALIA

The **First Hit Project** is centred around the historic high-grade First Hit gold mine situated along the prospective Ida and Zuleika Shear zones in the Eastern Goldfields of Western Australia. The Project incorporates 479.9km² of tenements with 7 active Mining and Prospecting licences, 5 Exploration licences, and 3 Exploration licences under application. At the core of this landholding is a 6.4km² group of contiguous tenements that host the historic First Hit Gold Mine.

Prior to closure of the First Hit Gold Mine by Barra Resources in 2002 and at a time of depressed gold prices of US\$320/oz, the First Hit mine produced ~30k ounces of gold at an average grade of ~7.7g/t Au. The Company is focused on delivering exploration programmes to test near mine extensions and regional targets around the First Hit Project with the objective of defining fertile structures and discovering gold ounces.

The Project area is well serviced by infrastructure and is located 50km west of the sealed Goldfields highway and the township of Menzies. The nearest operating Gold Processing Plant is the Davyhurst Mill 40km to the south, owned and operated by Ora Banda Mining (ASX:OBM). The nearest operating gold mine is the Riverina underground operations, located 8km south of the First Hit gold mine, owned by OBM.

APPENDIX 1 - DATA SOURCES FOR MINERAL RESOURCE ESTIMATES AND MINE PRODUCTION REFERENCED.

Riverina-Mulline Camp

Historical production: 305koz Au⁵

Measured, Indicated & Inferred Mineral Resource: 854koz Au⁶

OBM Production (FY21-23): 170koz Au^{7,8,9}

TOTAL: 1,333koz

Central Davyhurst Camp

Historical production: 811koz Au¹

2024 Indicated & Inferred Mineral Resource: 396koz Au²

TOTAL: 1,207koz Au

Bullant

Historic Production: 354koz Au³

Measured, Indicated & Inferred Mineral Resource: 462koz Au⁴

TOTAL: 816koz

Kundana Camp

Historic Production to June 2020: 2.75Moz Au¹⁰ FY21 to FY24 Production: 291,853oz Au^{11,12,13,14}

Current Ore Reserves: 464koz Au¹⁵

Frogs Leg Mineral Resources: 770koz Au¹⁶

TOTAL 4.28Moz

Mt Ida

Historical production: 290koz Au¹⁹

2024 Indicated & Inferred Mineral Resource: 752koz Au²⁰

TOTAL: 1,042koz Au

Bottle Creek

Historic Production: 90koz Au¹⁷

Alt Resources Quarterly Report 30 June 2020 - JORC Resource & Reserve Table: $370 \text{koz} \ \text{Au}^{17}$

TOTAL 460koz

Map Source References

- 1) https://orabandamining.com.au/projects/davyhurst/
- https://orabandamining.com.au/download/annual-mineral-resource-and-ore-reservestatement/?wpdmdl=12926&refresh=6736d249d1fcd1731646025
- 3) https://www.miningnews.net/precious-metals/news/1233885/bullant-gold-packs-bite
- 4) https://nortongoldfields.com.au/bullant/
- 5) https://orabandamining.com.au/projects/davyhurst/
- 6) https://orabandamining.com.au/download/annual-mineral-resource-and-ore-reserve-statement/?wpdmdl=12926&refresh=6736d249d1fcd1731646025
- 7) https://orabandamining.com.au/download/annual-report-for-the-year-ended-30-june-2021/?wpdmdl=7200&refresh=6736e1d72a3a51731650007
- 8) https://orabandamining.com.au/download/annual-report-for-the-year-ended-30-june-2022/?wpdmdl=8803&refresh=6736e1d71beab1731650007
- 9) https://orabandamining.com.au/download/annual-report-2023/?wpdmdl=11152&refresh=6736e1d703e691731650007
- 10) https://randmining.com.au/projects/east-kundana-joint-venture/
- 11) https://app.sharelinktechnologies.com/announcement/asx/44dffa9bc8eaaa574af7cfda9564c595
- 12) https://app.sharelinktechnologies.com/announcement/asx/690381347ddb79dc8261b0f775636da7
- 13) https://app.sharelinktechnologies.com/announcement/asx/b13d0741e08843fb98f0e8c8be20eaaa
- 14) https://app.sharelinktechnologies.com/announcement/asx/00592059cc0f5c205e3eb6cfa25f3e4d
- 15) https://evolutionmining.com.au/storage/2024/02/2680687-Annual-Mineral-Resources-and-Ore-Reserves-Statement.pdf
- 16) https://evolutionmining.com.au/storage/2015/08/01647903.pdf
- 17) https://www.asx.com.au/asxpdf/20171108/pdf/43p1pnwsv6kd3g.pdf
- 18) https://www.asx.com.au/asxpdf/20200814/pdf/44lj6rj9wqk8r0.pdf
- 19) https://en.wikipedia.org/wiki/Mount_Ida_Gold_Mine
- 20) https://deltalithium.com.au/our-projects/mt-ida-lithium-gold/

