

Heritage Survey Completed at **Eureka Gold Project Near Kalgoorlie**

Highlights

- Heritage survey completed at Eureka, paving the way for the start of Javelin's maiden drilling program at the project
- RC rig secured with contractor TopDrill in preparation for planned 3000m program under a drill-for-equity arrangement
- Eureka sits on a granted Mining Lease and has a JORC Resource of 112,000oz. including 62,000oz in the Indicated category, is open along strike and at depth
- Historical drilling returned strong results which sit outside the Resource, including 4m at 134gpt, 3m at 48.75gpt and 4m at 32gpt, with no recent exploration drilling
- Drilling will test high-priority exploration targets around the existing pit and north/northwest of the pit
- These include at least 12 structural and geochemical targets, some of which sit immediately along strike of the Eureka Gold Deposit
- Work plans are advancing for potential near-term mining of ~30,000 34,000 recoverable ounces of the Indicated Resource in the southern end of the pit and toll treating it at one of the nearby mills

Javelin Minerals Limited (ASX: JAV) is pleased to announce that the heritage survey has been completed on its granted mining lease M24/189 covering its Eureka Gold Project, 50km north of Kalgoorlie, in preparation for the Company's maiden drilling program there. The Board would like to thank the survey team and the Traditional Owners, the Marlinyu Ghoorlie Group, for their support and assistance with completing the heritage survey.

The planned RC drilling program will target extensions of the established high-grade lodes below the pit and test target zones to the north. This will include following up historical intersections such as 4m @ 132qpt, 3m @ 48qpt, and 4m @32gpt.

Javelin is also pleased to advise that the mining and economic studies for near-term mining of ~30,000 - 34,000 recoverable ounces from the Indicated Resource at the southern end of the Eureka pit are advancing.

As part of this strategy, Javelin is holding discussions with nearby mill operators in respect to toll treating the Eureka ore.

Eureka currently has ~30,000 - 34,000 recoverable ounces in a pit shell based on a A\$4,000 -\$4,200/oz gold price, from recent pit shell optimisations prepared by independent resource engineer for the Company. This forms part of Eureka's total 62,000oz Indicated Resource which is in turn part of the overall 112,000oz Resource.

Eureka sits on granted Mining Lease M24/189 and given the WA Government's recent commitment to fast-track project approvals, could be in production within 12 months.

Javelin Executive Chairman Brett Mitchell said: *"We were delighted to secure ownership of Eureka because we can see the significant exploration upside at what is clearly potential for a large mineralised system outside of the Eureka pit.*

"There has been little or no modern exploration at Eureka and we believe there is immense upside to be unlocked by applying modern exploration techniques and the latest technology.

"We have already outlined a host of targets, and we are very excited about our first drilling program following completion of the heritage survey.

"At the same time, we are progressing work plans and discussions with nearby mill operators with the aim of aim of mining the ~35,000oz at the southern end of the pit. Based on the current record high A\$ gold price, this has the potential to generate substantial near-term cashflow".

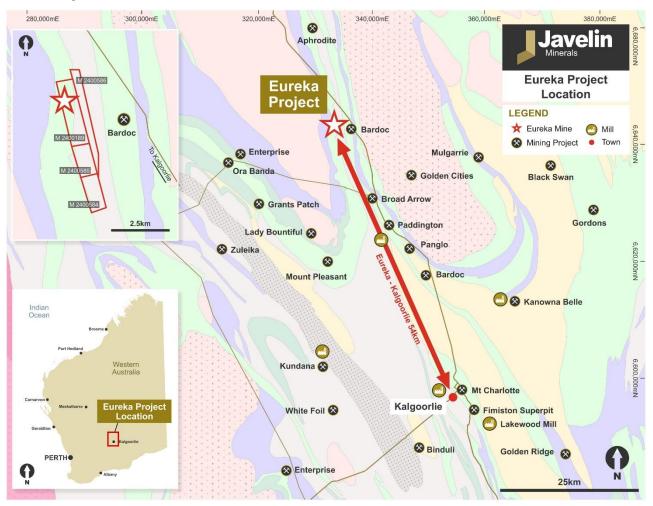


Figure 1 – Location Map showing the Eureka Project area

The Eureka priority drill targets were identified as part of a review conducted by Core Geophysics, which compiled and evaluated all historical open file geophysical data (including magnetics, auger and drilling surveys).

