Forrestania Resources Ltd Suite 2, 38 Colin Street West Perth WA 6005

ASX: FRS

Phone +61 8 6391 0113 info@forrestaniaresources.com.au ACN 647 899 698

forrestaniaresources.com.au

2 April 2025

ASX RELEASE

Bonnie Vale & Breakaway Dam option agreement varied and exercised

Highlights:

- Option agreement revised and exercised between Forrestania Resources Ltd and Outback Minerals Pty Ltd.
- Revised terms¹:
 - Deferral of the \$1.1m share consideration payable up until May 2026.
 - o Payment of \$100,000 cash upon exercise.
- The option covers 2 project areas (~210km² in area): Bonnie Vale (E15/1632 & E15/1534) and Breakaway Dam (E29/1036 & E29/1037).
- The Bonnie Vale Project (E15/1632 & E15/1534) includes:
 - The <u>Ada Ann prospect</u> with significant, historic high-grade Au results, as well as more recent significant, high-grade Au drilling results².
 - Bonnie Vale North (E15/1534), ~ 1km along strike from ASX: EVN Cutters Ridge mine (Au).
 - Multiple, regional Au targets.
- The Breakaway Dam Project (E29/1036 & E29/1037) includes:
 - Highly anomalous, historic copper (with sulphides) drilling results and surface geochem suggest VMS, copper potential³.
 - Highly anomalous LCT and LCT pathfinder geochem results suggest strong exploration potential for lithium⁴.
 - o Multiple, large Au projects in close proximity.

Forrestania Resources Limited (ASX: FRS) ("FRS" or "the Company") is pleased to announce that it has agreed to revised terms for the option agreement with Outback Minerals Pty Ltd for the Bonnie Vale and Breakaway Dam projects.

¹ ASX: FRS Option to acquire Eastern Goldfields tenements, 16th May 2023

² ASX: FRS Ada Ann results up to 4m @ 16g/t Au, 24th March 2025

³ ASX: FRS Copper prospectivity at Eastern Goldfields project, 14th September 2023

⁴ ASX: FRS Breakaway Dam lithium update, 26th February 2024

The extension to the agreement gives the Company a significant amount of time to undertake further drilling and exploration work at the Bonnie Vale and Breakaway Dam Projects. The Company has had two strong and successful drilling campaigns at Ada Ann to date¹ - helping to turn the Bonnie Vale project area into an area of high exploration potential.

Pursuant to the revised agreement, the Company may issue the \$1.1 million of share consideration at any time, up until 5th May 2026, based on a 5 day VWAP share price at the time, subject to a maximum share price of 20 cents per share.

Forrestania Resources' Chairman John Hannaford commented:

"We are pleased to announce the revised terms for the Option agreement over both the Bonnie Vale and Breakaway Dam projects. The deferred consideration allows the Company to explore and assess these key tenement packages with a lot more certainty, and we would like to thank the vendors, Outback Minerals Pty Ltd for their ongoing support of the Company. This agreement will allow us to continue exploration of Ada Ann as well as other regional targets at Bonnie Vale and Breakaway Dam."

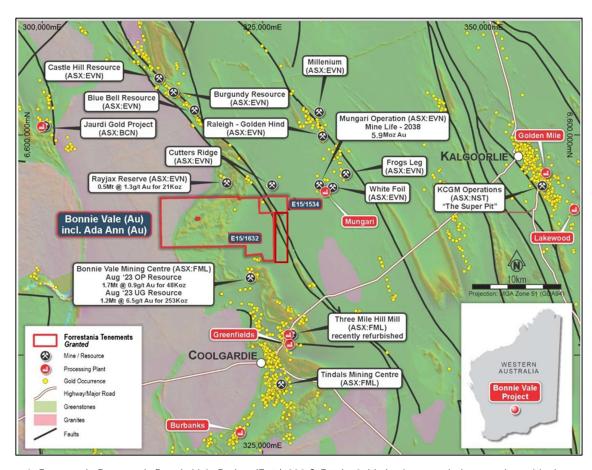
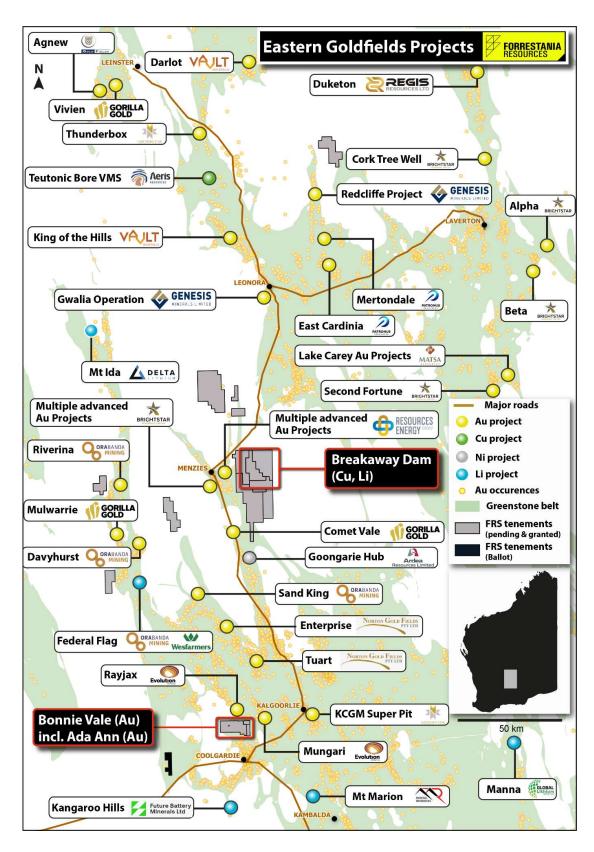



Figure 1. Forrestania Resource's Bonnie Vale Project (E15/1632 & E15/1534) is in close proximity to major gold mines and deposits. Map includes simplified geological interpretation with WA Government magnetics. ASX: EVN Mungari lies ~5km to the east of the Bonnie Vale Project area. (ASX: EVN Mungari mine life taken from ASX: EVN Mungari mine life extended to 15 years - 5th June 2023; Mungari Mineral resource estimate figure of 5.9Moz & Rayjax Ore Reserve taken from ASX: EVN Mungari Mineral Resource & Ore Statement as at 31st December 2023 - 14th February 2024; ASX: FML Bonnie Vale mineral resource update, 26th September 2023).

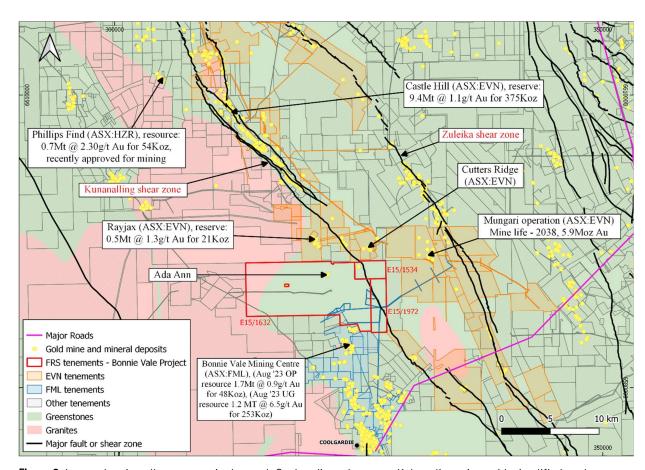


Figure 2. Forrestania Resource's Breakaway Dam Project (E29/1036 & E29/1037) and Bonnie vale Project *E15/1632 & E15/1534) - in close proximity to multiple major gold mines and deposits, significant gold mines and lithium occurrences with Breakaway Dam along strike from the Teutonic Bore VMS mine (Cu).

Bonnie Vale Project (E15/1632 & E15/1534), Coolgardie WA

The Bonnie Vale project area is one of the largest continuous tenements ($\sim 90 \text{km}^2$) within the Coolgardie region with $\sim 6 \text{km}$ of exposure to the Kunanalling Shear Zone and additional granite/greenstone contacts, with $\sim 12 \text{km}$ of contact exposure to the Black Flag Group and located in amongst the ASX: EVN Mungari Au project (Figure 3).

Figure 3. Image showing all tenements in the north Coolgardie and western Kalgoorlie region, with simplified geology (courtesy of GSWA); the FRS Bonnie Vale Project (including E15/1972) is highlighted, as are the Evolution Mining (ASX: EVN) and Focus Minerals (ASX: FML) tenements north of Coolgardie. Figures for Horizon Minerals, courtesy of ASX: HRZ, Phillips Find Approved, Mobilisation Underway, 8th Oct 2024. Note: E15/1972 is not part of the Outback Minerals option but was instead part of an option agreement with Amery Holdings Pty Ltd (ASX: FRS Key tenement under option at Bonnie Vale, 16th December 2024)

The Company has recently completed two drilling programmes (35 RC holes for 2505m) at the Ada Ann prospect (Bonnie Vale Project) with significant high-grade Au results (previously reported), including:

- AARC0029 4m @ 16.3g/t Au (from 76m)
- AARC0002 2m @ 10.7g/t Au (from 62m)
- AARC0006 7m @ 2.1g/t Au (from 34m)

AARC0024 – 4m @ 2.6g/t Au (from 52m)

Historic drilling results from Ada Ann (previously reported) include:

- AA28 4m @ 12.8g/t Au (from 25m)
- BR19 16m @ 2.6g/t Au (from 24m)
- AA05 6m @ 6.5g/t Au (from 16m)

Significant drilling intercepts (previously reported) from Ada Ann include:

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AARC0029	72	76	4	16.3	65.2
AA28	25	29	4	12.8	51.2
BR19	24	40	16	2.64	42.2
AA05	16	22	6	6.45	38.7
AA04	4	11	7	5.01	35.1
AA45	8	20	12	2.68	32.2
AA06	19	26	7	4.4	30.8
AA27	41	45	4	7.34	29.4
AXRC10	42	46	4	7.28	29.1
AA20	25	31	6	4.5	27.0
AA24	14	18	4	6.7	26.8
AXRC09	40	44	4	5.9	23.6
BR22	24	34	10	2.28	22.8
AARC0002	62	64	2	10.74	21.5
AA25	17	24	7	2.99	20.9
AA46	4	18	14	1.44	20.2
AA10	40	47	7	2.74	19.2
AA06	32	37	5	3.63	18.2
AA49	14	16	2	8.08	16.2
AA25	35	38	3	5.37	16.1
AARC0006	34	41	7	2.14	15.0

Table 1. All significant drilling intercepts (≥15 grams per metre) from the Ada Ann prospect (including FRS and historic drilling results). All intercepts are based on a cut-off grade of 0.3g/t Au allowing for internal dilution by two "waste" or sub-grade (<0.3g/t Au) samples. Drilling intercept widths are down-hole widths and not true widths. Holes in bold have been drilled by FRS. Samples were fire assayed and full FRS results and details can be seen within the JORC table and the supplementary data at the end of this announcement.

The extension to the option agreement (over E15/1632 and E15/1534) will ensure that the Company has more time to confidently and cost effectively continue with the exploration success at Ada Ann, whilst continuing to potentially grow and confirm the geological and mineralisation model.

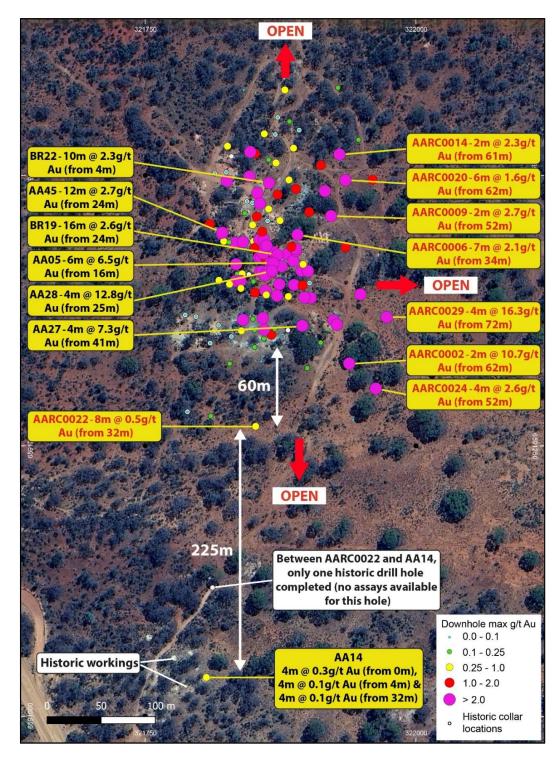
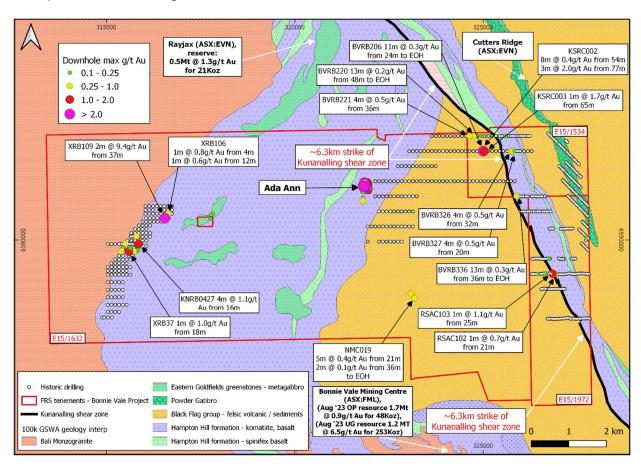



Figure 4. Potential extension to Au mineralisation at Ada Ann (previously reported) with historic drill holes AA14 shown ~225m south of AARC0022; AA14 shows highly anomalous Au values, close to historic workings. Only one historic hole is known to have been drilled between AARC0022 and AA14 with no assays available for that hole.

Regional exploration targets at Bonnie Vale

Along with the exploration potential at Ada Ann, the Bonnie Vale Project includes strong, regional exploration potential for gold, across the project area with multiple, historic drill holes intersecting gold, none of which have ever been effectively followed up, with mineralisation still open at all of the targets.

Figure 5. Image showing all of the significant, historic drilling results across the Bonnie Vale Project area and other anomalous drilling results across the project area. Width given is down-hole width and not true width. Geology interpretation courtesy of GSWA. For holes BVRB206, BVRB220 and BVRB336, the grades have been averaged over the length of the mineralisation and the actual corresponding results can be seen in Table 2.

The Bonnie Vale Project area includes multiple, (previously reported⁵⁶⁷), strong, regional exploration targets (see Figure 5), including:

- XRB109⁸ 2m @ 9.4g/t Au (from 37m), including 1m @ 17.2g/t Au, never effectively followed up
- KSRC002 3m @ 2g/t Au (from 77m), open at depth & along strike
- BVRB327 4m @ 0.5g/t Au (from 20m), never followed up

⁵ ASX: FRS 222g/t Au rock chip at Bonnie Vale, 18th November 2024

⁶ ASX: FRS Gold Samples up to 49g/t Au at Ada Ann prospect, 10th April 2024

⁷ ASX: FRS Bonnie Vale Exploration update – rock chips up to 2.7g/t Au, 9th May 2024

⁸ Previously reported as an average grade over 4m from 36-40m; reported here with a cut off of 0.3g/t Au.

- BVRB326 4m @ 0.5g/t Au (from 20m), never followed up
- 222g/t Au rock chip (FR001740) taken in the south of the project area

Along with these strong historic drilling results, other regional results also offer exceptional Au exploration targets with multiple RAB or AC holes ending in Au mineralisation: BVRB220, BVRB336 and BVRB327 – all of which are in close proximity to or coincident with the Kunanalling Shear Zone (KSZ), have never previously been followed up and offer exceptional exploration targets, with historic (previously reported) results including:

- BVRB336 with 13 continuous, down-hole metres (<u>from 36m-EOH</u>) of Au mineralisation >0.1g/t Au NEVER FOLLOWED UP
- BVRB220 with 13 continuous, down-hole metres (<u>from 48m-EOH</u>) of Au mineralisation >0.1g/t Au NEVER FOLLOWED UP
- BVRB327 with 8 continuous, down-hole metres (from 16m) of Au mineralisation
 > 0.1g/t Au, including 4m @ 0.5g/t Au NEVER FOLLOWED UP

Figure 5 demonstrates the strong, exploration and geological potential and size of the Bonnie Vale Project – with strong exposure to the Kunanalling Shear Zone (KSZ), a highly fertile, regional, gold bearing structure which is host to multiple, significant Au resources, reserves and discoveries as well as exposure to a significant area of potentially mineralised greenstone with several promising, shallow historic intervals that have been identified from historic RAB programmes but have never previously been followed up.

The most recent regional exploration drilling (prior to the FRS drilling at Ada Ann) was completed by Outback Minerals (previously reported) in 2022 (on E15/1534). Outback returned several intersections of Au mineralisation (from KSRC002 and KSRC003 – see Table 2) as a result of an RC programme that followed up a historic RAB intersection in BVRB206, also in Table 2, in close proximity to the KSZ.

Additionally, after a WAMEX review and following the option to acquire E15/19729, the Company is pleased to confirm that several historic AC (air-core) holes coincident with the KSZ returned significantly anomalous results for Au within E15/1972; these results were never followed up and include:

- RSAC103 2m @ 0.7g/t Au (from 24m to EOH)
- RSAC102 2m @ 0.6g/t Au (from 21m)

The significant, regional, historic drilling intervals across the Bonnie Vale project area (including KSRC002 and KSRC003) are listed below, in Table 2:

Hole_ID	Depth_From	Depth_To	Width	Grade (g/t)
KSRC002	30	32	2	0.45
KSRC002	36	42	6	0.51
KSRC002	50	51	1	0.32
KSRC002	54	63	9	0.39

⁹ ASX: FRS Key new tenement under option at Bonnie Vale, 16th December 2024

Hole_ID	Depth_From	Depth_To	Width	Grade (g/t)
KSRC002	67	68	1	0.39
KSRC002	71	74	3	0.34
KSRC002	77	80	3	2.03
KSRC003	30	34	4	0.35
KSRC003	65	66	1	1.68
99XGRC6	45	48	3	0.23
XRB106	4	6	2	0.61
XRB106	12	13	1	0.64
XRB109	37	39	2	9.44
XRB37	18	20	2	0.72
BVRB017	21	22	1	0.10
BVRB206	24	28	4	0.43
BVRB206	28	32	4	0.12
BVRB206	32	33	1	0.22
BVRB206	33	34	1	0.43
BVRB206	34	35 (EOH)	1	0.45
BVRB218	36	37 (EOH)	1	0.12
BVRB220	48	52	4	0.25
BVRB220	52	56	4	0.33
BVRB220	56	60	4	0.12
BVRB220	60	61 (EOH)	1	0.10
BVRB221	36	40	4	0.46
BVRB294	12	16	4	0.13
BVRB326	32	36	4	0.53
BVRB327	16	20	4	0.14
BVRB327	20	24	4	0.47
BVRB328	16	20	4	0.13
BVRB336	36	40	4	0.17
BVRB336	40	44	4	0.40
BVRB336	44	48	4	0.23
BVRB336	48	49 (EOH)	1	0.14
RSAC102	21	23	2	0.60
RSAC102	25	26	1	0.11
RSAC103	24	26 (EOH)	2	0.73
RSAC108 RSAC108	29 30	30 31	1	0.13 0.16
RSAC108	25	26 (EOH)	1	0.10
RSAC113	20	23	3	0.10
RSAC245	25	26 (EOH)	1	0.12
XRB44	5	10	5	0.25
XRB47	21	22 (EOH)	1	0.20
NMC019	21	26	5	0.35
NMC019	36	38 (EOH)	2	0.14
NMC020	19	22	3	0.29

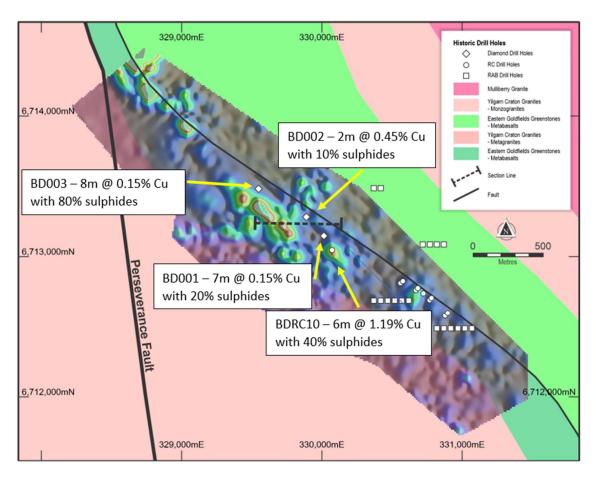
Hole_ID	Depth_From	Depth_To	Width	Grade (g/t)
NMC020	25	30	5	0.12

Table 2. Significant drilling results from historic, regional drilling on E15/1632, E15/1534 and E15/1972. Width given is down-hole width and not true width. Significant intercepts based on a 0.3g/t Au cut off allowing for internal dilution by two "waste" or sub-grade samples. Table also includes all other drilling results from E15/1632, E15/1534 and E15/1972 with intersections of ≥0.1g/t Au, from historic, regional drilling. Width given is down-hole width and not true width. (Any result listed in this table that is in excess of 1m in width was composite sampled by the explorer at the time and if it was subsequently split and assayed, these assays have not been reported).

Breakaway Dam Project (E29/1036 & E29/1037), Menzies WA

The Breakaway Dam Project represents a significant opportunity for the Company, with strong exploration targets for both copper and lithium within the Alexandra Bore greenstone belt. Historic exploration activity include **highly anomalous drilled intercepts of copper² with sulphides** as well as drilled pegmatites that were never effectively assayed³.

Since commencing the option agreement with Outback Minerals, FRS has completed multiple desktop studies and field reconnaissance visits and has returned strong, highly anomalous results for copper and lithium¹⁰.


Significant Cu results (previously released) at Breakaway Dam include:

- BDRC10 6m @ 1.19% Cu (including 1m @ 3.86% Cu), 11.07g/t Ag (including 1m @ 35.7g/t Ag) from 185m, with up to 40% pyrite and pyrrhotite
- BDRC08 4m @ 0.29% Cu and 1m @ 0.67% Cu, including 1m @ 3.2g/t Ag, from 36m (end of hole = 70m)
- BD001 7m @ 0.15% Cu (including 1m @ 0.51% Cu), 1.63g/t Ag (from 124m), with up to 20% pyrite, pyrrhotite and chalcopyrite
- BD001 2m @ 0.23% Cu (including 1m @ 0.42% Cu) (from 193m), with up to 10% pyrite, pyrrhotite and chalcopyrite
- BD002 2m @ 0.45% Cu (including 1m @ 0.71% Cu) (from 106m), with up to 10% pyrite, pyrrhotite and chalcopyrite
- BD003 8m @ 0.15% Cu (including 1m @ 0.45% Cu, 2m @ 7.35g/t Ag and 1m @ 0.38% Pb) (from 145m), with up to 70% pyrite, pyrrhotite and chalcopyrite
- Rock chip FR000766 26.7% Cu, 15.4ppm Ag and 0.5ppm Au

Additionally, previously released historic downhole electro-magnetic (DHEM) survey results indicate several potentially sulphide-bearing conductive plates, which remain completely untested by drilling and highly anomalous, historic and recent geochemical results have been returned for Au, Ag, As, Bi, Cu, Mo, Pb, Se and Te which suggest the potential for a VMS copper exploration target.

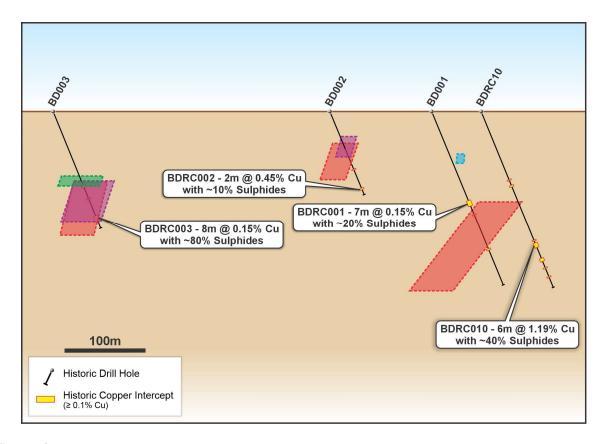

¹⁰ ASX: FRS Anomalous lithium returned from rock chips, 9th August 2023

Figure 6: Ground EM over Breakaway Dam with sulphide percentages noted on intercepts and location of the cross-section seen below. Geology map courtesy of GSWA.

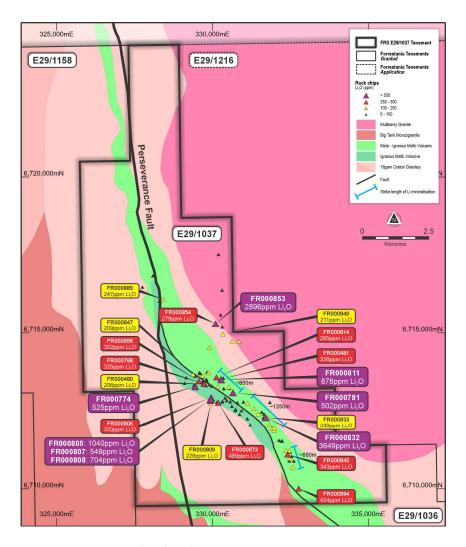


Figure 7: Section looking north showing interpreted conductive plates. The plate seen adjacent to BD001 and those adjacent to BD003 have been interpreted by Southern Geoscience Consultants as potentially sulphide-bearing. These electro-magnetic plates have never been drill tested.

The Breakaway Dam project is also seen as having a strong potential for lithium with a number of highly anomalous LCT and LCT pathfinder results returned from pegmatite rock chip sampling. The results suggest the strong potential for a highly fertile pegmatite system within the Breakaway Dam project tenements with zones of Li mineralisation up to 1200m in strike length, with results including:

- FR000832 1,695ppm Li (3,649ppm Li₂O or 0.4% Li₂O)
- FR000853 1,345ppm Li (2,896ppm Li₂O or 0.3% Li₂O)
- FR000811 183ppm Nb (and 878pp Li₂O)
- FR000808 162ppm Cs (and 704ppm Li₂O)
- FR000774 2,100ppm Rb (and 523ppm Li₂O)
- FR000895 128ppm Ta (and 172ppm Li₂O)

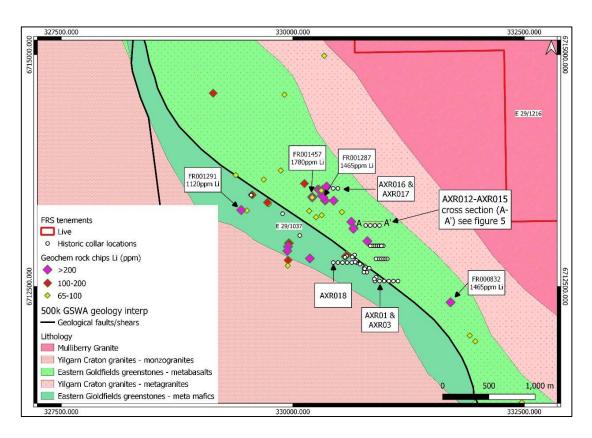


Figure 8: The Breakaway Dam project area (E29/1037) including all mapped pegmatites, granite and quartz vein locations from FRS field trips. All samples >200ppm Li2O are highlighted. The geological base map is courtesy of GSWA, the legend includes all geological units within the project area.