	AI I	LIAL		2 - F	CD	'IXIL	LINC	J & <i>i</i>	700	IEK	JAI	/11 L
	Hole ID	Hole Type	MGA94	MGA94	RL		Azi (°)	Dip (°)	Mesh Size	Au ppb	As ppm	Sample Weight (g)
			268537	6718540		0.5	_		_			900
		_	_									
NYMERONE Apple Apple CHOSE OF CHASE OF CHASE OF CASE OF CAS		_			_		_					_
					_		_					
	VFHAG00119	Auger	_	6718531		0.5	-90	0	-80 mesh			
			_	_							_	
		Auger										
VINDERSIDE Agene Senation 075000 Cold Cold </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>							_					
VENDERORD Agent Serent CPSSSS CPSSS		_							_			
		Auger		_					_			
											_	
		_	_									
VINDERSION Agent Page States Corp. Corp. State St												
VINDERSION Agent Page 1 Color of the page 2 Co												
VINDOSCOPPI Agent 20070 CHANGO		_	_								_	
VINDERGORD Septemble CPT-20 CPS-20 CPS-20 <t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_										
VINDERSORAR Agent Page 2017 CFRASE ORD ASSET AS ASSET AS	VFHAG00142	Auger	268790	6718436	427.3	0.5	-90	0	-80 mesh	14.2	8.29	941
VINDIONIDAD Agent Page 19 20 20 20 20 20 20 20 20 20 20 20 20 20			_	_								
				0	428.8	0.5	-90	0	-80 mesh	25.4		_
Membra	VFHAG00147			6718430					-80 mesh			
	VFHAG00150	Auger	268627	6718429	440	0.5	- 90	0	-80 mesh	18.7	4.28	932
							_					
			_					0				
		_	_	_								
VPMORDORDER August 208277 STRANS 43.38 0.5 .90 0 60 mem MLA 44.05 23.05 VPMORDORDER August 208502 CYRNIS 43.11 0.55 .90 0 80 mem MLA 5.52 9.05 VPMORDORDER August 208502 CYRNIS 43.11 0.55 .90 0 80 mem 8.5 5.50 9.05 VPMORDORDER August 208502 CYRNIS 2025 0.55 .90 0 100 mem 6.5 .50 .90 0 100 mem 6.5 .30 .90 0 100 mem 0 .00		_										
NYMINGONE Augus			_			_	_		_			
VPM-DOCK Age												
VPM-DOCIDES August 28873 678348 4325 0.5									_			
VPM-DECORNER August 26870 678336 3333 0.5		_										
VPHAGODINE Augur	VFHAG00165		268694	6718335	430.3	0.5	-90		-80 mesh		8.54	1000
VPHAGOORD August 268776 6780341 427 0.5 -80		_							_			
					_		_					
VPHAGODY Auger 28887 G78338 426.5 0.5 -80 0 -80 mesh 22.6 93.6 93.6 190 VPHAGODY Auger 28888 678336 425.5 0.5 -80 0 -80 mesh 0.1 9.56 190 VPHAGODY Auger 28888 678336 425.1 0.5 -80 0 -80 mesh 0.1 9.56 8.8 931 938 VPHAGODY Auger 28891 678336 425.1 0.5 -80 0 -80 mesh 0.1 0.3 8.8 931 938 VPHAGODY Auger 28893 678337 426.3 0.5 -80 0 -80 mesh 0.5 0.3 9.8 931		_		_								
VPHAGODIT Auger			_	_			_		_			
VPHAGGOTT Auger 208891 678338 425.1 0.5 -90 0 -80 mesh 32.6 8.88 0.71	VFHAG00173		268854	6718336	426.5	0.5	-90	0	-80 mesh	30.7	9.56	1199
VPHAGG0810 Auger 28880 G78338 425.2 0.5 -80 0 -80 mesh 0.3 9.88 9.27 VPHAGG077 Auger 28893 G78331 425.2 0.5 -80 0 -80 mesh 48.8 8.2 252 VPHAGG078 Auger 288947 G78331 425.2 0.5 -80 0 -80 mesh 42.8 7.3 VPHAGG078 Auger 288947 G78331 425.2 0.5 -80 0 -80 mesh 42.8 7.3 VPHAGG080 Auger 288947 G78331 425.1 0.5 -80 0 -80 mesh 42.8 7.3 VPHAGG080 Auger 28892 G78238 424.8 0.5 -80 0 -80 mesh 20.1 0.3 VPHAGG080 Auger 28892 G78238 424.8 0.5 -80 0 -80 mesh 20.1 0.3 VPHAGG080 Auger 28892 G78238 424.8 0.5 -80 0 -80 mesh 20.1 0.3 VPHAGG080 Auger 28893 G78238 424.8 0.5 -80 0 -80 mesh 20.1 0.3 VPHAGG080 Auger 28893 G78230 424.8 0.5 -80 0 -80 mesh 20.1 0.7 VPHAGG080 Auger 28893 G78230 425.3 0.5 -80 0 -80 mesh 20.2 11.23 127 VPHAGG080 Auger 28893 G78230 427.5 0.5 -80 0 -80 mesh 22.3 18.7 18.9 VPHAGG080 Auger 28893 G78230 427.5 0.5 -80 0 -80 mesh 22.3 18.9 12.9 VPHAGG080 Auger 28893 G78230 427.5 0.5 -80 0 -80 mesh 20.2 12.3 12.9 VPHAGG080 Auger 28893 G78230 427.5 0.5 -80 0 -80 mesh 20.2 27.7 27.8 VPHAGG080 Auger 28873 G78231 428.7 0.5 -80 0 -80 mesh 50.9 30.0 30.0 VPHAGG080 Auger 28873 G78231 428.3 0.5 -80 0 -80 mesh 50.9 30.0 30.0 VPHAGG080 Auger 28873 G78231 428.3 0.5 -80 0 -80 mesh 50.9 30.0 30.0 VPHAGG080 Auger 28872 G78235 424.2 0.5 -80 0 -80 mesh 50.9 30.0 30.0 VPHAGG080 Auger 28872 G78235 424.2 0.5 -80 0 -80 mesh 50.9 30.0 30.0 VPHAGG080 Auger 28872 G78236 424.3 0.5 -80 0 -80 mesh 50.9 30.0 30.0 VPHAGG080 Auger 28887 G78236 424.2 0.5 -80 0 -80 mesh 50.9 30.0 30.0 VPHAGG080 Auger		_							_			
VPHAGO0TB Auger 26887 078349 425.8 0.5 -90 0 -80 meth 14.2 7.29 990 VPHAGO0TP3 Auger 288854 679338 424.8 0.5 -90 0 -80 meth 21.3 9.3 90 VPHAGO0801 Auger 288800 6798238 425.1 0.5 -90 0 -80 meth 20.1 1.21 12.3 13.2 VPHAGO0801 Auger 288800 6798238 425.3 0.5 -90 0 -80 meth 20.1 1.231 1326 VPHAGO0803 Auger 288877 6798231 425.3 0.5 -90 0 -80 meth 20.7 4151 986 VPHAGO0804 Auger 288873 678231 425.5 0.5 -90 0 -80 meth 23.9 3174 446.0 VPHAGO0804 Auger 288783 678223 427.5 0.5 -90 0 -80 meth 23.9 31.2 <td></td>												
VPHAGO080		_										
VPHAGO0812 Auger 268892 678238 428.7 0.5 -90 0 -80 mesh 20.1 0.31 1326 VPHAGO082 Auger 268871 678238 428.7 0.5 -90 0 -80 mesh 20.8 11.3 12.5 VPHAGO083 Auger 268871 678238 425.3 0.5 -90 0 -80 mesh 20.7 M.51 886 VPHAGO084 Auger 268871 678238 425.5 0.5 -90 0 -80 mesh 20.7 M.51 886 VPHAGO085 Auger 268873 678228 427.5 0.5 -90 0 -80 mesh 23.9 93.74 M.50						_						
VPHAGO0033 Auger 208871 678239 4253 0.5 -90 0 -80 mesh 2.07 M.51 988 VPHAGO0044 Auger 20883 678239 4275 0.5 -90 0 -80 mesh 2.39 38.74 Auger 20883 678239 4275 0.5 -90 0 -80 mesh 2.39 38.74 Auger 20883 678239 4275 0.5 -90 0 -80 mesh 2.39 38.74 Auger 20883 678239 4275 0.5 -90 0 -80 mesh 2.39 2189 2000 VPHAGO085 Auger 208830 678239 4275 0.5 -90 0 -80 mesh 2.57 2178 1006 VPHAGO086 Auger 208873 678239 4228 0.5 -90 0 -80 mesh 2.57 2178 1006 VPHAGO089 Auger 208737 678234 4228 0.5 -90 0 -80 mesh 2.54 40.77 128 VPHAGO089 Auger 208737 678234 4228 0.5 -90 0 -80 mesh 2.54 2.57 43.77 1039 VPHAGO089 Auger 208737 678237 4223 0.5 -90 0 -80 mesh 2.54 2.78 1039 VPHAGO089 Auger 208737 678234 4228 0.5 -90 0 -80 mesh 2.54 2.78 1039 VPHAGO080 Auger 208737 678234 4228 0.5 -90 0 -80 mesh 2.59 74.37 1039 VPHAGO080 Auger 208870 678228 4239 0.5 -90 0 -80 mesh 2.54 2.57 1039 VPHAGO080 Auger 208870 678228 4239 0.5 -90 0 -80 mesh 2.4 2.78 1039 VPHAGO080 Auger 208870 678228 4239 0.5 -90 0 -80 mesh 2.4 2.78 1039 VPHAGO080 Auger 208870 678228 43313 0.5 -90 0 -80 mesh 2.4 2.78 1039 VPHAGO080 Auger 208870 678228 4332 1 -90 0 -80 mesh 2.4 2.78 1039 VPHAGO080 Auger 208870 678228 4332 1 -90 0 -80 mesh 2.4 2.5 1034 VPHAGO080 Auger 208870 678228 4322 1 -90 0 -80 mesh 2.5 2.8					424.7	0.5						
VPHAGO085 Auger 26883 078229 427 0.5 -90 0 -80 meth 23.9 21.89 C00 VPHAGO086 Auger 26885 078228 428 0.5 -90 0 -80 meth 25.7 21.78 T00 T0				_								
VPHAGG08B Auger 28881 678230 4275 0.5 -90 0 -80 meth 25.7 2178 1006 VPHAGG08B Auger 28873 678237 4288 0.5 -90 0 -80 meth 25.4 330 38.02 3330 3300	VFHAG00184	Auger	268857	_	426.5	0.5	-90	0	-80 mesh	23.9	18.74	1440
VPHAGO0987 Auger 268789 679229 428 0.5 -90 0 -80 mesh 25.9 34.07 17.27 19.4 19.4 19.5 19.				_								
VPHAGG088 Auger 288751 678237 4283 0.5 -90 0 -80 mesh 52.9 74.37 1994 VPHAGG089 Auger 288732 678235 4242 0.5 -90 0 -80 mesh 55.9 07.78 1994 VPHAGG081 Auger 28873 678235 4242 0.5 -90 0 -80 mesh 43.3 0.474 1909 VPHAGG081 Auger 288800 678228 422.8 0.5 -90 0 -80 mesh 44.3 0.474 1909 VPHAGG0813 Auger 288800 678228 422.9 0.5 -90 0 -80 mesh 44.3 0.474 1909 VPHAGG0813 Auger 288807 678234 4313 0.5 -90 0 -80 mesh 0.4 17.40 1974 VPHAGG0813 Auger 288807 678228 4313 0.5 -90 0 -80 mesh 0.4 0.4 0.74 0.74 VPHAGG0813 Auger 288807 678228 4313 0.5 -90 0 -80 mesh 0.4 0.4 0.74 0.74 0.74 VPHAGG0814 Auger 288807 678228 4319 1 -90 0 -80 mesh 0.4 0.7 0.04 VPHAGG0814 Auger 288807 678228 4322 1 -90 0 -80 mesh 0.7 4.9 0.04 VPHAGG0816 Auger 288807 678228 4322 1 -90 0 -80 mesh 0.7 4.9 0.04 VPHAGG0816 Auger 288807 678228 432.3 1 -90 0 -80 mesh 0.7 4.9 0.04 VPHAGG0816 Auger 288807 678231 432.7 1 -90 0 -80 mesh 0.7 4.9 0.04 VPHAGG0810 Auger 288807 678231 424.8 0.5 -90 0 -80 mesh 5.4 2.5 684 VPHAGG08201 Auger 288807 678231 424.8 0.5 -90 0 -80 mesh 5.4 2.5 684 VPHAGG08201 Auger 288807 678231 432.3 0.5 -90 0 -80 mesh 5.4 2.5 684 VPHAGG08201 Auger 288807 67818 432.1 0.5 -90 0 -80 mesh 5.4 2.5 684 VPHAGG08201 Auger 288807 67818 432.1 0.5 -90 0 -80 mesh 5.4 2.5 5.8 684 VPHAGG08201 Auger 288807 67818 432.1 0.5 -90 0 -80 mesh 5.4 2.5 5.8 693 VPHAGG08201 Auger 288807 67818 432.1 0.5 -90 0 -80 mesh 5.2 2.5 5.8 693 VPHAGG08201 Auger 288807 67818 432.9 0.5 -90 0 -80 mesh 5.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	VFHAG00187	Auger	268789	6718228	428				-80 mesh		38.02	
VPHAGO0911 Auger 28871 678234 429.8 0.5 -80 0 -80 meth 44.3 0.4.74 190 VPHAGO0912 Auger 28887 678240 4311 0.5 -80 0 -80 meth 44.3 0.4.74 1904 VPHAGO0914 Auger 28887 678240 4311 0.5 -80 0 -80 meth 0.4.1 74.01 1972 VPHAGO0915 Auger 28887 678240 4313 0.5 -80 0 -80 meth 0.6 0.8 8.8 1922 VPHAGO0915 Auger 28887 678220 4313 0.5 -80 0 -80 meth 0.3 0.8 8.8 1922 VPHAGO0915 Auger 288867 678220 4313 0.5 -80 0 -80 meth 0.3 0.8 8.8 1922 VPHAGO0916 Auger 288867 678220 432.2 1 -90 0 -80 meth 0.3 0.8 3.7 1920 VPHAGO0916 Auger 288868 678228 432.2 1 -90 0 -80 meth 10.8 0.8 3.7 1920 VPHAGO0916 Auger 288560 678228 432.2 1 -90 0 -80 meth 10.8 0.8 3.7 1920 VPHAGO0916 Auger 288520 678231 432.7 1 -90 0 -80 meth 0.5 4.8 10.03 VPHAGO0916 Auger 288520 678231 432.7 1 -90 0 -80 meth 0.5 4.8 2.5 684 VPHAGO0201 Auger 288520 678231 432.7 1 -90 0 -80 meth 6.5 2.5 684 VPHAGO0201 Auger 288520 678231 432.1 0.5 -90 0 -80 meth 7.2 2.5 684 VPHAGO0201 Auger 288520 678231 432.1 0.5 -90 0 -80 meth 7.2 2.5 684 VPHAGO0201 Auger 288520 67823 433.3 0.5 -90 0 -80 meth 7.2 2.5 5.6 684 VPHAGO0201 Auger 288520 67823 432.9 0.5 -90 0 -80 meth 7.2 2.5 5.6 684 VPHAGO0200 Auger 288520 67823 433.3 0.5 -90 0 -80 meth 7.2 2.5 5.5 684 VPHAGO0200 Auger 288520 67823 433.3 0.5 -90 0 -80 meth 23.2 2.3 1999 VPHAGO0200 Auger 288653 67820 433.3 0.5 -90 0 -80 meth 23.2 2.3 1999 VPHAGO0200 Auger 288653 67820 433.3 0.5 -90 0 -80 meth 3.3 5.71 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1 432.1	VFHAG00189	_	_	_								
VPHAGO0812 Auger 268690 678228 429.9 0.5 -90 0. -80 mesh 0.4.1 74.01 1074 VPHAGO0813 Auger 268672 678234 4313 0.5 -90 0. -80 mesh 0.4.4 27.4 1974 VPHAGO0814 Auger 268672 678234 4313 0.5 -90 0. -80 mesh 0.4.4 27.4 1974 VPHAGO0815 Auger 268672 678234 4313 0.5 -90 0. -80 mesh 0.0.4				_								
VPHAG00944 Auger 268657 678234 4313 0.5 -90 0 -80 mesh 50.8 6.88 1082 VPHAG00985 Auger 288627 678229 4319 1 -90 0 -80 mesh 9.9 90.07 1029 VPHAG00987 Auger 286627 678227 4322 1 -90 0 -80 mesh 9.1 7.7 1024 VPHAG00987 Auger 286869 678223 4322 1 -90 0 -80 mesh 9.7 4.18 103 7 103 100 -80 mesh 9.7 4.18 103 7 103 100 -80 mesh 1.2 1.8 103 7 1.00 0 -80 mesh 5.4 2.5 188 184 1.9 0 -80 mesh 5.4 2.5 188 194 1.9 0 -80 mesh 5.4 2.5 188 194 1.9 0 -80 mesh 5.4 2.5	VFHAG00192	Auger	268690	6718228	429.9	0.5	-90	0	-80 mesh	94.1	74.01	1074
VPHAGG0015 Auger 268627 CP 18229 4313 1 -90 0 -80 mesh 9.9 10.07 10.09		_										
VPHAGO0018	VFHAG00195	Auger	268627	6718229	431.9	1	-90	0	-80 mesh	9.9	10.07	1209
VFHAGO088 Auger 268573 678228 4323 1 -90 0 -80 mesh 13.7 4.18 1083 VFHAGO0199 Auger 286540 678231 432.7 1 -90 0 -80 mesh 6.3 2.5 6864 VFHAG00201 Auger 286540 678231 424.8 0.5 -90 0 -80 mesh 6.3 2.38 1025 VFHAG00201 Auger 286540 678317 432.1 0.5 -90 0 -80 mesh 7.2 2.56 104 VFHAG00201 Auger 286573 678128 4312 0.5 -90 0 -80 mesh 7.2 2.56 691 VFHAG00205 Auger 286573 678128 4312 0.5 -90 0 -80 mesh 22.5 2.56 693 VFHAG00205 Auger 286873 678126 4313 0.5 -90 0 -80 mesh 61 3.03 1123			_									
VFHAG00201 Auger 268526 678231 424.8 0.5 -90 0 -80 mesh 6.3 2.38 1925 VFHAG00202 Auger 268531 678432 433.1 0.5 -90 0 -80 mesh 7.2 2.56 194 VFHAG00203 Auger 26857 678128 432.1 0.5 -90 0 -80 mesh 19.1 2.4 881 VFHAG00203 Auger 268573 678128 4312 0.5 -90 0 -80 mesh 22.5 2.56 196 VFHAG00203 Auger 286857 678128 4312 0.5 -90 0 -80 mesh 22.2 2.83 193 VFHAG00203 Auger 286857 678128 4313 0.5 -90 0 -80 mesh 61 3.3 5.71 1425 VFHAG00203 Auger 286853 678130 430.3 0.5 -90 0 -80 mesh 73 3.9	VFHAG00198	Auger	268573	6718228	432.3		-90	0	-80 mesh	10.7	4.18	1083
VPHAGG0027 Auger 288513 678432 433.1 0.5 -90 0 -80 mesh 7.2 2.56 194		_	_	_		<u> </u>	_					_
VPHAGO0205 Auger 268570 678120 4312 0.5 -90 0 -80 mesh 22.5 2.56 963				_								
VFHAGO2000 Auger 2886E0 678027 4313 0.5 -90 0 -90 mesh 81 3.03 129 VFHAGO20207 Auger 288637 67800 4313 0.5 -90 0 -80 mesh 81 3.03 129 VFHAGO2020 Auger 288637 67890 430.3 0.5 -90 0 -80 mesh 5.5 3.01 425 VFHAGO2020 Auger 288630 67890 430.5 0.5 -90 0 -80 mesh 7.8 7.90 1552 VFHAGO2021 Auger 288630 67890 423.8 1 -90 0 -80 mesh 7.8 7.9 1552 VFHAGO2021 Auger 286727 678930 423.8 1 -90 0 -80 mesh 25.2 32.2 1299 VFHAGO2021 Auger 286727 678934 429.9 1 -90 0 -80 mesh 43.9 32.2 129												
VFHAGO0207 Auger 288827 678928 4313 0.5 -90 0 -80 mesh 0.3 5.71 4325 VFHAGO0208 Auger 288633 678907 430.3 0.5 -90 0 -80 mesh 5.5 3.01 250 VFHAGO0208 Auger 288638 678907 430.5 0.5 -90 0 -80 mesh 5.5 3.01 250 VFHAGO0201 Auger 28870 67890 429.8 1 -90 0 -80 mesh 3.5 8.61 195 VFHAGO021 Auger 28870 67890 429.8 1 -90 0 -80 mesh 3.5 8.61 193 VFHAGO021 Auger 28874 678915 429.9 1 -90 0 -80 mesh 43.9 25.9 229.8 193 9 0 -80 mesh 43.9 34.7 17 9 0 -80 mesh 43.9 42.7 17 49.0 0				_								
\text{VFHAG00219} Auger \ 288808 \ 678150 \ 428.8 \ 0.5 \ -90 \ 0.0 \ -80 mesh \ 7.8 \ 7.9 \ 1557 \ 1774 \	VFHAG00207	Auger	268627	6718126	431.3	0.5	-90	0	-80 mesh	13.3	5.71	1425
VFHAG00210 Auger 288888 678130 429.8 1 -90 0 -80 mesh 659.8 7.9 1375 VFHAG00211 Auger 28579 678130 429.8 1 -90 0 -80 mesh 35 8.81 191 VFHAG00212 Auger 28579 678134 429.9 1 -90 0 -80 mesh 245.2 23.28 1299 VFHAG00213 Auger 285746 678135 429.7 1 -90 0 -80 mesh 44.9 34.72 1217 VFHAG00214 Auger 285774 678138 429 1 -90 0 -80 mesh 24.9 33.72 1217 VFHAG00216 Auger 285877 678136 428 1 -90 0 -80 mesh 24.6 83.0 228 123.6 VFHAG00216 Auger 286830 678136 427.7 1 -90 0 -80 mesh 25.3 12.22 39												
VFHAG002T0 Auger 288727 678154 429.9 1 -90 0 -80 mesh 28.5 23.28 199 VFHAG002T3 Auger 288746 678158 429.7 1 -90 0 -80 mesh 44.9 34.72 217 VFHAG002T6 Auger 28877 678158 429 1 -90 0 -80 mesh 32.9 30.3 125.4 VFHAG002T6 Auger 288877 678158 428 1 -90 0 -80 mesh 24.6 18.8 1236 VFHAG002T6 Auger 288807 678158 427.7 1 -90 0 -80 mesh 18 6.3.1 068 VFHAG002T6 Auger 288807 678158 425.8 1 -90 0 -80 mesh 18 6.3.1 068 VFHAG0022T6 Auger 288893 678158 425.8 1 -90 0 -80 mesh 12 52.3 19.4	VFHAG00210	Auger	268688	6718130	429.8	1	-90	0	-80 mesh	159.8	7.9	1375
VFHAG002T0 Auger 288746 678135 429.7 1 -90 0 -80 mesh 44.9 34.72 1217 VFHAG002T4 Auger 288771 678138 429 1 -90 0 -80 mesh 22.9 30.13 125 VFHAG002T6 Auger 286877 678134 428 1 -90 0 -80 mesh 24.6 18.9 1236 VFHAG002T6 Auger 286807 678134 427.7 1 -90 0 -80 mesh 18 15.31 1568 VFHAG002T6 Auger 286807 678136 427.7 1 -90 0 -80 mesh 25.3 12.22 931 VFHAG002T6 Auger 286807 678136 425.8 1 -90 0 -80 mesh 22 5.3 12.2 931 VFHAG002T6 Auger 286807 678136 425.8 1 -90 0 -80 mesh 22.1 13.7 177 <td></td>												
VFHAG00216 Auger 268787 678156 428 1 -90 0 -80 mesh 24.6 91.8 1236 VFHAG00216 Auger 268907 678134 427.1 1 -90 0 -80 mesh 18 65.31 1028 VFHAG0027 Auger 268849 678132 425.8 1 -90 0 -80 mesh 22 52.3 1934 VFHAG0027 Auger 268849 678132 425.8 1 -90 0 -80 mesh 21 13.72 1228 VFHAG0027 Auger 268897 678138 425.8 1 -90 0 -80 mesh 21 13.72 1278 VFHAG0027 Auger 268893 678133 426.2 1 -90 0 -80 mesh 21 1,1 9,7 137 VFHAG0027 Auger 26894 678133 426.2 1 -90 0 -80 mesh 14.1 9,7 137 <td>VFHAG00213</td> <td>Auger</td> <td>268746</td> <td>6718135</td> <td>429.7</td> <td>1</td> <td>-90</td> <td>0</td> <td>-80 mesh</td> <td>44.9</td> <td>34.72</td> <td>1217</td>	VFHAG00213	Auger	268746	6718135	429.7	1	-90	0	-80 mesh	44.9	34.72	1217
VFHAG00227 Auger 26830 67*8130 427.7 1 -90 0 -80 mesh 25.3 12.22 931 \text{VFHAG00218 Auger 268840 67*8132 425.8 1 -90 0 -80 mesh 25.3 12.22 931 \text{VFHAG00219 Auger 26887 67*8136 425.8 1 -90 0 -80 mesh 21.1 14.72 1278 \text{VFHAG00220 Auger 268897 67*8136 425.8 1 -90 0 -80 mesh 21.1 14.72 1278 \text{VFHAG00220 Auger 268893 67*813 426.2 1 -90 0 -80 mesh 15. 10.5 1488 \text{VFHAG00221 Auger 268893 67*813 426.2 1 -90 0 -80 mesh 15. 10.5 1488 \text{VFHAG00222 Auger 268893 67*813 425.2 1 -90 0 -80 mesh 14.1 9.7 317 \text{VFHAG00222 Auger 26883 67*813 425.2 1 -90 0 -80 mesh 17. 7.21 472												
VFHAG0029 Auger 268849 678192 425.8 1 -90 0 -80 mesh 22 15.23 154 VFHAG0029 Auger 26887 678198 425.8 1 -90 0 -80 mesh 211 14.72 1278 VFHAG00220 Auger 268893 678193 426.2 1 -90 0 -80 mesh 51 10.5 10.5 VFHAG00222 Auger 26883 678193 425.7 1 -90 0 -80 mesh 11 9.7.21 137 VFHAG00222 Auger 26883 678193 425.2 1 -90 0 -80 mesh 11 7.21 1472			_									
\text{VFHAG00229} Auger 26887 67818 425.8 1 -90 0 -80 mesh 211 M.72 1278 \text{VFHAG00220} Auger 268893 678183 426.2 1 -90 0 -80 mesh 15 05 0.5 486 \text{VFHAG0021} Auger 268894 678185 426.7 1 -90 0 -80 mesh 14.1 9.79 1317 \text{VFHAG00212} Auger 26883 678183 425.2 1 -90 0 0 80 mesh 11 7.21 M72						_	_					
VFHAG00221 Auger 28894 67815 425.7 1 -90 0 -80 mesh 14.1 9.79 1317 VFHAG00222 Auger 28893 67815 425.2 1 -90 0 -80 mesh 11 7.21 1472	VFHAG00219	Auger		6718136					-80 mesh		14.72	
	VFHAG00221	Auger	268914	6718135	425.7	1	-90	0	-80 mesh	14.1	9.79	1317