The review identified strong structural targets with robust magnetics coinciding with soil geochemistry in areas that have not yet been systematically drill-tested.

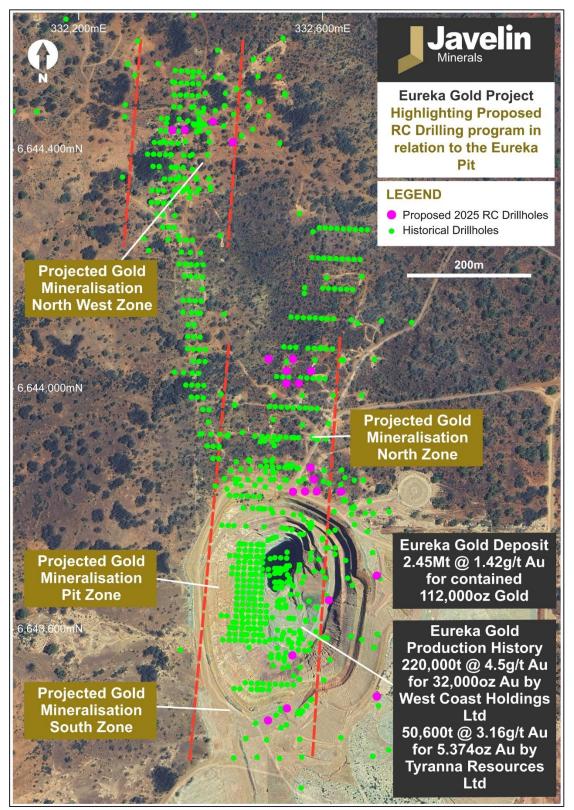


Figure 2 – Eureka interpreted geology map with newly defined target areas

Project Detail

The Eureka Gold Project tenements are located in the Eastern Goldfields of WA, 54 km north-north-west of Kalgoorlie in the heart of the State's greenstone belt (Figure 1). It sits only 20km north-north-west of the world-famous Paddington gold mine and near several producing mines.

The region is considered prospective for gold mineralisation and contains a number of historical mines and mineral occurrences. The Project is situated in a highly fertile greenstone belt with numerous gold deposits and abundant gold occurrences nearby.

The Eureka gold deposit was first discovered in the 1890s, with historical underground mining worked until 1940. Historical information sources noted that gold mineralisation is associated with shearing and quartz veining within easterly dipping oxidised fine grained mafic rocks. Recorded production from 1897 up to 1940 totalled 809 tonnes averaging 27.8 g/t Au. From 1985 to 1988, mining of the Eureka open pit included 220,000 tonnes at 4.5 g/t Au for 32,000oz by West Coast Holdings Limited. Development to test for underground mineralisation potential at Eureka was started in mid-1996. In 2018, Tyranna Resources Limited also mined 50,600 tonnes of ore grading 3.16 g/t Au producing 5,374oz of gold.

Geology and Prospectivity

Regionally, the Eureka gold deposit occurs on the eastern limb of the major south-east plunging Goongarrie-Mt. Pleasant Anticline. The eastern limb consists predominantly of north-north-west trending mafic and ultramafic lithologies. This zone consists of multiple shear zones occurring within intercalated felsic, mafic and ultramafic lithologies in the vicinity of the synformal axis. The Eureka gold deposit is located within the Bardoc Tectonic Zone which hosts the Paddington and Bardoc gold deposits.

Gold mineralisation at Eureka occurs as a number of lens-shaped ore shoots up to 10m wide within the shear zone. The gold is hosted in quartz veins and quartz stringers within the altered mafic host rocks. The mineralisation at Eureka is hosted within basalts and is contained with a zone of shearing and foliation with quartz veining containing quartz, carbonate and low amounts of sulphides with some visible gold and has a variable thickness of up to 20 metres. Mineralisation has been exploited in a 120m deep, 300m long open pit that was developed on a number of lens-shaped shoots up to 10 metre wide within an intensely sheared zone approximately 30 metres wide. The mineralisation is sub-vertically dipping and strikes in a north south orientation with several offsets and splays forming the main structure.