As well as the strong geochem returned from multiple field visits, reviews of historic drilling results from Breakaway Dam highlighted several pegmatite intercepts never previously tested for lithium, with multiple holes ending in pegmatite (previously reported), including:

- AXR014 18m of logged pegmatite to EOH
- AXR013 2m of logged pegmatite to EOH
- AXR016 4m of logged pegmatite to EOH
- Additionally, other holes were also with logged pegmatite to EOH

Figure 9: Breakaway Dam project area showing the previous, historic drilling (AXR holes referenced in this announcement are identified), FRS Li rock chips >65ppm Li (with selected high value Li rock chips). Geology map courtesy of GSWA.

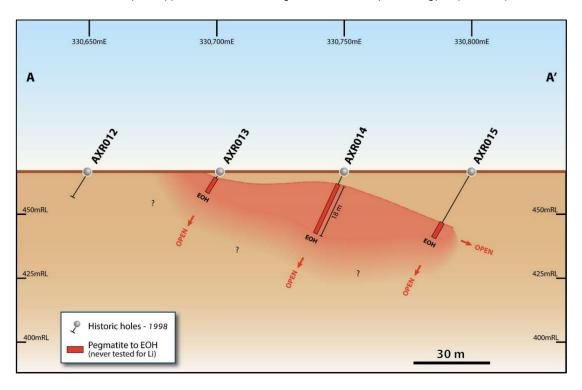


Figure 10: Cross section (A-A'), looking north at holes AXR012-AXR015, showing historically logged pegmatite intercepts

Next steps

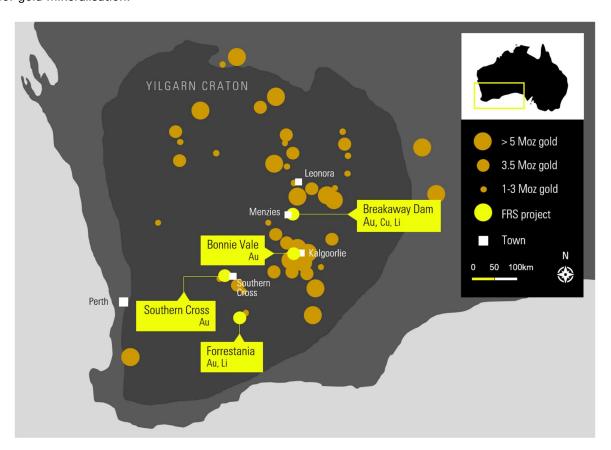
The Company is currently awaiting the assays from the 1m splits from the phase 2 Ada Ann drilling programme, with results anticipated to be returned within 6 weeks.

In the intervening period, the Company will focus its attention on the Lady Lila prospect.

This announcement has been authorised for release by Forrestania Resources' Board.

For further information please contact:

John Hannaford Chairman Phone +61(0) 419 042 769 john@forrestaniaresources.com.au


About Forrestania Resources Limited

Forrestania Resources Limited is an Australian resources company exploring for gold, copper and lithium in the Forrestania, Southern Cross and Eastern Goldfields regions of Western Australia.

The company's Forrestania Project hosts gold and lithium prospects in close proximity to the historic Bounty gold mine, the Covalent Mt Holland Lithium Mine, and the operating Flying Fox, and Spotted Quoll nickel mines in the well-endowed southern Forrestania Greenstone Belt.

The Eastern Goldfields tenements are located within the Norseman-Wiluna Greenstone Belt of the Yilgarn Craton, close to Coolgardie, Menzies and Leonora. In total, this includes twelve Exploration Licences and four Exploration Licence Applications, covering a total area of ~1,000km². The tenements are predominately non-contiguous and scattered over 300km length, overlying or on the margins of greenstone belts.

The Southern Cross Project is located in the Southern Cross Greenstone Belt and has significant potential for gold mineralisation.

Competent person's statement

The information in this report that relates to exploration results is based on and fairly represents information compiled by Mr. Ashley Bennett. Mr. Bennett is the Exploration Manager of Forrestania Resources Limited and is a member of the Australian Institute of Geoscientists. Mr. Bennett has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC)

Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Bennett consents to the inclusion in this report of the matters based on information in the form and context in which they appear.

Disclosure

The information in this announcement is based on the following publicly available ASX announcements and Forrestania Resources IPO, which is available from https://www2.asx.com.au/

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning the relevant ASX announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are represented have not been materially modified from the original ASX announcements.

Cautionary statement regarding values & forward-looking information

The figures, valuations, forecasts, estimates, opinions and projections contained herein involve elements of subjective judgment and analysis and assumption. Forrestania Resources does not accept any liability in relation to any such matters, or to inform the Recipient of any matter arising or coming to the company's notice after the date of this document which may affect any matter referred to herein. Any opinions expressed in this material are subject to change without notice, including as a result of using different assumptions and criteria. This document may contain forward-looking statements. Forward-looking statements are often, but not always. identified by the use of words such as "seek", "anticipate", "believe", "plan", "expect", and "intend" and statements than an event or result "may", "will", "should", "could", or "might" occur or be achieved and other similar expressions. Forward-looking information is subject to business, legal and economic risks and uncertainties and other factors that could cause actual results to differ materially from those contained in forward-looking statements. Such factors include, among other things, risks relating to property interests, the global economic climate, commodity prices, sovereign and legal risks, and environmental risks. Forwardlooking statements are based upon estimates and opinions at the date the statements are made. Forrestania Resources undertakes no obligation to update these forward-looking statements for events or circumstances that occur subsequent to such dates or to update or keep current any of the information contained herein. The Recipient should not place undue reliance upon forward-looking statements. Any estimates or projections as to events that may occur in the future (including projections of revenue, expense, net income and performance) are based upon the best judgment of Forrestania Resources from information available as of the date of this document. There is no guarantee that any of these estimates or projections will be achieved. Actual results will vary from the projections and such variations may be material. Nothing contained herein is, or shall be relied upon as, a promise or representation as to the past or future. Forrestania Resources, its affiliates, directors, employees and/or agents expressly disclaim any and all liability relating or resulting from the use of all or any part of this document or any of the information contained herein. Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. If any geochemical sampling data is reported in this announcement, it is not intended to support a mineral resources estimation. Any drilling widths given in this announcement are down-hole widths and do not represent true widths.

Appendix 1 – JORC TABLE 1 Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. All FRS drilling: All FRS (AARC0001- AARC0021) were completed by RC drilling. Topdrill were the drilling contractor and utilized a Schramm C685. Industry standard practices were applied to the drilling programme and sampling. Representative 4m composite samples were taken from the spoil piles, with a hand size aluminium scoop. These samples were collected in a numbered calico bag, recorded by FRS staff and submitted to ALS Kalgoorlie (sample sizes were approximately 1.5kg up to 2.5kg were collected). 1m single splits were also taken off the rig (in prenumbered calico bags) from the cone splitter and mineralised zones (>0.09g/t Au) were recently submitted to ALS (sample sizes were approximately 1.5kg up to 2.5kg), based on the results from the 4m composites. The sampling details of these samples were recorded by FRS geologists and recorded on paper, spreadsheet and then transferred to the company database. Regular air and manual cleaning of the rig cyclone was undertaken to remove potential contaminants. The 4m composite samples were submitted to ALS Kalgoorlie; these samples were then trucked to ALS Perth, Canning Vale. The composite samples were submitted for Au analysis using AuMe-TL43 (aqua regia); Aqua regia digestion of 25g sample, followed by trace Au and multi-element analyses by ICP-MS and ICP-AES. Subsequently, any composite samples equal to in excess of 0.09ppm Au have had their corresponding 1m samples sent to ALS for analysis by Au-AA25 (fire assay) and a FA-FUS03 (high grade fire assay fusion – where required). "Wing samples" were taken either side of any sample in Excess of 0.09ppm Au whereby the corresponding 1m samples from the 4m composites above and below the mineralised sample were also sent to ALS for assay by Au-AA25 (fire assay) a

Criteria	JORC Code Explanation	Commentary
		 Historical drilling at Ada Ann: Holes with AA1-AA51 were completed by RC drilling, 1m samples were laid on the ground and samples that were thought to be mineralized were sent for assay, some were composited and some were not; other metre intervals that were not interpreted to be mineralized were not assayed. Samples are believed to have been assayed by Aqua Regia techniques at Kalgoorlie assay laboratories. Laboratory documentation for all the assays is not available. After a review of holes AA1-AA51, Gindalbie Metals sampled intervals not sampled previously. This sampling was performed by scoop sampling the bagged individual drill samples still on site, with both individual and composite samples being taken. It was not possible to riffle split the samples (as presumably would-have been the case with Stockwell's original samples) as many of the samples were cemented into hard masses, some were wet and the cost of drying pulverising and splitting the samples was not thought to be warranted. Instead as representative a sample as possible was obtained by breaking up the samples and scoop sampling throughout the sample. Holes BR1-19 were completed by RAB drilling, drill samples were collected over a 2m interval, via a cyclone, a representative sample was taken using a pipe, composited to 6m samples and sent to Genalysis for fire assay. Historical reports suggest that any sample returning a 6m composite value >0.1g/t Au had the corresponding 2m samples submitted to Genalysis for fire assay, but not all of these 2m assays are available. Holes BR20-24 were also completed by RAB drilling, one metre samples were collected and then speared, composited over four metre intervals and submitted to Genalysis for gold analysis for gold analysis by AAS (50gm charge). Intervals returning greater than 0.25g/t gold were resampled on a one metre basis and re-assayed, using the same technique. Holes BR25-29 were drilled by RC, one metre samples were collected and then speared, c

Criteria	JORC Code Explanation	Commentary
		 AMEX did not release full assay data. Historical regional exploration over the project area: For the BVRB holes: 275 RAB drill holes were completed by Goldfield Exploration in 1999, no details of the drilling contractor or rig are available. Samples were sent to Kalgoorlie Assay laboratory; Gold was analysed to 1ppb using 500ml bottle roll technique. Arsenic was tested to 2ppm by aqua regia. A further 92 RAB holes were completed in 2001 by Goldfields Exploration, the same assay methodology for analysis is presumed but not confirmed in WAMEX A62263. NMC019 and NMC020 data is freely available in WAMEX A35204. The report suggests that these holes were drilled as part of a groundwater programme with bedrock samples collected from the drillholes and analysed at Classic Perth laboratory. All samples were collected over 1 metre intervals with 5m composite samples analysed for Au using a 50g sample, aqua regia digestion and AAS finish. For the KSRC holes, Representative 4 metre composite samples were collected by scoop from sample piles and samples 216717-216783 were submitted to Intertek Genalysis for analysis. Preparation was by SP02, 03, 05 (dry, split if >300g, pulverise) followed by aqua regia digestion 25g and MS 33 Element Package – 1ppb Au for elements Au, Ag, Al, As, B, Ba, Bi, Ca, Cd,, Ce, Co, Cr, Cu, Fe, K, La, Mg Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Te, Ti, Ti, V, W, Zn. No details of QAQC are given in the WAMEX report but industry standard is assumed. XRB holes were completed by RAB drilling, Drilling was completed by Kennedy Drilling, all holes were drilled vertically. Holes were drilled to blade refusal. 5m composite samples were taken. 650 samples were sent to ALS, for gold analysis using aqua regia with carbon rod finish (PM203). Detection limit was 0.01ppm Au re-assays of 1m intervals were carried out for any sample >0.01ppm Au re-assays of 1m intervals were carried out for any sample were used. 3m composite samples were taken and sent to ALS. for

Criteria	JORC Code Explanation	Commentary
		 RSAC holes were completed by Topdrill for Evolution Mining between 2010 and 2020 (WAMEX A126038). This was an AC programme, no details of the rig specifics are available. 4m composite samples were taken throughout the programme. Samples were sent to Genalysis for gold analysis by aqua regia as well as 4 acid multi element analysis. BDRC holes were sampled using 4m composites over the majority of the samples. Smaller composites and 1m samples were taken when deemed appropriate by the logging geologist. BDRC10 throughout this announcement as that is how it has been historically reported; as such, the samples taken from 214m were taken for the entirety of the diamond tail of BDRC10 – areas to sample were chosen by the logging geologists, based on their identification of mineralisation. BD holes were sampled using 4m composites over the RC pre collar interval and were sampled using quarter core over 1m sample intervals. Samples were not taken for the entirety of thees – areas to sample were chosen by the logging geologists, based on their identification of mineralisation. BD holes were sampled using 4m composites over the RC pre collar interval and were sampled using quarter core over 1m sample intervals. Samples were not taken for the entirety of these holes – areas to sample were chosen by the logging geologists, based on their identification of mineralisation. AXR holes were completed by RAB drilling. OLRAB holes were completed by RAB drilling. DBDRC holes were expected by RAB drilling. BDRC holes were expected by RAB drilling. BDRC holes were assayed for multi elements and gold by ALS with 4 different methodologies: ME-MS41 (aqua regia with ICPMS and ICPAES finish), Au-ICP21 (Au by fire assay with ICPAES finish), Cu-OG62 (ore grade Cu by 4 acid with ICPAES finish for the following holes and intervals:: BDRC01 20-21m, BDRC10 186-190m; this methodology was also applied to the standards used in all holes with a prefix BDO) and Au-TL43

Criteria	JORC Code Explanation	Commentary
Drillian to the invest		by FRS geologists, a representative sample was then taken of this zone and the location GPS'd. Initially, all samples were sampled by ALS for "Trace Level Au by aqua regia extraction with ICP-MS finish. 25g nominal sample weight (Au-TL43); a number of these results were over the detection limit and as such, these were re-assayed for Au by 25g Aqua Regia Digestion - Overrange analysis of digested sample (Au-AROR43). • FRS rock chips from Breakaway Dam were sent to ALS and assayed using ME-MS61L and Au-TL43 – assayed for gold and multi elements.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. All FRS (AARC0001- AARC0021) were completed by RC drilling; RC drilling was typically undertaken using a 5 ¼" hammer bit. Historic holes at Ada Ann were drilled using both RAB and RC rigs (see above for details); due to the historic nature of the reporting, the only details about the Rigs utilised are available for AA52-AA58 which were completed using Mole Pioneer rig with a 4.5 inch sampling hammer and a Schramm rig with a 5 inch face sampling hammer and BR1-19 which utilized a Warman drill rig operated by Westralian Diamond Drilling, BR20-24 drilled with a Mole Pioneer rig from Westralian Diamond Drillers of Boulder. This rig proved unsatisfactory in the hard ground encountered at relatively shallow depths and a Warman RC rig was used for holes BRC25-29. Regional, historic drill holes: For the BVRB holes: 275 RAB drill holes were completed by Goldfield Exploration in 1999, no details of the drilling contractor or rig are available. A further 92 RAB holes were completed in 2001 by Goldfields Exploration, with no rig details given in WAMEX A62263. KSRC holes were RC holes, drilled with a standard RC percussion rig. Details of the rig are unknown. XRB holes were completed by RAB drilling, Drilling was completed by Kennedy Drilling, all holes were drilled vertically. Holes were drilled to blade refusal. 99XGRC holes were completed by RAB drilling. Drilling was carried out by K&J Drilling of Kalgoorlie. 5" bits were used. RSAC holes were completed by an AC drilling programme. Drilling was undertaken by Topdrill for Evolution Mining but no details of the rig are available. KNRB holes were completed by Kennedy Drilling for Cazaly Resources

Criteria	JORC Code Explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Limited. This was a RAB programme but no specific details of the rig are given in WAMEX A73935. Reported historic drilling is reverse circulation (RC) (prefix BDRC) and diamond drilling (prefix BD). BD001 – RC precollar to 120m BD002 – RC precollar to 72m BD003 – RC precollar to 111m BDRC10 is the precollar of BD004 but has historically been referred to as BDRC10)— the RC precollar is from a depth to 213.9m. Diamond drilling – no details of core orientation are known and the historic diamond core is no longer available, no photos are available. No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. For all FRS drilling, all percussion sample recoveries were noted in the sampling and geological logs. No significant issues were noted for sample recoveries. Moisture was also logged, but no wet samples were recorded during the programme. No known sampling bias is known to have taken place and no known relationship exists between grade and sample recovery. No known sample bias has been noted in any WAMEX reports for the historic drilling and Ada Ann. For all of the historic drilling at Ada Ann, recovery details are unknown, however site visits have determined that most samples appear to be consistent in size. For all of the historic regional drilling at Bonnie Vale, recovery details are unknown unless stated in WAMEX reports and no issues have been noted in the relevant WAMEX reports; site visits have determined that most samples (when still available) appear to be consistent in size. All drilling data reported in this announcement for Breakaway Dam is from historic WAMEX reports (A109745, A55119, A70542, A78230), the Aurelia Resources Limited prospectus 2012, AMEX Resources quarterly report, June 2008, (all relevant WAMEX report numbers are noted in the body of the report). The sampling data from the historic reports is believed to have
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total 	 been undertaken using "industry standard" techniques. No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. All of the drilled percussion chips from the FRS RC programme were geologically logged by a qualified geologist to a level of detail that could support a mineral resource estimation, mining studies and metallurgical

Criteria	JORC Code Explanation	Commentary
	length and percentage of the relevant intersections logged.	 studies. The drilling was logged on site with every metre studied and logged and exported to the Company database. Qualitative logging included lithology, alteration and textures; quantitative logging, including sulphide and other mineral percentages. Additionally, each holes was photographed. Full geological logs are unavailable for the historic holes at Ada Ann and details of the logging practice is unknown. Logging data is located on historic WAMEX reports and the data transfer of these logs to the Company database has not been feasible for all holes as many of the logs are illegible. FRS geologists have entered geological data from the historic logs into the Company database. The geological logs for holes with prefix BDRC are open source and available within the relevant WAMEX reports and those details transferred to the company database. Samples were logged geologically including but not limited to: recording colour, weathering, regolith, lithology, veining, structure, texture, alteration and mineralisation. Geological logs for holes with prefix BD were geologically logged with all standard geological information. The individual logs are available in WAMEX A88374. The geological logs are not reported here as the logs are available as a copy of hand written logs and majority of the logs are illegible, with no logging codes. At this stage, the historic data in this announcement is NOT intended for use in a mineral resource estimation. All geological logging data for AXR holes is taken from WAMEX A55119. Holes were logged by Delta Gold geologists. Original logging comments taken from this report have been used in this announcement.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. Representative 4m composite samples were taken throughout the programme completed by FRS. These samples were assayed for gold, by aqua regia. Aqua regia digestion of 25g sample, followed by trace Au and multi-element analyses by ICP-MS and ICP-AES. Samples were sampled dry. RC samples were split using a rig mounted cone splitter, at 1m intervals, to obtain a sample for assay of approximately 3-5kg. The sampling detailed above is considered industry standard and is believed to be representative of the material collected. CRMs (certified reference material) were used for QAQC purposes. Industry CRM standards were inserted every 30 samples by the Company

Criteria	JORC Code Explanation	Commentary
		 and internal QAQC reviews indicate that all CRMs were within acceptable ranges. Subsequently, any composite samples equal to in excess of 0.09ppm Au have had their corresponding 1m samples sent to ALS for analysis by Au-AA25 (fire assay) and a FA-FUS03 (high grade fire assay fusion – where required). "Wing samples" were taken either side of any sample in excess of 0.09ppm Au whereby the corresponding 1m samples from the 4m composites above and below the mineralised sample were also sent to ALS for assay by Au-AA25 (fire assay) and a FA-FUS03 (high grade fire assay fusion – where required). For all of the historic drilling completed and referenced in this announcement at Ada Ann and across E15/1632, E15/1534 and E15/1972 by various parties including Evolution, BHP Utah, Gindalbie Gold and A Stockwell, the sample preparation (if given in historic WAMEX reports) is detailed within the JORC table. In general, composite samples were taken during most drilling programmes and 1m split samples were taken within mineralized areas, after results had been returned. This is standard industry practice. There is no mention in the historic reports of wet samples. BDRC holes were sampled using 4m composites over the majority of the samples. Smaller composites and 1m samples were taken when deemed appropriate by the logging geologist. WAMEX reports suggest samples were collected via a combination of riffle splitter and metals scoops/ spears. BD holes – according to the WAMEX reports and subsequent data downloads, all diamond core samples were quarter cored, no details of QAQC is given but industry standard is assumed. OLRAB holes: In total 133 samples were collected. The samples were laid on the ground in rows of 10 and sampled with a sampling spear. The samples were composited over 4m to 1m intervals. AXR holes: 18 holes were completed for 461m, 5m composites were taken.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of 	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. The FRS samples that are being announced here were assayed by ALS Perth using industry standard techniques. The samples were submitted to ALS with standards inserted by Forrestania Resources, approximately every 40 samples. For the original composite sampling CRMs (certified reference material) were used for QAQC purposes. Industry CRM standards were inserted

Criteria	JORC Code Explanation	Commentary
	bias) and precision have been established.	 every 30 samples and internal Company QAQC reviews indicate that all CRMs returned results that were within acceptable ranges. Additionally, ALS insert industry blanks, standards and duplicates into their analysis. At Ada Ann for the AA52-AA58 holes: Samples were collected every one metre by splitting a 2-3 kg sample off after passing the one metre drill volume through the rig cyclone. Four metre composites were scoop sampled from the splitter reject for all portions of the holes except for the :zones of interest, in which the individual metre sample was submitted for assay. Samples were submitted to-Amdel Laboratories Kalgoorlie for gold analysis by Aqua Regia techniques with a LLD of 0.02ppm Au. No details of QAQC are given. For AA1-AA52, The 1m sampling was performed by 'scoop sampling the bagged individual drill samples still on site, with both individual and composite samples being taken. It was not possible to riffle split the samples (as presumably would-have been the case with Stockwell's original samples) as many of the samples were cemented into hard masses, some were wet and the cost of drying pulverising and splitting the samples was not thought to be warranted. Instead as representative a sample as possible was obtained by breaking up the samples and scoop sampling throughout the sample. Some 150 samples were submitted to Amdel Laboratories. No QAQC details are given for this or the original composite sampling. For the BR holes: Drill samples over a 2 metre interval were collected via a cyclone; a representative sample was taken utilising a pipe, composited: over 6 metres, bagged and submitted to Genalysis to be analysed for gold using fire assay techniques. Any 6 metre composite sample which returned an assay value greater than O.1ppm Au was resampled by collecting the three corresponding 2m samples and submitted to Genalysis to be analysed for gold using fire assay techniques. No details of QAQC are given in the WAMEX report but industry standard is as

Criteria	JORC Code Explanation	Commentary
		 For the KSRC holes, Representative 4 metre composite samples were collected by scoop from sample piles and samples 216717-216783 were submitted to Intertek Genalysis for analysis. Preparation was by SP02, 03, 05 (dry, split if >300g, pulverise) followed by aqua regia digestion 25g and MS 33 Element Package – 1ppb Au for elements Au, Ag, Al, As, B, Ba, Bi, Ca, Cd., Ce, Co, Cr, Cu, Fe, K, La, Mg Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Te, Ti, Tl, V, W, Zn. No details of QAQC are given in the WAMEX report but industry standard is assumed. XRB holes: 5m composite samples were taken. 650 samples were sent to ALS, for gold analysis using agua regia with carbon rod finish (PM203). Detection limit was 0.01ppm Au re-assays of 1m intervals were carried out for any sample >0.01ppm Au. 68 1m samples were sent to ALS for further analysis. 99XGRC holes: 3m composite samples were taken and sent to ALS. for gold analysis using aqua regia with carbon rod finish (PM203). Detection limit was 0.01ppm Au re-assays of 1m intervals were carried out for any sample >0.01ppm No details of QAQC are given. KNRB holes: 4m composite samples were taken throughout the programme, samples were sent to AMDEL for analysis by AAS (Atomic absorption spectroscopy). RSAC holes: 4m composite samples were taken throughout the programme. The 4m composite samples were sent to Genalysis for aqua regia analysis and the final metre of every hole was analysed using 4 acid multi element analysis plus gold. No details of QAQC are given. BDRC10 has 3 standards with no IDs and 2 blanks, these were taken every 5 samples. No details of the other BDRC holes' QAQC data is known from the WAMEX reports. BD holes – according to the WAMEX reports and subsequent data downloads, blanks were taken approximately every 20 samples and unknown standards (details unavailable) were taken approximately every 10 samples. AXR holes were sampled using 5m composites throughout the hole. They were assayed at ALS Kal
Verification of sampling	The verification of significant intersections by either	Exploration; standard lab QAQC at ALS is assumed to have taken place. No new drilling or sampling results are being reported in this
and assaying	independent or alternative company personnel.	announcement. All data has been previously reported or is open source,

Criteria	JORC Code Explanation	Commentary
	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 historic data freely available in WAMEX reports. A number of holes within the Company drilling programme were designed to both test and verify the historic drilling results. These holes were designed in close proximity to existing high grade, historic intersections. Significant intersections from the FRS drilling programme have been validated by the FRS Exploration Manager. All logging was completed on site, whilst drilling using a Toughbook on an excel based logging template. Once complete, this template was sent to the Company database administrator and entered into the Company (access) database. Significant intersections from historic Ada Ann drilling had already been verified internally by the Company from WAMEX reports and ASX releases, but the Company believed it necessary to confirm the results with drilling. Historic drilling data was collected via digital logging hardware and software using in-house logging methodology and codes. Historic logging data was validated and entered into an industry standard master database maintained by the FRS database administrator. All primary data was collected on spread sheets which have been validated for errors and included in the Company's Access database. Assay data has not been adjusted from WAMEX report data, with the exception of coordinates which have been adjusted from historic grids.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. All of the recent FRS drilling have had their collars GPS'd using a handheld GPS. All collar details are available in the supplementary data tables below. MGA94_51 is the grid used across the project area. All FRS holes were downhole surveyed by Topdrill using an industry standard gyro tool. Many of the historic holes at Ada Ann have had their collar locations originally approximated from historic WAMEX reports and associated maps. These hole locations have been verified in the field where possible GPS'd and the collar locations have then been updated in the FRS database, if required. Many collars were missing due to the historic pits removing them. The location of these has been approximated based on known locations, holes,

Criteria	JORC Code Explanation	Commentary
		WAMEX reports and other reference points. Down hole, historic surveys at Ada Ann and regionally are unknown. All images relating to drill holes at Ada Ann have the original planned or reported dip and azimuth.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. The FSR drill holes have been strategically placed to test historic intersections and to test the potential extent of the mineralisation at depth and along strike. Holes have been also been designed laterally (east west) ~20-40m apart across the strike of the mineralisation and approximately 20-50m along the strike of the mineralisation. Holes were also designed according to limitations set out by environmental factors. 4m composite samples have been taken throughout the FRS drill programme. 1m samples were also taken during the drilling programme as detailed above. The historic samples at Ada Ann were originally composited over various down hole lengths from 2-6m; in most (but not all cases) mineralized zones were then 1m sampled and assayed. The details of the regional drilling in terms of compositing is detailed earlier in the JORC table. At this stage, the data is not being used to create a mineral resource, further drilling will be required.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. The FRS drilling programme was (with the exception of AARC0015) drilled to the west at -60 in order to test the mineralisation at a perpendicular angle. AARC0015 was drilled vertically due to environmentally limiting factors and the resulting inability to drill to the west at -60. The orientation of drilling and sampling is not anticipated to have any significant biasing effects. The majority of historic drill holes reported in this announcement at Ada Ann are generally angled to the west and are interpreted (according to WAMEX reports and previous ASX announcements) to have intersected the mineralised structures approximately perpendicular to their dip. The relationship of the historic holes between the drilling orientation and the orientation of key mineralised structures at Ada Ann is not considered

Criteria	JORC Code Explanation	Commentary
		to have introduced a sampling bias. • All holes with prefix BDRC were drilled with a dip of -60 degrees and azimuth of 45 degrees (WAMEX A78230). All of the diamond holes were drilled at the same angle at a dip of -60 degrees and azimuth of 45 degrees. AXR holes were drilled at a dip of -60 degrees and azimuth of 270 (all details in the supplementary data). OLRAB holes were drilled to blade refusal at a dip of -60 degrees and an azimuth of 90 degrees.
Sample security	The measures taken to ensure sample security.	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports.
		 All 4m composite sample calico bags were collected in green bags which were sealed and taken by FRS geologists to ALS Kalgoorlie, for shipment to ALS Perth.
		 All 1m sample calico bags have been collected in green bags.
		 It is presumed that there was adequate sample security measures undertaken for the historic drilling reported at Ada Ann and the other areas of historic drilling.
		All samples taken by FRS were handled only by FRS geologists or contractors to FRS before they were taken to ALS.
Audits or reviews	The sampling methods being used are industry standard practice.	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports.
		 No audit or review has been completed on the work reported in this announcement.
		 The historic data that was located within WAMEX has been compiled and loaded into the Forrestania Resources' database with validations where possible, but no audits were undertaken on the historic work. Industry standard practice is assumed for the historic exploration.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Mineral tenementand land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along 	 The data in this announcement relates to FRS drilling and historic drilling completed on exploration licence: E15/1632, E15/1534, E29/1037, E29/1036 and E15/1972. E15/1632, E15/1534, E29/1037 and E29/1036 are part of an option agreement between Outback Minerals Pty Ltd and Forrestania Resources Limited. E15/1972 is part of an option agreement between Amery Holdings Pty Ltd and Forrestania Resources Limited.