1000 1000													
	Hole ID	Hole Type		MGA94	RL	End of Hole (m)	Azi (°)	Dip (°)	Mesh Size	Au ppb	As ppm	Sample Weight (g)	
	VFHAG00224	Auger			429.1		-90	0	-80 mesh	19.8	3.41		
	VFHAG00225		268489	6718034	430.9	0.5	-90	0	-80 mesh	13	2.37	975	
						1		_					
						_							
		_											
						1							
	VFHAG00241					1		0					
VPMODERSIADE Augus SERSIADE SPECIAL DE SERSIADE 0.1 mole of the process of the		_											
Professor Age		_											
		_											
VINDEQUISION Auge 200800 CPTOM CREAT 1 100 0 Chonente CTI 4.44 CREAT VINDEQUISION Auge 200900 CPTOM CREAT <						_							
VPMORDER March						1							
		_											
					428.2				-80 mesh				
				0.1.1.00.1									
Per Pe													
VPMOREDUSIDE Mayer 38881 797072 422 S 1 -00 0 content 0 353 123 VPMOREDUSIDE Mayer 38886 377093 428 S 15 -00 0 content 73 3.8 132 VPMOREDUSID 38898 377092 428 S 1 -00 0 content 73 3.8 130 VPMOREDUSID 39891 38850 377090 428 3 1 -00 0 content 27 -3.3 130 VPMOREDUSID 49801 379030 428 3 1 -00 0 content 27 -2.3 130 VPMOREDUSID 4981 38810 797050 427 8 1 -00 0 content 37 -3.2 130 VPMOREDUSID 4981 38810 797072 428 3 1 -00 0 content -1 -3.2 1 -00 -00 -00 -00	VFHAG00256	Auger	268669	6717928	428.6	-1	-90	0	-80 mesh	14	5.72	1401	
STATES STATE						_							
VAMINGOONES Cappar Campar Campar Cappar Capp		_						_					
VPMOREDIES	VFHAG00260	Auger	268590	6717929	429.9		-90	0	-80 mesh		3.8	1284	
VPMOREDIES Mayer													
VPMOREDIES						_							
VPMORDOGEE August		Auger		6717938	428.7		-90	0	-80 mesh	2.7	2.32	1148	
VPMOREDIES Augus													
VPM-DECORATION PASSET CREATE CR		_											
		Auger				0.5							
VPM-0000277						1		_					
VPM-GROCET Auger 28677 877836 427.9 15 -90 -90 -80 mesh 7.9 3.14 0.87													
VPMADGOZZE A Juger 28888 B STREAD 877 MS A JUGA 477 MS A JUGA 488 MS A JUGA													
VPM-COCCUTE August 285005 677927 3288 1 -90													
VPHINDEDCRYPT Auger 2005054 677800 4272 15 −90 □0 -0 mesh 0.7 2.22 100 VPHINDEDCRYPT Auger 2005007 677830 424.9 1.5 −90 □ -0 mesh 0.8 0.0 1.05 VPHADEDCRYPT Auger 200500 877837 422.3 0.5 -90 □ -0 mesh 2.2 0.33 0.00 VPHADEDCRYST Auger 200500 677841 422.3 0.5 -90 □ -0 mesh 2.2 0.2 0.00 -0 mesh 2.2 2.0 0.0 -0 mesh 2.2 2.0 0.0 -0 mesh 2.2 2.0 0.0 -0 mesh 2.0 2.0 -0 mesh 2.0 2.0 -0 mesh 2.0 2.0 -0 mesh 2.0 <td></td>													
VPMAGGGGZF		_											
\text{VPMAGGG277} Auger													
VPHAGO0281						1							
VPHAGOGUES Auger 26865 077841 428.1 11 -90 0 -80 mesh 22.9 2.84 952 VPHAGOGUES Auger 268672 677840 428.7 11 -90 0 -80 mesh 20.2 2.87 1324 1324 VPHAGOGUES Auger 268672 677830 428 1 -90 0 -80 mesh 70.3 3.34 1324 VPHAGOGUES Auger 268714 677838 428.4 0.55 -90 0 -80 mesh 70.3 3.34 1324 VPHAGOGUES Auger 288714 677838 428.4 0.55 -90 0 -80 mesh 70.3 3.34 1324 VPHAGOGUES Auger 288724 677830 446.4 0.55 -90 0 -80 mesh 5.8 3.27 1056 VPHAGOGUES Auger 288727 677830 447.9 0.55 -90 0 -80 mesh 5.8 3.27 1056 VPHAGOGUES Auger 288727 677830 427.9 0.55 -90 0 -80 mesh 5.8 2.77 1056 VPHAGOGUES Auger 288737 677830 425.8 1.55 -90 0 -80 mesh 5.8 2.77 1056 VPHAGOGUES Auger 288738 677737 425.8 1.55 -90 0 -80 mesh 4.8 3.2 3.33 1077 VPHAGOGUES Auger 288738 677738 425.8 1.55 -90 0 -80 mesh 4.8 3.2 3.33 1077 VPHAGOGUES Auger 288738 677738 425.8 1.55 -90 0 -80 mesh 4.8 3.2 3.30 1077 VPHAGOGUES Auger 288738 677731 425.8 1.55 -90 0 -80 mesh 5.1 3.70 938 VPHAGOGUES Auger 288738 677731 425.8 1.55 -90 0 -80 mesh 5.1 3.70 938 VPHAGOGUES Auger 288738 677731 425.8 1.55 -90 0 -80 mesh 5.1 3.70 938 VPHAGOGUES Auger 288738 677731 425.8 1.55 -90 0 -80 mesh 5.1 3.70 938 VPHAGOGUES Auger 288738 677731 425.8 1.55 -90 0 -80 mesh 5.1 3.70 938 VPHAGOGUES Auger 288673 677733 425.8 1.55 -90 0 -80 mesh 5.5 3.20 1.70 4784000000 Auger 288673 677731 427.8 1.5 -90 0 -80 mesh 5.3 3.20 7.70 4784000000 Auger 288683 677731 427.8 1.5 -90 0 -80 mesh 5.3 3.20 7.70 4784000000 Auger 288684 677731 427.8 1.5 -90 0 -80 mesh 5.3 3.20 428 428 428 428 428 428 428 428													
\text{VPMAG002284} Number 228672 6777830 428.7 1 -90 0 -80 mesh 0.0.2 2.67.0 13.44 10.74													
VPHAGO0228			268672			1		0		20.2	2.67	1324	
VPHAGG00287 Auger 268752 677733 446.4 0.5 0.6 0.0		_											
VPHAGG0208							_						
VPHAGG00290		_											
VPHAGG0029						0.5		0					
VPHAGG00299						0.5		0					
VPHAGG00294 Auger 288719 677731 425.8 1.5 -90 0 -80 mesh 5.1 3.07 938 VPHAGG00295 Auger 288727 677731 439.8 1.5 -90 0 -80 mesh 4.4 3.48 124.3 124.7 124.7 124.8 1.5 -90 0 -80 mesh 4.4 3.48 124.3 124.7 124.8													
\text{VPMA000295} Auger		_											
VPHAGG00297 Auger 26871 677733 428.4 0.5 -90 0 -80 mesh 3.5 3.06 824 VPHAGG00298 Auger 268631 677733 428.4 0.5 -90 0 -80 mesh 3.5 2.58 1073 17474602999 Auger 268673 677738 427.1 0.5 -90 0 -80 mesh 3.5 2.58 1073 77474602999 VPHAGG0299 Auger 268636 677737 427.2 41.5 1 -90 0 -80 mesh 0.0 2.78 120 VPHAGG00300 Auger 268636 677737 427.2 41.5 1 -90 0 -80 mesh 7.6 3.43 120 VPHAGG00303 Auger 268631 677731 427.8 1 -90 0 -80 mesh 7.6 3.43 132 VPHAGG00303 Auger 268631 677731 427.8 1 -90 0 -80 mesh 7.6 3.43 132 VPHAGG00303 Auger 268556 677737 427.8 1 -90 0 -80 mesh 7.6 5.8 3.66 3.44 427.8 427						_							
VPHAGG00298 Auger 28881 677738 426.7 0.5 -90 0 -80 mesh 9.6 2.58 973 VPHAGG00299 Auger 28881 677738 427.1 0.5 -90 0 -80 mesh 3 3.2 753 757 7													
VPHAGO00329 Auger 288673 677732 427.5 1 -80 0 -80 mesh 3 3.2 753													
VPHAGG00301 Auger 288636 677731 427.2 1 -90 0 -80 mesh 5.3 3.21 584 VPHAGG00302 Auger 288631 677731 427.8 1 -90 0 -80 mesh 7.6 3.43 192	VFHAG00299	Auger	268673	6717738	427.1	0.5	-90	0	-80 mesh	3	3.12	753	
VFHAG00302 Auger 288811 6 70740 428.1 1 -90 0 -80 mesh 7.6 3.43 182 VFHAG003030 Auger 288511 677731 427.8 1 -90 0 -80 mesh 7.6 3.43 182 VFHAG00304 Auger 288526 677722 427.8 1 -90 0 -80 mesh 8.8 3.68 144 VFHAG00305 Auger 288526 677728 428.4 1 -90 0 -80 mesh 4.6 2.84 1322 VFHAG00305 Auger 288516 677728 428.4 15 -90 0 -80 mesh 4.6 2.80 199 VFHAG00303 Auger 288416 677726 427.3 1.5 -90 0 -80 mesh 4.6 2.80 199 VFHAG03030 Auger 288414 677727 427.9 1.5 -90 0 -80 mesh 4.1 3.0 147.2 <													
\text{VPHAGG0303} Auger 288574 677773 427.8 15 -90 0 -80 mesh 7.7 28.62 1597 \text{VPHAGG0304} Auger 288566 677728 427.8 15 -90 0 -80 mesh 0.5 8.8 3.68 1444 \text{VPHAGG0306} Auger 288566 677728 428.3 11 -90 0 0 -80 mesh 0.5 2.3 2.48 152 \text{VPHAGG0307} Auger 288556 677728 428.4 15 -90 0 0 -80 mesh 0.5 2.3 2.48 152 \text{VPHAGG0308} Auger 288586 677728 428.4 15 -90 0 0 -80 mesh 0.5 2.3 2.48 152 \text{VPHAGG0308} Auger 288586 677728 427.3 15 -90 0 0 -80 mesh 0.5 2.3 2.48 142 \text{VPHAGG0307} Auger 288486 677728 427.3 15 -90 0 0 -80 mesh 0.4 1 3.06 1429 \text{VPHAGG0307} Auger 288486 677728 427.3 15 -90 0 0 -80 mesh 0.2 2.7 20 \text{VPHAGG0307} Auger 288486 677728 427.3 15 -90 0 0 -80 mesh 0.2 2.7 20 \text{VPHAGG0307} Auger 288486 677727 427.9 15 -90 0 0 -80 mesh 0.2 2.7 20 \text{VPHAGG0307} Auger 288486 677727 427.9 15 -90 0 0 -80 mesh 0.2 2.7 20 \text{VPHAGG0307} Auger 288486 677728 427.9 0.5 -90 0 0 -80 mesh 0.2 2.7 20 \text{VPHAGG0307} Auger 288496 677728 427.9 0.5 -90 0 0 -80 mesh 0.2 2.7 20 \text{VPHAGG0308} Auger 288496 677728 427.9 0.5 -90 0 0 -80 mesh 1.3 3.6 2.8 879 \text{VPHAGG0308} Auger 288496 677728 427.9 0.5 -90 0 0 -80 mesh 1.5 2.9 2.91 838 \text{VPHAGG0308} Auger 288496 677728 427.9 0.5 -90 0 0 -80 mesh 1.5 2.5 2.5 157 \text{VPHAGG0309} Auger 288496 677738 427.2 0.5 -90 0 0 -80 mesh 1.5 2.2 2.81 838 \text{VPHAGG0308} Auger 288496 677838 427.2 0.5 -90 0 0 -80 mesh 1.5 2.2 2.81 838 \text{VPHAGG0308} Auger 288496 677838 427.2 0.5 -90 0 0 -80 mesh 0.5 2.5 70 \text{VPHAGG0309} Auger 288496 677838 427.2 0.5 -90 0 0 -80 mesh 0.5 2.5 70 \text{VPHAGG0309} Auger 288496 677838 427.2 0.5 -90 0 0 -80 mesh 0.5 2.5 70 \text{VPHAGG0309} Auger 288496 677838 427.2 0.5 -90 0 0 -80 mesh 0.5 2.5 70 \text{VPHAGG0309} Auger 28850 677838 427.2 0.5 -90 0 0 -80 mesh 0.5 2.5 70 \text{VPHAGG0309} Auger 28850 677838 427.2 0.5 -90 0 0 -80 mesh 0.5 2.2 20 88 \text{VPHAGG0309} Auger 28850 677838 427.2 0.5 -90 0 0 -80 mesh 0.5 2.2 20 88 \text{VPHAGG0309} Auger 28850 677838 427.2 0.5 -90 0 0 -80 mesh 0.5 2.2 20 88 VPHAGG		_						_			_		
\text{VPHAG00305} Muger 288556 677728 428.4 15 -90 0 -80 mesh 0.3 2.44 1322 \text{VPHAG00306} Auger 288557 677728 428.4 15 -90 0 0 -80 mesh 4.6 2.80 199 \text{VPHAG00307} Muger 288517 677728 427.3 15 -90 0 0 -80 mesh 4.6 2.80 199 \text{VPHAG00308} Auger 288458 677728 427.3 15 -90 0 0 -80 mesh 4.1 3.00 1422 \text{VPHAG00308} Auger 288454 677727 427.3 15 -90 0 0 -80 mesh 4.1 3.00 1422 \text{VPHAG00307} Auger 288454 677727 427.3 15 -90 0 0 -80 mesh 2.4 2.27.2 0.80 \text{VPHAG00308} Auger 288454 677727 428.0 15 -90 0 0 -80 mesh 8.2 2.72 0.80 \text{VPHAG00301} Auger 288454 677727 428.0 15 -90 0 0 -80 mesh 8.2 2.72 0.80 \text{VPHAG00301} Auger 288454 677727 428.0 15 -90 0 0 -80 mesh 8.2 2.72 0.80 \text{VPHAG00301} Auger 288454 677728 427.9 0.5 -90 0 0 -80 mesh 2.2 2.72 0.80 \text{VPHAG00301} Auger 288458 677728 427.9 0.5 -90 0 0 -80 mesh 1.2 2.8 2.70 971 \text{VPHAG00301} Auger 288454 677728 427.9 0.5 -90 0 0 -80 mesh 1.5 2.8 2.70 971 \text{VPHAG00301} Auger 288454 677728 427.9 0.5 -90 0 0 -80 mesh 1.5 2.5 187 \text{VPHAG00301} Auger 288454 677728 427.9 0.5 -90 0 0 -80 mesh 4.2 2.5 187 \text{VPHAG00301} Auger 288454 677728 427.9 0.5 -90 0 0 -80 mesh 4.2 2.5 187 \text{VPHAG00301} Auger 288454 677728 427.9 0.5 -90 0 0 -80 mesh 4.2 2.5 187 \text{VPHAG00303} Auger 288454 677635 427.2 0.5 -90 0 0 -80 mesh 4.2 2.5 2.7 197 \text{VPHAG00303} Auger 288454 677635 427.2 0.5 -90 0 0 -80 mesh 4.2 2.2 2.7 197 \text{VPHAG00303} Auger 288454 677635 427.2 0.5 -90 0 0 -80 mesh 4.2 2.5 2.5 187 \text{VPHAG00303} Auger 288454 677635 427.4 0.5 -90 0 0 -80 mesh 4.2 2.5 2.5 187 \text{VPHAG00303} Auger 288454 677635 427.2 0.5 -90 0 0 -80 mesh 4.2 2.5 2.5 187 \text{VPHAG00303} Auger 288454 677635 427.2 0.5 -90 0 0 -80 mesh 4.2 2.5 2.5 187 \text{VPHAG00303} Auger 288454 677635 427.2 0.5 -90 0 0 -80 mesh 4.2 2.5 2.5 187 \text{VPHAG00303} Auger 288454 677635 427.7 15 -90 0 0 -80 mesh 4.2 2.5 2.5 187 \text{VPHAG00303} Auger 28850 677635 427.7 15 -90 0 0 -80 mesh 4.7 2.6 2.5 195 VPHAG003032 Auger 28850 677635 427.7 15 -90 0 0 -80 mesh 4.7 2.		Auger	268591	6717731					-80 mesh				
\text{VPHAG00310} Auger 288525 677728 428.4 1.5 -90 0 -80 mesh 5.7 3.07 0.227 VPHAG003007 Auger 288516 677728 427.3 1.5 -90 0 -80 mesh 4.6 2.89 1999 \text{VPHAG00308 Auger 288516 677728 427.3 1.5 -90 0 -80 mesh 4.6 2.89 1999 \text{VPHAG00308 Auger 288516 677728 427.3 1.5 -90 0 -80 mesh 4.6 2.83 1478 \text{VPHAG00309 Auger 288516 677728 427.3 1.5 -90 0 -80 mesh 4.4 2.83 1478 \text{VPHAG00309 Auger 288516 677728 427.9 1.5 -90 0 -80 mesh 8.2 2.72 1086 \text{VPHAG00310 Auger 288516 677728 427.9 1.5 -90 0 -80 mesh 8.2 2.72 1086 \text{VPHAG00310 Auger 288516 677728 427.9 0.5 -90 0 -80 mesh 8.2 2.81 1878 \text{VPHAG00310 Auger 288516 677728 427.9 0.5 -90 0 -80 mesh 1.2 2 2.81 838 \text{VPHAG00310 Auger 288516 677728 427.9 0.5 -90 0 -80 mesh 1.5 2.6 8.8 179 \text{VPHAG00310 Auger 288518 677833 428.3 0.5 -90 0 -80 mesh 1.5 2.6 133 \text{VPHAG00310 Auger 288518 677833 428.3 0.5 -90 0 -80 mesh 1.5 2.6 133 \text{VPHAG00310 Auger 288435 677833 427.4 0.5 -90 0 -80 mesh 4.4 2.35 197 \text{VPHAG00310 Auger 288435 677833 427.9 0.5 -90 0 -80 mesh 4.4 2.35 197 \text{VPHAG00310 Auger 288435 677833 427.4 0.5 -90 0 -80 mesh 4.4 2.35 197 \text{VPHAG00310 Auger 288435 677833 427.9 0.5 -90 0 -80 mesh 8.4 2.4 2.26 878 \text{VPHAG00310 Auger 288446 677835 427.4 0.5 -90 0 -80 mesh 9.5 2.4 2.27 1074 \text{VPHAG00310 Auger 288446 677835 427.4 0.5 -90 0 -80 mesh 9.5 2.4 2.27 1074 \text{VPHAG00321 Auger 288486 677831 427.8 0.5 -90 0 -80 mesh 7.9 2.78 985 \text{VPHAG00322 Auger 288496 677834 427.9 0.5 -90 0 -80 mesh 7.9 2.78 985 \text{VPHAG00322 Auger 288590 677834 427.2 0.5 -90 0 -80 mesh 7.9 2.79 985 \text{VPHAG00323 Auger 288590 677834 427.5 1.5 -90 0 -80 mesh 7.9 2.28 138 \text{VPHAG00323 Auger 288590 677834 427.5 1.5 -90 0 -80 mesh 7.9 2.28 138 \text{VPHAG00332 Auger 288590 677834 427.5 1.5 -90 0 -80 mesh 7.9 2.28 138 \text{VPHAG00332 Auger 288590 677834 427.5 1.5 -90 0 -80 mesh 7.9 2.28 138 \text{VPHAG00332 Auger 288590 677834 427.5 1.5 -90 0 -80 mesh 7.9 2.88 143 \text{VPHAG00332 Auger 288590 677834 427.5 1.5 -90 0 -80 mesh 7.9 2.													
\text{VPHAG00300} Auger 288486 677728 427.3 1.5 -90 0 -80 mesh 4.1 3.06 M329 \text{VPHAG00300} Auger 288474 677727 427.9 1.5 -90 0 -80 mesh 4.4 2.83 M374 \text{VPHAG00300} Auger 288474 677727 427.9 1.5 -90 0 -80 mesh 6.2 2.72 1088 \text{VPHAG00301} Auger 288474 677727 427.9 1.5 -90 0 -80 mesh 6.2 2.72 1088 \text{VPHAG00301} Auger 288474 677727 427.9 1.5 -90 0 -80 mesh 3.3 2.78 127.1 838 \text{VPHAG00301} Auger 288474 677728 427.9 1.5 -90 0 -80 mesh 3.3 2.78 2.91 838 \text{VPHAG00301} Auger 288474 677728 427.9 1.5 -90 0 -80 mesh 4.3 2.8 879 \text{VPHAG00301} Auger 288394 677728 427.9 0.5 -90 0 -80 mesh 1.5 2.0 1.8 1879 \text{VPHAG00301} Auger 288394 677728 427.9 0.5 -90 0 -80 mesh 1.5 2.0 1.5 1877 \text{VPHAG00301} Auger 288494 677728 427.2 0.5 -90 0 -80 mesh 1.5 2.0 1877 VPHAG00314 Auger 288494 677728 427.2 0.5 -90 0 -80 mesh 1.5 2.0 1877 \text{VPHAG00317 Auger 288494 677835 427.2 0.5 -90 0 -80 mesh 1.5 2.0 1877 \text{VPHAG00317 Auger 288494 677835 427.2 0.5 -90 0 -80 mesh 1.5 2.0 1877 \text{VPHAG00317 Auger 288494 677835 427.2 0.5 -90 0 -80 mesh 1.5 2.6 2.5 1877 \text{VPHAG00317 Auger 288494 677835 427.2 0.5 -90 0 -80 mesh 1.5 2.6 2.0 878 \text{VPHAG00319 Auger 288494 677831 427.9 0.5 -90 0 -80 mesh 1.5 2.6 2.0 878 \text{VPHAG00319 Auger 288494 677831 427.2 0.5 -90 0 -80 mesh 1.5 2.2 2.7 878 \text{VPHAG00321 Auger 28850 677831 427.2 0.5 -90 0 -80 mesh 1.5 2.2 2.7 888 \text{VPHAG00321 Auger 28850 677831 427.2 0.5 -90 0 -80 mesh 1.5 2.2 2.7 885 \text{VPHAG00323 Auger 28850 677831 427.2 0.5 -90 0 -80 mesh 1.4 2.8 2.0 2.0 878 \text{VPHAG00323 Auger 28850 677831 427.7 1.5 -90 0 -80 mesh 1.4 9 2.4 2.9 665 \text{VPHAG00323 Auger 28850 677832 427.7 1.5 -90 0 -80 mesh 1.4 9 2.4 2.9 665 \text{VPHAG00323 Auger 28850 677831 427.6 1.5 -90 0 -80 mesh 1.4 9 2.4 2.9 665 \text{VPHAG00323 Auger 28850 677831 427.8 1.5 -90 0 -80 mesh 1.4 9 2.8 18 18 18 18 18 18 18 18 18 18 18 18 18						_							
VPHAGG0300	VFHAG00307			6717729		1.5		0			2.89		
VPHAGG00310 Auger 288454 677727 428 15 -90 0 -80 mesh 8.2 2.72 1088 VPHAGG00311 Auger 288454 6777231 428.8 1 -90 0 -80 mesh 3.3 2.78 971 871 872													
VPHAGO031 Auger 288494 67773 488.6 1 -90 0 -80 mesh 3.3 2.78 971		_											
VPHAGG0310 Auger 288384 677728 427.9 0.5 -90 0 -80 mesh 4.3 2.8 879 VPHAGG0314 Auger 284388 677633 428.3 0.5 -90 0 -80 mesh 4.5 2.65 193 197				6717731					-80 mesh	3.3	2.78		
VPHAGG00314 Auger 288398 677633 428.3 0.5 -90 0 -80 mesh 15 2.66 193 193 194 1								_					
VPHAGG00312 Auger 288456 677635 427.4 0.5 -90 0 -80 mesh 4.9 2.37 977 VPHAGG00317 Auger 288454 677635 427.4 0.5 -90 0 -80 mesh 2.4 2.02 878 878 VPHAGG0039 Auger 288454 677635 427.9 0.5 -90 0 -80 mesh 8.5 2.50 728 VPHAGG0039 Auger 288454 677631 427.8 1 -90 0 -80 mesh 6.4 2.83 599 VPHAGG0031 Auger 288553 677633 427.2 0.5 -90 0 -80 mesh 2.4 2.90 865 VPHAGG00322 Auger 288553 677633 427.2 0.5 -90 0 -80 mesh 2.4 2.90 965 VPHAGG00323 Auger 288550 677632 427.7 0.5 -90 0 -80 mesh 2.4 2.90 965 VPHAGG00323 Auger 288550 677632 427.7 15 -90 0 -80 mesh 2.4 2.67 1056 105													
\text{VPHAG00337} \text{ Auger } 288544 \text{ 6777635} \text{ 427.4} \text{ 0.5} \text{ -80} \text{ 0.0} \text{ -80 mesh } 2.4 \text{ 2.02} \text{ 878} \text{ VPHAG00393} \text{ Auger } 288447 \text{ 677631} \text{ 427.8} \text{ 1.0} \text{ -90} \text{ 0.0} \text{ -80 mesh } 8.5 \text{ 2.59} \text{ 728} \text{ 728} \text{ 1.0} \text{ -90} \text{ 0.0} \text{ -80 mesh } 8.5 \text{ 2.59} \text{ 728} \text{ 528} \text{ 598} \text{ VPHAG00332} \text{ Auger } 288513 \text{ 677633} \text{ 427.2} \text{ 0.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 7.8 \text{ 2.79} \text{ 885} \text{ 1.05} \text{ -90} \text{ 0.5} \text{ -80 mesh } 7.8 \text{ 2.79} \text{ 885} \text{ 1.77633} \text{ 427.2} \text{ 0.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 7.8 \text{ 2.79} \text{ 685} \text{ 677632} \text{ 427.7} \text{ 1.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 7.8 \text{ 2.79} \text{ 695} \text{ 677632} \text{ 427.7} \text{ 1.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 7.7 \text{ 2.50} \text{ 1275} \text{ 1275} \text{ 1.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 7.7 \text{ 2.89} \text{ 1275} \text{ 1275} \text{ 1.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 7.7 \text{ 2.99} \text{ 2.89} \text{ 1235} \text{ 1275} \text{ 1.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 7.7 \text{ 2.90} \text{ 2.89} \text{ 1235} \text{ 1235} \text{ 1275} \text{ 1.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 7.7 \text{ 2.90} \text{ 2.89} \text{ 1235} \text{ 1235} \text{ 1275} \text{ 1.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 8.7 \text{ 2.80} \text{ 1235} \text{ 1235} \text{ 1275} \text{ 1.5} \text{ -90} \text{ 0.0} \text{ -80 mesh } 8.7 \text{ 2.80} \text{ 1235} 12													
\text{VFHAGG0318} Auger 268477 677637 427.9 0.5 -90 0 -80 mesh 0.5 2.50 728 \text{VFHAGG0318} Auger 268494 677631 427.8 1 -90 0 -80 mesh 0.4 2.63 569 \text{VFHAGG0319} Auger 26850 677633 427.2 0.5 -90 0 -80 mesh 0.4 2.63 569 \text{VFHAGG0322} Auger 26850 677633 427.2 0.5 -90 0 -80 mesh 0.4 2.69 26850 \text{VFHAGG0323} Auger 26850 677632 427.7 15 -90 0 -80 mesh 2.4 2.90 685 \text{VFHAGG0323} Auger 26850 677632 427.7 15 -90 0 -80 mesh 3.6 2.55 1075 \text{VFHAGG0323} Auger 26850 677631 427.6 15 -90 0 -80 mesh 3.6 2.55 1075 \text{VFHAGG0323} Auger 26860 677631 427.6 15 -90 0 -80 mesh 4.9 2.25 1233 \text{VFHAGG0323} Auger 26860 677631 427.6 15 -90 0 -80 mesh 6.5 7 3.08 165 \text{VFHAGG0323} Auger 26860 677631 427.6 15 -90 0 -80 mesh 6.5 7 3.08 165 \text{VFHAGG0323} Auger 26860 677631 427.5 15 -90 0 -80 mesh 8.4 2.86 167 \text{VFHAGG0323} Auger 26860 677638 427.7 1 -90 0 -80 mesh 8.4 2.86 167 \text{VFHAGG0323} Auger 26860 677638 427.7 1 -90 0 -80 mesh 8.4 2.86 167 \text{VFHAGG0323} Auger 26860 677638 427.7 1 -90 0 -80 mesh 9.9 2.88 1435 \text{VFHAGG0333} Auger 26860 677632 427.2 1 -90 0 -80 mesh 5.4 2.50 186 \text{VFHAGG0333} Auger 26860 677632 427.2 1 -90 0 -80 mesh 5.4 2.50 186 \text{VFHAGG0333} Auger 26860 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 26871 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 26871 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 26871 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 26871 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 26871 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 26871 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 268715 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 268715 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 268715 677632 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{VFHAGG0333} Auger 268715 677632 427.2 1 -90 0 -80 mesh 5.5 3.38 135 \text{VFHAGG0333} Auger 268715 67763													
\text{VFHAGG0322} Auger 28851 677633 427.2 0.5 -90 0 -80 mesh 7.8 2.79 885 \text{VFHAGG0322} Auger 28852 677630 427.2 0.5 -90 0 -80 mesh 2.4 2.99 665 \text{VFHAGG0322} Auger 28850 677632 427.7 15 -90 0 -80 mesh 4.7 2.67 1056 \text{VFHAGG0323} Auger 28850 677632 427.5 15 -90 0 -80 mesh 3.6 2.55 1075 \text{VFHAGG0323} Auger 28858 677631 427.5 15 -90 0 -80 mesh 4.9 2.55 1075 \text{VFHAGG0323} Auger 28858 677631 427.6 15 -90 0 -80 mesh 4.9 2.55 1075 \text{VFHAGG0323} Auger 28863 677631 427.6 15 -90 0 -80 mesh 6.7 3.06 1233 \text{VFHAGG0323} Auger 28863 677631 427.5 15 -90 0 -80 mesh 6.7 3.06 1233 \text{VFHAGG0323} Auger 28863 677631 427.5 15 -90 0 -80 mesh 6.7 3.06 1233 \text{VFHAGG0323} Auger 28863 677638 428.9 15 -90 0 -80 mesh 6.7 3.06 1074 \text{VFHAGG0323} Auger 28863 677638 427.7 1 9.90 0 -80 mesh 6.9 2.88 1435 \text{VFHAGG0333} Auger 28863 677638 427.1 1 -90 0 -80 mesh 6.9 2.88 1435 \text{VFHAGG0333} Auger 28867 677637 427 1 9.90 0 -80 mesh 6.2 3.06 960 \text{VFHAGG0333} Auger 28871 677638 427.2 1 9.90 0 -80 mesh 5.4 3.06 960 \text{VFHAGG0333} Auger 28871 677638 427.2 1 9.90 0 -80 mesh 5.4 3.06 960 \text{VFHAGG0333} Auger 28871 677638 427.2 1 9.90 0 -80 mesh 5.4 3.06 960 \text{VFHAGG0333} Auger 28871 677638 426.7 1 9.90 0 -80 mesh 9.3 5 3.37 1251 \text{VFHAGG0333} Auger 28871 677638 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.37 1251 \text{VFHAGG0333} Auger 28871 677638 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.37 1251 \text{VFHAGG0333} Auger 28871 677638 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.37 1251 \text{VFHAGG0333} Auger 288715 677635 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.37 1251 \text{VFHAGG0333} Auger 288716 677635 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.37 1251 \text{VFHAGG0333} Auger 288716 677635 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.37 1251 \text{VFHAGG0333} Auger 288716 677635 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.38 188 \text{S8} Auger 288716 677635 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.38 188 \text{S8} Auger 288716 677635 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.38 188 \text{S8} Auger 288716 677635 426.7 1 9.90 0 -80 mesh 9.9 3.5 3.38 188 S	VFHAG00318	_											
\text{VPMAG00322} Auger 268532 677630 427.2 0.5 -90 0 -80 mesh 2.4 2.90 665 \text{VPMAG00323} Auger 26850 677632 427.7 15 -90 0 -80 mesh 4.7 2.67 1056 \text{0.5} 10776400324 \text{0.5} 1077634 127.5 15 -90 0 -80 mesh 4.7 2.67 1056 \text{0.5} 10776400325 \text{0.5} 1076 1077634 127.5 15 -90 0 -80 mesh 3.6 2.55 1075 \text{0.5} 10776400325 \text{0.5} 1076 1077634 127.6 15 -90 0 -80 mesh 4.0 2.95 1273 \text{0.5} 10776400325 \text{0.5} 1076 1077631 427.6 15 -90 0 -80 mesh 4.0 2.95 1233 \text{0.5} 10776400327 \text{0.5} 1097 10776400327 \text{0.5} 1097 10776400327 \text{0.5} 1097 1077638 427.7 1 -90 0 -80 mesh 8.4 2.86 1174 \text{0.5} 1077638 427.7 1 -90 0 -80 mesh 6.9 2.88 1435 \text{0.5} 1077638 427.7 1 -90 0 -80 mesh 6.9 2.88 1435 \text{0.5} 1077638 427.7 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.7 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.7 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.7 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.7 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.5 3.37 1251 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh 5.4 2.60 160 \text{0.5} 1077638 427.2 1 -90 0 -80 mesh		_											
\text{VFHAGG0323} Auger 288550 677632 427.7 1.5 -90 0 -80 mesh 4.7 2.67 558 \text{VFHAGG03234} Auger 288570 677634 427.5 1.5 -90 0 -80 mesh 3.6 2.55 1075 \text{VFHAGG03234} Auger 28858 677631 427.6 1.5 -90 0 -80 mesh 4.9 2.55 1075 \text{VFHAGG0325} Auger 288612 677631 427.5 1.5 -90 0 -80 mesh 4.9 2.55 1233 \text{VFHAGG0327} Auger 288613 677638 426.9 1.5 -90 0 -80 mesh 6.7 3.08 195 \text{VFHAGG0327} Auger 288613 677638 426.9 1.5 -90 0 -80 mesh 8.4 2.88 193 \text{VFHAGG0327} Auger 28863 677638 426.9 1.5 -90 0 -80 mesh 6.9 2.88 193 \text{VFHAGG0327} Auger 288637 677638 427.7 1 1 -90 0 -80 mesh 6.9 2.88 193 \text{VFHAGG0323} Auger 288678 677638 427.1 1 -90 0 -80 mesh 6.2 3.8 198 \text{VFHAGG0333} Auger 288678 677638 427.1 1 -90 0 -80 mesh 6.2 3.5 198 \text{VFHAGG0333} Auger 288678 677638 427.1 1 -90 0 -80 mesh 5.4 3.66 90 \text{VFHAGG0333} Auger 28871 677632 427. 1 -90 0 -80 mesh 5.4 3.6 90 \text{VFHAGG0333} Auger 28871 677632 427. 1 -90 0 -80 mesh 5.4 3.6 90 \text{VFHAGG0333} Auger 28871 677635 428.7 1 -90 0 -80 mesh 19 3.7 820 \text{VFHAGG0333} Auger 28875 677635 428.7 1 -90 0 -80 mesh 19 3.7 820 \text{VFHAGG0333} Auger 28875 677635 428.7 1 -90 0 -80 mesh 19 3.7 820 \text{VFHAGG0333} Auger 28875 677635 428.7 1 -90 0 -80 mesh 19 3.7 820 \text{VFHAGG0333} Auger 28875 677635 428.7 1 -90 0 -80 mesh 2.2 3.8 688													
VFHAG003228 Auger 288588 677631 427.6 1.5 -90 0 -80 mesh 4.8 2.56 233 VFHAG003226 Auger 288682 677031 427.5 1.5 -90 0 -80 mesh 6.7 3.08 186 157 1.08 1.09 0 -80 mesh 6.7 3.08 186 1174 1.00 0 -80 mesh 6.7 3.08 1187 1187 1.00 0 -80 mesh 6.2 2.88 1174 1.00 0 -80 mesh 6.0 2.88 1435 1435 1.00 0 -80 mesh 6.0 2.83 1435 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						_							
VPHAG00326 Auger 288612 677631 427.5 1.5 -90 0 -80 mesh 6.7 3.08 195 VPHAG00327 Auger 288631 677638 428.9 1.5 -90 0 -80 mesh 8.4 2.88 195 197 197 197 197 197 197 197 197 197 197						_							
\text{VFHAG00327} Auger 288631 677638 426.9 15 -90 0 -80 mesh 8.4 2.86 1174 \\ \text{VFHAG00328} Auger 28663 677636 427.7 1 90 0 -80 mesh 6.9 2.88 1455 \\ \text{VFHAG00328} Auger 28663 677636 427.1 1 90 0 -80 mesh 6.9 2.88 1455 \\ \text{VFHAG00330} Auger 28676 677638 427.1 1 90 0 -80 mesh 6.2 83 188 \\ \text{VFHAG00330} Auger 286867 677638 427.1 1 90 0 -80 mesh 5.4 3.06 960 \\ \text{VFHAG00331} Auger 28671 677632 427.2 1 90 0 -80 mesh 3.5 3.37 1251 \\ \text{VFHAG00331} Auger 26871 677632 427.2 1 90 0 -80 mesh 9.5 3.5 3.37 1251 \\ \text{VFHAG00333} Auger 26871 677632 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 0 -80 mesh 2.2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 0 -80 mesh 2.2 2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 0 -80 mesh 2.2 2 3.8 858 \\ \text{VFHAG00333} Auger 268752 677635 428.2 0.5 90 0 0 -80 mesh 2.2 2 3.8 858 \\ \text{VFHAG00333} Auger 268752 6													
VPHAG003329 Auger 288678 6717638 427.1 1 -90 0 -80 mesh 6 2.83 1188 VPHAG00330 Auger 288697 677627 427 1 -90 0 -80 mesh 5.4 3.06 900 VPHAG0331 Auger 288716 6717632 427.2 1 -90 0 -80 mesh 3.5 3.7 1251 VPHAG0333 Auger 288715 6717632 428.7 1 -90 0 -80 mesh 3.5 3.7 1251 VPHAG0333 Auger 288752 6717632 428.7 1 -90 0 -80 mesh 19 3.7 820 VPHAG03333 Auger 288752 6717632 428.2 0.5 -90 0 -80 mesh 2.2 3.8 858	VFHAG00327				426.9	1.5		0			2.86	1174	
VPHAGG00330 Auger 288907 677627 427 1 -90 0 -80 mesh 5.4 3.06 960 VPHAGG00331 Auger 288711 677632 427.2 1 -90 0 -80 mesh 3.5 3.37 1251 VPHAGG0033 Auger 28871 677632 427.2 1 -90 0 -80 mesh 3.5 3.37 1251 VPHAGG0033 Auger 28875 677635 487.7 1 -90 0 -80 mesh 19 3.7 852 VPHAGG0033 Auger 28875 677635 428.2 0.5 90 0 -80 mesh 2.2 3.6 858		_											
VFHAG00331 Auger 268711 677632 427.2 1 -90 0 -80 mesh 3.5 3.37 1251 VFHAG00332 Auger 268735 677635 426.7 1 -90 0 -80 mesh 19 3.7 820 VFHAG03333 Auger 268752 677632 426.2 0.5 -90 0 -80 mesh 2.2 3.6 858													
VFHAG00333 Auger 268752 6717632 426.2 0.5 -90 0 -80 mesh 2.2 3.6 858	VFHAG00331	Auger	268711	6717632	427.2	-1	-90	0	-80 mesh	3.5	3.37	1251	
VFHAG00334 Auger 268771 6717637 425.9 1.5 -90 0 -80 mesh 6.3 3.22 1394													
VFHAG00335 Auger 268794 6717626 426.4 1 -90 0 -80 mesh 3.9 3.44 975													
VFHAG00336 Auger 288808 6717635 426.1 1 -90 0 -80 mesh 4.8 3.52 1208	VFHAG00336	Auger	268808	6717635	426.1	1	-90	0	-80 mesh	4.8	3.52	1206	