This ASX announcement has been authorised for release by the Board of Javelin Minerals Limited.

For further information, please contact: Brett Mitchell Executive Chairman Javelin Minerals Limited info@javelinminerals.com.au

Paul Armstrong Investor Relations Consultant Read Corporate paul@readcorporate.com.au

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Pedro Kastellorizos. Mr. Kastellorizos is the Non-Executive Director of Javelin Minerals Limited and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on the information in the form and context in which it appears. Mr Kastellorizos has reviewed all relevant data for the RC and Diamond drilling program and reported the results accordingly.

The information in this report / ASX release that relates to Exploration Results, Exploration Targets and Mineral Resources at Eurekais based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resource Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Results, Exploration Targets and Mineral Resources. Mr Gillman is a full-time employee of Odessa Resource Pty Ltd, who specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillam nor Odessa Resource Pty Ltd holds any interest in Javelin Minerals Limited, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this report / ASX release of

☑ info@javelinminerals.com.au
୬ +61 8 6319 1900

the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

Javelin Minerals Limited confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning Exploration Results, Exploration Targets and Mineral Resources included in the original ASX announcements continue to apply and have no materially changed, and the forma and context in which the relevant competent person's findings are presented in this report have not been materially modified from the original ASX announcements.

Forward Statement

This news release contains "forward-looking information" within the meaning of applicable securities laws. Generally, any statements that are not historical facts may contain forward-looking information, and forward looking information can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget" "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or indicates that certain actions, events or results "may", "could", "would", "might" or "will be" taken, "occur" or "be achieved." Forward-looking but not limited to, continued exploration activities, commodity prices, the estimation of initial and sustaining capital requirements, the estimation of labour costs, the estimation of mineral reserves and resources, assumptions with respect to currency fluctuations, the timing and amount of future exploration and development expenditures, receipt of required regulatory approvals, the availability of necessary financing for the project, permitting and such other assumptions and factors as set out herein.

Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the actual results, level of activity, performance or achievements of the Company to be materially different from those expressed or implied by such forward-looking information, including but not limited to: risks related to changes in commodity prices; sources and cost of power and water for the Project; the estimation of initial capital requirements; the lack of historical operations; the estimation of labour costs; general global markets and economic conditions; risks associated with exploration of mineral deposits; the estimation of initial targeted mineral resource tonnage and grade for the project; risks associated with uninsurable risks arising during the course of exploration; risks associated with currency fluctuations; environmental risks; competition faced in securing experienced personnel; access to adequate infrastructure to support exploration activities; risks associated with changes in the mining regulatory regime governing the Company and the Project; completion of the environmental assessment process; risks related to regulatory and permitting delays; risks related to potential conflicts of interest; the reliance on key personnel; financing, capitalisation and liquidity risks including the risk that the financing necessary to fund continued exploration and development activities at the project may not be available on satisfactory terms, or at all; the risk of potential dilution through the issuance of additional common shares of the Company; the risk of litigation.

Although the Company has attempted to identify important factors that cause results not to be as anticipated, estimated or intended, there can be no assurance that such forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. Accordingly, readers should not place undue reliance on forward-looking information. Forward looking information is made as of the date of this announcement and the Company does not undertake to update or revise any forward-looking information this is included herein, except in accordance with applicable securities laws.

References

Hodgins, J. - Combined Annual Technical Report, Eureka Gold Project M24/189, M24/584, M24/585 and M24/586, 1 January 2017 to 31 December 2017. Combined Report C42-005. Central Iron Ore Ltd.

Revell, N - Combined Annual Technical Report, Eureka Gold Project M24/189, M24/584, M24/585 and M24/586, 1 January 2018 to 31 December 2018. Combined Report C42-005. Tyranna Resources Ltd.