Criteria	JORC Code Explanation	Commentary
	with any known impediments to obtaining a licence to operate in the area.	The tenements are held securely and no impediments to obtaining a licence to operate have been identified.
Exploration by other parties	Acknowledgment and appraisal of exploration by other parties.	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. The Ada Ann prospect as well as the rest of E15/1632, E15/1534 and E15/1972 have had the following WAMEX reported and known work completed: Loaming operations in the late .1970's led to the sinking of a shallow vertical shaft on GML 15/6729 from which a short crosscut east intersects an auriferous quartz vein dipping ~ 60° east (Fey, 1989). The recorded gold production of-60 tonne at 1.25g/t Au was reported to have come from trenches and pits adjacent to the shaft. Emu Hill held Prospecting Licences P15/96 and P15/97 as part of a Prospectus. These tenements enclosed the present tenement Emu Hill conducted limited surface and underground rock chip and quartz vein sampling and then relinquished the tenements. Coolgardie Mining Associates re-pegged P15/96 and P15/97 as P15/1440 and P 15/1439 respectively as part of their Prospectus. Coolgardie Mining Associates also conducted surface and underground chip sampling. They also established a baseline some 400 metres long through the area of workings, which was used for drilling by subsequent operators. They then relinquished the tenements. During April 1988 BHP-UTAH Minerals International (BHP) under an option to purchase the tenements from a Mr D Skett, drilled 19 RAB holes (BRO1-19) for 573 metres in the vicinity of the workings using the baseline established by Coolgardie Mining Associates. The drilling was performed with a Warman drill rig operated by Westralian Diamond Drilling of Boulder WA. The drilling was undertaken along fences approximately 40 metres apart, with an average of three holes , spaced ten metres apart, completed on each fence. All holes were planned at 60° dip to 295°. Drilling targetted the flat east dipping shear zone. Drill samples over a two metre interval were collected via a cyclone; a representati

Criteria	JORC Code Explanation	Commentary
		coarse gold nature of the mineralisation, with specks of free gold evident when logging and also the poor repeatability of some of the higher grade assays. P Fey conducted follow up drilling to the BHP drilling in October and November 1988. In the period 23-25 October 1988 five RAB holes (BR20-24) for 210 metres were drilled with a Mole Pioneer rig from Westralian Diamond Drillers of Boulder. This rig proved unsatisfactory in the hard ground encountered at relatively shallow depths and a Warman RC rig was used for holes BRC25-29 totalling 263 metres, drilled between 16-21 November 1988. For all holes except BR20-21 (2 metre samples), one metre samples were collected and then speared, composited over four metre intervals and submitted to Genalysis for gold analysis by AAS (50gm charge). Intervals returning greater than 0.25g/t gold were resampled on a one metre basis and re-assayed, using the same technique. Significant gold mineralisation was found associated with zones of epidotisation and quartz veining (Fey, 1989). The presence of coarse gold was again demonstrated by the considerable spread in the value of repeat assays and free gold was again panned. This drilling demonstrated that the strike of the flat east dipping shear was in fact more north-south than the north-easterly direction assumed by BHP. In 1993 A Stockwell pegged cancelled GML's 15/6729 "Ada Ann", and 15/6718 as P15/3443. Stockwell mounted an RC drill programme to follow up intersections from the BHP and Fey drilling programmes. Holes AA01-51 were completed by Stockwell for 1892 metres over the central portion of the mineralisation, delineated by previous operators. A few holes were systematically sampled, Stockwell sampling only those portions of the holes he thought would assay. Samples are believed to have been assayed by Aqua Regia techniques at Kalgoorile assay laboratories. Laboratory documentation for all the assays is not available. This drilling highlighted the presence of steeper quartz vein hosted mineralisation in the hanging

Criteria	JORC Code Explanation	Commentary
		 Goldfields Exploration completed 367 RAB holes over E15/1632, E15/1534 and E15/1972 between 1999 and 2001. Evolution Mining completed geochem and drilling on E15/1972 between November 2010 and November 2020. The tenements was surrendered in 2020. Kennedy drilling completed at least 24 RAB holes on E15/1632 for Cazaly Resources in 2006. Outback Minerals Pty Ltd completed 3 holes at Bonnie Vale North (E15/1534) in 2022 Although now recognised as one complete greenstone belt, the project area was originally mapped as being two separate outcropping greenstone areas, Breakaway Dam and Alexandria Bore (in the south – E29/1036), and the historical exploration will be described accordingly. At Breakaway Dam, the first indications of exploration were a number of small pits dug by prospectors, possibly in the late 1960s or early 1970s, which exposed malachite-coated quartz veining in chloritic schists. Systematic exploration commenced in the 1970s when copper, nickel, lead and zinc exploration was undertaken by Australian Selection Pty Ltd. Their work included geological mapping and surface geochemical sampling, the results of which clearly defined a greenstone belt and copper-zinc anomalism. It was subsequently concluded that the mineralisation was shear zone hosted with limited potential. Between 1997 and 1998, Delta Gold N.L. (Delta) negotiated an option to purchase the project area from prospectors. Delta then completed a shallow auger soil sampling program with a total of 157 holes on a 800m x 400m spacing. Samples were analysed for gold (ppb) and arsenic and copper (ppm). Follow-up by Delta consisted of a further 270 shallow auger soil samples followed by drilling of 18 short RAB holes (prefix AXR) totalling 461m. Results indicated the presence of a number of sinusoidal anomalies, two of which exhibited gold values of greater than 85ppb Au. These were reported to be "situated within favourable dilatant jogs" related to sinistr

Criteria	JORC Code Explanation	Commentary
		 completed by Sunrise Exploration Pty Ltd and 133 samples were collected and analysed for gold only. In 2007, the outcropping secondary copper mineralisation was sampled by a prospecting group and submitted for limited multielement analyses with the results revealing statistically anomalous levels of gold, lead, tin and tungsten possibly indicative of a significant mineralised sulphide system in the area. Later in 2007, Amex commenced a wide-spaced reconnaissance reverse circulation (RC) drilling program of 7 shallow holes over 250m strike length near Breakaway Dam focused initially on a number of the old prospecting pits and a shallow geophysical anomaly (MLEM, moving loop ground electromagnetics). A further three RC holes were drilled in mid 2008, testing several additional deeper targets. Another three holes were drilled later in 2009, up to 650m further north of BDRC10, to test other MLEM targets. A number of mineralised sulphide lodes were intersected in each hole, comprising predominantly pyrite, pyrrhotite and minor chalcopyrite, with anomalous copper and silver levels. Amex's initial interpretation was that some of the semi-massive to massive sulphides intersected had the potential to be "feeder zone" mineralisation and considered strongly indicative of a larger VMS copper sulphide system. Down hole geophysical surveying of these holes BDD001-003 identified eight DHTEM bedrock conductors of interest in close proximity to these drill holes, at depths from 45-100m below surface. The three largest of these have been interpreted as having copper sulphides as the conductor source and have yet to be drilled. Ground magnetics and moving loop electromagnetic (MLEM) surveying had also defined additional targets over several kilometres of strike extent which have yet to be tested. These exploration histories are taken from the Aurelia IPO prospectus 2012 and WAMEX report A109745 and from A78230, A70542, A55119
Geology	Deposit type, geological setting and style of mineralisation.	 The Bonnie Vale project area is located approximately 12km north of Coolgardie within the Eastern Goldfields Super Terrane of Western Australia's Yilgarn Craton. The project area is made up predominantly of the felsic volcanics of the Black Flag Group, ultramafics of the Hampton Hill Formation which forms part of the Kalgoorlie Group and the Powder Sill Gabbro. Ada Ann is thought to be composed of an ultramafic and shear zone hosted by a basalt. It sits within the Hampton Hill Formation, in close proximity to a geological contact with the Black Flag Group. The drilling results at Ada Ann suggest a shear hosted gold system with contact mineralisation on the footwall and hanging wall basalts and schists (respectively).

Criteria	JORC Code Explanation	Commentary
		 Additionally, the Kunanalling Shear runs approximately north-west through E15/1534 and E15/1972. The Breakaway Dam project area is located approximately 17km east of Menzies, Coolgardie within the Eastern Goldfields Super Terrane of Western Australia's Yilgarn Craton. The Alexandra Bore greenstone belt, made up of predominantly mafic volcanics, strikes through both of the tenements. This greenstone belt is bounded on either side by Archean granitoids. Ultramafic, mafic, sedimentary and pegmatite outcrops have been mapped across both tenements. The Perseverance Fault runs through both tenements, roughly north south, intersecting the greenstone belt in the northern half of E29/1037; whilst an un-named fault strikes roughly north-west/south-east intersecting the Perseverance Fault. The style of mineralisation at Breakaway Dam is unknown but previous explorers and this announcement hypothesize that there may be similarities with VMS style deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception dept, hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. All material information is summarised in the Tables and Figures included in the body of the announcement and/or within the supplementary data. The supplementary information is available at the end of this announcement, following the JORC table. Historical drilling WAMEX reports: A49504, A2523, A25113, A28449, A126038, A73935, A109745, A58256 and A54843 were used to confirm data for this report; data includes areas that were previously mapped during historic activities. ASX (Amex Resources) Gold drill intercepts at Ada Ann 8th April 2008. Additional information was found in the AMEX Resources quarterly report for June 2008 and the Aurelia Resources IPO prospectus 2012. The location of historic drilling is based on historical reports and their underlying data. Data for some drill holes, including assay information, hole depth and collar details are missing from some of the historic WAMEX reports. Composite assay grades for AXRC holes have been included, even when the collar locations are unknown as they have previously been released to the ASX: None of the AXRC holes have been used in the cross sections within this announcement. The historic Amex Resources announcement can be found here: https://www.asx.com.au/asxpdf/20080408/pdf/318gn138jg5j59.pdf

Criteria	JORC Code Explanation	Commentary
		 Several holes at Ada Ann, with AA and BR as a prefix have had their coordinates and collar locations estimated based on historic maps within WAMEX reports and the historic collars located at the Ada Ann prospect that correspond and correlate with the collar position on the maps. These have been recorded on a GPS and entered into the FRS database. At Breakaway Dam: Historical drilling information on the project areas can be found in open source data within WAMEX reports: A2523, A55119, A70542, A78230, A91577, A25113, A28449, A109745, Additional information was found in the AMEX Resources quarterly report for June 2008 and the Aurelia Resources IPO prospectus 2012. The location of historic drilling is based on historical reports and their underlying data. Drill hole information for historic holes reported in this announcement are found in the tables in the supplementary data after the JORC table
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No new drilling or sampling results are being reported in this announcement. All data has been previously reported or is open source, historic data freely available in WAMEX reports. Unless otherwise stated, all significant intersections that are reported in this announcement are based on a 0.3g/t Au cut-off grade, allowing for internal dilution by two "waste" or sub-grade samples. No metal equivalent values have been reported. At Breakaway Dam: BDRC holes were sampled using 4m composites over the majority of the samples. Smaller composites and 1m samples were taken when deemed appropriate by the logging geologist. BD holes were sampled using 4m composites through the RC pre collar and were sampled over 1m intervals throughout the diamond core (quarter core was taken as a sample). OLRAB holes: In total 133 samples were collected. The samples were laid on the ground in rows of 10 and sampled with a sampling spear. The samples were composited over 4m to 1m intervals. AXR holes: 18 holes were completed for 461m, 5m composites were taken. Data that had not previously been aggregated has been loaded to the FRS database and calculated using: Cu - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Ag - lower cut off 1 ppm, minimum interval 1m, maximum internal waste 2m. Zn - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m. Zn - lower cut off 1000 ppm, minimum interval 1m, maximum internal waste 2m.

Criteria	JORC Code Explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Historic reports and recent drilling by FRS suggest mineralisation at Ada Ann dips at ~30 to the east and all holes (with the exception of AARC0015) were drilled to the west at -60 in order to test the mineralisation at a perpendicular angle. Down hole lengths are reported in this announcement, true width is not reported in this announcement, but given the angle of mineralisation (historically reported) and the angle of drilling, the down hole width and true width are potentially similar lengths. Further drilling is required to determine the true geometry of the mineralisation with respect to the drill hole angle. The geometry of the historic mineralisation for the Breakaway Dam project reported in this announcement is not yet known. All intercept lengths reported are derived from downhole depths. All interval widths given in this announcement are downhole width and not true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate maps with scale are included within the body of the accompanying document. Geological sections have been created from the Company's geological logs of both recent and historic drilling. Other geological maps are courtesy of DMIRS, 1:500000 interpreted bedrock geology of WA.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting has been made in the body of the announcement and all assay results have previously been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 At Bonnie Vale: WAMEX reports: A49504, A2523, A25113, A28449, A109745, A58256, A62263 and A54843 were used to confirm data for this report in relation to the Bonnie Vale project. An additional WAMEX report by Outback Minerals was also used for the KSRC holes (the WAMEX report number is unknown as it has only recently been submitted). Also used as reference material and for data: ASX (Amex Resources) Gold drill intercepts at Ada Ann 8th April 2008.
		 At Breakaway Dam: WAMEX reports: A55119, A70452, A78230, A81833, A88374, A91577, A109745, were used to confirm geochemical and drilling data for this report. WAMEX reports A88374 and A91577 reference a down hole EM survey that was completed in 2010, Three DHTEM surveys were completed at the Breakaway Dam project during mid September 2009 by GEM Geophysical Surveys and interpreted by

Criteria	JORC Code Explanation	Commentary							
		Southern Geoscience Consultants. The objective of these surveys was to detect bedrock conductors of interest (possible copper sulphide concentrations) in close proximity to these drill holes). Conventional dB/dt DHTEM Surveys • Contractor : GEM Geophysical Surveys • Date : Jan 15 th - Jan 17 th 2010 • Survey Configuration : Downhole • Receiver : Smartem • Transmitter : Zonge ZT-30 • Transmitter Current : ~24-34 amps (1 tum) • Ramp Time : 0.20 ms • Base Frequency/Channels : 1.0 and 1.5625Hz (34 and 36 channels), 50% duty cycle • Components : A, U and V • Coordinate System : GDA94 / MGA Zone 51							
		3.2 Loop Location and Survey Coverage							
		The loop locations in GDA94 / MGA Zone 51 for the downhole TEM surve ying are provided below:							
		BD1 329855mE 6713049mN (~200 x 200m) 329970mE 6713213mN 330134mE 6713099mN 330020mE 6712935mN							
		BD2 329884mE 6713124mN (~150 x 150m) 329769mE 6713221mN 329866mE 6713336mN 329981mE 6713239mN							
		BD3 329427mE 6713430mN (~150 x 150m) 329531mE 6713540mN 329640mE 6713436mN 329536mE 6713327mN							
		A total of 70 downhole stations (AUV components) were recorded for a total of 305 metres of DHTEM data from the three surveys.							
		Drill hole Survey Date Loop From (m) To (m) No. of stations							
		BD01 17/9/2009 BD1 10 115 26 105							
		BD02 16/9/2009 BD2 10 100 22 90							
		BD03 15/9/2009 BD3 10 120 22 110							
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale	The company is hopeful of completing further exploration drilling in the near future to confirm the extent of the mineralisation.							

Criteria	JORC Code Explanation	Commentary
	 stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further exploration work is also planned across both project areas.

Supplementary data

Table 3: All gram/metre intersections from Ada Ann (E15/1632). Width given is down-hole width and not true width. Intersections are based on a 0.3g/t Au cut off allowing for internal dilution by two "waste" or sub-grade samples.

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AARC0029	72	76	4	16.3	65.2
AA28	25	29	4	12.8	51.2
BR19	24	40	16	2.64	42.2
AA05	16	22	6	6.45	38.7
AA04	4	11	7	5.01	35.1
AA45	8	20	12	2.68	32.2
AA06	19	26	7	4.4	30.8
AA27	41	45	4	7.34	29.4
AXRC10	42	46	4	7.28	29.1
AA20	25	31	6	4.5	27.0
AA24	14	18	4	6.7	26.8
AXRC09	40	44	4	5.9	23.6
BR22	24	34	10	2.28	22.8
AARC0002	62	64	2	10.74	21.5
AA25	17	24	7	2.99	20.9
AA46	4	18	14	1.44	20.2
AA10	40	47	7	2.74	19.2
AA06	32	37	5	3.63	18.2

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AA49	14	16	2	8.08	16.2
AA25	35	38	3	5.37	16.1
AARC0006	34	41	7	2.14	15.0
BR04	14	28	14	1.06	14.8
AA17	28	34	6	2.3	13.8
AA54	41	46	5	2.65	13.3
BR05	0	6	6	2.19	13.1
AA01	15	23	8	1.56	12.5
AXRC10	29	33	4	3.12	12.5
AA57	48	53	5	2.47	12.4
AA12	66	69	3	4.03	12.1
AA34	8	20	12	0.99	11.9
BR28	31	37	6	1.93	11.6
AA22	32	36	4	2.63	10.5
AARC0024	52	56	4	2.63	10.5
AA18	41	45	4	2.47	9.9
AARC0020	62	68	6	1.63	9.8
AA02	23	29	6	1.62	9.7
AXRC05	27	29	2	4.83	9.7
AXRC07	21	22	1	9.42	9.4
AA43	28	30	2	4.58	9.2
BR15	24	26	2	4.15	8.3
AA24	30	33	3	2.7	8.1
AA20	17	20	3	2.58	7.7
AA03	29	39	10	0.73	7.3
AA05	30	31	1	6.83	6.8
AA02	40	42	2	3.34	6.7
BR23	29	37	8	0.77	6.2
AA38	15	20	5	1.22	6.1
AA19	43	48	5	1.15	5.8
AXRC16	27	31	4	1.42	5.7

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AARC0004	44	47	3	1.82	5.5
AARC0009	52	54	2	2.67	5.3
BR02	4	14	10	0.52	5.2
AA04	23	25	2	2.56	5.1
BR28	42	44	2	2.5	5.0
AARC0028	72	76	4	1.24	5.0
AARC0016	0	1	1	4.89	4.9
AARC0017	14	18	4	1.22	4.9
AA12	42	43	1	4.8	4.8
AARC0008	43	52	9	0.52	4.7
AARC0005	68	70	2	2.34	4.7
AA16	35	37	2	2.32	4.6
AA32	37	39	2	2.3	4.6
AARC0014	61	63	2	2.27	4.5
AA09	46	47	1	4.51	4.5
BR02	18	22	4	1.07	4.3
AA43	17	19	2	2.12	4.2
BR24	22	28	6	0.68	4.1
AA44	21	23	2	2.04	4.1
AARC0019	31	37	6	0.65	3.9
AARC0022	32	40	8	0.48	3.8
AARC0010	53	56	3	1.23	3.7
AA29	31	35	4	0.88	3.5
AA03	46	47	1	3.51	3.5
BR29	15	16	1	3.5	3.5
BR25	16	20	4	0.86	3.4
AA15	39	43	4	0.85	3.4
AA58	58	62	4	0.83	3.3
AARC0024	68	72	4	0.81	3.2
AA56	47	49	2	1.57	3.1
AA37	16	20	4	0.77	3.1

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AARC0010	44	48	4	0.75	3.0
AA08	29	30	1	2.97	3.0
AARC0017	22	23	1	2.8	2.8
AA55	50	51	1	2.76	2.8
BR07	22	26	4	0.68	2.7
BR28	52	56	4	0.68	2.7
AA40	18	21	3	0.82	2.5
AA52	16	20	4	0.61	2.4
AAA130	34	38	4	0.57	2.3
AA49	7	11	4	0.56	2.2
AA33	40	44	4	0.54	2.2
AA47	4	8	4	0.52	2.1
AARC0033	4	8	4	0.52	2.1
AXRC16	34	35	1	2.05	2.1
AA20	11	14	3	0.68	2.0
AA10	52	54	2	1.02	2.0
BR05	18	20	2	0.98	2.0
AA04	35	36	1	1.93	1.9
AA23	15	16	1	1.91	1.9
AA12	54	55	1	1.88	1.9
AA53	33	37	4	0.46	1.8
BR29	24	26	2	0.88	1.8
AA54	53	54	1	1.76	1.8
AA58	44	48	4	0.42	1.7
AARC0018	18	20	2	0.82	1.6
BR26	26	29	3	0.54	1.6
AAA149	22	26	4	0.4	1.6
AAA149	38	42	4	0.4	1.6
AARC0003	37	38	1	1.49	1.5
AARC0021	40	44	4	0.35	1.4
AA21	20	21	1	1.33	1.3

Hole_ID	Depth_From	Depth_To	IntervalWidth	Grade	Gram/metre
AARC0007	54	55	1	1.32	1.3
AA37	8	12	4	0.32	1.3
AARC0018	29	30	1	1.27	1.3
AA16	25	28	3	0.41	1.2
AA05	41	42	1	1.23	1.2
AARC0013	44	45	1	1.2	1.2
AA56	59	60	1	1.18	1.2
AARC0015	32	33	1	1.18	1.2
BR27	17	19	2	0.57	1.1
BR08	30	32	2	0.52	1.0
AA35	18	20	2	0.45	0.9
AARC0021	34	35	1	0.85	0.9
BR06	12	14	2	0.42	0.8
AARC0006	50	52	2	0.39	0.8
AARC0014	55	56	1	0.71	0.7
AARC0006	29	30	1	0.67	0.7
AA31	43	44	1	0.66	0.7
AXRC03	17	19	2	0.3	0.6
AA17	41	42	1	0.58	0.6
AA09	35	36	1	0.57	0.6
AARC0007	50	51	1	0.57	0.6
AARC0004	38	39	1	0.54	0.5
AA18	34	35	1	0.49	0.5
AARC0009	57	58	1	0.49	0.5
AARC0019	41	42	1	0.46	0.5
AARC0021	30	31	1	0.41	0.4
AARC0021	21	22	1	0.37	0.4
AARC0011	26	27	1	0.35	0.4
AARC0012	35	36	1	0.33	0.3
AARC0013	50	51	1	0.3	0.3

Table 4: All drillhole collar locations across E15/1534, E15/1632 and E15/1972. All collars are MGA94_51. (n/a – collar RL unavailable from historic data)

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
99XGRC1	RAB	69	316599	6590582	419	-60	270
99XGRC2	RAB	54	316500	6590577	419	-60	90
99XGRC4	RC	54	317777	6590645	419	-60	135
99XGRC5	RC	54	317784	6590662	419	-60	133
99XGRC6	RC	60	317821	6590696	419	-60	125
AA01	RC	26	321857	6591434	376	-60	270
AA02	RC	47	321869	6591429	376	-60	270
AA03	RC	51	321881	6591427	376	-60	270
AA04	RC	41	321855	6591424	375	-60	270
AA05	RC	47	321868	6591419	376	-60	270
AA06	RC	52	321876	6591416	377	-60	270
AA07	RC	16	321850	6591402	376	-60	270
AA08	RC	47	321861	6591394	378	-60	270
AA09	RC	51	321871	6591402	376	-60	270
AA10	RC	63	321884	6591401	377	-60	270
AA11	RC	16	321902	6591400	376	-60	270
AA12	RC	86	321924	6591366	376	-60	255
AA13	RC	69	321913	6591346	376	-60	255
AA14	RC	57	321807	6591037	374	-60	255
AA15	RC	62	321885	6591421	374	-60	270
AA16	RC	45	321856	6591411	373	-60	270
AA17	RC	51	321867	6591409	376	-60	270
AA18	RC	58	321890	6591429	376	-60	270
AA19	RC	63	321896	6591410	376	-60	270
AA20	RC	33	321857	6591424	375	-90	0
AA21	RC	33	321861	6591423	376	-90	0
AA22	RC	49	321865	6591419	374	-90	0
AA24	RC	45	321858	6591411	376	-90	0

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
 AA25	RC	45	321863	6591411	376	-90	0
AA26	RC	27	321867	6591411	376	-90	0
AA27	RC	51	321898	6591362	376	-60	255
AA28	RC	33	321869	6591411	376	-90	0
AA29	RC	40	321865	6591353	378	-90	0
AA31	RC	51	321866	6591390	377	-90	0
AA32	RC	51	321875	6591389	377	-90	0
AA33	RC	51	321885	6591387	375	-90	0
AA34	RC	20	321833	6591438	373	-90	0
AA35	RC	20	321840	6591441	377	-90	0
AA36	RC	20	321850	6591439	376	-90	0
AA37	RC	20	321855	6591441	376	-90	0
AA38	RC	20	321860	6591441	376	-90	0
AA39	RC	21	321835	6591409	376	-60	270
AA40	RC	21	321840	6591409	376	-60	270
AA41	RC	21	321846	6591407	376	-60	270
AA42	RC	21	321859	6591410	376	-60	270
AA43	RC	30	321832	6591403	376	-90	0
AA44	RC	33	321838	6591401	376	-90	0
AA45	RC	30	321821	6591447	376	-90	0
AA46	RC	36	321821	6591446	378	-60	200
AA47	RC	30	321823	6591439	377	-60	270
AA48	RC	39	321827	6591438	377	-60	270
AA49	RC	24	321840	6591438	375	-60	210
AA51	RC	30	321882	6591357	373	-60	185
AA52	RC	50	321852	6591520	377	-60	270
AA53	RC	51	321883	6591496	376	-60	272
AA54	RC	65	321889	6591432	376	-90	0
AA55	RC	65	321901	6591410	376	-90	0
AA56	RC	70	321894	6591398	375	-90	0
AA57	RC	70	321901	6591386	375	-90	0