Hole ID	Hole Type	East (m) MGA94 Zone 51	North (m) MGA94 Zone 51	RL	End of Hole (m)	Δzi (°) Din (°)		Target	Comments
VKRC0118	RC	269209	6715386	471	120 270 -5		-50	Bifrost Target	Southern Traverse
VKRC0119	RC	269141	6715386	471	120	270	-50	Bifrost Target	Southern Traverse
VKRC0120	RC	269075	6715387	471	120	270	-50	Bifrost Target	Southern Traverse
VKRC0121	RC	269001	6715377	471	120	270	-50	Bifrost Target	Southern Traverse
VKRC0122	RC	268936	6715388	471	120	270	-50	Bifrost Target	Southern Traverse
VKRC0123	RC	268864	6715386	471	102	270	-50	Bifrost Target	Southern Traverse
VKRC0124	RC	268792	6715400	471	120	270	-50	Bifrost Target	Southern Traverse
VKRC0125	RC	268724	6715385	471	120	270	-50	Bifrost Target	Southern Traverse
VKRC0126	RC	268649	6715392	471	120	270	-50	Bifrost Target	Southern Traverse
VKRC0127	RC	268580	6715391	471	120	270	-50	Bifrost Target	Southern Traverse
VKRC0130	RC	269105	6718991	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0131	RC	269036	6718988	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0132	RC	268967	6718989	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0133	RC	268899	6718991	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0134	RC	268828	6718985	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0135	RC	268760	6718993	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0136	RC	268690	6718994	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0137	RC	268624	6718993	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0138	RC	268553	6718993	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0139	RC	268480	6718988	471	120	270	-50	Bifrost Target	Northern Traverse
VKRC0140	RC	268406	6718989	471	126	270	-50	Bifrost Target	Northern Traverse