Wilford J.W., Craig M.A., Tapley I. J. and Mauger A.J., 1998. Regolith-Landform Mapping and its Implications for Exploration over the Half Moon Lake region, Gawler Craton, South Australia. CRC LEME Restricted Report 92R / E&M Report 542C. 91 pp. (Unpublished).

For further information, please refer to previous ASX announcement:

ASX Announcement 21 October 2021: Eureka North Exploration Results Including High Grade Gold ASX Announcement 24 June 2021: TNT Mines drilling increases Eureka Resource to 112,000 oz gold

ASX Announcement 15 June 2021: Eureka Auger Programme delineates extensive Gold Anomaly ASX Announcement 15 February 2021: Investor Presentation – Eureka and Warriedar Gold Projects ASX Announcement 9 February 2021: Strong initial Gold Results Delivered from Eureka South

ASX Announcement 23 October 2010: TNT acquires Historical Western Australian Gold Projects

ASX Announcement 7 October 2010: Eureka North Exploration Results

ASX Announcement: 26 August 2024: 158% Increase in EurekaGold MRE This Announcement contains no new information on existing Javelin Projects.

ASX Announcement 21 October 2021: Eureka North Exploration Results Including High Grade Gold

ASX Announcement 24 June 2021: TNT Mines drilling increases Eureka Resource to 112,000 oz gold

ASX Announcement 15 June 2021: *Eureka Auger Programme delineates extensive Gold Anomaly*

ASX Announcement 15 February 2021: Investor Presentation – Eureka and Warriedar Gold Projects

ASX Announcement 9 February 2021: Strong initial Gold Results Delivered from Eureka South

ASX Announcement 23 October 2010: TNT acquires Historical Western Australian Gold Projects

ASX Announcement 7 October 2010: *Eureka North Exploration Results*

info@javelinminerals.com.au
 +61 8 6319 1900

Eureka Gold Project Mineral Resource Estimate

The existing Eureka Gold Project Mineral Resource Estimate (MRE) stands at **2.45Mt at 1.42 g/t Au totalling 112,000 ounces of gold** (ASX Announcement 24 June 2021: TNT Mines drilling increases Eureka Resource to 112,000 oz gold). Table 5 showing the Eureka Mineral Resource as of June 2021 based on tonnes and grades.

Table 5: Eureka Gold Deposit Mineral Resource Estimate by Classification as of June 2021
(at a 0.5 g/t Au cut-off)

Classification	Tonnage t	<i>Grade</i> g/t Au	<i>Contained Metal</i> (Oz Gold)
Indicated	1,269,000	1.53	62,000
Inferred	1,183,000	1.3	50,000
Total	2,452,000	1.42	112,000

APPENDIX 1 - Significant Drilling Intercept Table Cut-off grade of 0.5 g/t Gold - All co-ordinates in GDA94,

MGA Zone 51

Drillhole Id	From (m)	To (m)	Drill Interval (m)	Au g/t
ERC01	90	101	11	2.45
ERC02	122	127	5	2.81
ERC02	131	132	1	8.58
ERC02	139	140	1	3.29
ERC04	30	34	4	1.16
ERC04	58	62	4	5.77
ERC05	102	104	2	6.83
ERC05	105	113	8	3.30
ERC05	114	118	4	0.81
ERC06	36	40	4	4.17
ERC06	60	72	12	7.88
ERC06	89	92	3	2.79
ERC07	59	60	1	1.85
ERC07	91	96	5	1.25
ERC08	144	146	2	1.49
ERC08	148	155	7	2.48
ERC08	164	165	1	2.75
ERC10	43	51	8	1.01
ERC10	54	59	5	1.26
ERC10	72	79	7	1.54
ERC11	56	57	1	1.19
ERC11	58	67	9	1.56

ERC11	70	79	9	1.86
ERC12	47	52	5	1.86
ERC12	57	58	1	1.14
ERC12	59	60	1	0.79
ERC15	4	15	11	3.94
ERC15	16	22	6	1.27
ERC15	27	32	5	0.63
ERC15	36	41	5	1.44
ERC16	40	44	4	1.47
ERC16	45	52	7	2.08
ERC17	78	83	5	2.40
ERC18	36	39	3	1.38
ERC18	60	71	11	5.51
ERC20	130	133	3	1.16
ERC20	135	136	1	1.90
ERC20	140	141	1	0.59
ERC21	162	167	5	0.97
ERC22	146	150	4	1.69
ERC23	20	21	1	2.23
ERC23	53	54	1	1.51
ERC24	69	70	1	1.75
ERC25	50	52	2	5.11
ERC25	59	63	4	0.84