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
AA58	RC	80	321924	6591362	375	-90	0
AAA111	RC	30	321831	6591498	373	-70	300
AAA112	RC	30	321819	6591496	377	-70	300
AAA113	RC	30	321833	6591519	376	-70	300
AAA130	RC	60	321899	6591418	376	-90	0
AAA133	RC	38	321844	6591476	373	-90	0
AAA147	RC	36	321849	6591475	377	-90	0
AAA149	RC	45	321864	6591469	373	-90	0
AARC0001	RC	84	321904	6591321	376	-61	270
AARC0002	RC	96	321942	6591322	375	-61	271
AARC0003	RC	60	321855	6591389	376	-61	268
AARC0004	RC	84	321902	6591388	375	-61	268
AARC0005	RC	96	321953	6591388	375	-60	270
AARC0006	RC	84	321896	6591442	376	-60	273
AARC0007	RC	96	321938	6591431	376	-60	265
AARC0008	RC	84	321907	6591462	377	-61	273
AARC0009	RC	90	321926	6591464	376	-60	272
AARC0010	RC	72	321918	6591485	377	-60	271
AARC0011	RC	54	321862	6591540	378	-61	270
AARC0012	RC	66	321890	6591528	378	-60	270
AARC0013	RC	72	321913	6591511	377	-60	271
AARC0014	RC	78	321931	6591521	377	-60	269
AARC0015	RC	42	321814	6591458	377	-90	0
AARC0016	RC	36	321827	6591495	378	-61	269
AARC0017	RC	48	321856	6591484	377	-60	269
AARC0018	RC	54	321875	6591482	377	-60	270
AARC0019	RC	60	321893	6591487	377	-60	268
AARC0020	RC	72	321938	6591496	376	-60	269
AARC0021	RC	60	321875	6591460	377	-60	272
AARC0022	RC	60	321852	6591268	377	-60	269
AARC0023	RC	96	321942	6591274	376	-60	268

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT North	NAT_RL	Dip	Azimuth
AARC0024	RC	108	321963	6591303	377	-61	270
AARC0025	RC	72	321973	6591369	376	-61	271
AARC0026	RC	90	321928	6591581	376	-60	270
AARC0027	RC	96	321947	6591533	376	-60	270
AARC0028	RC	93	321960	6591496	376	-61	268
AARC0029	RC	114	321973	6591369	376	-60	270
AARC0030	RC	36	321828	6591326	376	-60	270
AARC0031	RC	60	321810	6591345	376	-60	270
AARC0032	RC	48	321857	6591328	376	-61	270
AARC0033	RC	42	321826	6591527	377	-60	270
AARC0034	RC	42	321841	6591579	376	-61	271
AARC0035	RC	60	321879	6591579	376	-60	270
AXRC01	RC	48	321855	6591342	377	-90	0
AXRC02	RC	54	321864	6591350	376	-90	0
AXRC03	RC	48	321844	6591357	376	-90	0
AXRC04	RC	48	321852	6591358	373	-90	0
AXRC05	RC	48	321862	6591359	377	-90	0
AXRC06	RC	48	321872	6591359	376	-90	0
AXRC07	RC	48	321845	6591366	373	-90	0
AXRC08	RC	48	321853	6591368	377	-90	0
AXRC09	RC	48	321862	6591369	376	-90	0
AXRC10	RC	50	321862	6591406	376	-90	360
AXRC16	RC	42	321856	6591474	376	-90	0
BR01	RAB	20	321842	6591465	376	-60	290
BR02	RAB	25	321853	6591462	376	-60	290
BR03	RAB	30	321863	6591458	376	-60	290
BR04	RAB	36	321851	6591433	376	-60	290
BR05	RAB	20	321859	6591428	376	-60	290
BR06	RAB	22	321816	6591401	376	-60	290
BR07	RAB	32	321827	6591400	376	-60	290
BR08	RAB	36	321837	6591395	376	-60	290

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BR09	RAB	29	321787	6591371	376	-60	290
BR10	RAB	17	321804	6591364	376	-60	290
BR11	RAB	24	321820	6591358	376	-60	290
BR12	RAB	35	321831	6591347	376	-60	290
BR13	RAB	34	321789	6591282	376	-60	290
BR14	RAB	35	321811	6591278	376	-60	290
BR15	RAB	26	321849	6591521	376	-60	290
BR16	RAB	34	321874	6591552	376	-60	290
BR17	RAB	38	321883	6591547	376	-60	290
BR18	RAB	40	321897	6591537	376	-60	290
BR19	RAB	40	321868	6591425	376	-60	290
BR20	RAB	48	321871	6591537	376	-60	295
BR21	RAB	46	321866	6591520	376	-60	292
BR22	RAB	40	321866	6591492	376	-60	305
BR23	RAB	46	321858	6591448	376	-60	292
BR24	RAB	30	321885	6591434	376	-60	290
BR25	RC	48	321846	6591499	376	-60	290
BR26	RC	50	321867	6591515	376	-60	290
BR27	RC	45	321849	6591455	376	-60	290
BR28	RC	72	321862	6591435	376	-60	290
BR29	RC	48	321834	6591418	376	-60	298
BVRB001	RAB	30	327613	6589910	n/a	-60	270
BVRB002	RAB	22	327649	6589875	n/a	-60	270
BVRB003	RAB	29	327684	6589839	n/a	-60	270
BVRB004	RAB	22	327719	6589804	n/a	-60	270
BVRB005	RAB	23	327754	6589768	n/a	-60	270
BVRB006	RAB	16	327789	6589733	n/a	-60	270
BVRB011	RAB	28	327547	6590281	n/a	-60	270
BVRB012	RAB	16	327582	6590245	n/a	-60	270
BVRB013	RAB	16	327618	6590209	n/a	-60	270
BVRB014	RAB	23	327653	6590174	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB015	RAB	17	327688	6590138	n/a	-60	270
BVRB016	RAB	14	327723	6590103	n/a	-60	270
BVRB017	RAB	24	327758	6590067	n/a	-60	270
BVRB018	RAB	25	327793	6590032	n/a	-60	270
BVRB019	RAB	27	327729	6589996	n/a	-60	270
BVRB023	RAB	18	327633	6590484	n/a	-60	270
BVRB024	RAB	12	327668	6590449	n/a	-60	270
BVRB025	RAB	19	327703	6590413	n/a	-60	270
BVRB026	RAB	17	327738	6590377	n/a	-60	270
BVRB027	RAB	14	327774	6590342	n/a	-60	270
BVRB033	RAB	23	327248	6591169	n/a	-60	270
BVRB034	RAB	20	327283	6591133	n/a	-60	270
BVRB035	RAB	26	327318	6591097	n/a	-60	270
BVRB036	RAB	14	327353	6591062	n/a	-60	270
BVRB037	RAB	31	327388	6591026	n/a	-60	270
BVRB038	RAB	24	327423	6590991	n/a	-60	270
BVRB039	RAB	28	327459	6590955	n/a	-60	270
BVRB040	RAB	32	327494	6590920	n/a	-60	270
BVRB041	RAB	28	327529	6590884	n/a	-60	270
BVRB042	RAB	35	327564	6590849	n/a	-60	270
BVRB043	RAB	41	327599	6590813	n/a	-60	270
BVRB044	RAB	28	327634	6590778	n/a	-60	270
BVRB045	RAB	10	327670	6590742	n/a	-60	270
BVRB046	RAB	14	327705	6590707	n/a	-60	270
BVRB047	RAB	20	327740	6590671	n/a	-60	270
BVRB048	RAB	13	327775	6590635	n/a	-60	270
BVRB053	RAB	15	327212	6591480	n/a	-60	270
BVRB054	RAB	23	327247	6591445	n/a	-60	270
BVRB055	RAB	25	327283	6591409	n/a	-60	270
BVRB056	RAB	18	327318	6591374	n/a	-60	270
BVRB057	RAB	21	327353	6591338	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB058	RAB	19	327388	6591302	n/a	-60	270
BVRB059	RAB	16	327423	6591267	n/a	-60	270
BVRB060	RAB	11	327458	6591231	n/a	-60	270
BVRB061	RAB	10	327494	6591196	n/a	-60	270
BVRB062	RAB	7	327529	6591160	n/a	-60	270
BVRB063	RAB	12	327564	6591125	n/a	-60	270
BVRB064	RAB	22	327599	6591089	n/a	-60	270
BVRB065	RAB	14	327634	6591054	n/a	-60	270
BVRB066	RAB	12	327669	6591018	n/a	-60	270
BVRB067	RAB	28	327705	6590983	n/a	-60	270
BVRB068	RAB	29	327740	6590947	n/a	-60	270
BVRB069	RAB	34	327775	6590911	n/a	-60	270
BVRB072	RAB	20	327480	6591497	n/a	-60	270
BVRB073	RAB	25	327515	6591462	n/a	-60	270
BVRB074	RAB	27	327550	6591426	n/a	-60	270
BVRB075	RAB	28	327585	6591391	n/a	-60	270
BVRB076	RAB	10	327107	6591587	n/a	-60	270
BVRB077	RAB	7	327142	6591551	n/a	-60	270
BVRB078	RAB	13	327177	6591516	n/a	-60	270
BVRB079	RAB	7	327022	6591959	n/a	-60	270
BVRB080	RAB	7	327058	6591924	n/a	-60	270
BVRB081	RAB	7	327093	6591888	n/a	-60	270
BVRB082	RAB	6	327128	6591853	n/a	-60	270
BVRB083	RAB	5	327163	6591817	n/a	-60	270
BVRB084	RAB	6	327198	6591782	n/a	-60	270
BVRB085	RAB	5	327233	6591746	n/a	-60	270
BVRB086	RAB	5	327269	6591711	n/a	-60	270
BVRB087	RAB	7	327304	6591675	n/a	-60	270
BVRB088	RAB	7	327339	6591640	n/a	-60	270
BVRB089	RAB	5	327374	6591604	n/a	-60	270
BVRB090	RAB	6	327409	6591568	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB091	RAB	5	327444	6591533	n/a	-60	270
BVRB092	RAB	2	327204	6592063	n/a	-60	270
BVRB093	RAB	3	327239	6592028	n/a	-60	270
BVRB094	RAB	5	327274	6591992	n/a	-60	270
BVRB095	RAB	15	327309	6591956	n/a	-60	270
BVRB096	RAB	16	327344	6591921	n/a	-60	270
BVRB097	RAB	19	327379	6591885	n/a	-60	270
BVRB098	RAB	28	327415	6591850	n/a	-60	270
BVRB099	RAB	29	327450	6591814	n/a	-60	270
BVRB100	RAB	24	327485	6591778	n/a	-60	270
BVRB101	RAB	8	327521	6591742	n/a	-60	270
BVRB102	RAB	7	327557	6591706	n/a	-60	270
BVRB103	RAB	8	327592	6591670	n/a	-60	270
BVRB104	RAB	17	326726	6592824	n/a	-60	270
BVRB105	RAB	13	326761	6592789	n/a	-60	270
BVRB106	RAB	12	326796	6592754	n/a	-60	270
BVRB107	RAB	11	326831	6592719	n/a	-60	270
BVRB108	RAB	4	326867	6592684	n/a	-60	270
BVRB109	RAB	4	326902	6592649	n/a	-60	270
BVRB110	RAB	7	326937	6592614	n/a	-60	270
BVRB111	RAB	11	326972	6592579	n/a	-60	270
BVRB112	RAB	3	327009	6592542	n/a	-60	270
BVRB113	RAB	3	327044	6592507	n/a	-60	270
BVRB114	RAB	1	327079	6592472	n/a	-60	270
BVRB115	RAB	3	327114	6592437	n/a	-60	270
BVRB116	RAB	3	327150	6592402	n/a	-60	270
BVRB117	RAB	6	327186	6592366	n/a	-60	270
BVRB118	RAB	6	327221	6592330	n/a	-60	270
BVRB119	RAB	13	327257	6592293	n/a	-60	270
BVRB120	RAB	10	327293	6592257	n/a	-60	270
BVRB121	RAB	7	327328	6592221	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB122	RAB	16	327364	6592185	n/a	-60	270
BVRB123	RAB	14	327400	6592149	n/a	-60	270
BVRB124	RAB	15	327436	6592113	n/a	-60	270
BVRB125	RAB	13	327471	6592077	n/a	-60	270
BVRB126	RAB	13	327507	6592041	n/a	-60	270
BVRB127	RAB	11	327543	6592005	n/a	-60	270
BVRB128	RAB	25	327199	6592635	n/a	-60	270
BVRB129	RAB	29	327234	6592599	n/a	-60	270
BVRB137	RAB	19	325837	6591557	n/a	-60	270
BVRB138	RAB	45	325737	6591557	n/a	-60	270
BVRB139	RAB	43	325637	6591557	n/a	-60	270
BVRB140	RAB	21	325437	6591557	n/a	-60	270
BVRB141	RAB	39	325537	6591557	n/a	-60	270
BVRB142	RAB	22	325337	6591557	n/a	-60	270
BVRB143	RAB	31	325237	6591557	n/a	-60	270
BVRB144	RAB	30	325137	6591557	n/a	-60	270
BVRB145	RAB	43	325037	6591557	n/a	-60	270
BVRB146	RAB	46	324937	6591557	n/a	-60	270
BVRB147	RAB	21	324837	6591557	n/a	-60	270
BVRB148	RAB	25	324737	6591557	n/a	-60	270
BVRB149	RAB	48	324637	6591557	n/a	-60	270
BVRB150	RAB	39	324537	6591557	n/a	-60	270
BVRB151	RAB	39	324437	6591557	n/a	-60	270
BVRB152	RAB	42	324337	6591557	n/a	-60	270
BVRB153	RAB	41	324237	6591557	n/a	-60	270
BVRB154	RAB	36	324137	6591557	n/a	-60	270
BVRB155	RAB	49	324037	6591557	n/a	-60	270
BVRB156	RAB	49	323937	6591557	n/a	-60	270
BVRB157	RAB	63	323837	6591557	n/a	-60	270
BVRB158	RAB	45	323737	6591557	n/a	-60	270
BVRB159	RAB	26	323637	6591557	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB160	RAB	32	323537	6591557	n/a	-60	270
BVRB161	RAB	41	323437	6591557	n/a	-60	270
BVRB162	RAB	41	323337	6591557	n/a	-60	270
BVRB163	RAB	35	323237	6591557	n/a	-60	270
BVRB164	RAB	21	323137	6591557	n/a	-60	270
BVRB165	RAB	18	323037	6591557	n/a	-60	270
BVRB166	RAB	29	322937	6591557	n/a	-60	270
BVRB167	RAB	29	322837	6591557	n/a	-60	270
BVRB168	RAB	27	322737	6591557	n/a	-60	270
BVRB169	RAB	50	322637	6591557	n/a	-60	270
BVRB170	RAB	23	322537	6591557	n/a	-60	270
BVRB171	RAB	28	322437	6591557	n/a	-60	270
BVRB172	RAB	38	322337	6591557	n/a	-60	270
BVRB173	RAB	46	322237	6591557	n/a	-60	270
BVRB174	RAB	25	322137	6591557	n/a	-60	270
BVRB175	RAB	63	322737	6591957	n/a	-60	270
BVRB176	RAB	59	322837	6591957	n/a	-60	270
BVRB177	RAB	28	322937	6591957	n/a	-60	270
BVRB178	RAB	23	323037	6591957	n/a	-60	270
BVRB179	RAB	46	323137	6591957	n/a	-60	270
BVRB180	RAB	51	323237	6591957	n/a	-60	270
BVRB181	RAB	28	323337	6591957	n/a	-60	270
BVRB182	RAB	30	323437	6591957	n/a	-60	270
BVRB183	RAB	25	323537	6591957	n/a	-60	270
BVRB184	RAB	21	323637	6591957	n/a	-60	270
BVRB185	RAB	31	323737	6591957	n/a	-60	270
BVRB186	RAB	41	323037	6592357	n/a	-60	270
BVRB187	RAB	65	323137	6592357	n/a	-60	270
BVRB188	RAB	62	323237	6592357	n/a	-60	270
BVRB189	RAB	50	323337	6592357	n/a	-60	270
BVRB190	RAB	51	323437	6592357	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB191	RAB	32	323537	6592357	n/a	-60	270
BVRB192	RAB	39	323637	6592357	n/a	-60	270
BVRB193	RAB	25	323737	6592357	n/a	-60	270
BVRB194	RAB	32	323837	6592357	n/a	-60	270
BVRB195	RAB	24	323937	6592357	n/a	-60	270
BVRB196	RAB	23	324037	6592357	n/a	-60	270
BVRB197	RAB	33	324137	6592357	n/a	-60	270
BVRB198	RAB	33	324237	6592357	n/a	-60	270
BVRB199	RAB	52	324337	6592357	n/a	-60	270
BVRB200	RAB	31	324437	6592357	n/a	-60	270
BVRB201	RAB	36	324537	6592357	n/a	-60	270
BVRB202	RAB	26	324637	6592357	n/a	-60	270
BVRB203	RAB	31	324737	6592357	n/a	-60	270
BVRB204	RAB	41	324837	6592357	n/a	-60	270
BVRB205	RAB	46	324937	6592357	n/a	-60	270
BVRB206	RAB	35	324987	6592357	n/a	-60	270
BVRB207	RAB	33	325037	6592357	n/a	-60	270
BVRB208	RAB	38	325137	6592357	n/a	-60	270
BVRB209	RAB	38	325237	6592357	n/a	-60	270
BVRB210	RAB	35	325337	6592357	n/a	-60	270
BVRB211	RAB	24	325437	6592357	n/a	-60	270
BVRB212	RAB	54	325537	6592357	n/a	-60	270
BVRB213	RAB	59	325637	6592357	n/a	-60	270
BVRB214	RAB	45	325337	6592757	n/a	-60	270
BVRB215	RAB	19	325237	6592757	n/a	-60	270
BVRB216	RAB	24	325137	6592757	n/a	-60	270
BVRB217	RAB	42	325037	6592757	n/a	-60	270
BVRB218	RAB	37	324937	6592757	n/a	-60	270
BVRB219	RAB	52	324837	6592757	n/a	-60	270
BVRB220	RAB	61	324737	6592757	n/a	-60	270
BVRB221	RAB	60	324637	6592757	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB222	RAB	35	324537	6592757	n/a	-60	270
BVRB223	RAB	33	324437	6592757	n/a	-60	270
BVRB224	RAB	57	324337	6592757	n/a	-60	270
BVRB225	RAB	33	324237	6592757	n/a	-60	270
BVRB226	RAB	26	324137	6592757	n/a	-60	270
BVRB227	RAB	32	324037	6592757	n/a	-60	270
BVRB228	RAB	22	323937	6592757	n/a	-60	270
BVRB229	RAB	18	323837	6592757	n/a	-60	270
BVRB230	RAB	35	323737	6592757	n/a	-60	270
BVRB231	RAB	59	323637	6592757	n/a	-60	270
BVRB232	RAB	51	324942	6592357	n/a	-60	270
BVRB233	RAB	26	322137	6591157	n/a	-60	270
BVRB234	RAB	35	322237	6591157	n/a	-60	270
BVRB235	RAB	14	322337	6591157	n/a	-60	270
BVRB236	RAB	20	322437	6591157	n/a	-60	270
BVRB237	RAB	17	322537	6591157	n/a	-60	270
BVRB238	RAB	10	322637	6591157	n/a	-60	270
BVRB239	RAB	23	322737	6591157	n/a	-60	270
BVRB240	RAB	15	322837	6591157	n/a	-60	270
BVRB241	RAB	18	322937	6591157	n/a	-60	270
BVRB242	RAB	18	323037	6591157	n/a	-60	270
BVRB243	RAB	19	323137	6591157	n/a	-60	270
BVRB244	RAB	29	323237	6591157	n/a	-60	270
BVRB245	RAB	10	322237	6590757	n/a	-60	270
BVRB246	RAB	7	322337	6590757	n/a	-60	270
BVRB247	RAB	21	322437	6590757	n/a	-60	270
BVRB248	RAB	9	322537	6590757	n/a	-60	270
BVRB249	RAB	46	322637	6590757	n/a	-60	270
BVRB250	RAB	46	322737	6590757	n/a	-60	270
BVRB251	RAB	19	322837	6590757	n/a	-60	270
BVRB252	RAB	47	322937	6590757	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB253	RAB	28	323037	6590757	n/a	-60	270
BVRB254	RAB	31	323137	6590757	n/a	-60	270
BVRB255	RAB	20	322137	6590357	n/a	-60	270
BVRB256	RAB	24	322237	6590357	n/a	-60	270
BVRB257	RAB	28	322337	6590357	n/a	-60	270
BVRB258	RAB	20	322437	6590357	n/a	-60	270
BVRB259	RAB	21	322537	6590357	n/a	-60	270
BVRB260	RAB	22	322637	6590357	n/a	-60	270
BVRB261	RAB	31	322737	6590357	n/a	-60	270
BVRB262	RAB	33	322837	6590357	n/a	-60	270
BVRB263	RAB	20	322937	6590357	n/a	-60	270
BVRB264	RAB	23	323037	6590357	n/a	-60	270
BVRB265	RAB	32	323137	6590357	n/a	-60	270
BVRB266	RAB	26	322337	6589957	n/a	-60	270
BVRB267	RAB	36	322437	6589957	n/a	-60	270
BVRB268	RAB	20	322537	6589957	n/a	-60	270
BVRB269	RAB	48	322637	6589957	n/a	-60	270
BVRB270	RAB	29	322737	6589957	n/a	-60	270
BVRB271	RAB	29	322837	6589957	n/a	-60	270
BVRB272	RAB	46	322037	6590357	n/a	-60	270
BVRB273	RAB	25	321937	6590357	n/a	-60	270
BVRB274	RAB	35	322237	6589957	n/a	-60	270
BVRB275	RAB	30	321937	6589957	n/a	-60	270
BVRB291	RAB	41	325435	6592757	n/a	-60	270
BVRB292	RAB	50	325485	6592757	n/a	-60	270
BVRB293	RAB	40	325535	6592757	n/a	-60	270
BVRB294	RAB	32	325585	6592757	n/a	-60	270
BVRB295	RAB	33	325635	6592757	n/a	-60	270
BVRB296	RAB	13	325685	6592757	n/a	-60	270
BVRB297	RAB	28	325735	6592757	n/a	-60	270
BVRB298	RAB	46	325785	6592757	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB299	RAB	34	325835	6592757	n/a	-60	270
BVRB300	RAB	30	325885	6592757	n/a	-60	270
BVRB301	RAB	41	325935	6592757	n/a	-60	270
BVRB302	RAB	26	325985	6592757	n/a	-60	270
BVRB303	RAB	32	326035	6592757	n/a	-60	270
BVRB304	RAB	24	326085	6592757	n/a	-60	270
BVRB305	RAB	27	326135	6592757	n/a	-60	270
BVRB306	RAB	33	326185	6592757	n/a	-60	270
BVRB307	RAB	36	326235	6592757	n/a	-60	270
BVRB325	RAB	46	325685	6592357	n/a	-60	270
BVRB326	RAB	37	325735	6592357	n/a	-60	270
BVRB327	RAB	27	325785	6592357	n/a	-60	270
BVRB328	RAB	33	325835	6592357	n/a	-60	270
BVRB329	RAB	16	325885	6592357	n/a	-60	270
BVRB330	RAB	35	325935	6592357	n/a	-60	270
BVRB331	RAB	36	325985	6592357	n/a	-60	270
BVRB332	RAB	45	326085	6592357	n/a	-60	270
BVRB333	RAB	38	326185	6592357	n/a	-60	270
BVRB334	RAB	41	326285	6592357	n/a	-60	270
BVRB335	RAB	36	325835	6591157	n/a	-60	270
BVRB336	RAB	49	325885	6591166	n/a	-60	270
BVRB337	RAB	35	325935	6591157	n/a	-60	270
BVRB338	RAB	39	325985	6591157	n/a	-60	270
BVRB339	RAB	12	326035	6591157	n/a	-60	270
BVRB340	RAB	16	326085	6591157	n/a	-60	270
BVRB341	RAB	12	326135	6591157	n/a	-60	270
BVRB342	RAB	11	326185	6591157	n/a	-60	270
BVRB343	RAB	71	326285	6591157	n/a	-60	270
BVRB344	RAB	44	326335	6591157	n/a	-60	270
BVRB345	RAB	23	326385	6591157	n/a	-60	270
BVRB346	RAB	28	326435	6591157	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
BVRB347	RAB	27	326485	6591157	n/a	-60	270
BVRB348	RAB	27	326535	6591157	n/a	-60	270
BVRB349	RAB	27	326585	6591157	n/a	-60	270
BVRB350	RAB	28	326635	6591157	n/a	-60	270
BVRB351	RAB	39	325985	6590757	n/a	-60	270
BVRB352	RAB	33	326035	6590757	n/a	-60	270
BVRB353	RAB	33	326085	6590757	n/a	-60	270
BVRB354	RAB	32	326135	6590757	n/a	-60	270
BVRB355	RAB	32	326185	6590757	n/a	-60	270
BVRB356	RAB	7	326235	6590757	n/a	-60	270
BVRB357	RAB	29	326285	6590757	n/a	-60	270
BVRB358	RAB	23	326335	6590757	n/a	-60	270
BVRB359	RAB	23	326385	6590757	n/a	-60	270
BVRB360	RAB	24	326435	6590757	n/a	-60	270
BVRB361	RAB	19	326485	6590757	n/a	-60	270
BVRB362	RAB	4	326535	6590757	n/a	-60	270
BVRB363	RAB	28	326585	6590757	n/a	-60	270
BVRB364	RAB	16	326635	6590757	n/a	-60	270
BVRB365	RAB	5	326685	6590757	n/a	-60	270
BVRB366	RAB	4	326735	6590757	n/a	-60	270
BVRB367	RAB	8	326785	6590757	n/a	-60	270
KNRB0408	RAB	67	315400	6589700	n/a	-60	270
KNRB0409	RAB	52	315450	6589700	n/a	-60	270
KNRB0410	RAB	28	315500	6589700	n/a	-60	270
KNRB0411	RAB	38	315550	6589700	n/a	-60	270
KNRB0412	RAB	44	315600	6589700	n/a	-60	270
KNRB0413	RAB	55	315650	6589700	n/a	-60	270
KNRB0414	RAB	64	315700	6589700	n/a	-60	270
KNRB0415	RAB	49	315750	6589700	n/a	-60	270
KNRB0416	RAB	43	315400	6589900	n/a	-60	270
KNRB0417	RAB	18	315450	6589900	n/a	-60	270