Hole ID	Depth From (m)	Depth To (m)	Length (m)	Au ppb	Au g/t
VKRC0118	0	4	4	8	0.01
	4	8	4	<5	<0.005
	8 12	12 16	4	<5 <5	<0.005 <0.005
	16	20	4	<5	<0.005
	20	24	4	<5	<0.005
	24 28	28 32	4	<5 <5	<0.005 <0.005
	32	36	4	<5	<0.005
	36	40	4	<5	<0.005
	40 44	44	4	<5 <5	<0.005 <0.005
	48	52	4	<5	<0.005
	52	56	4	<5	<0.005
	56 60	60	4	<5 <5	<0.005
	64	68	4	<5 <5	<0.005 <0.005
	68	72	4	<5	<0.005
	72	76	4	<5	<0.005
	76 80	80 84	4	<5 <5	<0.005 <0.005
	84	88	4	9	0.01
	88	92	4	<5	<0.005
	92	96	4	<5	<0.005
	96	100	4	<5 <5	<0.005 <0.005
	104	108	4	<5	<0.005
	108	112	4	6	0.01
	112	116	4	<5	<0.005
VKRC0119	116	120	4	<5 <5	<0.005 <0.005
- ANOUTH	4	8	4	<5 <5	<0.005
	8	12	4	<5	<0.005
	12	16	4	<5	<0.005
	16 20	20	4	<5 <5	<0.005 <0.005
	24	28	4	10	0.01
	28	32	4	<5	<0.005
	32	36	4	<5	<0.005
	36 40	40 44	4	<5 <5	<0.005 <0.005
	44	48	4	<5	<0.005
	48	52	4	<5	<0.005
	52	56	4	<5 -F	<0.005
	56 60	60 64	4	<5 <5	<0.005 <0.005
	64	68	4	<5	<0.005
	68	72	4	<5	<0.005
	72 76	76 80	4	<5 <5	<0.005 <0.005
	80	81	1	<5	<0.005
	81	82	1	8	0.01
	82 83	83 84	1	<5 9	<0.005
	85	86	1	e <5	<0.005
	86	87	1	<5	<0.005
	87	88	1	<5	<0.005
	88 89	89 90	1	<5 <5	<0.005 <0.005
	90	91	1	20	0.02
	91	92	1	11	0.01
	92	93	1	9	0.01
	93 94	94 95	1	<5 <5	<0.005 <0.005
	95	96	1	<5	<0.005
	96	97	1	<5	<0.005
	97 98	98 99	1	9 <5	0.01 <0.005
	98	100	1	12	0.005
	100	101	1	<5	<0.005
	101	102	1	10	0.01
	102	103	1	<5 <5	<0.005
	103	104	1	7	0.005
	105	106	1	<5	<0.005
	106	107	1	<5	<0.005
	107	108	1	<5	<0.005
	108	109	1	<5 <5	<0.005 <0.005
	110	111	1	<5	<0.005
	111	112	1	<5	<0.005
	112	113 114	1	<5 13	<0.005
	114	115	1	13 <5	<0.005
	115	116	1	<5	<0.005
	116	117	1	<5	<0.005
	117	118 119	1	<5 <5	<0.005 <0.005
	118	119	1	<5 41	<0.005
VKRC0120	0	4	4	6	0.01
	4	8	4	<5	<0.005
	8	12	4	<5 <5	<0.005
	12 16	16 20	4	<5 <5	<0.005 <0.005
	20	24	4	<5	<0.005
	24	28	4	<5	<0.005
	28	32	4	<5 -E	<0.005
	32 36	36 40	4	<5 <5	<0.005
	40	44	4	<5	<0.005

Hole ID	Depth	Depth To	Length (m)	Au ppb	Au g/t				
	From (m)	(m)							
VKRC0120	44	48	4	<5 <5	<0.005				
	48 51	51 52	3	<5 <5	<0.005				
	52	53	1	<5	<0.005				
	53 54	54 55	1	<5 <5	<0.005 <0.005				
	55	56	1	<5 <5	<0.005				
	56	57	1	<5	<0.005				
	57 58	58 59	1	<5 <5	<0.005				
	59	60	1	<5 <5	<0.005				
	60	61	1	<5	<0.005				
	61 62	62 63	1	<5 <5	<0.005 <0.005				
	63	64	1	<5	<0.005				
	64	65	1	<5	<0.005				
	65 66	66 67	1	<5 <5	<0.005				
	67	68	1	<5	<0.005				
	68	69	1	<5	<0.005				
	69 70	70 71	1	<5 11	<0.005				
	71	72	1	11	0.01				
	72	73	1	<5	<0.005				
	73 74	74 75	1	<5 <5	<0.005 <0.005				
	75	76	1	<5	<0.005				
	76	77	1	<5	<0.005				
	77 78	78 79	1	<5 8	<0.005				
	78	79 80	1		<0.005				
	80	81	1	<5	<0.005				
	81 82	82 83	1	8 13	0.01				
	83	84	1	<5	<0.005				
	84	85	1	6	0.01				
	85 86	86 87	1	13 <5	0.01 <0.005				
	87	88	1	<5	<0.005				
	88	89	1	<5	<0.005				
	89 90	90	1	6	0.01				
	91	92	1	<5	<0.005				
	92	93	1	<5	<0.005				
	93 94	94 95	1	<5 <5	<0.005				
	95	96	1	9	0.01				
	96	97	1	<5	<0.005				
	97 98	98 99	1	6 87	0.01				
	99	100	1	16	0.02				
	100	101	1	10	0.01				
	101	102	1	- 8 - < 5	0.01 <0.005				
	103	104	1	<5	<0.005				
	104	105	1	<5	<0.005				
	105 106	106	1	<5 <5	<0.005 <0.005				
	107	108	1	<5	<0.005				
	108	109	1	<5	<0.005				
	109	110	1	<5 6	<0.005				
	111	112	1	6	0.01				
	112	113	1	11	0.01				
	113 114	114 115	1	<5 <5	<0.005				
	115	116	1	5	0.01				
	116 117	117	1	<5 <5	<0.005 <0.005				
	118	119	1	5	0.01				
	119	120	1	13	0.01				
VKRC0121	0	4 8	4	14 <5	0.01 <0.005				
	8	12	4	<5 <5	<0.005				
	12	16	4	22	0.02				
	16 20	20	4	23	0.02				
	24	28	4	51	0.01				
	28	32	4	29	0.03				
	32 36	36 40	4	28 88	0.03				
	40	41	1	6	0.09				
	41	42	1	6	0.01				
	42 43	43 44	1	12	0.01				
	43	44	1	10	0.01				
	45	46	1	8	0.01				
	46	47	1	7	0.01				
	47 48	48 49	1	7	0.01				
	49	50	1	21	0.02				
	50	51	1	18	0.02				
	51 52	52 53	1	24	0.02				
	53	54	1	33	0.03				
	54 55	55 56	1	21 27	0.02				
	55	56	1	30	0.03				
	57	58	1	56	0.06				
	58	59	1	34	0.03				

Hole ID	Depth From (m)	Depth To (m)	Length (m)	Au ppb	Au g/t
VKRC0121	59	60	1	19	0.02
	60 61	61 62	1	8 12	0.01
	62	63	1	10	0.01
	63 64	64 65	1	41	0.04
	65	66	1	6	0.01
	66 67	67 68	1	8 195	0.01
	68	69	1	160	0.16
	69 70	70 71	1	331 243	0.33
	71	72	1	95	0.10
	72 73	73 74	1	26 15	0.03
	74	75	1	15	0.02
	75 76	76 77	1	17 239	0.02
	77	78	1	212	0.21
	78 79	79 80	1	40 16	0.04
	80	81	1	9	0.01
	81 82	82 83	1	<5 <5	<0.005
	83	84	1	<5	<0.005
	84 85	85 86	1	<5 <5	<0.005
	86	86	1	<5 <5	<0.005
	87 88	88 89	1	<5 <5	<0.005 <0.005
	88	90	1	<5 7	<0.005
	90	91	1	7	0.01
	91 92	92 93	1	1682	1.68 0.02
	93	94	1	10	0.01
	94 95	95 96	1	<5 20	<0.005
	96	97	1	16	0.02
	97 98	98 99	1	12	0.01
	99	100	1	<5 .5	<0.005
	100	101	1	<5 <5	<0.005 <0.005
	102	103	1	<5	<0.005
	103	104 105	1	10 <5	0.01 <0.005
	105	106	1	<5	<0.005
	106	107	1	19 <5	0.02 <0.005
	108	109	1	<5	<0.005
	109	110	1	9	0.01
	111	112	1	6 45	0.01
	112 113	113 114	1	160	0.05
	114	115	1	113	0.11
	115 116	116	1	231 93	0.23
	117	118 119	1	32 6	0.03
	119	120	1	<5	<0.005
VKRC0122	0	4 8	4	11	0.01
	8	12	4	9	0.01
	12 16	16 20	4	6	0.01
	16 20	20	4	12	0.01
	24 28	28 32	4	9	0.01
	32	32	4	7	0.01
	36 37	37 38	1	8	0.01
	37	38	1	7	0.01
	39 40	40 41	1	14 7	0.01
	41	41	1	10	0.01
	42 43	43 44	1	10	0.01
	44	45	1	8	0.01
	45 46	46 47	1	7	0.01
	47	48	1	9	0.01
	48 49	49 50	1	<5 15	<0.005
	50	51	1	8	0.02
	51 52	52 53	1	6	0.01
	52	53	1	9 <5	<0.005
	54 55	55 56	1	6 <5	0.01
	55 56	56 57	1	<5 6	<0.005 0.01
	57	58	1	6	0.01
	58 59	59 60	1	7	0.01
	60	61	1	6	0.01
	61 62	62	1	9	0.01
	63	64	1	<5	<0.005
	64 65	65 66	1	<5 7	<0.005