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
KNRB0418	RAB	48	315465	6589900	n/a	-60	270
KNRB0419	RAB	53	315505	6589900	n/a	-60	270
KNRB0420	RAB	65	315550	6589900	n/a	-60	270
KNRB0421	RAB	21	315600	6589900	n/a	-60	270
KNRB0422	RAB	20	315650	6589900	n/a	-60	270
KNRB0423	RAB	38	315700	6589900	n/a	-60	270
KNRB0424	RAB	44	315750	6589900	n/a	-60	270
KNRB0425	RAB	68	315800	6589900	n/a	-60	270
KNRB0426	RAB	25	315850	6589890	n/a	-60	270
KNRB0427	RAB	48	315845	6589890	n/a	-60	270
KNRB0428	RAB	15	315650	6590100	n/a	-60	270
KNRB0429	RAB	14	315700	6590100	n/a	-60	270
KNRB0430	RAB	27	315750	6590100	n/a	-60	270
KNRB0431	RAB	32	315800	6590100	n/a	-60	270
KSRC001	RC	90	324983	6592356	n/a	-60	270
KSRC002	RC	90	325002	6592357	n/a	-60	270
KSRC003	RC	78	325021	6592360	n/a	-60	270
NMC019	RC	38	323175	6588455	n/a	-90	0
NMC020	RC	32	323084	6588588	n/a	-90	0
RSAC079	AC	27	327806	6589094	n/a	-60	90
RSAC080	AC	36	327768	6589097	n/a	-60	90
RSAC081	AC	37	327734	6589107	n/a	-60	90
RSAC082	AC	37	327683	6589108	n/a	-60	90
RSAC083	AC	39	327648	6589111	n/a	-60	90
RSAC084	AC	33	327610	6589111	n/a	-60	90
RSAC085	AC	29	327564	6589111	n/a	-60	90
RSAC086	AC	27	327529	6589111	n/a	-60	90
RSAC087	AC	15	327483	6589104	n/a	-60	90
RSAC088	AC	14	327444	6589096	n/a	-60	90
RSAC089	AC	9	327409	6589097	n/a	-60	90
RSAC090	AC	11	327366	6589098	n/a	-60	90

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
RSAC091	AC	5	327329	6589106	n/a	-60	90
RSAC092	AC	17	327292	6589113	n/a	-60	90
RSAC093	AC	8	327248	6589112	n/a	-60	90
RSAC094	AC	16	327201	6589099	n/a	-60	90
RSAC095	AC	33	327171	6589091	n/a	-60	90
RSAC096	AC	44	327128	6589087	n/a	-60	90
RSAC097	AC	32	327094	6589089	n/a	-60	90
RSAC098	AC	38	327051	6589093	n/a	-60	90
RSAC099	AC	32	327014	6589090	n/a	-60	90
RSAC100	AC	38	326975	6589088	n/a	-60	90
RSAC101	AC	77	326931	6589082	n/a	-60	90
RSAC102	AC	48	326897	6589088	n/a	-60	90
RSAC103	AC	26	326843	6589103	n/a	-60	90
RSAC104	AC	28	326811	6589105	n/a	-60	90
RSAC105	AC	30	326772	6589116	n/a	-60	90
RSAC106	AC	27	326736	6589110	n/a	-60	90
RSAC107	AC	28	326692	326692 6589112 n/a -60		-60	90
RSAC108	AC	35	326653	326653 6589114 n/a -60		-60	90
RSAC109	AC	45	326602	6589112	n/a	-60	90
RSAC110	AC	44	326573	6589108	n/a	-60	90
RSAC111	AC	36	326536	6589102	n/a	-60	90
RSAC112	AC	34	326490	6589103	n/a	-60	90
RSAC113	AC	26	326452	6589096	n/a	-60	90
RSAC114	AC	33	326402	6589099	n/a	-60	90
RSAC115	AC	45	326374	6589097	n/a	-60	90
RSAC116	AC	45	326330	6589102	n/a	-60	90
RSAC117	AC	42	326290	6589095	n/a	-60	90
RSAC182	AC	12	327829	6587905	n/a	-60	90
RSAC183	AC	10	327790	6587908	n/a	-60	90
RSAC184	AC	16	327744	6587909	n/a	-60	90
RSAC185	AC	18	327709	6587906	n/a	-60	90

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
RSAC186	AC	38	327670	6587905	n/a	-60	90
RSAC187	AC	46	327629	6587905	n/a	-60	90
RSAC188	AC	47	327586	6587904	n/a	-60	90
RSAC189	AC	42	327554	7554 6587900		-60	90
RSAC190	AC	42	327509	6587904	n/a	-60	90
RSAC191	AC	53	327468	6587892	n/a	-60	90
RSAC192	AC	61	327426	6587903	n/a	-60	90
RSAC193	AC	60	327390	6587902	n/a	-60	90
RSAC194	AC	39	327348	6587905	n/a	-60	90
RSAC195	AC	49	327315	6587900	n/a	-60	90
RSAC196	AC	67	327271	6587921	n/a	-60	90
RSAC197	AC	62	327241	6587926	n/a	-60	90
RSAC198	AC	49	327188	6587914	n/a	-60	90
RSAC199	AC	48	327148	6587905	n/a	-60	90
RSAC200	AC	50	327113	6587905	n/a	-60	90
RSAC201	AC	43	327070	6587906	n/a	-60	90
RSAC202	AC	41	327036	6587900	n/a	-60	90
RSAC203	AC	31	326994	326994 6587900 n/a -60		-60	90
RSAC204	AC	33	326955	326955 6587895 n/a -60		-60	90
RSAC205	AC	33	326906	6587892	n/a	-60	90
RSAC206	AC	18	326872	6587895	n/a	-60	90
RSAC207	AC	25	326835	6587899	n/a	-60	90
RSAC208	AC	23	326788	6587900	n/a	-60	90
RSAC209	AC	30	326747	6587899	n/a	-60	90
RSAC210	AC	23	326713	6587899	n/a	-60	90
RSAC211	AC	20	327167	6588707	n/a	-60	90
RSAC212	AC	52	327132	6588705	n/a	-60	90
RSAC213	AC	27	327091	6588703	n/a	-60	90
RSAC214	AC	47	327052	6588701	n/a	-60	90
RSAC215	AC	60	327010	6588708	n/a	-60	90
RSAC216	AC	40	326971	6588706	n/a	-60	90

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
RSAC217	AC	40	326930	6588704	n/a	-60	90
RSAC218	AC	42	326899	6588702	n/a	-60	90
RSAC219	AC	40	326852	6588702	n/a	-60	90
RSAC220	AC	35	326817	6588700	n/a	-60	90
RSAC221	AC	30	326770	6588700	n/a	-60	90
RSAC222	AC	43	326719	6588703	n/a	-60	90
RSAC223	AC	27	326683	6588702	n/a	-60	90
RSAC224	AC	29	326651	6588709	n/a	-60	90
RSAC225	AC	22	326606	6588711	n/a	-60	90
RSAC226	AC	24	326570	6588703	n/a	-60	90
RSAC227	AC	22	326543	6588700	n/a	-60	90
RSAC228	AC	3	327116	6589501	n/a	-60	90
RSAC229	AC	17	327129	6589495	n/a	-60	90
RSAC230	AC	26	327086	6589498	n/a	-60	90
RSAC231	AC	24	327051	6589496	n/a	-60	90
RSAC232	AC	26	327010	6589510	n/a	-60	90
RSAC233	AC	32	326771	326771 6589507 n/a		-60	90
RSAC234	AC	24	326730	326730 6589506 n/a -60		-60	90
RSAC235	AC	30	326691	6589504	n/a	-60	90
RSAC236	AC	37	326649	6589500	n/a	-60	90
RSAC237	AC	80	326612	6589498	n/a	-60	90
RSAC238	AC	31	326570	6589496	n/a	-60	90
RSAC239	AC	53	326533	6589505	n/a	-60	90
RSAC240	AC	66	326489	6589505	n/a	-60	90
RSAC241	AC	69	326456	6589507	n/a	-60	90
RSAC242	AC	63	326406	6589510	n/a	-60	90
RSAC243	AC	45	326363	6589505	n/a	-60	90
RSAC244	AC	49	326325	6589502	n/a	-60	90
RSAC245	AC	26	326298	6589504	n/a	-60	90
RSAC246	AC	2	327340	6589504	n/a	-60	90
RSAC247	AC	11	327368	6589508	n/a	-60	90

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
RSAC248	AC	9	327410	6589506	n/a	-60	90
RSAC249	AC	13	327449	6589506	n/a	-60	90
RSAC250	AC	11	326765	6590296	n/a	-60	90
RSAC251	AC	7	326802	6590302	n/a	-60	90
RSAC252	AC	5	326851	6590301	n/a	-60	90
RSAC253	AC	13	327056	6590298	n/a	-60	90
RSAC254	AC	21	327092	6590297	n/a	-60	90
RSAC255	AC	36	327132	6590296	n/a	-60	90
RSAC256	AC	27	327170	6590299	n/a	-60	90
RSAC257	AC	32	327208	6590303	n/a	-60	90
RSAC258	AC	16	327251	6590305	n/a	-60	90
RSAC259	AC	27	327294	6590301	n/a	-60	90
RSAC260	AC	31	327328	6590302	n/a	-60	90
RSAC261	AC	23	327374	6590304	6590304 n/a		90
XRB1	RAB	8	315635	6589080 n/a		-90	0
XRB10	RAB	24	315235	6589180	n/a	-90	0
XRB100	RAB	19	316039	6590698	5590698 n/a		0
XRB101	RAB	8	316139	6590698	n/a	-90	0
XRB102	RAB	8	316239	316239 6590698		-90	0
XRB103	RAB	4	316339	6590698	n/a	-90	0
XRB104	RAB	5	316439	6590698	n/a	-90	0
XRB105	RAB	5	316539	6590698	n/a	-90	0
XRB106	RAB	18	316638	6590698	n/a	-90	0
XRB107	RAB	1	316739	6590698	n/a	-90	0
XRB108	RAB	2	316652 6590578		n/a	-90	0
XRB109	RAB	41	316552	6590578	n/a	-90	0
XRB11	RAB	25	315335	6589180	n/a	-90	0
XRB110	RAB	11	316452	6590578	n/a	-90	0
XRB111	RAB	9	316352	6590578	n/a	-90	0
XRB112	RAB	8	316252	6590578	n/a	-90	0
XRB113	RAB	8	316152	6590578	n/a	-90	0

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
XRB114	RAB	22	316052	6590578	n/a	-90	0
XRB115	RAB	5	315960	6590486	n/a	-90	0
XRB116	RAB	14	316060	6590486	n/a	-90	0
XRB117	RAB	14	316160	6590486	n/a	-90	0
XRB118	RAB	7	316260	6590486	n/a	-90	0
XRB119	RAB	7	316360	6590486	n/a	-90	0
XRB12	RAB	11	315435	6589180	n/a	-90	0
XRB120	RAB	21	316460	6590486	n/a	-90	0
XRB121	RAB	4	316560	6590486	n/a	-90	0
XRB122	RAB	30	315435	6588880	n/a	-90	0
XRB123	RAB	5	315335	6588880	n/a	-90	0
XRB124	RAB	8	315235	6588880	n/a	-90	0
XRB125	RAB	11	315135	6588880	n/a	-90	0
XRB126	RAB	55	315035	6588880	n/a	-90	0
XRB127	RAB	8	315035	6588680	n/a	-90	0
XRB128	RAB	9	315135	6588680	n/a	-90	0
XRB129	RAB	5	315235	6588680 n/a		-90	0
XRB13	RAB	5	315535	6589180	n/a	-90	0
XRB130	RAB	14	315335	6588680	n/a	-90	0
XRB131	RAB	7	315435	6588680	n/a	-90	0
XRB132	RAB	4	315435	6588480	n/a	-90	0
XRB133	RAB	5	315335	6588480	n/a	-90	0
XRB134	RAB	2	315235	6588480	n/a	-90	0
XRB135	RAB	7	315135	6588480	n/a	-90	0
XRB136	RAB	6	315035	6588480	n/a	-90	0
XRB137	RAB	5	315035	6588280	n/a	-90	0
XRB138	RAB	8	315135	6588280	n/a	-90	0
XRB139	RAB	5	315235	6588280	n/a	-90	0
XRB14	RAB	7	315635	6589280	n/a	-90	0
XRB140	RAB	8	315335	6588280	n/a	-90	0
XRB141	RAB	2	315435	6588280	n/a	-90	0

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
XRB142	RAB	3	315535	6588280	n/a	-90	0
XRB143	RAB	20	315335	6588080	n/a	-90	0
XRB144	RAB	35	315235	6588080	n/a	-90	0
XRB145	RAB	37	315135	6588080	n/a	-90	0
XRB146	RAB	17	315035	6588080	n/a	-90	0
XRB147	RAB	3	314885	6587931	n/a	-90	0
XRB148	RAB	10	314943	6587933	n/a	-90	0
XRB149	RAB	16	315040	6587931	n/a	-90	0
XRB15	RAB	11	315535	6589280	n/a	-90	0
XRB150	RAB	8	315148	6587931	n/a	-90	0
XRB16	RAB	3	315435	6589280	n/a	-90	0
XRB17	RAB	19	315335	6589280	n/a	-90	0
XRB18	RAB	41	315235	6589280	n/a	-90	0
XRB19	RAB	34	315135	6589280	n/a	-90	0
XRB2	RAB	26	315535	6589080 n/a		-90	0
XRB20	RAB	50	315035	6589280	n/a	-90	0
XRB21	RAB	45	315135	6589380	n/a	-90	0
XRB22	RAB	29	315235	6589380	n/a	-90	0
XRB23	RAB	20	315335	6589380	n/a	-90	0
XRB24	RAB	5	315435	6589380	n/a	-90	0
XRB25	RAB	10	315535	6589380	n/a	-90	0
XRB26	RAB	15	315635	6589480	n/a	-90	0
XRB27	RAB	11	315535	6589480	n/a	-90	0
XRB28	RAB	10	315435	6589480	n/a	-90	0
XRB29	RAB	29	315335	6589480	n/a	-90	0
XRB3	RAB	26	315435	6589080	n/a	-90	0
XRB30	RAB	48	315235	6589480	n/a	-90	0
XRB31	RAB	53	315335	6589580	n/a	-90	0
XRB32	RAB	14	315435	6589580	n/a	-90	0
XRB33	RAB	23	315592	6589582	n/a	-90	0
XRB34	RAB	17	315697	6589582	n/a	-90	0

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
XRB35	RAB	50	315804	6589688	n/a	-90	0
XRB36	RAB	46	315697	6589692	n/a	-90	0
XRB37	RAB	46	315596	6589691	n/a	-90	0
XRB38	RAB	23	315491	6589691	n/a	-90	0
XRB39	RAB	44	315389	6589691	n/a	-90	0
XRB4	RAB	18	315335	6589080	n/a	-90	0
XRB40	RAB	18	315435	6589780	n/a	-90	0
XRB41	RAB	31	315535	6589780	n/a	-90	0
XRB42	RAB	22	315638	6589735	n/a	-90	0
XRB43	RAB	30	315745	6589736	n/a	-90	0
XRB44	RAB	41	315848	6589736	n/a	-90	0
XRB45	RAB	38	315835	6589780	n/a	-90	0
XRB46	RAB	30	315735	6589780	n/a	-90	0
XRB47	RAB	22	315635	6589780	n/a	-90	0
XRB48	RAB	41	316058	6589843	n/a	-90	0
XRB49	RAB	35	315935	6589890	n/a	-90	0
XRB5	RAB	15	315235	6589080	n/a	-90	0
XRB50	RAB	21	315835	6589890	n/a	-90	0
XRB51	RAB	29	315735	6589890	n/a	-90	0
XRB52	RAB	19	315635	6589890	n/a	-90	0
XRB53	RAB	43	315535	6589890	n/a	-90	0
XRB54	RAB	39	315435	6589890	n/a	-90	0
XRB55	RAB	35	315335	6589890	n/a	-90	0
XRB56	RAB	45	315235	6589890	n/a	-90	0
XRB57	RAB	52	315135	6589890	n/a	-90	0
XRB58	RAB	56	315035	6589885	n/a	-90	0
XRB59	RAB	15	316060	6589986	n/a	-90	0
XRB6	RAB	56	315135	6589080	n/a	-90	0
XRB60	RAB	15	315960	6589986	n/a	-90	0
XRB61	RAB	10	315860	6589986	n/a	-90	0
XRB62	RAB	40	315760	6589986	n/a	-90	0

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
XRB63	RAB	22	315660	6589986	n/a	-90	0
XRB64	RAB	52	315560	6589986	n/a	-90	0
XRB65	RAB	13	316160	6590086	n/a	-90	0
XRB66	RAB	9	316060	6590086	n/a	-90	0
XRB67	RAB	13	315960	6590086	n/a	-90	0
XRB68	RAB	27	315860	6590086	n/a	-90	0
XRB69	RAB	23	315760	6590086	n/a	-90	0
XRB7	RAB	60	315035	6589080	n/a	-90	0
XRB70	RAB	50	315660	6590086	n/a	-90	0
XRB71	RAB	13	315660	6590186	n/a	-90	0
XRB72	RAB	15	315760	6590186	n/a	-90	0
XRB73	RAB	25	315860	6590186	n/a	-90	0
XRB74	RAB	14	315960	6590186	n/a	-90	0
XRB75	RAB	11	316060	6590186	n/a	-90	0
XRB76	RAB	7	316160	6590186	n/a	-90	0
XRB77	RAB	14	316060	6590286	n/a	-90	0
XRB78	RAB	20	315960	6590286	n/a	-90	0
XRB79	RAB	22	315860	6590286	n/a	-90	0
XRB8	RAB	56	315035	6589180	n/a	-90	0
XRB80	RAB	11	315760	6590286	n/a	-90	0
XRB81	RAB	52	315860	6590386	n/a	-90	0
XRB82	RAB	15	315960	6590386	n/a	-90	0
XRB83	RAB	8	316060	6590386	n/a	-90	0
XRB84	RAB	6	316160	6590386	n/a	-90	0
XRB85	RAB	16	316039	6590898	n/a	-90	0
XRB86	RAB	8	316139	6590898	n/a	-90	0
XRB87	RAB	14	316239	6590898	n/a	-90	0
XRB88	RAB	10	316339	6590898	n/a	-90	0
XRB89	RAB	8	316439	6590898	n/a	-90	0
XRB9	RAB	49	315135	6589180	n/a	-90	0
XRB90	RAB	3	316539	6590898	n/a	-90	0

Hole_ID	Hole_Type	Max_Depth	NAT_East	NAT_North	NAT_RL	Dip	Azimuth
XRB91	RAB	8	316639	6590898	n/a	-90	0
XRB92	RAB	5	316739	6590898	n/a	-90	0
XRB93	RAB	11	316739	6590798	n/a	-90	0
XRB94	RAB	7	316639 6590798		n/a	-90	0
XRB95	RAB	8	316539	6590798	n/a	-90	0
XRB96	RAB	3	316439	6590798	n/a	-90	0
XRB97	RAB	11	316239	6590798	n/a	-90	0
XRB98	RAB	10	316139	6590798	n/a	-90	0
XRB99	RAB	68	316039	6590798	n/a	-90	0

Table 5: All known drillhole collar locations across E29/1037. All collars are MGA94_51.

Hole_ID	Hole_Type	Max_Depth	Azi	Dip	NAT_East	NAT_North	NAT_RL	RC pre-collar	Company	WAMEX	DD
AXR001	RAB	29	270	-60	330750	6712400	445	n/a	Delta Gold	A55119	n/a
AXR002	RAB	21	270	-60	330800	6712400	445	n/a	Delta Gold	A55119	n/a
AXR003	RAB	38	270	-60	330850	6712400	445	n/a	Delta Gold	A55119	n/a
AXR004	RAB	40	270	-60	330900	6712400	445	n/a	Delta Gold	A55119	n/a
AXR005	RAB	9	270	-60	330950	6712400	445	n/a	Delta Gold	A55119	n/a
AXR006	RAB	39	270	-60	331000	6712400	445	n/a	Delta Gold	A55119	n/a
AXR007	RAB	58	270	-60	330350	6712600	445	n/a	Delta Gold	A55119	n/a
AXR008	RAB	45	270	-60	330400	6712600	445	n/a	Delta Gold	A55119	n/a
AXR009	RAB	40	270	-60	330450	6712600	445	n/a	Delta Gold	A55119	n/a
AXR010	RAB	24	270	-60	330500	6712600	445	n/a	Delta Gold	A55119	n/a
AXR011	RAB	26	270	-60	330550	6712600	445	n/a	Delta Gold	A55119	n/a
AXR012	RAB	9	270	-60	330650	6713000	445	n/a	Delta Gold	A55119	n/a
AXR013	RAB	3	270	-60	330700	6713000	445	n/a	Delta Gold	A55119	n/a
AXR014	RAB	24	270	-60	330750	6713000	445	n/a	Delta Gold	A55119	n/a
AXR015	RAB	26	270	-60	330800	6713000	445	n/a	Delta Gold	A55119	n/a
AXR016	RAB	5	270	-60	330300	6713400	445	n/a	Delta Gold	A55119	n/a

Hole_ID	Hole_Type	Max_Depth	Azi	Dip	NAT_East	NAT_North	NAT_RL	RC pre-collar	Company	WAMEX	DD
AXR017	RAB	4	270	-60	330350	6713400	445	n/a	Delta Gold	A55119	n/a
AXR018	RAB	22	270	-60	330300	6712600	445	n/a	Delta Gold	A55119	n/a
BD001	RC_DDT	246	45	-60	330015	6713150	445	120	Amex Resources	A78230	Yes
BD002	RC_DDT	117	45	-60	329890	6713285	445	72	Amex Resources	A78230	Yes
BD003	RC_DDT	165	45	-60	329550	6713485	445	111	Amex Resources	A78230	Yes
BDRC01	RC	40	45	-60	330687	6712779	445	n/a	Amex Resources	A78230	n/a
BDRC02	RC	52	45	-60	330673	6712764	445	n/a	Amex Resources	A78230	n/a
BDRC03	RC	56	45	-60	330726	6712741	445	n/a	Amex Resources	A78230	n/a
BDRC04	RC	46	45	-60	330785	6712708	445	n/a	Amex Resources	A78230	n/a
BDRC05	RC	56	45	-60	330771	6712693	445	n/a	Amex Resources	A78230	n/a
BDRC06	RC	34	45	-60	330580	6712829	445	n/a	Amex Resources	A78230	n/a
BDRC07	RC	58	45	-60	330563	6712815	445	n/a	Amex Resources	A78230	n/a
BDRC07	RC	70	45	-60	330900	6712600	445	n/a	Amex Resources	A78230	n/a
BDRC09	RC	76	45	-60	330880	6712580	445	n/a	Amex Resources	A78230	n/a
BDRC10	DD	240.5	45	-60	330075	6713050	445	214	Amex Resources	A78230	Yes
OLRAB1	RAB	40	90	-60	331021	6712798	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB10	RAB	30	90	-60	330937	6712938	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB11	RAB	30	90	-60	330917	6712938	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB12	RAB	23	90	-60	330897	6712938	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB13	RAB	30	90	-60	330877	6712938	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB14	RAB	35	90	-60	330857	6712938	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB15	RAB	42	90	-60	330837	6712938	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB2	RAB	40	90	-60	330997	6712798	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB3	RAB	40	90	-60	330977	6712798	412	n/a	Sunrise Exploration Pty	A70542	n/a

Hole_ID	Hole_Type	Max_Depth	Azi	Dip	NAT_East	NAT_North	NAT_RL	RC pre-collar	Company	WAMEX	DD
OLRAB4	RAB	40	90	-60	330957	6712798	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB5	RAB	39	90	-60	330937	6712798	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB6	RAB	29	90	-60	330917	6712798	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB7	RAB	14	90	-60	330898	6712798	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB8	RAB	39	90	-60	330977	6712938	412	n/a	Sunrise Exploration Pty	A70542	n/a
OLRAB9	RAB	28	90	-60	330957	6712938	412	n/a	Sunrise Exploration Pty	A70542	n/a

Table 6: All known historic Au, Cu and Li drilling results across E29/1037 (n/a – no assay results available, any results below detection limit are indicated by the prefix <).