11-1-15	Depth	Depth To		Aurent	A /a	11-1-15	Depth	Depth To		A mark	A /a	11-1-15	Depth	Depth To	1 th ()	A.,	A /A
Hole ID	From (m)	(m)	Length (m)	Au ppb	Au g/t	Hole ID	From (m)	(m)	Length (m)	Au ppb	Au g/t	Hole ID	From (m)	(m)	Length (m)	Au ppb	Au g/t
VKRC0122	66	67	1	<5	<0.005	VKRC012	4 28	32	4	6	0.01	VKRC0125	83	84	1	7	0.01
	67	68	1	<5	<0.005		32	36	4	8	0.01		84	85	1	<5	<0.005 <0.005
	68 69	69 70	1	8 18	0.01		36 37	37	1	14	0.01		85 86	86 87	1	<5 <5	<0.005
	70	71	1	7	0.01		38	39	1	<5	<0.005		87	88	1	<5	<0.005
	71 72	72 73	1	6 <5	0.01 <0.005		39 40	40	1	6 5	0.01		88 89	89 90	1	<5 <5	<0.005
	73	74	1	<5	<0.005		41	42	1	6	0.01		90	91	1	<5	<0.005
	74	75	1	<5	<0.005		42	43	1	<5	<0.005		91	92	1	7	0.01
	75 76	76 77	1	<5 12	<0.005		43	44	1	12 23	0.01		92 93	93 94	1	6 <5	0.01 <0.005
	77	78	1	<5	<0.005		45	46	1	9	0.02		94	95	1	5	0.01
	78	79	1	12	0.01		46	47	1	6	0.01		95	96	1	14	0.01
	79 80	80 81	1	24 7	0.02		47 48	48 49	1	12 24	0.01		96 97	97 98	1	<5 <5	<0.005 <0.005
	81	82	1	6	0.01		49	50	1	8	0.02		98	99	1	<5 <5	<0.005
	82	83	1	27	0.03		50	51	1	8	0.01		99	100	1	6	0.01
	83 84	84 85	1	<5 <5	<0.005 <0.005		51 52	52 53	1	8	0.01		100	101	1	<5 <5	<0.005
	85	86	1	8	0.01		53	54	1	5	0.01		102	103	1	<5	<0.005
	86	87	1	18	0.02		54	55	1	<5	<0.005		103	104	1	<5	<0.005
	87 88	88 89	1	<5 <5	<0.005 <0.005		55 56	56 57	1	<5 <5	<0.005 <0.005		104	105 106	1	7 30	0.01
	89	90	1	<5	<0.005		57	58	1	<5	<0.005		106	107	1	38	0.04
	90	91	1	<5	<0.005		58	59	1	<5	<0.005		107	108	1	<5	<0.005
	91 92	92 93	1	<5 <5	<0.005 <0.005		59 60	60	1	5 <5	0.01 <0.005		108	109	1	<5 <5	<0.005
	93	94	1	<5	<0.005		61	62	1	6	0.01		110	111	1	<5	<0.005
	94	95	1	<5	<0.005		62	63	1	6	0.01		111	112	1	<5	<0.005
	95 96	96 97	1	<5 6	<0.005		63 64	64 65	1	6 5	0.01		112 113	113 114	1	<5 <5	<0.005
	97	98	1	<5	<0.005		65	66	1	6	0.01		114	115	1	7	0.01
	98	99	1	<5 e	<0.005		66	67	1	8	0.01		115	116	1	9	0.01
	99	100	1	6 22	0.01		67 68	68 69	1	<5 <5	<0.005 <0.005		116 117	117	1	8	0.01
	101	102	1	8	0.01		69	70	1	<5	<0.005		118	119	1	9	0.01
	102	103	1	6	0.01		70	71	1	6	0.01		119	120	1	9	0.01
	103	104	1	10	0.01		71 72	72 73	1	<5 5	<0.005	VKRC0126	0	8	4	7 <5	0.01 <0.005
	105	106	1	<5	<0.005		73	74	1	<5	<0.005		8	12	4	<5	<0.005
	106	107	1	<5	<0.005		74	75	1	6	0.01		12	13	1	6	0.01
	107	108	1	<5 21	<0.005		75 76	76 77	1	6	0.01		13 14	14 15	1	10	0.01
	109	110	1	8	0.01		77	78	1	18	0.02		15	16	1	7	0.01
	110	111	1	9	0.01		78	79	1	36	0.04		16	17	1	<5	<0.005
	111	112 113	1	8	0.01		79 80	80	1	29 23	0.03		17	18 19	1	<5 <5	<0.005
	113	114	1	15	0.02		81	82	1	8	0.01		19	20	1	8	0.01
	114	115	1	<5	<0.005		82	83	1	12	0.01		20	21	1	<5	<0.005
	115 116	116 117	1	<5 <5	<0.005 <0.005		83 84	84 85	1	6 9	0.01		21	22 23	1	<5 6	<0.005
	117	118	1	7	0.01		85	86	1	10	0.01		23	24	1	7	0.01
	118	119	1	5	0.01		86	87	1	13	0.01		24	28	4	9	0.01
VKRC0123	119	120	1 4	9	0.01		87	88	1	13 <5	0.01 <0.005		28	32 33	1	7	0.01
	4	8	4	7	0.01		89	90	1	5	0.01		33	34	1	5	0.01
	8	12	4	7	0.01		90	91	1	<5	<0.005		34	35	1	<5	<0.005
	12 16	16 20	4	<5 6	<0.005		91 92	92 96	4	8 <5	0.01 <0.005		35 36	36 37	1	6 <5	0.01 <0.005
	20	24	4	19	0.02		96	100	4	5	0.01		37	38	1	<5	<0.005
	24 28	28 32	4	10	0.01		100	104	4	12 255	0.01		38 39	39 40	1	<5 <5	<0.005
	32	34	2	7	0.01		104	112	4	191	0.26		40	44	4	<5 <5	<0.005
	35	39	4	6	0.01		112	116	4	33	0.03		44	48	4	9	0.01
	39 43	43 47	4	10 19	0.01	VKRC012	116 5 0	120 4	4	31 6	0.03		48 52	52 56	4	10	0.01
	43	51	4	13	0.02	VICTOU12	4	8	4	<5	<0.005		56	60	4	8	0.01
	51	53	2	13	0.01		8	12	4	<5	<0.005		60	61	1	8	0.01
	53 54	54 55	1	16 20	0.02		12	16 20	4	26 32	0.03		61 62	62 63	1	7	0.01
	55	56	1	15	0.02		20	24	4	6	0.01		63	64	1	7	0.01
	56	57	1	7	0.01		24	28	4	<5	<0.005		64	65	1	15	0.02
	57 58	58 59	1	7	0.01		28 32	32 36	4	<5 <5	<0.005 <0.005	-	65 66	66 67	1	11	0.01
	59	60	1	7	0.01		36	40	4	8	0.01		67	68	1	<5	<0.005
	60	61	1	11	0.01		40	44	4	11	0.01		68	69	1	6	0.01
	61 62	62 63	1	14 12	0.01		44	48 52	4	573 6	0.57	-	69 70	70 71	1	<5 12	<0.005
	63	64	1	12	0.01		52	56	4	7	0.01		71	72	1	6	0.01
	64	65	1	27	0.03		56	60	4	11	0.01		72	73	1	6	0.01
	65 66	66 67	1	13 13	0.01		60 64	64 65	4	8 41	0.01		73 74	74 75	1	8 5	0.01
	67	68	1	13	0.01		65	66	1	315	0.32		75	76	1	6	0.01
	68 69	69 73	1 4	10	0.01		66 67	67 68	1	7 9	0.01	-	76 80	80 84	4	7	0.01
	69 73	73	4	11	0.01		67	68	1	9 <5	<0.005		80	88	4	9	0.01
	77	81	4	8	0.01		69	70	1	7	0.01		88	92	4	7	0.01
	81 85	85 89	4	22 <5	0.02 <0.005		70 71	71 72	1	12 48	0.01	-	92 96	96 97	4	12 9	0.01
	85 89	93	4	<5 <5	<0.005		71	72	1	48 <5	<0.005		96	97	1	9 <5	<0.005
	93	97	4	<5	<0.005		73	74	1	6	0.01		98	99	1	20	0.02
	97	101	4	<5 6	<0.005		74	75 76	1	<5 5	<0.005		99	100	1	34 <5	0.03 <0.005
VKRC0124	101	102 4	4	7	0.01		75 76	76 77	1	7	0.01		100	101	1	<5 <5	<0.005
	4	8	4	6	0.01		77	78	1	5	0.01		102	103	1	9	0.01
	8 12	12 16	4	8 <5	0.01 <0.005		78 79	79 80	1	<5 6	<0.005	-	103	104 105	1	<5 <5	<0.005 <0.005
	12	20	4	<5 <5	<0.005		79	80	1	9	0.01		104	105	1	<5 7	<0.005
	20	24	4	12	0.01		81	82	1	8	0.01		106	107	1	<5	<0.005
	24	28	4	5	0.01		82	83	1	6	0.01		107	108	1	<5	< 0.005

Hole ID	Depth From (m)	Depth To (m)	Length (m)	Au ppb	Au g/t
VKRC0126	108	109	1	<5	<0.005
	109	110	1	<5	<0.005
	110	111	1	<5 <5	<0.005
	112	113	1	<5 <5	<0.005
	113	114	1	<5	<0.005
	114	115	1	<5	<0.005
	115	116	1	<5	<0.005
	116	117	1	<5	<0.005
	117	118	1	<5	<0.005
	118	119	1	8	0.01
	119	120	1	<5	<0.005
KRC0127	0 4	8	4	8	0.01
	8	12	4	6	0.01
	12	16	4	6	0.01
	16	20	4	9	0.01
	20	24	4	6	0.01
	24	28	4	6	0.01
	28	32	4	10	0.01
	32	36	4	8	0.01
	36	40	4	8	0.01
	40	44	4	7	0.01
	48	48 52	4	5	0.01
	52	56	4	<5	< 0.005
	56	60	4	8	0.01
	60	64	4	<5	<0.005
	64	68	4	<5	<0.005
	68	72	4	<5	<0.005
_	72	76	4	14	0.01
	76	80	4	<5	<0.005
	80	84	4	<5 .£	<0.005
	84 88	88 92	4	<5 8	<0.005
	92	92	4	8	0.01
	96	100	4	5	0.01
	100	104	4	8	0.01
	104	108	4	<5	<0.005
	108	112	4	<5	<0.005
	112	116	4	<5	<0.005
	116	120	4	10	0.01
KRC0130	0	4	4	8	0.01
	4	8	4	<5	<0.005
	8 12	12	4	<5 <5	<0.005
	16	20	4	<5	<0.005
	20	24	4	<5	<0.005
	24	28	4	<5	<0.005
	28	32	4	<5	<0.005
	32	36	4	<5	<0.005
	36	40	4	<5	<0.005
	40	44	4	<5 <5	<0.005
	48	52	4	<5 <5	<0.005
	52	56	4	<5	<0.005
	56	57	1	10	0.01
	57	58	1	23	0.02
	58	59	1	<5	<0.005
	59	60	1	1214	1.21
	60	61	1	11	0.01
	61	62	1	7	0.01
	62 63	63 64	1	6	0.01
	64	65	1	<5	0.01 <0.005
	65	66	1	6	0.01
	66	67	1	15	0.02
	67	68	1	<5	<0.005
	68	69	1	<5	<0.005
	69	70	1	<5	<0.005
	70	71	1	13	0.01
	71 72	72 73	1	14 <5	0.01 <0.005
	72	73	4	<5 <5	<0.005
	77	81	4	<5 <5	<0.005
	81	85	4	<5 <5	<0.005
	85	89	4	<5	<0.005
	89	93	4	14	0.01
	93	97	4	52	0.05
	97	101	4	62	0.06
	101	102	1	<5	<0.005
	102	103	1	13	0.01
	103	104	1	<5 <5	<0.005
	104	105	1	<5 <5	<0.005
	106	106	1	34	0.005
	107	108	1	7	0.03
	108	109	1	<5	<0.005
	109	110	1	10	0.01
	110	111	1	7	0.01
	111	112	1	<5	<0.005
	112	113	1	<5	<0.005
	113	114	1	<5	<0.005
	114	115	1	<5	<0.005
	115	116	1	<5	<0.005
	116	117	1	<5 <5	<0.005
	447	440			
	117	118	1		
	117 118 119	118 119 120	1 1	<5 <5	<0.005 <0.005

Hole ID	Depth From (m)	Depth To (m)	Length (m)	Au ppb	Au g/t
VKRC0131	4	8	4	6	0.01
	12	12	4	<5 <5	<0.005 <0.005
	16	20	4	<5	<0.005
	20	24	4	33	0.03
	28	32	4	16	0.02
	32 36	36 40	4	6 <5	0.01 <0.005
	40	44	4	<5 <5	<0.005
	44	48	4	<5	<0.005
	48	52	4	13	0.01
	52 56	56 60	4	<5 <5	<0.005 <0.005
	60	64	4	<5	<0.005
	64 68	68 72	4	<5 <5	<0.005 <0.005
	72	76	4	<5 <5	<0.005
	76	80	4	<5	<0.005
	80 84	84 85	1	<5 12	<0.005
	85	86	1	<5	<0.005
	86	87	1	5	0.01
	87	88	1	<5 <5	<0.005
	88 89	89 93	4	<5 <5	<0.005 <0.005
	93	97	4	<5	<0.005
	97 101	101 105	4	<5 <5	<0.005 <0.005
	101	109	4	<5 <5	<0.005
	109	113	4	<5	<0.005
	113	117	4	<5 <5	<0.005
VKRC0132	0	120	4	<5 <5	<0.005
	4	8	4	<5	<0.005
	8	12	4	<5 <5	<0.005
	12	16	4	<5 <5	<0.005
	20	24	4	<5	<0.005
	24	28	4	<5	<0.005
	28 29	29 30	1	<5 0	<0.005
	30	34	4	<5	<0.005
	34	38	4	<5	<0.005
	38 41	41	3	<5 8	<0.005
	41	43	1	27	0.01
•	43	44	1	19	0.02
	44 45	45 49	1 4	- 8 <5	0.01 <0.005
	49	53	4	<5 <5	<0.005
	53	57	4	<5	<0.005
	57 61	61 65	4	<5 <5	<0.005
	65	69	4	<5	<0.005
	69	73	4	<5	<0.005
	73 77	77 81	4	<5 <5	<0.005
	81	85	4	<5 <5	<0.005
	85	89	4	<5	<0.005
	89 90	90	1	<5 <5	<0.005
	91	91	1	<5 <5	<0.005
	92	93	1	<5	<0.005
	93 94	94 95	1	<5 <5	<0.005
	95	96	1	<5 <5	<0.005
	96	97	1	<5	<0.005
	97	101	4	<5 <5	<0.005
	101	102	1	<5 <5	<0.005
	103	104	1	7	0.01
	104	105 106	1	<5 <5	<0.005
	105	106	1	<5 <5	<0.005
	107	108	1	<5	<0.005
	108	109	1	<5 5	<0.005
	109	110	1	5 <5	<0.005
	111	112	1	6	0.01
	112	113	1	<5 .£	<0.005
	113 114	114	1	<5 <5	<0.005 <0.005
	115	116	1	5	0.01
	116	117	1	<5	<0.005
	117	118 119	1	<5 <5	<0.005
	119	120	1	<5 <5	<0.005
VKRC0133	0	4	4	<5	<0.005
	4	8	4	5	0.01
	12	12	4	<5 <5	<0.005 <0.005
	16	20	4	<5	<0.005
	20	24	4	6	0.01
	24	28 32	4	22 <5	<0.005
	32	36	4	<5	<0.005
	36	40	4	<5	<0.005
	40	44	4	<5	< 0.005

Hole ID	Depth From (m)	Depth To (m)	Length (m)	Au ppb	Au g/t
VKRC0133	45	46	1	<5	<0.005
	46	47	1	<5	<0.005
	47 48	48 49	1	<5 <5	<0.005 <0.005
	49 53	53 57	4	<5 <5	<0.005
	57	61	4	<5 <5	<0.005
	61 65	65 69	4	<5 <5	<0.005 <0.005
	69	73	4	<5	<0.005
	73 74	74 75	1	<5 <5	<0.005 <0.005
	75	76	1	<5	<0.005
	76 77	77 78	1	<5 9	<0.005
	78	79	1	<5	<0.005
	79 80	80	1	<5 <5	<0.005 <0.005
	81 82	82 83	1	<5 <5	<0.005 <0.005
	83	84	1	<5	<0.005
	84 85	85 86	1	<5 <5	<0.005
	86	87	1	<5	<0.005
	87 88	88 89	1	<5 <5	<0.005 <0.005
	89	93	4	<5	<0.005
	93 97	97	4	\5 \5	<0.005 <0.005
	101	105	4	<5 <5	<0.005
	109	110	1	<5	<0.005
	110	111	1	<5 <5	<0.005 <0.005
	112	113	1	<5	<0.005
	113	117	3	<5 <5	<0.005
VKRC0134	0	4	4	17	0.02
	8	8 12	4	<5 <5	<0.005 <0.005
	12	16	4	<5	<0.005
	16	20	4	<5 <5	<0.005
	24 28	28 32	4	<5 <5	<0.005 <0.005
	32	36	4	∜5	<0.005
	36 40	40 44	4	9 <5	0.01 <0.005
	44	48	4	<5	<0.005
	48 52	52 56	4	<5 14	<0.005
	56	60	4	<5	<0.005
	60	68	4	<5 <5	<0.005
	68 72	72 73	4	12	0.01
	73	74	1	7	0.01
	74 75	75 76	1	<5 <5	<0.005 <0.005
	76	77	1	<5	<0.005
	77 81	81 85	4	6 <5	0.01 <0.005
	85 89	89 93	4	7	0.01
	93	96	3	·5	<0.005
	99	100	1	<5 <5	<0.005 <0.005
	101	102	1	<5	<0.005
	103	104	1	<5 10	<0.005
	105	106	1	<5	<0.005
	106	107	1	<5 6	<0.005 0.01
	108	109	1	<5 8	<0.005
	111	112	1	<5	<0.005
	112 113	113 114	1	12 <5	0.01 <0.005
	114	115	1	5	0.01
	115	116	1	<5 11	<0.005
	117 118	118 119	1	10	0.01 <0.005
	119	120	1	5	<0.005
VKRC0135	0	4 8	4	<5 5	<0.005
	8	12	4	<5	<0.005
	12	16 20	4	<5 <5	<0.005 <0.005
	20	24	4	7	0.01
	24	28 32	4	<5 <5	<0.005 <0.005
	32	36	4	9	0.01
	36 40	40 44	4	<5 <5	<0.005 <0.005
	44	48 52	4	<5 <5	<0.005
	48 52	52 56	4	<5 <5	<0.005 <0.005
	56	60	4	6 <5	0.01
	60	64	4	<5	<0.005

Hole ID	Depth From (m)	Depth To (m)	Length (m)	Au ppb	Au g/t	Но	le ID	Depth From (m)	Depth To (m)	Length (m)	Au ppb	Au g/t	Hole ID	Depth From (m)	Depth To (m)	Length (m)	Au ppb	Au g/t
VKRC0135	64	67	3	<5	<0.005	VKR	C0137	50	54	4	6	0.01	VKRC0139	36	40	4	<5	<0.005
	67 68	68 72	1 4	<5 5	<0.005			54 58	58	4	<5 5	<0.005		40	44	4	6 <5	0.01 <0.005
	72	76	4	<5	<0.005			62	62	1	8	0.01		48	52	4	<5	<0.005
	76	80	4	<5	<0.005			63	64	1	8	0.01		52	56	4	<5	<0.005
	80 84	84 88	4	11	0.01			64 65	65 66	1	16 6	0.02		56 60	60 64	4	<5 6	<0.005
	88	92	4	<5	<0.005			66	67	1	13	0.01		64	68	4	<5	<0.005
	92	94	2	<5	<0.005			67	68	1	<5	<0.005		68	72	4	<5	<0.005
	96 97	97 98	1	<5 <5	<0.005	-		68 69	69 70	1	<5 <5	<0.005 <0.005		72 76	76 80	4	<5 <5	<0.005 <0.005
	98	99	1	18	0.02			70	71	1	<5	<0.005		80	84	4	<5	<0.005
	99	103	4	18	0.02			71	72	1	<5	<0.005		84	86	2	<5	<0.005
	103 105	105 106	1	<5 <5	<0.005			72 73	73 74	1	<5 <5	<0.005 <0.005		86 87	87 88	1	<5 <5	<0.005 <0.005
	106	107	1	<5	<0.005			74	75	1	<5	<0.005		88	89	1	<5	<0.005
	107	111	4	<5	<0.005			75	76	1	6	0.01		89	93	4	<5	<0.005
	111	115 119	4	<5 19	<0.005	-		76 77	77 78	1	<5 <5	<0.005 <0.005		93 97	97	4	10 <5	0.01 <0.005
	119	120	1	<5	<0.005			78	79	1	<5	<0.005		101	105	4	<5	<0.005
VKRC0136	0	4	4	<5	<0.005			79	83	4	<5	<0.005		105	108	3	<5	<0.005
	8	8 12	4	<5 <5	<0.005 <0.005			83 85	85 86	2	<5 <5	<0.005 <0.005		108	109	1	<5 <5	<0.005 <0.005
	12	16	4	<5	<0.005			86	87	1	<5	<0.005		110	111	1	<5	<0.005
	16	20	4	11	0.01			87	88	1	<5	<0.005		111	112	1	<5	<0.005
	20 24	24	4	<5 <5	<0.005 <0.005			88 92	92 96	4	<5 <5	<0.005 <0.005		112	113 114	1	<5 <5	<0.005 <0.005
	28	32	4	<5 <5	<0.005			96	100	4	<5 <5	<0.005		114	115	1	<5 <5	<0.005
	32	36	4	<5	<0.005			100	104	4	5	0.01		115	116	1	19	0.02
	36 40	40 44	4	<5 <5	<0.005 <0.005			104	108 112	4	<5 <5	<0.005 <0.005		116	117	1	8	0.01
	44	48	4	5	0.005			112	116	4	<5 <5	<0.005		118	119	1	×5	<0.005
	48	52	4	<5	<0.005			116	120	4	<5	<0.005		119	120	1	<5	<0.005
	52	53 54	1 4	<5 <5	<0.005	VKR	C0138	0	4	4	<5 .E	<0.005	VKRC0140	0 4	4	4	6	0.01
	53 54	55	1	<5 <5	<0.005 <0.005			8	8 12	4	<5 76	<0.005		8	8 12	4	<5 <5	<0.005 <0.005
	55	56	1	<5	<0.005			12	16	4	10	0.01		12	16	4	<5	<0.005
	56	60	4	<5	<0.005			16	20	4	<5	<0.005		16	20	4	<5	<0.005
	60	63 64	3	<5 <5	<0.005 <0.005			20 24	24	4	<5 9	<0.005		20	24 28	4	19 <5	0.02 <0.005
	64	65	1	<5	<0.005			28	32	4	6	0.01		28	32	4	<5	<0.005
	65	66 67	1	5 <5	0.01			32	36	4	<5	<0.005		32	36	4	<5	<0.005
	66 67	71	1 4	<5 <5	<0.005 <0.005			36 40	40	4	6 <5	0.01 <0.005		36 40	40	4	<5 <5	<0.005 <0.005
	71	74	3	6	0.01			44	48	4	<5	<0.005		44	48	4	7	0.01
	74 75	75 79	1 4	62 9	0.06			48 52	52	4	<5 <5	<0.005		48	52	4	<5 <5	<0.005
	75	83	4	7	0.01			56	56 60	4	<5 <5	<0.005 <0.005		52 56	56 57	1	<5 <5	<0.005 <0.005
	83	85	2	13	0.01			60	64	4	<5	<0.005		57	58	1	<5	<0.005
	85	86 87	1	7	0.01			64	68	4	<5	<0.005		58	59	1	<5	<0.005
	86 87	88	1	22	0.02			68 72	72 76	4	<5 <5	<0.005 <0.005		59 60	60	1	<5 5	<0.005
	88	89	1	12	0.01			76	80	4	<5	<0.005		61	62	1	19	0.02
	89	90 91	1	10	0.01			80	84	4	<5	<0.005		62	63	1	7 <5	0.01
	90 91	91	1	6 26	0.01			84 87	87 88	3	<5 <5	<0.005 <0.005		63 64	64 65	1	<5 <5	<0.005 <0.005
	92	93	1	6	0.01			88	89	1	<5	<0.005		65	66	1	<5	<0.005
	93 94	94 95	1	6 13	0.01			89 90	90	4	<5	<0.005 <0.005		66	67	1	11 <5	0.01 <0.005
	95	96	1	6	0.01			94	94 95	1	<5 <5	<0.005		67	68 69	1	<5 <5	<0.005
	96	97	1	<5	<0.005			95	96	1	<5	<0.005		69	70	1	<5	<0.005
	97	98	1	9	0.01	\perp		96	97	1	<5 .E	<0.005		70	71	1	<5 -E	<0.005
	98 99	99	1	7 11	0.01	-		97 98	98 99	1	<5 5	<0.005		71 72	72 73	1	<5 <5	<0.005 <0.005
	100	101	1	28	0.03			99	100	1	<5	<0.005		73	74	1	<5	<0.005
	101 102	102	1	52 119	0.05			100	101	1	<5	<0.005		74 75	75 76	1	<5 <5	<0.005
	102	103	1	119 72	0.12			101	102	1	<5 <5	<0.005 <0.005		75 76	76 80	4	<5 <5	<0.005 <0.005
	104	105	1	37	0.04			103	104	1	<5	<0.005		80	84	4	<5	<0.005
	105	106	1	45	0.05	\perp		104	105	1	<5 .E	<0.005		84	87	3	<5 -E	<0.005
	106 107	107	1 4	55 27	0.06	-		105 106	106	1	<5 <5	<0.005 <0.005		87 88	88 89	1	<5 <5	<0.005 <0.005
	111	113	2	24	0.02			107	108	1	<5	<0.005		89	90	1	<5	<0.005
	113	114	1	<5 -E	<0.005			108	109	1	<5	<0.005		90	94	4	<5 -E	<0.005
	114 115	115 119	1 4	<5 <5	<0.005 <0.005	-		109	110	1	6 <5	0.01 <0.005		94	98	4	<5 <5	<0.005 <0.005
	119	120	1	<5	<0.005			111	112	1	<5	<0.005		102	106	4	<5	<0.005
VKRC0137	0	4	4	6	0.01	$-\square$		112	113	1	<5	<0.005		106	110	4	<5	<0.005
-	8	8 12	4	7 15	0.01	-		113 114	114 115	1	<5 <5	<0.005 <0.005		110	114 115	1	<5 <5	<0.005 <0.005
	12	16	4	<5	<0.005			115	116	1	6	0.01		115	116	1	<5	<0.005
	16	20	4	10	0.01			116	117	1	13	0.01		116	117	1	<5	<0.005
	20 24	24 28	4	<5 6	<0.005	VIVE	C0139	117	120	3	47 <5	0.05 <0.005		117	118 119	1	<5 9	<0.005
	28	32	4	<5	<0.005	VKH	OU 139	4	8	4	<5 <5	<0.005		119	123	4	·5	<0.005
	32	35	3	12	0.01			8	12	4	<5	<0.005		123	126	3	<5	<0.005
	35	36	1	7	0.01			12	16	4	8	0.01						
	36 37	37 38	1	<5 <5	<0.005			16 20	20	4	<5 <5	<0.005 <0.005						
	38	42	4	8	0.01			24	28	4	<5	<0.005						
	42	46	4	8	0.01			28	32	4	<5	<0.005						
	46	50	4	10	0.01			32	36	4	<5	<0.005						

APPENDIX 3 - JORC CODE, 2012 EDITION - TABLE 1

JORC Table 1, Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Viking Mines RC Drilling: RC chip samples are collected at the drill rig during the drilling process. Samples are collected from a cone splitter by placing a calico bag across the cone splitter apertures as well as a bucket under the splitter to collect the remainder of the sample. Samples are collected every metre drilled with the reject being placed on the ground and the calico bag being placed on top. Each of the calico sample bags average approximately 3kg in weight. Where 1m samples are selected, the calico bag is collected in a new individually numbered calico bag. For 2m or 4m composite samples, representative scoops are taken from each of the sample piles being sampled and composited into a numbered calico bag. All samples selected for analysis are delivered for assay at Intertek laboratories in Kalgoorlie for 50g fire assay analysis. Viking Mines Auger Drilling: 575 Auger samples (including duplicate samples) were collected on predominantly 20m intervals along E-W lines spaced 100m apart. All samples are shown on the relevant maps in the release and coordinates given in the data tables. Auger drilling depth varied dependent upon ground encountered and ranged from 0.5m to 1.5m depth with an average depth of 1m. Approximately 1.1kg of sample was collected from each location into a calico bag using a scoop.
techniques	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Viking Mines RC Drilling: RC sample recovery is monitored for excessive sample loss and recorded to ensure sample representivity. Viking Mines Auger Drilling: No specific measures were taken to ensure sample representivity.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Viking Mines RC Drilling: RC drilling is used to obtain 1m sample intervals from which the geologist at the rig determines the sample interval to be collected for analysis. 1m samples are collected in areas of interest and either 2m or 4m composite samples are collected using a scoop from the respective sample piles to produce a composite sample for the interval required. On average, approximately 3kg is pulverised by the laboratory to produce a 50g charge for fire assay. Selective 1m samples are collected for multi-element analysis where deemed required. QAQC samples are inserted as described in the relevant section below to monitor for any bias and ensure representivity. Viking Mines Auger Drilling: Industry standard auger drilling was undertaken using a ute mounted auger rig to obtain ~1.1kg samples which were delivered to the lab for sieving to 180 micron, with 250g of the fine fraction subsequently pulverised to 85% passing 75 micron prior to analysis triple quad 53 element (including gold) Aqua Regia ICP-MS analysis.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Viking Mines RC Drilling: Reverse Circulation (RC) drilling is being utilised. Viking Mines Auger Drilling: Auger drilling completed by Gyro Drilling, using a landcruiser ute mounted auger rig.
	Method of recording and assessing core and chip sample recoveries and results assessed.	<u>Viking Mines RC Drilling:</u> RC drilling recoveries are visually estimated and recorded as part of geological logging and sampling process and is estimated as either Good, Fair, Poor or No sample. <u>Viking Mines Auger Drilling:</u> Not applicable
Drill sample recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Viking Mines RC Drilling: RC drilling sample recovery is monitored to ensure representivity of the samples. High pressure air compressors with auxiliary boosters and compressors are used to ensure good sample recovery from the drillhole. Drilling equipment and procedures are suitable to maximise sample recovery and the representative nature of the samples. Sample weights are recorded by the laboratory and reviewed with feedback given to the drillers to ensure consistent sample weights are produced. Viking Mines Auger Drilling: Not applicable