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
OLRAB1	0	4	CHIPS	<0.01	n/a	n/a
OLRAB1	4	8	CHIPS	0.01	n/a	n/a
OLRAB1	8	12	CHIPS	0.01	n/a	n/a
OLRAB1	12	16	CHIPS	<0.01	n/a	n/a
OLRAB1	16	20	CHIPS	<0.01	n/a	n/a
OLRAB1	20	24	CHIPS	0.03	n/a	n/a
OLRAB1	24	28	CHIPS	<0.01	n/a	n/a
OLRAB1	28	32	CHIPS	0.01	n/a	n/a
OLRAB1	32	36	CHIPS	0.03	n/a	n/a
OLRAB1	36	40	CHIPS	<0.01	n/a	n/a
OLRAB10	0	4	CHIPS	0.02	n/a	n/a
OLRAB10	4	8	CHIPS	0.01	n/a	n/a
OLRAB10	8	12	CHIPS	0.03	n/a	n/a
OLRAB10	12	16	CHIPS	0.05	n/a	n/a
OLRAB10	16	20	CHIPS	0.04	n/a	n/a
OLRAB10	20	24	CHIPS	0.02	n/a	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
OLRAB10	24	28	CHIPS	0.02	n/a	n/a
OLRAB10	28	30	CHIPS	0.03	n/a	n/a
OLRAB11	0	4	CHIPS	0.02	n/a	n/a
OLRAB11	4	8	CHIPS	0.03	n/a	n/a
OLRAB11	8	12	CHIPS	0.02	n/a	n/a
OLRAB11	12	16	CHIPS	0.02	n/a	n/a
OLRAB11	16	20	CHIPS	0.03	n/a	n/a
OLRAB11	20	24	CHIPS	0.02	n/a	n/a
OLRAB11	24	28	CHIPS	0.03	n/a	n/a
OLRAB11	28	30	CHIPS	0.02	n/a	n/a
OLRAB12	0	4	CHIPS	0.02	n/a	n/a
OLRAB12	4	8	CHIPS	0.02	n/a	n/a
OLRAB12	8	12	CHIPS	0.02	n/a	n/a
OLRAB12	12	16	CHIPS	0.02	n/a	n/a
OLRAB12	16	20	CHIPS	0.02	n/a	n/a
OLRAB12	20	23	CHIPS	0.03	n/a	n/a
OLRAB13	0	4	CHIPS	0.03	n/a	n/a
OLRAB13	4	8	CHIPS	0.05	n/a	n/a
OLRAB13	8	12	CHIPS	0.05	n/a	n/a
OLRAB13	12	16	CHIPS	0.04	n/a	n/a
OLRAB13	16	20	CHIPS	0.02	n/a	n/a
OLRAB13	20	24	CHIPS	0.04	n/a	n/a
OLRAB13	24	28	CHIPS	0.04	n/a	n/a
OLRAB13	28	30	CHIPS	0.05	n/a	n/a
OLRAB14	0	4	CHIPS	0.03	n/a	n/a
OLRAB14	4	8	CHIPS	0.02	n/a	n/a
OLRAB14	8	12	CHIPS	< 0.01	n/a	n/a
OLRAB14	12	16	CHIPS	0.01	n/a	n/a
OLRAB14	16	19	CHIPS	0.04	n/a	n/a
OLRAB14	19	20	CHIPS	0.05	n/a	n/a
OLRAB14	20	24	CHIPS	0.01	n/a	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
OLRAB14	24	28	CHIPS	0.01	n/a	n/a
OLRAB14	28	32	CHIPS	0.04	n/a	n/a
OLRAB14	32	35	CHIPS	0.04	n/a	n/a
OLRAB15	0	4	CHIPS	0.04	n/a	n/a
OLRAB15	4	8	CHIPS	<0.01	n/a	n/a
OLRAB15	8	12	CHIPS	0.02	n/a	n/a
OLRAB15	12	16	CHIPS	<0.01	n/a	n/a
OLRAB15	16	20	CHIPS	<0.01	n/a	n/a
OLRAB15	20	24	CHIPS	0.01	n/a	n/a
OLRAB15	24	28	CHIPS	0.04	n/a	n/a
OLRAB15	28	32	CHIPS	0.01	n/a	n/a
OLRAB15	32	33	CHIPS	0.01	n/a	n/a
OLRAB15	33	34	CHIPS	0.03	n/a	n/a
OLRAB15	34	35	CHIPS	0.18	n/a	n/a
OLRAB15	35	36	CHIPS	0.01	n/a	n/a
OLRAB15	36	40	CHIPS	<0.01	n/a	n/a
OLRAB15	40	42	CHIPS	0.02	n/a	n/a
OLRAB2	4	8	CHIPS	0.03	n/a	n/a
OLRAB2	8	12	CHIPS	0.02	n/a	n/a
OLRAB2	12	16	CHIPS	<0.01	n/a	n/a
OLRAB2	16	20	CHIPS	<0.01	n/a	n/a
OLRAB2	20	24	CHIPS	<0.01	n/a	n/a
OLRAB2	24	28	CHIPS	<0.01	n/a	n/a
OLRAB2	28	32	CHIPS	<0.01	n/a	n/a
OLRAB2	32	36	CHIPS	<0.01	n/a	n/a
OLRAB2	36	40	CHIPS	<0.01	n/a	n/a
OLRAB3	0	4	CHIPS	<0.01	n/a	n/a
OLRAB3	4	8	CHIPS	<0.01	n/a	n/a
OLRAB3	8	12	CHIPS	<0.01	n/a	n/a
OLRAB3	12	16	CHIPS	<0.01	n/a	n/a
OLRAB3	16	20	CHIPS	<0.01	n/a	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
OLRAB3	20	24	CHIPS	<0.01	n/a	n/a
OLRAB3	24	28	CHIPS	<0.01	n/a	n/a
OLRAB3	28	32	CHIPS	<0.01	n/a	n/a
OLRAB3	32	36	CHIPS	<0.01	n/a	n/a
OLRAB3	36	40	CHIPS	<0.01	n/a	n/a
OLRAB4	0	4	CHIPS	<0.01	n/a	n/a
OLRAB4	4	8	CHIPS	0.01	n/a	n/a
OLRAB4	8	12	CHIPS	0.02	n/a	n/a
OLRAB4	12	16	CHIPS	<0.01	n/a	n/a
OLRAB4	16	20	CHIPS	0.02	n/a	n/a
OLRAB4	20	24	CHIPS	0.02	n/a	n/a
OLRAB4	24	28	CHIPS	0.01	n/a	n/a
OLRAB4	28	32	CHIPS	0.02	n/a	n/a
OLRAB4	32	36	CHIPS	0.02	n/a	n/a
OLRAB4	36	40	CHIPS	0.02	n/a	n/a
OLRAB5	0	4	CHIPS	0.01	n/a	n/a
OLRAB5	4	8	CHIPS	0.01	n/a	n/a
OLRAB5	8	12	CHIPS	0.01	n/a	n/a
OLRAB5	12	16	CHIPS	0.01	n/a	n/a
OLRAB5	16	20	CHIPS	0.02	n/a	n/a
OLRAB5	20	24	CHIPS	<0.01	n/a	n/a
OLRAB5	24	28	CHIPS	0.01	n/a	n/a
OLRAB5	28	32	CHIPS	<0.01	n/a	n/a
OLRAB5	32	36	CHIPS	<0.01	n/a	n/a
OLRAB5	36	39	CHIPS	0.01	n/a	n/a
OLRAB6	0	4	CHIPS	<0.01	n/a	n/a
OLRAB6	4	8	CHIPS	0.02	n/a	n/a
OLRAB6	8	12	CHIPS	0.01	n/a	n/a
OLRAB6	12	16	CHIPS	<0.01	n/a	n/a
OLRAB6	16	20	CHIPS	<0.01	n/a	n/a
OLRAB6	20	24	CHIPS	0.02	n/a	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
OLRAB6	24	28	CHIPS	<0.01	n/a	n/a
OLRAB6	28	29	CHIPS	0.02	n/a	n/a
OLRAB7	0	4	CHIPS	0.01	n/a	n/a
OLRAB7	4	8	CHIPS	<0.01	n/a	n/a
OLRAB7	8	12	CHIPS	<0.01	n/a	n/a
OLRAB7	12	14	CHIPS	0.01	n/a	n/a
OLRAB8	0	4	CHIPS	<0.01	n/a	n/a
OLRAB8	4	8	CHIPS	0.02	n/a	n/a
OLRAB8	8	12	CHIPS	<0.01	n/a	n/a
OLRAB8	12	16	CHIPS	0.02	n/a	n/a
OLRAB8	16	20	CHIPS	<0.01	n/a	n/a
OLRAB8	20	24	CHIPS	<0.01	n/a	n/a
OLRAB8	24	28	CHIPS	<0.01	n/a	n/a
OLRAB8	28	32	CHIPS	<0.01	n/a	n/a
OLRAB8	32	36	CHIPS	0.01	n/a	n/a
OLRAB8	36	39	CHIPS	<0.01	n/a	n/a
OLRAB9	0	4	CHIPS	<0.01	n/a	n/a
OLRAB9	4	8	CHIPS	0.01	n/a	n/a
OLRAB9	8	12	CHIPS	0.02	n/a	n/a
OLRAB9	12	16	CHIPS	0.03	n/a	n/a
OLRAB9	16	20	CHIPS	0.03	n/a	n/a
OLRAB9	20	24	CHIPS	0.02	n/a	n/a
OLRAB9	24	28	CHIPS	0.03	n/a	n/a
AXR001	0	5	CHIPS	<0.01	52	n/a
AXR001	5	10	CHIPS	<0.01	97	n/a
AXR001	10	15	CHIPS	<0.01	73	n/a
AXR001	15	20	CHIPS	<0.01	388	n/a
AXR001	20	25	CHIPS	<0.01	83	n/a
AXR001	25	28	CHIPS	<0.01	61	n/a
AXR001	28	29	CHIPS	<0.01	67	n/a
AXR002	0	5	CHIPS	<0.01	53	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
AXR002	5	10	CHIPS	<0.01	110	n/a
AXR002	10	15	CHIPS	<0.01	58	n/a
AXR002	15	20	CHIPS	<0.01	326	n/a
AXR002	20	21	CHIPS	<0.01	39	n/a
AXR003	0	5	CHIPS	<0.01	45	n/a
AXR003	5	10	CHIPS	<0.01	94	n/a
AXR003	10	15	CHIPS	<0.01	103	n/a
AXR003	15	20	CHIPS	<0.01	46	n/a
AXR003	20	25	CHIPS	<0.01	98	n/a
AXR003	25	30	CHIPS	<0.01	78	n/a
AXR003	30	35	CHIPS	<0.01	47	n/a
AXR003	35	38	CHIPS	<0.01	15	n/a
AXR004	0	5	CHIPS	<0.01	375	n/a
AXR004	5	10	CHIPS	<0.01	983	n/a
AXR004	10	15	CHIPS	<0.01	1580	n/a
AXR004	15	20	CHIPS	<0.01	94	n/a
AXR004	20	25	CHIPS	<0.01	25	n/a
AXR004	25	30	CHIPS	<0.01	31	n/a
AXR004	30	35	CHIPS	<0.01	69	n/a
AXR004	35	40	CHIPS	<0.01	51	n/a
AXR005	0	5	CHIPS	<0.01	71	n/a
AXR005	5	9	CHIPS	<0.01	73	n/a
AXR006	0	5	CHIPS	<0.01	411	n/a
AXR006	5	10	CHIPS	<0.01	99	n/a
AXR006	10	15	CHIPS	<0.01	82	n/a
AXR006	15	20	CHIPS	<0.01	90	n/a
AXR006	20	25	CHIPS	<0.01	66	n/a
AXR006	25	30	CHIPS	<0.01	458	n/a
AXR006	30	35	CHIPS	<0.01	375	n/a
AXR006	35	39	CHIPS	<0.01	98	n/a
AXR007	0	5	CHIPS	<0.01	658	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
AXR007	5	10	CHIPS	<0.01	614	n/a
AXR007	10	15	CHIPS	<0.01	475	n/a
AXR007	15	20	CHIPS	<0.01	546	n/a
AXR007	20	25	CHIPS	<0.01	511	n/a
AXR007	25	30	CHIPS	<0.01	426	n/a
AXR007	30	35	CHIPS	<0.01	88	n/a
AXR007	35	40	CHIPS	<0.01	81	n/a
AXR007	40	45	CHIPS	<0.01	73	n/a
AXR007	45	50	CHIPS	<0.01	104	n/a
AXR007	50	55	CHIPS	<0.01	38	n/a
AXR007	55	58	CHIPS	<0.01	90	n/a
AXR008	0	5	CHIPS	<0.01	915	n/a
AXR008	5	10	CHIPS	<0.01	631	n/a
AXR008	10	15	CHIPS	0.06	926	n/a
AXR008	15	20	CHIPS	<0.01	29	n/a
AXR008	20	25	CHIPS	0.02	16	n/a
AXR008	25	30	CHIPS	<0.01	39	n/a
AXR008	30	35	CHIPS	<0.01	90	n/a
AXR008	35	40	CHIPS	<0.01	96	n/a
AXR008	40	45	CHIPS	<0.01	57	n/a
AXR009	0	5	CHIPS	<0.01	40	n/a
AXR009	5	10	CHIPS	<0.01	96	n/a
AXR009	10	15	CHIPS	<0.01	71	n/a
AXR009	15	20	CHIPS	<0.01	87	n/a
AXR009	20	25	CHIPS	<0.01	61	n/a
AXR009	25	30	CHIPS	<0.01	76	n/a
AXR009	30	35	CHIPS	<0.01	46	n/a
AXR009	35	40	CHIPS	<0.01	34	n/a
AXR010	0	5	CHIPS	<0.01	60	n/a
AXR010	5	10	CHIPS	<0.01	58	n/a
AXR010	10	15	CHIPS	<0.01	92	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
AXR010	15	20	CHIPS	<0.01	34	n/a
AXR010	20	24	CHIPS	<0.01	40	n/a
AXR011	0	5	CHIPS	<0.01	90	n/a
AXR011	5	10	CHIPS	<0.01	85	n/a
AXR011	10	15	CHIPS	<0.01	66	n/a
AXR011	15	20	CHIPS	<0.01	43	n/a
AXR011	20	25	CHIPS	<0.01	455	n/a
AXR011	25	26	CHIPS	<0.01	77	n/a
AXR012	0	5	CHIPS	<0.01	43	n/a
AXR012	5	9	CHIPS	<0.01	39	n/a
AXR013	0	2	CHIPS	<0.01	30	n/a
AXR013	2	3	CHIPS	<0.01	23	n/a
AXR014	0	5	CHIPS	<0.01	27	n/a
AXR014	5	10	CHIPS	<0.01	13	n/a
AXR014	10	15	CHIPS	<0.01	12	n/a
AXR014	15	20	CHIPS	<0.01	8	n/a
AXR014	20	24	CHIPS	<0.01	9	n/a
AXR015	0	5	CHIPS	<0.01	18	n/a
AXR015	5	10	CHIPS	<0.01	7	n/a
AXR015	10	15	CHIPS	<0.01	7	n/a
AXR015	15	20	CHIPS	0.1	7	n/a
AXR015	20	25	CHIPS	<0.01	5	n/a
AXR015	25	26	CHIPS	<0.01	9	n/a
AXR016	0	2	CHIPS	<0.01	9	n/a
AXR016	2	5	CHIPS	<0.01	7	n/a
AXR017	0	2	CHIPS	<0.01	9	n/a
AXR017	2	4	CHIPS	<0.01	10	n/a
AXR018	0	5	CHIPS	<0.01	82	n/a
AXR018	5	10	CHIPS	<0.01	481	n/a
AXR018	10	15	CHIPS	<0.01	93	n/a
AXR018	15	20	CHIPS	<0.01	446	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
AXR018	20	22	CHIPS	<0.01	490	n/a
BD001	0	4	CHIPS	0.002	83	n/a
BD001	4	8	CHIPS	0.002	93	n/a
BD001	8	12	CHIPS	<0.001	130	n/a
BD001	12	16	CHIPS	0.022	124	n/a
BD001	16	20	CHIPS	0.013	95	n/a
BD001	20	24	CHIPS	0.002	34	n/a
BD001	24	28	CHIPS	0.004	17	n/a
BD001	28	32	CHIPS	0.003	22	n/a
BD001	32	36	CHIPS	0.001	124	n/a
BD001	36	40	CHIPS	<0.001	155	n/a
BD001	40	44	CHIPS	0.006	365	n/a
BD001	44	48	CHIPS	0.003	278	n/a
BD001	48	52	CHIPS	0.004	138	n/a
BD001	52	56	CHIPS	0.003	163	n/a
BD001	56	60	CHIPS	0.001	135	n/a
BD001	60	64	CHIPS	0.001	154	n/a
BD001	64	68	CHIPS	<0.001	180	n/a
BD001	68	72	CHIPS	0.001	273	n/a
BD001	72	76	CHIPS	0.002	215	n/a
BD001	76	80	CHIPS	<0.001	204	n/a
BD001	80	84	CHIPS	0.001	54	n/a
BD001	84	88	CHIPS	<0.001	197	n/a
BD001	88	92	CHIPS	0.002	127	n/a
BD001	92	96	CHIPS	0.001	108	n/a
BD001	96	100	CHIPS	0.001	551	n/a
BD001	100	104	CHIPS	0.001	292	n/a
BD001	104	108	CHIPS	0.001	632	n/a
BD001	108	112	CHIPS	0.006	267	n/a
BD001	112	116	CHIPS	0.001	256	n/a
BD001	116	120	CHIPS	0.001	158	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BD001	120	121	QCORE	<0.001	135	n/a
BD001	121	122	QCORE	0.001	231	n/a
BD001	122	123	QCORE	<0.001	141	n/a
BD001	123	124	QCORE	<0.001	433	n/a
BD001	124	125	QCORE	<0.001	1300	n/a
BD001	125	126	QCORE	<0.001	515	n/a
BD001	126	127	QCORE	<0.001	5090	n/a
BD001	127	128	QCORE	0.002	1150	n/a
BD001	128	129	QCORE	<0.001	528	n/a
BD001	129	130	QCORE	0.002	810	n/a
BD001	130	131	QCORE	<0.001	1070	n/a
BD001	131	132	QCORE	<0.001	163	n/a
BD001	132	133	QCORE	<0.001	22	n/a
BD001	133	134	QCORE	<0.001	31	n/a
BD001	134	135	QCORE	<0.001	76	n/a
BD001	135	136	QCORE	0.004	519	n/a
BD001	136	137	QCORE	0.018	414	n/a
BD001	137	138	QCORE	0.002	268	n/a
BD001	138	139	QCORE	<0.001	100	n/a
BD001	139	140	QCORE	<0.001	26	n/a
BD001	140	141	QCORE	<0.001	26	n/a
BD001	141	142	QCORE	<0.001	26	n/a
BD001	142	143	QCORE	<0.001	186	n/a
BD001	143	144	QCORE	0.019	1430	n/a
BD001	144	145	QCORE	<0.001	645	n/a
BD001	145	146	QCORE	<0.001	169	n/a
BD001	146	147	QCORE	<0.001	734	n/a
BD001	147	148	QCORE	<0.001	196	n/a
BD001	148	149	QCORE	<0.001	217	n/a
BD001	149	150	QCORE	<0.001	164	n/a
BD001	150	151	QCORE	<0.001	108	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BD001	158	159	QCORE	0.001	671	n/a
BD001	162.5	163.5	QCORE	<0.001	137	n/a
BD001	190	191	QCORE	0.005	631	n/a
BD001	191	192	QCORE	0.049	488	n/a
BD001	192	193	QCORE	<0.001	289	n/a
BD001	193	194	QCORE	0.011	1180	n/a
BD001	194	195	QCORE	0.032	3470	n/a
BD001	195	196	QCORE	0.043	771	n/a
BD001	196	197	QCORE	0.001	125	n/a
BD001	212.5	213.5	QCORE	n/a	37	n/a
BD001	213.5	214.5	QCORE	n/a	4	n/a
BD001	214.5	215.5	QCORE	n/a	3	n/a
BD001	215.5	216.5	QCORE	n/a	1	n/a
BD001	216.5	217.5	QCORE	n/a	24	n/a
BD001	220	221	QCORE	n/a	573	n/a
BD001	221	222	QCORE	n/a	228	n/a
BD001	222	224	QCORE	n/a	70	n/a
BD001	224	226	QCORE	n/a	156	n/a
BD001	226	228	QCORE	n/a	121	n/a
BD001	228	230	QCORE	n/a	77	n/a
BD001	230	232	QCORE	n/a	116	n/a
BD001	232	234	QCORE	n/a	24	n/a
BD001	234	236	QCORE	n/a	185	n/a
BD002	0	4	CHIPS	0.003	164	n/a
BD002	4	8	CHIPS	0.001	235	n/a
BD002	8	12	CHIPS	0.004	19	n/a
BD002	12	16	CHIPS	0.002	67	n/a
BD002	16	20	CHIPS	0.001	139	n/a
BD002	20	24	CHIPS	0.002	155	n/a
BD002	28	32	CHIPS	0.001	179	n/a
BD002	32	36	CHIPS	0.001	62	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BD002	36	40	CHIPS	0.001	154	n/a
BD002	40	44	CHIPS	0.002	577	n/a
BD002	44	48	CHIPS	0.001	162	n/a
BD002	48	52	CHIPS	<0.001	64	n/a
BD002	52	56	CHIPS	<0.001	293	n/a
BD002	56	60	CHIPS	0.001	265	n/a
BD002	60	64	CHIPS	0.004	223	n/a
BD002	64	68	CHIPS	<0.001	9	n/a
BD002	68	72	CHIPS	<0.001	49	n/a
BD002	72	73	QCORE	<0.001	11	n/a
BD002	73	74	QCORE	<0.001	110	n/a
BD002	74	75	QCORE	<0.001	129	n/a
BD002	75	76	QCORE	<0.001	70	n/a
BD002	76	77	QCORE	<0.001	54	n/a
BD002	77	78	QCORE	<0.001	232	n/a
BD002	78	79	QCORE	<0.001	198	n/a
BD002	79	80	QCORE	<0.001	3530	n/a
BD002	80	81	QCORE	0.002	603	n/a
BD002	81	82	QCORE	<0.001	47	n/a
BD002	82	83	QCORE	0.001	250	n/a
BD002	83	84	QCORE	<0.001	93	n/a
BD002	84	85	QCORE	<0.001	139	n/a
BD002	85	86	QCORE	<0.001	103	n/a
BD002	86	87	QCORE	<0.001	205	n/a
BD002	87	88	QCORE	0.001	136	n/a
BD002	88	96	QCORE	<0.001	54	n/a
BD002	96	97	QCORE	<0.001	14	n/a
BD002	97	98	QCORE	<0.001	97	n/a
BD002	98	99	QCORE	<0.001	117	n/a
BD002	99	100	QCORE	0.002	905	n/a
BD002	100	101	QCORE	<0.001	201	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BD002	101	102	QCORE	<0.001	156	n/a
BD002	102	103	QCORE	<0.001	150	n/a
BD002	103	104	QCORE	<0.001	278	n/a
BD002	104	105	QCORE	<0.001	504	n/a
BD002	105	106	QCORE	0.001	227	n/a
BD002	106	107	QCORE	0.069	6550	n/a
BD002	107	108	QCORE	0.038	2430	n/a
BD002	108	109	QCORE	0.016	950	n/a
BD002	109	110	QCORE	<0.001	261	n/a
BD002	110	111	QCORE	<0.001	88	n/a
BD002	111	112	QCORE	<0.001	70	n/a
BD002	112	113	QCORE	0.001	236	n/a
BD002	113	117	QCORE	<0.001	57	n/a
BD003	0	2	CHIPS	0.003	182	n/a
BD003	2	6	CHIPS	0.001	102	n/a
BD003	6	8	CHIPS	<0.001	45	n/a
BD003	8	12	CHIPS	<0.001	232	n/a
BD003	12	16	CHIPS	0.017	208	n/a
BD003	16	20	CHIPS	0.004	96	n/a
BD003	20	24	CHIPS	0.001	54	n/a
BD003	24	28	CHIPS	0.015	37	n/a
BD003	28	32	CHIPS	0.001	24	n/a
BD003	32	36	CHIPS	0.001	16	n/a
BD003	36	40	CHIPS	0.002	47	n/a
BD003	40	44	CHIPS	<0.001	45	n/a
BD003	44	48	CHIPS	0.001	256	n/a
BD003	48	52	CHIPS	0.001	163	n/a
BD003	52	56	CHIPS	0.001	143	n/a
BD003	56	60	CHIPS	0.001	207	n/a
BD003	60	64	CHIPS	<0.001	258	n/a
BD003	64	68	CHIPS	0.003	292	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BD003	68	72	CHIPS	0.001	184	n/a
BD003	72	76	CHIPS	<0.001	314	n/a
BD003	76	80	CHIPS	0.001	391	n/a
BD003	80	84	CHIPS	0.003	297	n/a
BD003	84	88	CHIPS	0.002	360	n/a
BD003	88	92	CHIPS	<0.001	19	n/a
BD003	92	96	CHIPS	<0.001	46	n/a
BD003	96	100	CHIPS	<0.001	94	n/a
BD003	100	104	CHIPS	0.006	1430	n/a
BD003	104	108	CHIPS	0.004	920	n/a
BD003	108	111	CHIPS	0.004	549	n/a
BD003	120	121	QCORE	0.05	1030	n/a
BD003	121	122	QCORE	0.002	194	n/a
BD003	122	123	QCORE	0.003	68	n/a
BD003	123	124	QCORE	<0.001	199	n/a
BD003	124	139	QCORE	0.003	206	n/a
BD003	139	140	QCORE	0.001	100	n/a
BD003	140	141	QCORE	<0.001	311	n/a
BD003	141	142	QCORE	<0.001	7	n/a
BD003	142	143	QCORE	<0.001	113	n/a
BD003	143	144	QCORE	0.001	208	n/a
BD003	144	145	QCORE	0.001	230	n/a
BD003	145	146	QCORE	0.006	1200	n/a
BD003	146	147	QCORE	0.009	1130	n/a
BD003	147	148	QCORE	0.001	178	n/a
BD003	148	149	QCORE	0.002	288	n/a
BD003	149	150	QCORE	0.009	1670	n/a
BD003	150	151	QCORE	0.003	586	n/a
BD003	151	152	QCORE	0.046	3530	n/a
BD003	152	153	QCORE	0.01	3060	n/a
BD003	153	154	QCORE	0.001	214	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC01	0	4	CHIPS	<0.2	204	14.6
BDRC01	4	8	CHIPS	<0.2	57.9	26.6
BDRC01	8	12	CHIPS	<0.2	77.2	27.4
BDRC01	12	16	CHIPS	<0.2	125.5	16.8
BDRC01	16	18	CHIPS	<0.2	79.5	26.2
BDRC01	18	19	CHIPS	<0.2	41.6	27.9
BDRC01	19	20	CHIPS	<0.2	758	30.3
BDRC01	20	21	CHIPS	<0.2	18550	20.6
BDRC01	21	22	CHIPS	<0.2	2410	44
BDRC01	22	26	CHIPS	<0.2	26.3	65.8
BDRC01	26	29	CHIPS	<0.2	486	45
BDRC02	0	4	CHIPS	<0.2	477	10.5
BDRC02	4	8	CHIPS	<0.2	228	48.1
BDRC02	8	12	CHIPS	<0.2	83.8	30.7
BDRC02	12	16	CHIPS	<0.2	274	23.6
BDRC02	16	20	CHIPS	<0.2	18	32
BDRC02	20	24	CHIPS	<0.2	98	43.6
BDRC02	24	28	CHIPS	<0.2	65.7	33.2
BDRC02	28	32	CHIPS	<0.2	511	33.2
BDRC02	32	36	CHIPS	<0.2	282	64.3
BDRC02	36	40	CHIPS	<0.2	109	56.3
BDRC02	40	42	CHIPS	<0.2	82.5	87.8
BDRC02	42	43	CHIPS	<0.2	22.6	83.7
BDRC02	43	44	CHIPS	<0.2	255	101
BDRC02	44	45	CHIPS	<0.2	2520	52.5
BDRC02	45	46	CHIPS	0.2	4130	40.8
BDRC02	46	47	CHIPS	0.2	7900	40.1
BDRC02	47	48	CHIPS	<0.2	3480	57.9
BDRC02	48	52	CHIPS	<0.2	503	73.8
BDRC03	0	4	CHIPS	<0.2	492	9.6
BDRC03	4	8	CHIPS	<0.2	315	4.6

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC03	8	12	CHIPS	<0.2	564	44.2
BDRC03	12	16	CHIPS	<0.2	18.5	42
BDRC03	16	20	CHIPS	<0.2	60.5	42.3
BDRC03	20	24	CHIPS	<0.2	98	41.4
BDRC03	24	28	CHIPS	<0.2	125	34.2
BDRC03	28	32	CHIPS	<0.2	1020	32.2
BDRC03	32	36	CHIPS	<0.2	1610	32.3
BDRC03	36	40	CHIPS	<0.2	470	38.5
BDRC03	40	44	CHIPS	<0.2	395	42.6
BDRC03	44	46	CHIPS	<0.2	483	49.2
BDRC03	46	47	CHIPS	<0.2	149.5	51.7
BDRC03	47	48	CHIPS	<0.2	843	39.9
BDRC03	48	49	CHIPS	<0.2	768	15.2
BDRC03	49	50	CHIPS	<0.2	2480	66.3
BDRC03	50	51	CHIPS	<0.2	398	44.6
BDRC03	51	55	CHIPS	<0.2	58.9	39.7
BDRC03	55	56	CHIPS	<0.2	16.3	64.6
BDRC04	0	4	CHIPS	<0.2	78.1	11.3
BDRC04	4	8	CHIPS	<0.2	47.4	41.5
BDRC04	8	12	CHIPS	<0.2	161.5	21.5
BDRC04	12	16	CHIPS	<0.2	63.6	41
BDRC04	16	20	CHIPS	<0.2	1565	29.3
BDRC04	20	24	CHIPS	<0.2	1750	49.5
BDRC04	24	28	CHIPS	<0.2	124	32
BDRC04	28	32	CHIPS	<0.2	99.6	25.6
BDRC04	32	36	CHIPS	<0.2	9.3	94.3
BDRC04	36	40	CHIPS	<0.2	272	40
BDRC04	40	44	CHIPS	<0.2	399	42.8
BDRC04	44	46	CHIPS	<0.2	372	22.3
BDRC05	0	4	CHIPS	<0.2	190	6.4
BDRC05	4	8	CHIPS	<0.2	126	27.9

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC05	8	12	CHIPS	<0.2	71.7	43.9
BDRC05	12	16	CHIPS	<0.2	703	37.3
BDRC05	16	20	CHIPS	<0.2	115.5	22.9
BDRC05	20	24	CHIPS	<0.2	114	55.8
BDRC05	24	28	CHIPS	<0.2	101	40.1
BDRC05	28	32	CHIPS	<0.2	57.2	55.4
BDRC05	32	36	CHIPS	<0.2	712	44.8
BDRC05	36	40	CHIPS	<0.2	176	25.6
BDRC05	40	44	CHIPS	<0.2	134	42.6
BDRC05	44	48	CHIPS	<0.2	190	22.8
BDRC05	48	50	CHIPS	<0.2	222	3.9
BDRC05	50	51	CHIPS	<0.2	62.9	77.7
BDRC05	51	52	CHIPS	<0.2	653	39.7
BDRC05	52	53	CHIPS	<0.2	419	76.3
BDRC05	53	54	CHIPS	<0.2	873	44.5
BDRC05	54	55	CHIPS	<0.2	809	55.7
BDRC05	55	56	CHIPS	<0.2	180	5.5
BDRC06	0	4	CHIPS	<0.2	1820	34.5
BDRC06	4	8	CHIPS	<0.2	277	3.7
BDRC06	8	12	CHIPS	<0.2	254	12.9
BDRC06	12	16	CHIPS	<0.2	503	52.9
BDRC06	16	20	CHIPS	<0.2	1080	97.7
BDRC06	20	24	CHIPS	<0.2	1890	50.8
BDRC06	24	28	CHIPS	<0.2	1160	105
BDRC06	28	32	CHIPS	<0.2	372	132.5
BDRC06	32	34	CHIPS	<0.2	1930	143.5
BDRC07	0	4	CHIPS	<0.2	371	7.1
BDRC07	4	8	CHIPS	<0.2	332	16.6
BDRC07	8	12	CHIPS	<0.2	58.6	6
BDRC07	12	16	CHIPS	<0.2	45.2	3.1
BDRC07	16	20	CHIPS	<0.2	151.5	17.5

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC07	20	24	CHIPS	<0.2	305	81.2
BDRC07	24	28	CHIPS	<0.2	539	117.5
BDRC07	28	32	CHIPS	<0.2	316	136
BDRC07	32	36	CHIPS	<0.2	89.8	96.2
BDRC07	36	40	CHIPS	<0.2	292	139.5
BDRC07	40	41	CHIPS	<0.2	193.5	115
BDRC07	41	42	CHIPS	<0.2	5820	64.3
BDRC07	42	43	CHIPS	<0.2	3310	56.2
BDRC07	43	44	CHIPS	<0.2	149	81.8
BDRC07	44	45	CHIPS	<0.2	386	85
BDRC07	45	46	CHIPS	<0.2	228	65.2
BDRC07	46	47	CHIPS	<0.2	575	78.2
BDRC07	47	48	CHIPS	<0.2	1930	102
BDRC07	48	49	CHIPS	<0.2	52.4	82.8
BDRC07	49	50	CHIPS	<0.2	228	141.5
BDRC07	50	51	CHIPS	<0.2	793	76.5
BDRC07	51	52	CHIPS	<0.2	9500	40.8
BDRC07	52	53	CHIPS	<0.2	265	80.5
BDRC07	53	54	CHIPS	<0.2	522	86.3
BDRC07	54	55	CHIPS	<0.2	72.5	95.3
BDRC07	55	56	CHIPS	<0.2	551	80.9
BDRC07	56	57	CHIPS	<0.2	211	83.5
BDRC07	57	58	CHIPS	<0.2	28.5	94.6
BDRC08	0	4	CHIPS	0.003	1315	n/a
BDRC08	4	8	CHIPS	0.001	339	n/a
BDRC08	8	12	CHIPS	0.001	120	n/a
BDRC08	12	16	CHIPS	0.001	83	n/a
BDRC08	16	20	CHIPS	<0.001	25	n/a
BDRC08	20	24	CHIPS	<0.001	163	n/a
BDRC08	24	28	CHIPS	<0.001	104	n/a
BDRC08	28	32	CHIPS	0.001	303	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC08	32	36	CHIPS	<0.001	146	n/a
BDRC08	36	40	CHIPS	0.045	2890	n/a
BDRC08	40	44	CHIPS	0.007	687	n/a
BDRC08	44	48	CHIPS	<0.001	103	n/a
BDRC08	48	52	CHIPS	<0.001	103	n/a
BDRC08	52	56	CHIPS	0.001	206	n/a
BDRC08	56	57	CHIPS	<0.001	47	n/a
BDRC08	57	58	CHIPS	<0.001	33	n/a
BDRC08	58	59	CHIPS	<0.001	34	n/a
BDRC08	59	60	CHIPS	0.003	137	n/a
BDRC08	60	61	CHIPS	<0.001	129	n/a
BDRC08	61	62	CHIPS	0.042	6690	n/a
BDRC08	62	63	CHIPS	0.003	349	n/a
BDRC08	63	64	CHIPS	0.003	422	n/a
BDRC08	64	65	CHIPS	0.002	336	n/a
BDRC08	65	66	CHIPS	0.001	58	n/a
BDRC08	66	67	CHIPS	0.01	1120	n/a
BDRC08	67	68	CHIPS	0.029	1100	n/a
BDRC08	68	69	CHIPS	0.002	111	n/a
BDRC08	69	70	CHIPS	0.001	78	n/a
BDRC09	0	4	CHIPS	0.003	142	n/a
BDRC09	4	8	CHIPS	0.002	207	n/a
BDRC09	8	12	CHIPS	<0.001	183	n/a
BDRC09	12	16	CHIPS	0.001	581	n/a
BDRC09	16	20	CHIPS	0.002	124	n/a
BDRC09	20	24	CHIPS	<0.001	269	n/a
BDRC09	24	28	CHIPS	0.001	224	n/a
BDRC09	28	32	CHIPS	0.041	1555	n/a
BDRC09	32	36	CHIPS	0.074	2000	n/a
BDRC09	36	40	CHIPS	0.015	679	n/a
BDRC09	40	44	CHIPS	0.001	97	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC09	44	48	CHIPS	<0.001	242	n/a
BDRC09	48	52	CHIPS	0.002	226	n/a
BDRC09	52	56	CHIPS	0.001	127	n/a
BDRC09	56	57	CHIPS	0.002	468	n/a
BDRC09	57	58	CHIPS	<0.001	358	n/a
BDRC09	58	59	CHIPS	0.004	416	n/a
BDRC09	59	60	CHIPS	<0.001	70	n/a
BDRC09	60	61	CHIPS	<0.001	132	n/a
BDRC09	61	62	CHIPS	0.01	742	n/a
BDRC09	62	63	CHIPS	0.002	266	n/a
BDRC09	63	64	CHIPS	0.002	527	n/a
BDRC09	64	65	CHIPS	<0.001	87	n/a
BDRC09	65	66	CHIPS	<0.001	31	n/a
BDRC09	66	67	CHIPS	<0.001	120	n/a
BDRC09	67	68	CHIPS	0.004	241	n/a
BDRC09	68	72	CHIPS	<0.001	260	n/a
BDRC09	72	76	CHIPS	0.004	240	n/a
BDRC10	0	4	CHIPS	0.001	99	n/a
BDRC10	4	8	CHIPS	<0.001	149	n/a
BDRC10	8	12	CHIPS	<0.001	130	n/a
BDRC10	12	16	CHIPS	0.001	123	n/a
BDRC10	16	20	CHIPS	<0.001	111	n/a
BDRC10	20	24	CHIPS	<0.001	97	n/a
BDRC10	24	28	CHIPS	0.001	35	n/a
BDRC10	28	32	CHIPS	0.001	27	n/a
BDRC10	32	36	CHIPS	<0.001	12	n/a
BDRC10	36	40	CHIPS	<0.001	71	n/a
BDRC10	40	41	CHIPS	<0.001	153	n/a
BDRC10	41	42	CHIPS	0.012	192	n/a
BDRC10	42	43	CHIPS	0.002	260	n/a
BDRC10	43	44	CHIPS	0.001	71	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC10	44	45	CHIPS	0.002	159	n/a
BDRC10	45	46	CHIPS	0.001	118	n/a
BDRC10	46	47	CHIPS	<0.001	182	n/a
BDRC10	47	48	CHIPS	<0.001	257	n/a
BDRC10	48	52	CHIPS	<0.001	147	n/a
BDRC10	52	56	CHIPS	0.004	114	n/a
BDRC10	56	60	CHIPS	0.001	152	n/a
BDRC10	60	64	CHIPS	0.003	131	n/a
BDRC10	64	65	CHIPS	0.012	168	n/a
BDRC10	65	66	CHIPS	0.003	311	n/a
BDRC10	66	67	CHIPS	0.003	203	n/a
BDRC10	67	68	CHIPS	0.003	190	n/a
BDRC10	68	69	CHIPS	0.001	355	n/a
BDRC10	69	70	CHIPS	0.013	40	n/a
BDRC10	70	71	CHIPS	0.002	22	n/a
BDRC10	71	72	CHIPS	0.006	183	n/a
BDRC10	72	76	CHIPS	0.002	48	n/a
BDRC10	76	80	CHIPS	<0.001	19	n/a
BDRC10	80	84	CHIPS	<0.001	13	n/a
BDRC10	84	85	CHIPS	<0.001	27	n/a
BDRC10	85	86	CHIPS	0.001	67	n/a
BDRC10	86	87	CHIPS	<0.001	21	n/a
BDRC10	87	88	CHIPS	<0.001	14	n/a
BDRC10	88	89	CHIPS	<0.001	15	n/a
BDRC10	89	90	CHIPS	0.013	19	n/a
BDRC10	90	91	CHIPS	0.001	29	n/a
BDRC10	91	92	CHIPS	0.002	11	n/a
BDRC10	92	93	CHIPS	0.001	28	n/a
BDRC10	93	94	CHIPS	0.007	238	n/a
BDRC10	94	95	CHIPS	0.002	23	n/a
BDRC10	95	96	CHIPS	0.022	1090	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC10	96	97	CHIPS	0.005	222	n/a
BDRC10	97	98	CHIPS	0.003	132	n/a
BDRC10	98	99	CHIPS	0.007	173	n/a
BDRC10	99	100	CHIPS	0.009	143	n/a
BDRC10	100	101	CHIPS	0.008	238	n/a
BDRC10	101	102	CHIPS	0.002	132	n/a
BDRC10	102	103	CHIPS	0.014	627	n/a
BDRC10	103	104	CHIPS	0.025	1360	n/a
BDRC10	104	105	CHIPS	0.054	2690	n/a
BDRC10	105	106	CHIPS	0.017	550	n/a
BDRC10	106	107	CHIPS	0.007	300	n/a
BDRC10	107	108	CHIPS	0.005	235	n/a
BDRC10	108	109	CHIPS	0.003	107	n/a
BDRC10	109	110	CHIPS	0.003	110	n/a
BDRC10	110	111	CHIPS	<0.001	79	n/a
BDRC10	111	112	CHIPS	0.002	291	n/a
BDRC10	112	113	CHIPS	<0.001	143	n/a
BDRC10	113	114	CHIPS	0.005	884	n/a
BDRC10	114	115	CHIPS	0.003	277	n/a
BDRC10	115	116	CHIPS	0.004	324	n/a
BDRC10	116	117	CHIPS	0.004	119	n/a
BDRC10	117	118	CHIPS	0.002	145	n/a
BDRC10	118	119	CHIPS	0.002	151	n/a
BDRC10	119	120	CHIPS	0.005	208	n/a
BDRC10	120	124	CHIPS	0.003	236	n/a
BDRC10	124	128	CHIPS	0.004	171	n/a
BDRC10	128	132	CHIPS	<0.001	163	n/a
BDRC10	132	136	CHIPS	0.001	209	n/a
BDRC10	136	140	CHIPS	0.002	193	n/a
BDRC10	140	144	CHIPS	0.001	107	n/a
BDRC10	144	148	CHIPS	<0.001	151	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC10	148	152	CHIPS	<0.001	127	n/a
BDRC10	152	156	CHIPS	0.003	178	n/a
BDRC10	156	160	CHIPS	<0.001	171	n/a
BDRC10	160	164	CHIPS	<0.001	154	n/a
BDRC10	164	168	CHIPS	0.002	162	n/a
BDRC10	168	172	CHIPS	0.001	177	n/a
BDRC10	172	176	CHIPS	<0.001	156	n/a
BDRC10	176	180	CHIPS	0.003	182	n/a
BDRC10	180	181	CHIPS	0.007	575	n/a
BDRC10	181	182	CHIPS	0.016	1500	n/a
BDRC10	182	183	CHIPS	0.002	205	n/a
BDRC10	183	184	CHIPS	<0.001	250	n/a
BDRC10	184	185	CHIPS	0.019	363	n/a
BDRC10	185	186	CHIPS	0.006	3800	n/a
BDRC10	186	187	CHIPS	0.117	38600	n/a
BDRC10	187	188	CHIPS	0.051	10600	n/a
BDRC10	188	189	CHIPS	0.02	5710	n/a
BDRC10	189	190	CHIPS	0.032	10550	n/a
BDRC10	190	191	CHIPS	0.002	2150	n/a
BDRC10	191	192	CHIPS	<0.001	472	n/a
BDRC10	192	193	CHIPS	0.002	475	n/a
BDRC10	193	194	CHIPS	<0.001	522	n/a
BDRC10	194	195	CHIPS	<0.001	689	n/a
BDRC10	195	196	CHIPS	<0.001	288	n/a
BDRC10	196	200	CHIPS	<0.001	142	n/a
BDRC10	200	204	CHIPS	<0.001	65	n/a
BDRC10	204	208	CHIPS	<0.001	187	n/a
BDRC10	208	212	CHIPS	0.01	1580	n/a
BDRC10	212	213.9	CHIPS	<0.001	200	n/a
BDRC10	213.9	215	QCORE	n/a	169	n/a
BDRC10	215	216	QCORE	n/a	129	n/a

Hole_ID	Depth_From	Depth_To	Sample_Type	Au_ppm	Cu_ppm	Li_ppm
BDRC10	216	217	QCORE	n/a	220	n/a
BDRC10	217	218	QCORE	n/a	183	n/a
BDRC10	218	219	QCORE	n/a	163	n/a
BDRC10	219	220	QCORE	n/a	54	n/a
BDRC10	220	221	QCORE	n/a	1270	n/a
BDRC10	221	222	QCORE	n/a	156	n/a
BDRC10	222	223	QCORE	n/a	68	n/a
BDRC10	225	226	QCORE	n/a	122	n/a
BDRC10	226	227	QCORE	n/a	139	n/a
BDRC10	227	228	QCORE	n/a	215	n/a
BDRC10	228	229	QCORE	n/a	215	n/a
BDRC10	229	230	QCORE	n/a	160	n/a
BDRC10	230	231	QCORE	n/a	332	n/a
BDRC10	231	232	QCORE	n/a	97	n/a
BDRC10	232	233	QCORE	n/a	277	n/a
BDRC10	233	234	QCORE	n/a	5900	n/a
BDRC10	234	235	QCORE	n/a	267	n/a
BDRC10	249.5	250.5	QCORE	n/a	223	n/a

Table 7: All known historic (and previously unreleased) Au results from drilling across E15/1534, E15/1632 and E15/1972. (n/a indicates that the assay result is not available and <0.01 is less than detection)

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC079	0	4	0.01
RSAC079	4	8	<0.01
RSAC079	8	12	<0.01
RSAC079	12	16	<0.01
RSAC079	16	20	<0.01
RSAC079	20	24	<0.01
RSAC079	24	27	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC080	0	4	0.01
RSAC080	4	8	<0.01
RSAC080	8	12	<0.01
RSAC080	12	16	<0.01
RSAC080	16	20	<0.01
RSAC080	20	24	<0.01
RSAC080	24	28	<0.01
RSAC080	28	32	<0.01
RSAC080	32	36	<0.01
RSAC081	0	4	< 0.01
RSAC081	4	8	<0.01
RSAC081	8	12	<0.01
RSAC081	12	16	<0.01
RSAC081	16	20	<0.01
RSAC081	20	24	<0.01
RSAC081	24	28	<0.01
RSAC081	28	32	<0.01
RSAC081	32	36	<0.01
RSAC081	36	37	<0.01
RSAC082	0	4	0.01
RSAC082	4	8	<0.01
RSAC082	8	12	<0.01
RSAC082	12	16	<0.01
RSAC082	16	20	<0.01
RSAC082	20	24	<0.01
RSAC082	24	28	<0.01
RSAC082	28	32	<0.01
RSAC082	32	36	<0.01
RSAC082	36	37	0.01
RSAC083	0	4	0.01
RSAC083	4	8	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC083	8	12	<0.01
RSAC083	12	16	<0.01
RSAC083	16	20	<0.01
RSAC083	20	24	<0.01
RSAC083	24	28	<0.01
RSAC083	28	32	<0.01
RSAC083	32	36	<0.01
RSAC083	36	39	0.01
RSAC084	0	4	<0.01
RSAC084	4	8	<0.01
RSAC084	8	12	<0.01
RSAC084	12	16	<0.01
RSAC084	16	20	<0.01
RSAC084	20	24	<0.01
RSAC084	24	28	<0.01
RSAC084	28	32	<0.01
RSAC084	32	33	0.01
RSAC085	0	4	<0.01
RSAC085	4	8	<0.01
RSAC085	8	12	<0.01
RSAC085	12	16	<0.01
RSAC085	16	20	<0.01
RSAC085	20	24	<0.01
RSAC085	24	28	<0.01
RSAC085	28	29	0.02
RSAC086	0	4	0.01
RSAC086	4	8	<0.01
RSAC086	8	12	<0.01
RSAC086	12	16	<0.01
RSAC086	16	20	<0.01
RSAC086	20	24	0.05

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC086	24	27	<0.01
RSAC087	0	4	0.01
RSAC087	4	8	<0.01
RSAC087	8	12	<0.01
RSAC087	12	15	<0.01
RSAC088	0	4	0.01
RSAC088	4	8	<0.01
RSAC088	8	12	<0.01
RSAC088	12	14	<0.01
RSAC089	0	4	0.01
RSAC089	4	8	<0.01
RSAC089	8	9	<0.01
RSAC090	0	4	0.01
RSAC090	4	8	<0.01
RSAC090	8	11	<0.01
RSAC091	0	4	0.01
RSAC091	4	5	<0.01
RSAC092	0	4	0.01
RSAC092	4	8	<0.01
RSAC092	8	12	<0.01
RSAC092	12	16	<0.01
RSAC092	16	17	<0.01
RSAC093	0	4	0.01
RSAC093	4	8	<0.01
RSAC094	0	4	0.01
RSAC094	4	8	<0.01
RSAC094	8	12	<0.01
RSAC094	12	16	<0.01
RSAC095	0	4	0.01
RSAC095	4	8	<0.01
RSAC095	8	12	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC095	12	16	<0.01
RSAC095	16	20	<0.01
RSAC095	20	24	<0.01
RSAC095	24	28	<0.01
RSAC095	28	32	0.01
RSAC095	32	33	<0.01
RSAC096	0	4	<0.01
RSAC096	4	8	0.01
RSAC096	8	12	<0.01
RSAC096	12	16	0.01
RSAC096	16	20	0.01
RSAC096	20	24	<0.01
RSAC096	24	28	<0.01
RSAC096	28	32	<0.01
RSAC096	32	36	0.01
RSAC096	36	40	0.01
RSAC096	40	44	<0.01
RSAC097	0	4	0.01
RSAC097	4	8	<0.01
RSAC097	8	12	<0.01
RSAC097	12	16	<0.01
RSAC097	16	20	<0.01
RSAC097	20	24	<0.01
RSAC097	24	28	<0.01
RSAC097	28	32	<0.01
RSAC098	0	4	0.01
RSAC098	4	8	<0.01
RSAC098	8	12	<0.01
RSAC098	12	16	<0.01
RSAC098	16	20	<0.01
RSAC098	20	24	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC098	24	28	<0.01
RSAC098	28	32	<0.01
RSAC098	32	36	<0.01
RSAC098	36	38	<0.01
RSAC099	0	4	0.01
RSAC099	4	8	<0.01
RSAC099	8	12	<0.01
RSAC099	12	16	0.01
RSAC099	16	20	0.01
RSAC099	20	24	0.01
RSAC099	24	28	<0.01
RSAC099	28	32	<0.01
RSAC100	0	4	0.01
RSAC100	4	8	<0.01
RSAC100	8	12	<0.01
RSAC100	12	16	0.01
RSAC100	16	20	0.01
RSAC100	20	24	0.01
RSAC100	24	28	<0.01
RSAC100	28	32	<0.01
RSAC100	32	36	<0.01
RSAC100	36	38	<0.01
RSAC101	0	4	0.01
RSAC101	4	8	<0.01
RSAC101	8	12	<0.01
RSAC101	12	16	<0.01
RSAC101	16	20	0.01
RSAC101	20	24	0.02
RSAC101	24	28	0.03
RSAC101	28	32	0.01
RSAC101	32	36	0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC101	36	40	<0.01
RSAC101	40	44	<0.01
RSAC101	44	48	<0.01
RSAC101	48	52	<0.01
RSAC101	52	56	<0.01
RSAC101	56	60	<0.01
RSAC101	60	64	<0.01
RSAC101	64	68	0.01
RSAC101	68	72	<0.01
RSAC101	72	76	<0.01
RSAC101	76	77	<0.01
RSAC102	0	4	0.01
RSAC102	4	8	0.01
RSAC102	8	12	0.01
RSAC102	12	16	<0.01
RSAC102	16	17	0.01
RSAC102	17	18	0.01
RSAC102	18	19	0.01
RSAC102	19	20	0.01
RSAC102	20	21	0.21
RSAC102	21	22	0.71
RSAC102	22	23	0.46
RSAC102	23	24	0.14
RSAC102	24	25	0.04
RSAC102	25	26	0.11
RSAC102	26	27	0.04
RSAC102	27	28	0.07
RSAC102	28	32	0.03
RSAC102	32	36	0.02
RSAC102	36	40	0.02
RSAC102	40	44	0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC102	44	48	0.02
RSAC103	0	4	0.01
RSAC103	4	8	0.01
RSAC103	8	12	0.01
RSAC103	12	16	<0.01
RSAC103	16	20	<0.01
RSAC103	20	24	<0.01
RSAC103	24	25	0.42
RSAC103	25	26	1.05
RSAC104	0	4	0.01
RSAC104	4	8	0.01
RSAC104	8	12	0.01
RSAC104	12	16	<0.01
RSAC104	16	20	<0.01
RSAC104	20	24	0.01
RSAC104	24	28	0.08
RSAC105	0	4	0.01
RSAC105	4	8	0.02
RSAC105	8	12	<0.01
RSAC105	12	16	<0.01
RSAC105	16	20	0.01
RSAC105	20	24	0.03
RSAC105	24	28	0.01
RSAC105	28	30	0.05
RSAC106	0	4	0.01
RSAC106	4	8	0.01
RSAC106	8	12	<0.01
RSAC106	12	16	<0.01
RSAC106	16	20	<0.01
RSAC106	20	24	0.03
RSAC106	24	27	0.03