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	RC drilling used standard drilling equipment and procedures that are suitable to maximise sample recovery and the representative nature of the samples. Insufficient data has been collected to establish if any bias is present due to loss/gain of fine/coarse material. <u>Viking Mines Auger Drilling:</u> Not applicable
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Viking Mines RC Drilling: Logging of drill cuttings is undertaken as a first pass indication of potential gold and multi-element anomalism. Samples of rock chips from drill cuttings are logged by the geologist in the field, for parameters including, depth, colour, grain size, weathering, lithology, alteration, rock fabric and the presence of minerals potentially related to mineralisation including quartz and sulphides. Geological logging detail is deemed sufficient to support any appropriate future studies. No geotechnical logging is undertaken on the RC chips/drillholes. Viking Mines Auger Drilling: Auger soil samples were logged for colour.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Viking Mines RC Drilling: Logging of RC chips is qualitative in nature. Photographs are taken of all RC chip trays and spoil piles in the field. Viking Mines Auger Drilling: Not applicable
	The total length and percentage of the relevant intersections logged.	<u>Viking Mines RC Drilling:</u> 100% of RC drilling is logged. <u>Viking Mines Auger Drilling:</u> Not applicable
	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable.
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Viking Mines RC Drilling: All RC samples were collected via a cone splitter to yield predominantly dry sub samples of approximately 3kg from a 1 m downhole sample length. At the laboratory, samples are dried and those <3kg are not split prior to pulverising. If samples are >3kg they are crushed and rotary split at the laboratory to <3kg before being pulverised. Viking Mines Auger Drilling: Samples are dry with scoops taken from the auger sample spoil. 100% of the sample is prepared by the laboratory and sieved at 180 mesh before pulverising 250g of the fine fraction for analysis.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The Competent Person considers the methods and processes as described in previous sections for sample preparation appropriate for this style of mineralisation.
Subsampling techniques and sample preparation	Quality control procedures adopted for all subsampling stages to maximise representivity of samples.	Viking Mines RC Drilling: Standard laboratory procedures adopted for analysis of samples including laboratory duplicate sample analysis and standards. Duplicate sampling has been applied to the RC drill programme (see details below) to measure repeatability of samples. Standards (1:40 samples) and blanks (1:40 samples) are inserted by Viking Mines into the sampling sequence to both check accuracy and precision of the analytical technique and for any contamination in the analytical process. Results are checked on receipt of assay batches and QAQC reports produced by Viking Mines database manager for checking by the geologist. No issues have been identified with the representivity of the samples. Viking Mines Auger Drilling: Standard laboratory procedures adopted for analysis of samples. No QAQC samples were submitted by Viking Mines for the auger programme.
	Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling.	Viking Mines RC Drilling: Viking Mines collects field duplicates via scoop samples from the RC sample spoil at a ratio of 1:50 samples. This results in a general coverage of 1 to 2 samples per hole drilled in the current programme. Laboratory analysis involved the duplicate analysis of certain samples are part of the routine lab QAQC. No issues have been identified within Viking's field duplicates or the duplicate analysis reported by the laboratory. Viking Mines Auger Drilling: Viking Mines collected 1:40 field duplicates. Laboratory analysis involved the duplicate analysis of certain samples are part of the routine lab QAQC and the use of laboratory blanks and standards. No issues were identified or reported by the laboratory.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Viking Mines RC Drilling: Sample sizes are considered appropriate to the grain size of the material being sampled given the style of mineralisation being targeted and are industry standard for gold exploration in the Eastern Goldfields. Viking Mines Auger Drilling: For Viking Mines Auger drilling, a large sample size was selected ~1.1kg to ensure sufficient material was available post sieving.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Viking Mines RC Drilling: Samples are delivered to Intertek laboratories in Kalgoorlie. Fire Assay method (50g charge) for gold. The analytical technique for gold is considered total. Viking Mines Auger Drilling: Samples are delivered to Intertek laboratories in Kalgoorlie. Analysis is completed using Interteks triple quad 53 element (including gold) Aqua Regia ICP-MS analysis which is considered partial. The Competent Person considers the current methods and processes described as appropriate for this style of mineralisation.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Viking Mines RC Drilling: The QAQC procedures (detailed above) for the RC drilling programme consist of the analyses of certified standards (1:40 - 2.5%), duplicates (1:50 - 2%) and blanks (1:40 - 2.5%). Total QAQC samples consists of 7% of the program. Based on review of the analysis results, no issues have been identified. At times sample transcription errors have been identified and resolved (e.g. samples recorded as blanks when assay confirms is a standard). Based on analysis of standard results, appropriate levels of accuracy and precision have been determined. Viking Mines Auger Drilling: Standard laboratory procedures adopted for analysis of samples. No standards or blanks were inserted for the Viking Mines Auger programme and no levels of accuracy or precision have been determined. Laboratory blanks, standards and repeats were used and reported by the laboratory and no issues identified.
	The verification of significant intersections by either independent or alternative company personnel.	No independent verification of sampling has been completed.
	The use of twinned holes.	No twin holes have been completed.
Verification of sampling and assaying	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Viking Mines RC Drilling: Primary data for drill cuttings, including sample number, depth, colour, grain size, weathering, lithology, alteration, rock fabric and the presence of minerals potentially related to mineralisation including quartz and sulphides, are collected in the field and entered into a spreadsheet which is then uploaded into relational (Maxwell Datashed) database. Data is managed using the company's sharepoint system and sample information is recorded in to notebooks at the time of sampling. Viking Mines Auger Drilling: Field collection data is recorded by Gyro Drilling personnel and provided in digital format to Viking Mines. Data is then loaded into Viking Mines Datashed database. GPS coordinates of sample locations is provided by Gyro Drilling and stored in Viking Mines database. The Competent Person considers the process described as appropriate
	Discuss any adjustment to assay data.	No adjustments are made to the data.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Viking Mines RC Drilling: The collar positions have been initially measured using a handheld GPS with an accuracy of +/-5m (z). Upon completion of the drilling programme a differential GPS (accuracy +/- 0.5m) has been used to accurately obtain the collar coordinates. The downhole azimuth and dip are surveyed using an Axis Mining Technology Champ Gyro tool with an accuracy of +/- 1 degree for the azimuth and +/-0.1 degrees for the dip. No MRE is being reported, but the methods being used are deemed suitable for any future MRE estimation. Viking Mines Auger Drilling: Sample coordinates reported to have been collected using handheld GPS. Standard assumed accuracy is +/- 5m in the Z axis with closer accuracy in the X & Y axis.
	Specification of the grid system used.	MGA94 Zone 51S

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	Viking Mines RC Drilling: Handheld GPS is adequate for laying out collar locations and initial collar coordinate pickup. Use of DGPS for final collar pick up is adequate. Viking Mines Auger Drilling: Handheld GPS is adequate for collecting sample locations. Variation to z axis is immaterial as data are reviewed in the X & Y axis.
	Data spacing for reporting of Exploration Results.	Data spacing of drillhole collars is approximately 60m (E-W) to provide a heel to toe coverage across the target area. This ensures that the end of each drillhole is located approximately below the collar of the next drillhole on the drill section. Drill section spacing for the Northern Duplex target ranges from ~810m (northern to north central section) to 1,695m (north central line to south central section) to 1,100m (south central line to southern section). Data spacing between section lines is very large whilst along section lines is sufficient to identify and gold mineralisation.
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable, no resource being reported.
	Whether sample compositing has been applied.	Viking Mines RC Drilling: Sample compositing has occurred during sample collection as described in the previous sections. Sample composites range from no composting (1m samples), 2m composites and 4m composites. For reporting of results, intersections are length weighted composites as reported with the full original data presented in the appendix to this report or disclosed in previous reports where referenced. Viking Mines Auger Drilling: Sample compositing has not occurred.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Viking Mines RC Drilling: RC drilling is predominately perpendicular to the strike of the structural trends observed in the magnetic geophysics (270 degree azimuth drilling vs north striking interpreted structures). Dip of drillholes are 50 degrees and structures are interpreted to be sub-vertical, mitigating the risk of unbiased sampling. Based on the limited amount of data obtained so far, this is deemed the most appropriate orientation for the drilling, however this is limited to the extent known at this time. Viking Mines Auger Drilling: Auger sample lines were orientated across the strike of the known geological orientation and interpreted zones of interest. No bias is interpreted to have occurred due to sampling orientation within the data collected.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias has been considered to have been introduced based on the available data. This will continue to be monitored as further data is collected.
Sample security	The measures taken to ensure sample security.	Viking Mines RC Drilling: Samples derived from the RC drilling are collected and stored by site personnel at a designated lay-down area on site. These samples are transported to Intertek laboratories in Kalgoorlie by site personnel. Samples are packaged in polyweave bags (~5 samples) and cable tied which in turn are packaged in bulka bags which are tied and transported to the laboratory. The laboratory storage area is in a fenced compound. Viking Mines Auger Drilling: Samples were collected by Gyro Drilling personnel and delivered to Intertek laboratory in Kalgoorlie. Samples are placed in polyweave bags which in turn are placed in large bulka bags. Samples are secure at the Kalgoorlie lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Viking Mines RC Drilling: No external audits or reviews have yet been undertaken on the sampling data. Viking Mines Auger Drilling: An external geochemical consultant Dr Carl Brauhart of Model Earth Consulting has been engaged to review and report on the data collected. The findings of his review are used in thee interpretation of the data reported in this release.

JORC 2012 Table 1 Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary				
		Tenements and location The First Hit Project tenements are located approximately 50 km due west of the town of Menzies, Western Australia on the Menzies (05) 1:250,000 and Riverina 3038 1:100,000 topographic map sheets, and include:				
			Tenement ID	Status	Holder	
			E29/1133	LIVE	Viking Mines Ltd (100%)	
			E30/0529	LIVE	Viking Mines Ltd (100%)	
			P29/2652	LIVE	Viking Mines Ltd (100%)	
			P30/1163	LIVE	Viking Mines Ltd (100%)	
			P30/1164	LIVE	Viking Mines Ltd (100%)	
			M30/0091	LIVE	Red Dirt Mining Pty Ltd (100%)	
	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.		M30/0099	LIVE	Red Dirt Mining Pty Ltd (100%)	
			P30/1137	LIVE	Red Dirt Mining Pty Ltd (100%)	
			P30/1144	LIVE	Red Dirt Mining Pty Ltd (100%)	
Mineral			E30/0517	LIVE	Baudin Resources (100%)	
tenement and land tenure			E30/505	LIVE	Viking Mines Ltd (95%), Simon Byrne (5%)	
status			E29/1131	LIVE	Viking Mines Ltd (100%)	
			E30/0570	Pending	Viking Mines Ltd (100%)	
			E30/0571	Pending	Viking Mines Ltd (100%)	
		Resources) to acq 2027. Currently, Noption area. Third Party Interest The nickel rights to Viking Mines are in Native Title, Histor Archaeological at These studies involved an examination of developments will of Aboriginal Affa A search of the De Aboriginal Heritage.	uire 100% of the notation with the notation was and wild ethnographic solved an examination known ethnographic solved an examination was a site of the notation was a site of the notat	nineral right ership of E3 91 are held b naterial 3rd p derness studies were ion of the ex aphic site d of Aborigina iginal Affairs on any of Vil	th Baudin Resources (a wholly owned subsidials sover part of tenement E30/517. The option exploys the part of tenement E30/517. The option exploys the part of the	pires in February of explore on the ces Limited. opment in 2001. In mining area and unlikely that the othe Department

Criteria	JORC Code explanation	Commentary
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are held in good standing by Red Dirt Mining Pty Ltd. (a wholly owned subsidiary of Viking Mines Ltd) and Viking Mines Ltd. There are no known impediments to obtaining a licence in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Red Dirt tenements have been actively explored and mined since 1886 with the arrival of prospecting parties during the initial Western Australia gold rush. Arthur and Tom Evans founded the First Hit gold mine in 1938. Tom and Arthur worked the mine until Tom sold his share to Riverina station owner Bill Skathorpe in late 1953. Arthur and Bill worked the mine until Bill's death in 1954. George Vujcich Senior bought the mine from Arthur and Bill's estate in late 1955. George and then his son George operated the mine intermittently over a 40-year period. Barminco purchased the First Hit tenement from George's daughter in late 1996. Regional exploration activities were undertaken by Western Mining Corporation (WMC) and Consolidated Gold Operations prior to 1996 including geochemical sampling, lag sampling and auger programs. The programs covered the various regolith features with a purpose of defining broad geochemical anomalies. From 1996 to 2002 exploration and development was undertaken by Barra Resources or Barminco. Barminco Pty Ltd undertook geochemical soil geochemistry on the northern part of M30/99 between 1995 and 2000. Various combinations of multielement geochemistry were completed historically, ranging from gold-only assays to 42 element geochemistry. The following extract from the Barra Resources mine closure and production report provide an insight to the exploration and discovery of the First Hit deposit: "Barminco Pty Ltd acquired the First Hit tenement in August 1996, with the objective of exploring for and developing moderate sized high grade gold deposits. Because of Barminco's mining and exploration activities at Two Boys, Karonie, Jenny Wren, Gordon Sirdar and Bacchus Gift mines the period between August 1996 and June 2000 saw only intermittent work at First Hit. Twenty RC drill holes were completed demonstrating the potential for high-grade underground resources. The First Hit deposit was effectively discovered in June 2000 with drill hole BFH 025 which returned 3 zones of mineralisati
Geology	Deposit type, geological setting and style of mineralisation	Regional Geology The area of interest lies on the 1:100,000 Riverina geological sheet 3038 (Wyche, 1999). The Mt Ida greenstone belt is a north-striking belt of predominantly metamorphosed (upper greenschist-amphibolite facies) mafic and ultramafic rocks that form the western boundary of the Eastern Goldfields geological terrane. The major structure in this belt is the Mt Ida Fault, a deep mantle tapping crustal suture that trends N-S and dips to the east. It marks the western boundary of the Kalgoorlie Terrane (~2.7 Ga) of the Eastern Goldfields Province against the Barlee Terrane (~3.0 Ga) of the Southern Cross Province to the west. To the east the belt is bounded by the Ballard Fault, a continuation of the strike extensive Zuleika Shear. The Mt Ida belt is widely mineralised, predominantly with discordant vein gold deposits. Associated element anomalism typically includes copper and arsenic but neither have been identified in economic concentrations. There is some nickel sulphide mineralisation associated with the komatiite component of the supracrustal rocks, and the area includes a locally significant beryl deposit sporadically mined for emeralds. In the Riverina area the outcrop position of the Ida Fault is equivocal, and it is best regarded as a corridor of related structures with an axis central to the belt. The Riverina and First Hit Project area dominantly comprises metabasalts and metadolerites of tholeiitic parentage with lesser metagabbros and komatiites. Small post-tectonic granitoids intrude the sequence with locally higher-

	A	1
	V	

Criteria	JORC Code explanation	Commentary
		grade metamorphic conditions. Structurally, the dominant features are north-striking, east-dipping reverse faults and associated anastomosing strain zones. A conjugate set of late brittle structures striking NE and NW is also evident. The mineralisation exploited to date has typically been narrow mesothermal anastomosing veins. These frequently have strike and dip dimensions able to sustain small high-grade mining operations. Local Geology The local geology of the First Hit Project area comprises north striking ultramafics, komatiites and peridotites with some sediments in the eastern part of the block. To the west there is a metabasalt unit including a prominent gabbro and further west again more peridotite with amphibolite. The general strike trend drifts to the north-northwest then back to north. The sequence includes a small felsic intrusive west of the Emerald workings and a zone of felsic schists within the eastern ultramafics. Felsic intrusives occur in the northwest corner. The local strike fabric trends north then north-northeast. The First Hit mineralisation occurs as a quartz lode varying to 4m in thickness dipping at 70° to the east. The lode is hosted in biotite-carbonate schist within metabasalt and plunges to the south at around 50°. Numerous shafts, prospecting pits and costeans exist on the tenements and recorded production for the First Hit North workings are 130m further to the north-northeast. References: Wyche, S.1(1995). Geology of the Mulline and Riverina 1:100,000 Sheets. Geological Survey of Western Australia Grey, A.R (2002) Annual Technical Reporting, 1 July 2000 to 30 June 2001, E30/193, M30/99, M30/118, P30/869, P30/894, Riverina 1:100,000 Sheet 3038 Barra Resources Limited
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Viking Mines RC Drilling: A summary of the relevant drillhole information has been included in the body of the report and in the appendicies. Viking Mines Auger Drilling: All auger drilling information is presented in the release and appendix 1. Depth of sampling is provided and all holes were drilled vertically.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	<u>Viking Mines RC Drilling:</u> Significant assay results or aggregated intercept reporting have been completed at the cut-off grade stated where the aggregate is reported. No high-grade top-cut has been used. <u>Viking Mines Auger Drilling:</u> No data aggregation methods have been used.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<u>Viking Mines RC Drilling:</u> The drilling programs at targets reported herein are variably oblique to the true width of mineralisation. All drill holes are reported as down hole widths as the true width cannot yet be accurately determined. Mineralisation is interpreted as steep dipping (near vertical), however no along strike information is available due to the lack of drilling. <u>Viking Mines Auger Drilling:</u> Not applicable as not drilling data being reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views	Drill plans, maps and cross sections are provided in the body of the announcement showing the location of all data being reported.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	<u>Viking Mines RC Drilling:</u> All drillhole data is reported on the cross sections provided and in the data tables in the appendix. <u>Viking Mines Auger Drilling:</u> All appropriate information is included in the report. A full table of data is provided in appendix 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances	All appropriate information is included in the report.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is described in the body of the report and includes ongoing and planned drilling, remaining assays from the project, and magnetic geophysics data collection.