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC107	0	4	0.01
RSAC107	4	8	<0.01
RSAC107	8	12	<0.01
RSAC107	12	16	<0.01
RSAC107	16	20	0.01
RSAC107	20	24	<0.01
RSAC107	24	28	0.01
RSAC108	0	4	0.01
RSAC108	4	8	0.01
RSAC108	8	12	<0.01
RSAC108	12	16	<0.01
RSAC108	16	20	<0.01
RSAC108	24	25	0.01
RSAC108	25	26	0.01
RSAC108	26	27	0.01
RSAC108	27	28	0.01
RSAC108	28	29	0.01
RSAC108	29	30	0.13
RSAC108	30	31	0.16
RSAC108	31	32	0.04
RSAC108	32	33	0.03
RSAC108	33	34	0.02
RSAC108	34	35	0.01
RSAC109	0	4	0.01
RSAC109	4	8	<0.01
RSAC109	8	12	<0.01
RSAC109	12	16	<0.01
RSAC109	16	20	<0.01
RSAC109	20	24	<0.01
RSAC109	24	28	<0.01
RSAC109	28	32	0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC109	32	36	<0.01
RSAC109	36	40	0.01
RSAC109	40	44	<0.01
RSAC109	44	45	<0.01
RSAC110	0	4	<0.01
RSAC110	4	8	<0.01
RSAC110	8	12	<0.01
RSAC110	12	16	<0.01
RSAC110	16	20	<0.01
RSAC110	20	24	<0.01
RSAC110	24	28	<0.01
RSAC110	28	32	0.01
RSAC110	32	36	0.01
RSAC110	36	40	0.01
RSAC110	40	44	0.01
RSAC111	0	4	0.01
RSAC111	4	8	<0.01
RSAC111	8	12	<0.01
RSAC111	12	16	<0.01
RSAC111	16	20	<0.01
RSAC111	20	24	<0.01
RSAC111	24	28	<0.01
RSAC111	28	32	<0.01
RSAC111	32	36	0.02
RSAC112	0	4	<0.01
RSAC112	4	8	<0.01
RSAC112	8	12	< 0.01
RSAC112	12	16	<0.01
RSAC112	16	20	<0.01
RSAC112	20	24	<0.01
RSAC112	24	28	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC112	28	32	<0.01
RSAC112	32	34	0.02
RSAC113	0	4	<0.01
RSAC113	4	8	<0.01
RSAC113	8	12	<0.01
RSAC113	12	16	<0.01
RSAC113	20	21	0.04
RSAC113	21	22	0.02
RSAC113	22	23	0.01
RSAC113	23	24	0.01
RSAC113	24	25	0.09
RSAC113	25	26	0.1
RSAC114	0	4	0.01
RSAC114	4	8	<0.01
RSAC114	8	12	<0.01
RSAC114	12	16	<0.01
RSAC114	16	20	<0.01
RSAC114	20	24	<0.01
RSAC114	24	28	<0.01
RSAC114	28	32	0.01
RSAC114	32	33	0.01
RSAC115	0	4	0.01
RSAC115	4	8	<0.01
RSAC115	8	12	<0.01
RSAC115	12	16	<0.01
RSAC115	16	20	<0.01
RSAC115	20	24	<0.01
RSAC115	24	28	<0.01
RSAC115	28	32	<0.01
RSAC115	32	36	<0.01
RSAC115	36	40	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC115	40	44	0.03
RSAC115	44	45	0.04
RSAC116	0	4	<0.01
RSAC116	4	8	<0.01
RSAC116	8	12	<0.01
RSAC116	12	16	<0.01
RSAC116	16	20	<0.01
RSAC116	20	24	<0.01
RSAC116	24	28	<0.01
RSAC116	28	32	<0.01
RSAC116	32	36	<0.01
RSAC116	36	40	<0.01
RSAC116	40	44	<0.01
RSAC116	44	45	<0.01
RSAC117	0	4	<0.01
RSAC117	4	8	<0.01
RSAC117	8	12	0.01
RSAC117	12	16	<0.01
RSAC117	16	20	<0.01
RSAC117	20	24	<0.01
RSAC117	24	28	<0.01
RSAC117	28	32	<0.01
RSAC117	32	36	<0.01
RSAC117	36	40	<0.01
RSAC117	40	42	0.01
RSAC182	0	4	0.01
RSAC182	4	8	<0.01
RSAC182	8	11	<0.01
RSAC182	11	12	<0.01
RSAC183	0	4	0.01
RSAC183	4	8	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC183	8	9	<0.01
RSAC183	9	10	<0.01
RSAC184	0	4	0.01
RSAC184	4	8	<0.01
RSAC184	8	12	<0.01
RSAC184	12	15	0.01
RSAC184	15	16	0.01
RSAC185	0	4	0.01
RSAC185	4	8	<0.01
RSAC185	8	12	<0.01
RSAC185	12	16	<0.01
RSAC185	16	17	<0.01
RSAC185	17	18	<0.01
RSAC186	0	4	0.01
RSAC186	4	8	<0.01
RSAC186	8	12	<0.01
RSAC186	12	16	<0.01
RSAC186	16	20	0.03
RSAC186	20	24	0.04
RSAC186	24	28	0.02
RSAC186	28	32	<0.01
RSAC186	32	36	<0.01
RSAC186	36	37	<0.01
RSAC186	37	38	0.01
RSAC187	0	4	0.01
RSAC187	4	8	<0.01
RSAC187	8	12	0.01
RSAC187	12	16	<0.01
RSAC187	16	20	<0.01
RSAC187	20	24	0.08
RSAC187	24	28	0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC187	28	32	0.05
RSAC187	32	36	0.06
RSAC187	36	40	0.07
RSAC187	40	44	0.01
RSAC187	44	45	0.04
RSAC187	45	46	<0.01
RSAC188	0	4	0.01
RSAC188	4	8	<0.01
RSAC188	8	12	<0.01
RSAC188	12	16	<0.01
RSAC188	16	20	0.04
RSAC188	20	24	0.03
RSAC188	24	28	0.03
RSAC188	28	32	<0.01
RSAC188	32	36	0.01
RSAC188	36	40	0.01
RSAC188	40	44	<0.01
RSAC188	44	46	<0.01
RSAC188	46	47	<0.01
RSAC189	0	4	0.01
RSAC189	4	8	0.01
RSAC189	8	12	<0.01
RSAC189	12	16	<0.01
RSAC189	16	20	<0.01
RSAC189	20	24	0.01
RSAC189	24	28	0.01
RSAC189	28	32	0.01
RSAC189	32	36	<0.01
RSAC189	36	40	<0.01
RSAC189	40	41	0.01
RSAC189	41	42	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC190	0	4	<0.01
RSAC190	4	8	<0.01
RSAC190	8	12	<0.01
RSAC190	12	16	<0.01
RSAC190	16	20	<0.01
RSAC190	20	24	<0.01
RSAC190	24	28	<0.01
RSAC190	28	32	<0.01
RSAC190	32	36	<0.01
RSAC190	36	40	0.02
RSAC190	40	41	<0.01
RSAC190	41	42	<0.01
RSAC191	0	4	0.01
RSAC191	4	8	<0.01
RSAC191	8	12	<0.01
RSAC191	12	16	<0.01
RSAC191	16	20	<0.01
RSAC191	20	24	0.01
RSAC191	24	28	<0.01
RSAC191	28	32	<0.01
RSAC191	32	36	<0.01
RSAC191	36	40	<0.01
RSAC191	40	44	0.01
RSAC191	44	48	<0.01
RSAC191	48	52	<0.01
RSAC191	52	53	<0.01
RSAC192	0	4	0.01
RSAC192	4	8	<0.01
RSAC192	8	12	0.01
RSAC192	12	16	<0.01
RSAC192	16	20	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC192	20	24	<0.01
RSAC192	24	28	<0.01
RSAC192	28	32	<0.01
RSAC192	32	36	<0.01
RSAC192	36	40	0.03
RSAC192	40	44	0.01
RSAC192	44	48	0.01
RSAC192	48	52	0.01
RSAC192	52	56	<0.01
RSAC192	56	60	<0.01
RSAC192	60	61	<0.01
RSAC193	0	4	<0.01
RSAC193	4	8	<0.01
RSAC193	8	12	<0.01
RSAC193	12	16	<0.01
RSAC193	16	20	<0.01
RSAC193	20	24	<0.01
RSAC193	24	28	<0.01
RSAC193	28	32	<0.01
RSAC193	32	36	<0.01
RSAC193	36	40	0.02
RSAC193	40	44	<0.01
RSAC193	44	48	0.07
RSAC193	48	52	0.02
RSAC193	52	56	0.01
RSAC193	56	59	0.01
RSAC193	59	60	<0.01
RSAC194	0	4	0.01
RSAC194	4	8	<0.01
RSAC194	8	12	<0.01
RSAC194	12	16	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC194	16	20	<0.01
RSAC194	20	24	<0.01
RSAC194	24	28	<0.01
RSAC194	28	32	<0.01
RSAC194	32	36	0.01
RSAC194	36	38	0.01
RSAC194	38	39	<0.01
RSAC195	0	4	<0.01
RSAC195	4	8	<0.01
RSAC195	8	12	<0.01
RSAC195	12	16	<0.01
RSAC195	16	20	<0.01
RSAC195	20	24	<0.01
RSAC195	24	28	<0.01
RSAC195	28	32	<0.01
RSAC195	32	36	<0.01
RSAC195	36	40	<0.01
RSAC195	40	44	0.01
RSAC195	44	48	<0.01
RSAC195	48	49	<0.01
RSAC196	0	4	0.01
RSAC196	4	8	<0.01
RSAC196	8	12	<0.01
RSAC196	12	16	<0.01
RSAC196	16	20	<0.01
RSAC196	20	24	<0.01
RSAC196	24	28	<0.01
RSAC196	28	32	<0.01
RSAC196	32	36	<0.01
RSAC196	36	40	0.04
RSAC196	40	44	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC196	44	48	<0.01
RSAC196	48	52	<0.01
RSAC196	52	56	<0.01
RSAC196	56	60	<0.01
RSAC196	60	64	<0.01
RSAC196	64	66	<0.01
RSAC196	66	67	<0.01
RSAC197	0	4	<0.01
RSAC197	4	8	<0.01
RSAC197	8	12	<0.01
RSAC197	12	16	<0.01
RSAC197	16	20	<0.01
RSAC197	20	24	<0.01
RSAC197	24	28	<0.01
RSAC197	28	32	<0.01
RSAC197	32	36	<0.01
RSAC197	36	40	0.01
RSAC197	40	44	0.01
RSAC197	44	48	0.01
RSAC197	48	52	0.02
RSAC197	52	56	0.02
RSAC197	56	60	0.02
RSAC197	60	61	<0.01
RSAC197	61	62	<0.01
RSAC198	0	4	0.01
RSAC198	4	8	<0.01
RSAC198	8	12	<0.01
RSAC198	12	16	<0.01
RSAC198	16	20	<0.01
RSAC198	20	24	<0.01
RSAC198	24	28	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC198	28	32	<0.01
RSAC198	32	36	0.01
RSAC198	36	40	0.01
RSAC198	40	44	<0.01
RSAC198	44	48	<0.01
RSAC198	48	49	0.01
RSAC199	0	4	<0.01
RSAC199	4	8	<0.01
RSAC199	8	12	<0.01
RSAC199	12	16	<0.01
RSAC199	16	20	<0.01
RSAC199	20	24	<0.01
RSAC199	24	28	<0.01
RSAC199	28	32	<0.01
RSAC199	32	36	<0.01
RSAC199	36	40	<0.01
RSAC199	40	44	<0.01
RSAC199	44	47	<0.01
RSAC199	47	48	<0.01
RSAC200	0	4	<0.01
RSAC200	4	8	<0.01
RSAC200	8	12	<0.01
RSAC200	12	16	<0.01
RSAC200	16	20	<0.01
RSAC200	20	24	<0.01
RSAC200	24	28	<0.01
RSAC200	28	32	<0.01
RSAC200	32	36	<0.01
RSAC200	36	40	<0.01
RSAC200	40	44	<0.01
RSAC200	44	48	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC200	48	49	<0.01
RSAC200	49	50	<0.01
RSAC201	0	4	<0.01
RSAC201	4	8	<0.01
RSAC201	8	12	<0.01
RSAC201	12	16	<0.01
RSAC201	16	20	<0.01
RSAC201	20	24	<0.01
RSAC201	24	28	<0.01
RSAC201	28	32	<0.01
RSAC201	32	36	<0.01
RSAC201	36	40	<0.01
RSAC201	40	42	<0.01
RSAC201	42	43	<0.01
RSAC202	0	4	<0.01
RSAC202	4	8	<0.01
RSAC202	8	12	<0.01
RSAC202	12	16	<0.01
RSAC202	16	20	<0.01
RSAC202	20	24	<0.01
RSAC202	24	28	<0.01
RSAC202	28	32	<0.01
RSAC202	32	36	<0.01
RSAC202	36	40	<0.01
RSAC202	40	41	<0.01
RSAC203	0	4	<0.01
RSAC203	4	8	<0.01
RSAC203	8	12	<0.01
RSAC203	12	16	<0.01
RSAC203	16	20	<0.01
RSAC203	20	24	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC203	24	28	<0.01
RSAC203	28	30	<0.01
RSAC203	30	31	<0.01
RSAC204	0	4	<0.01
RSAC204	4	8	<0.01
RSAC204	8	12	<0.01
RSAC204	12	16	<0.01
RSAC204	16	20	<0.01
RSAC204	20	24	<0.01
RSAC204	24	28	<0.01
RSAC204	28	32	<0.01
RSAC204	32	33	<0.01
RSAC205	0	4	<0.01
RSAC205	4	8	<0.01
RSAC205	8	12	<0.01
RSAC205	12	16	<0.01
RSAC205	16	20	<0.01
RSAC205	20	24	<0.01
RSAC205	24	28	<0.01
RSAC205	28	32	<0.01
RSAC205	32	33	<0.01
RSAC206	0	4	<0.01
RSAC206	4	8	<0.01
RSAC206	8	12	<0.01
RSAC206	12	16	<0.01
RSAC206	16	17	<0.01
RSAC206	17	18	<0.01
RSAC207	0	4	<0.01
RSAC207	4	8	<0.01
RSAC207	8	12	<0.01
RSAC207	12	16	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC207	16	20	<0.01
RSAC207	20	24	<0.01
RSAC207	24	25	<0.01
RSAC208	0	4	<0.01
RSAC208	4	8	<0.01
RSAC208	8	12	<0.01
RSAC208	12	16	<0.01
RSAC208	16	20	<0.01
RSAC208	20	22	< 0.01
RSAC208	22	23	<0.01
RSAC209	0	4	<0.01
RSAC209	4	8	<0.01
RSAC209	8	12	<0.01
RSAC209	12	16	<0.01
RSAC209	16	20	<0.01
RSAC209	20	24	<0.01
RSAC209	24	28	<0.01
RSAC209	28	29	0.01
RSAC209	29	30	<0.01
RSAC210	0	4	<0.01
RSAC210	4	8	<0.01
RSAC210	8	12	<0.01
RSAC210	12	16	< 0.01
RSAC210	16	20	<0.01
RSAC210	20	22	<0.01
RSAC210	22	23	<0.01
RSAC211	0	4	0.01
RSAC211	4	8	<0.01
RSAC211	8	12	<0.01
RSAC211	12	16	0.01
RSAC211	16	19	0.02

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC211	19	20	0.02
RSAC212	0	4	0.01
RSAC212	4	8	<0.01
RSAC212	8	12	<0.01
RSAC212	12	16	<0.01
RSAC212	16	20	<0.01
RSAC212	20	24	<0.01
RSAC212	24	28	<0.01
RSAC212	28	32	0.01
RSAC212	32	36	0.01
RSAC212	36	40	0.01
RSAC212	40	44	<0.01
RSAC212	44	48	0.01
RSAC212	48	51	0.04
RSAC212	51	52	0.02
RSAC213	0	4	0.01
RSAC213	4	8	<0.01
RSAC213	8	12	<0.01
RSAC213	12	16	< 0.01
RSAC213	16	20	0.01
RSAC213	20	24	0.01
RSAC213	24	26	0.02
RSAC213	26	27	0.01
RSAC214	0	4	0.01
RSAC214	4	8	<0.01
RSAC214	8	12	<0.01
RSAC214	12	16	<0.01
RSAC214	16	20	<0.01
RSAC214	20	24	<0.01
RSAC214	24	28	<0.01
RSAC214	28	32	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC214	32	36	<0.01
RSAC214	36	40	<0.01
RSAC214	40	44	<0.01
RSAC214	44	46	<0.01
RSAC214	46	47	0.04
RSAC215	0	4	0.01
RSAC215	4	8	<0.01
RSAC215	8	12	<0.01
RSAC215	12	16	<0.01
RSAC215	16	20	<0.01
RSAC215	20	24	<0.01
RSAC215	24	28	<0.01
RSAC215	28	32	<0.01
RSAC215	32	36	<0.01
RSAC215	36	40	<0.01
RSAC215	40	44	<0.01
RSAC215	44	48	<0.01
RSAC215	48	52	<0.01
RSAC215	52	56	0.01
RSAC215	56	59	0.02
RSAC215	59	60	0.01
RSAC216	0	4	0.01
RSAC216	4	8	<0.01
RSAC216	8	12	<0.01
RSAC216	12	16	<0.01
RSAC216	16	20	<0.01
RSAC216	20	24	<0.01
RSAC216	24	28	<0.01
RSAC216	28	32	<0.01
RSAC216	32	36	<0.01
RSAC216	36	39	0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC216	39	40	0.01
RSAC217	0	4	<0.01
RSAC217	4	8	<0.01
RSAC217	8	12	<0.01
RSAC217	12	16	<0.01
RSAC217	16	20	<0.01
RSAC217	20	24	<0.01
RSAC217	24	28	<0.01
RSAC217	28	32	0.01
RSAC217	32	36	0.01
RSAC217	36	39	0.03
RSAC217	39	40	0.04
RSAC218	0	4	<0.01
RSAC218	4	8	<0.01
RSAC218	8	12	<0.01
RSAC218	12	16	<0.01
RSAC218	16	20	<0.01
RSAC218	20	24	<0.01
RSAC218	24	28	<0.01
RSAC218	28	32	<0.01
RSAC218	32	36	<0.01
RSAC218	36	40	<0.01
RSAC218	40	41	0.01
RSAC218	41	42	0.01
RSAC219	0	4	<0.01
RSAC219	4	8	<0.01
RSAC219	8	12	<0.01
RSAC219	12	16	<0.01
RSAC219	16	20	<0.01
RSAC219	20	24	<0.01
RSAC219	24	28	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC219	28	32	<0.01
RSAC219	32	36	0.01
RSAC219	36	39	0.01
RSAC219	39	40	<0.01
RSAC220	0	4	<0.01
RSAC220	4	8	<0.01
RSAC220	8	12	<0.01
RSAC220	12	16	<0.01
RSAC220	16	20	<0.01
RSAC220	20	24	<0.01
RSAC220	24	28	<0.01
RSAC220	28	32	<0.01
RSAC220	32	34	<0.01
RSAC220	34	35	0.01
RSAC221	0	4	0.01
RSAC221	4	8	<0.01
RSAC221	8	12	<0.01
RSAC221	12	16	<0.01
RSAC221	16	20	<0.01
RSAC221	20	24	<0.01
RSAC221	24	28	<0.01
RSAC221	28	29	<0.01
RSAC221	29	30	<0.01
RSAC222	0	4	<0.01
RSAC222	4	8	<0.01
RSAC222	8	12	<0.01
RSAC222	12	16	<0.01
RSAC222	16	20	<0.01
RSAC222	20	24	<0.01
RSAC222	24	28	<0.01
RSAC222	28	32	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC222	32	36	<0.01
RSAC222	36	40	<0.01
RSAC222	40	42	<0.01
RSAC222	42	43	0.01
RSAC223	0	4	<0.01
RSAC223	4	8	<0.01
RSAC223	8	12	<0.01
RSAC223	12	16	<0.01
RSAC223	16	20	<0.01
RSAC223	20	24	<0.01
RSAC223	24	26	<0.01
RSAC223	26	27	<0.01
RSAC224	0	4	<0.01
RSAC224	4	8	<0.01
RSAC224	8	12	<0.01
RSAC224	12	16	<0.01
RSAC224	16	20	<0.01
RSAC224	20	24	<0.01
RSAC224	24	28	<0.01
RSAC224	28	29	<0.01
RSAC225	0	4	<0.01
RSAC225	4	8	<0.01
RSAC225	8	12	<0.01
RSAC225	12	16	<0.01
RSAC225	16	20	<0.01
RSAC225	20	21	<0.01
RSAC225	21	22	<0.01
RSAC226	0	4	<0.01
RSAC226	4	8	<0.01
RSAC226	8	12	<0.01
RSAC226	12	16	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC226	16	20	<0.01
RSAC226	20	23	<0.01
RSAC226	23	24	<0.01
RSAC227	0	4	<0.01
RSAC227	4	8	<0.01
RSAC227	8	12	<0.01
RSAC227	12	16	<0.01
RSAC227	16	20	<0.01
RSAC227	20	21	<0.01
RSAC227	21	22	<0.01
RSAC228	0	3	<0.01
RSAC229	0	4	<0.01
RSAC229	4	8	<0.01
RSAC229	8	12	0.01
RSAC229	12	16	0.01
RSAC229	16	17	0.01
RSAC230	0	4	<0.01
RSAC230	4	8	<0.01
RSAC230	8	12	< 0.01
RSAC230	12	16	<0.01
RSAC230	16	20	0.01
RSAC230	20	24	0.01
RSAC230	24	25	n/a
RSAC230	25	26	n/a
RSAC231	0	4	0.01
RSAC231	4	8	<0.01
RSAC231	8	12	0.01
RSAC231	12	16	<0.01
RSAC231	16	20	0.01
RSAC231	20	23	0.01
RSAC231	23	24	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC232	0	4	0.01
RSAC232	4	8	<0.01
RSAC232	8	12	0.01
RSAC232	12	16	0.01
RSAC232	16	20	0.01
RSAC232	20	24	<0.01
RSAC232	24	25	<0.01
RSAC232	25	26	<0.01
RSAC233	0	4	<0.01
RSAC233	4	8	<0.01
RSAC233	8	12	<0.01
RSAC233	12	16	<0.01
RSAC233	16	20	< 0.01
RSAC233	20	24	0.03
RSAC233	24	28	0.01
RSAC233	28	31	0.01
RSAC233	31	32	<0.01
RSAC234	0	4	<0.01
RSAC234	4	8	<0.01
RSAC234	8	12	<0.01
RSAC234	12	16	<0.01
RSAC234	16	20	0.01
RSAC234	20	23	0.12
RSAC234	23	24	0.04
RSAC235	0	4	0.01
RSAC235	4	8	<0.01
RSAC235	8	12	0.01
RSAC235	12	16	0.02
RSAC235	16	20	0.02
RSAC235	20	24	0.01
RSAC235	24	28	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC235	28	29	0.01
RSAC235	29	30	<0.01
RSAC236	0	4	0.01
RSAC236	4	8	<0.01
RSAC236	8	12	0.01
RSAC236	12	16	0.08
RSAC236	16	20	0.05
RSAC236	20	24	0.02
RSAC236	24	28	0.02
RSAC236	28	32	0.01
RSAC236	32	36	0.01
RSAC236	36	37	0.01
RSAC237	0	4	0.01
RSAC237	4	8	<0.01
RSAC237	8	12	<0.01
RSAC237	12	16	0.05
RSAC237	16	20	0.09
RSAC237	20	24	0.09
RSAC237	24	28	<0.01
RSAC237	28	32	<0.01
RSAC237	32	36	<0.01
RSAC237	36	40	<0.01
RSAC237	40	44	0.01
RSAC237	44	48	<0.01
RSAC237	48	52	0.02
RSAC237	52	56	0.01
RSAC237	56	60	<0.01
RSAC237	60	64	<0.01
RSAC237	64	68	<0.01
RSAC237	68	72	<0.01
RSAC237	72	76	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC237	76	79	0.01
RSAC237	79	80	0.01
RSAC238	0	4	0.01
RSAC238	4	8	<0.01
RSAC238	8	12	<0.01
RSAC238	12	16	<0.01
RSAC238	16	20	0.01
RSAC238	20	24	0.02
RSAC238	24	28	0.01
RSAC238	28	30	0.01
RSAC238	30	31	<0.01
RSAC239	0	4	<0.01
RSAC239	4	8	0.01
RSAC239	8	12	<0.01
RSAC239	12	16	<0.01
RSAC239	16	20	<0.01
RSAC239	20	24	<0.01
RSAC239	24	28	<0.01
RSAC239	28	32	<0.01
RSAC239	32	36	<0.01
RSAC239	36	40	<0.01
RSAC239	40	44	0.01
RSAC239	44	48	<0.01
RSAC239	48	52	0.01
RSAC239	52	53	0.01
RSAC240	0	4	0.01
RSAC240	4	8	<0.01
RSAC240	8	12	<0.01
RSAC240	12	16	<0.01
RSAC240	16	20	<0.01
RSAC240	20	24	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC240	24	28	<0.01
RSAC240	28	32	<0.01
RSAC240	32	36	0.01
RSAC240	36	40	<0.01
RSAC240	40	44	0.01
RSAC240	44	48	<0.01
RSAC240	48	52	<0.01
RSAC240	52	56	0.01
RSAC240	56	60	<0.01
RSAC240	60	64	0.01
RSAC240	64	65	<0.01
RSAC240	65	66	<0.01
RSAC241	0	4	0.01
RSAC241	4	8	<0.01
RSAC241	8	12	<0.01
RSAC241	12	16	<0.01
RSAC241	16	20	<0.01
RSAC241	20	24	<0.01
RSAC241	24	28	<0.01
RSAC241	28	32	<0.01
RSAC241	32	36	<0.01
RSAC241	36	40	<0.01
RSAC241	40	44	0.01
RSAC241	44	48	0.01
RSAC241	48	52	0.01
RSAC241	52	56	<0.01
RSAC241	56	60	0.01
RSAC241	60	64	0.01
RSAC241	64	68	<0.01
RSAC241	68	69	0.01
RSAC242	0	4	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC242	4	8	<0.01
RSAC242	8	12	<0.01
RSAC242	12	16	<0.01
RSAC242	16	20	<0.01
RSAC242	20	24	<0.01
RSAC242	24	28	<0.01
RSAC242	28	32	<0.01
RSAC242	32	36	<0.01
RSAC242	36	40	<0.01
RSAC242	40	44	<0.01
RSAC242	44	48	<0.01
RSAC242	48	52	0.02
RSAC242	52	56	0.01
RSAC242	56	60	0.01
RSAC242	60	62	<0.01
RSAC242	62	63	<0.01
RSAC243	0	4	<0.01
RSAC243	4	8	<0.01
RSAC243	8	12	<0.01
RSAC243	12	16	<0.01
RSAC243	16	20	<0.01
RSAC243	20	24	<0.01
RSAC243	24	28	<0.01
RSAC243	28	32	0.01
RSAC243	32	36	0.01
RSAC243	36	40	0.03
RSAC243	40	44	0.02
RSAC243	44	45	0.03
RSAC244	0	4	0.01
RSAC244	4	8	<0.01
RSAC244	8	12	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC244	12	16	<0.01
RSAC244	16	20	<0.01
RSAC244	20	24	0.01
RSAC244	24	28	<0.01
RSAC244	28	32	<0.01
RSAC244	32	36	0.03
RSAC244	36	40	0.02
RSAC244	40	44	<0.01
RSAC244	44	48	0.05
RSAC244	48	49	0.03
RSAC245	0	4	0.01
RSAC245	4	8	<0.01
RSAC245	8	12	<0.01
RSAC245	12	16	<0.01
RSAC245	16	20	<0.01
RSAC245	20	24	0.02
RSAC245	24	25	0.01
RSAC245	25	26	0.1
RSAC246	0	2	0.01
RSAC247	0	4	0.01
RSAC247	4	8	<0.01
RSAC247	8	10	<0.01
RSAC247	10	11	<0.01
RSAC248	0	4	0.01
RSAC248	4	8	<0.01
RSAC248	8	9	<0.01
RSAC249	0	4	0.01
RSAC249	4	8	<0.01
RSAC249	8	12	<0.01
RSAC249	12	13	0.01
RSAC250	0	4	0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC250	4	8	0.01
RSAC250	8	10	0.01
RSAC250	10	11	0.01
RSAC251	0	4	0.01
RSAC251	4	6	<0.01
RSAC251	6	7	0.01
RSAC252	0	4	0.01
RSAC252	4	5	0.01
RSAC253	0	4	0.01
RSAC253	4	8	0.01
RSAC253	8	12	<0.01
RSAC253	12	13	0.01
RSAC254	0	4	<0.01
RSAC254	4	8	<0.01
RSAC254	8	12	<0.01
RSAC254	12	16	<0.01
RSAC254	16	20	<0.01
RSAC254	20	21	0.01
RSAC255	0	4	0.01
RSAC255	4	8	<0.01
RSAC255	8	12	<0.01
RSAC255	12	16	0.02
RSAC255	16	20	<0.01
RSAC255	20	24	<0.01
RSAC255	24	28	0.03
RSAC255	28	32	0.01
RSAC255	32	35	0.01
RSAC255	35	36	0.01
RSAC256	0	4	0.01
RSAC256	4	8	<0.01
RSAC256	8	12	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC256	12	16	<0.01
RSAC256	16	20	<0.01
RSAC256	20	24	0.01
RSAC256	24	26	<0.01
RSAC256	26	27	<0.01
RSAC257	0	4	0.01
RSAC257	4	8	<0.01
RSAC257	8	12	<0.01
RSAC257	12	16	<0.01
RSAC257	16	20	< 0.01
RSAC257	20	24	<0.01
RSAC257	24	28	<0.01
RSAC257	28	31	< 0.01
RSAC257	31	32	<0.01
RSAC258	0	4	0.01
RSAC258	4	8	<0.01
RSAC258	8	12	<0.01
RSAC258	12	15	<0.01
RSAC258	15	16	<0.01
RSAC259	0	4	0.01
RSAC259	4	8	<0.01
RSAC259	8	12	<0.01
RSAC259	12	16	<0.01
RSAC259	16	20	<0.01
RSAC259	20	24	<0.01
RSAC259	24	26	< 0.01
RSAC259	26	27	<0.01
RSAC260	0	4	0.01
RSAC260	4	8	<0.01
RSAC260	8	12	<0.01
RSAC260	12	16	<0.01

Hole_ID	Depth_From	Depth_To	Grade (g/t)
RSAC260	16	20	<0.01
RSAC260	20	24	< 0.01
RSAC260	24	28	<0.01
RSAC260	28	30	<0.01
RSAC260	30	31	<0.01
RSAC261	0	4	0.01
RSAC261	4	8	<0.01
RSAC261	8	12	< 0.01
RSAC261	12	16	<0.01
RSAC261	16	20	<0.01
RSAC261	20	22	<0.01
RSAC261	22	23	<0.01