ERC25	72	73	1	17.00
ERC26	41	46	5	1.06
ERC62	57	58	1	1.83
ERC62	62	63	1	0.52
ERC62	69	72	3	1.12
ERC39	23	24	1	0.97
ERC39	27	28	1	0.65
ERC39	53	57	4	134.52
ERC62	75	76	1	3.13
ERC62	86	89	3	3.46
ERC63	80	81	1	1.55
ERC64	221	224	3	3.50
ERC64	233	234	1	0.73
ERC65	74	76	2	2.46
ERC65	85	86	1	0.62
ERC66	53	55	2	1.03
ERC66	67	70	3	1.49
ERC67	63	65	2	3.34
ERC67	72	77	5	8.33
ERC68	46	49	3	1.39
ERC69	72	73	1	0.84
ERC69	90	102	12	1.59
ERC69	116	118	2	1.09
ERC70	7	13	6	2.09
ERC70	21	23	2	0.78
ERC72	10	11	1	0.63
ERC72	30	33	3	3.67
ERC72	37	38	1	0.59
ERC72	40	46	6	1.73
ERC73	32	35	3	2.10
ERC73	59	63	4	2.54
ERC74	50	58	8	2.14
ERC74	66	69	3	6.20
ERC74	85	86	1	0.92
ERC74	125	126	1	0.70
WRRC0001	51	64	13	2.23
WRRC0001	75	79	4	1.57
WRRC0002	3	6	3	0.68

WRRC0002	13	14	1	0.50
WRRC0002	51	52	1	0.66
WRRC0003	65	66	1	1.10
WRRC0003	78	79	1	1.96
WRRC0003	102	107	5	1.66
WRRC0004	75	76	1	0.91
WRRC0004	78	79	1	0.52
WRRC0005	6	7	1	0.52
WRRC0005	9	10	1	0.69
WRRC0008	148	156	8	2.51
WRRC0008	232	233	1	0.63
WRRC0008	240	241	1	0.75
WRRC0009	4	7	3	0.73
WRRC0009	9	12	3	0.87
WRRC0009	51	52	1	1.26
WRRC0009	69	70	1	0.75
WRRC0009	99	100	1	0.83
WRRC0010	181	182	1	2.54
WRRC0011	144	146	2	0.84
WRRC0011	152	153	1	1.02
WRRC0011	183	184	1	0.59
WRRC0011	239	244	5	0.59
WRRC0011	247	250	3	1.65
WRRC0011	257	259	2	0.59
WRRC0011	291	292	1	13.22
WRRC0013	8	16	8	1.20
WRRC0017	9	12	3	0.97
WRRC0018	24	29	5	2.88
WRRC0018	42	43	1	0.50
WRRC0018	54	55	1	1.07
WRRC0019	42	46	4	10.99
WRRC0019	74	75	1	0.84
WRRC0021	107	108	1	6.72
WRRC0022	70	71	1	1.29
WRRC0023	48	49	1	0.63
WRRC0023	84	87	3	1.97
WRRC0024	33	34	1	0.76
WRRC0024	36	37	1	0.60

WRRC0024	42	43	1	0.51
WRRC0024	109	110	1	1.35
WRRC0026	0	3	3	0.89
WRRC0027	2	8	6	0.71
WRRC0028	6	10	4	1.44
WRRC0029	2	6	4	1.01
WRRC0029	51	53	2	0.77
WRRC0030	1	8	7	0.94
WRRC0030	27	28	1	3.21
WRRC0030	47	48	1	0.75
WRRC0031	0	2	2	1.32
WRRC0032	6	8	2	0.62
WRRC0033	5	10	5	1.23
WRRC0034	10	11	1	1.56
WRRC0035	3	8	5	1.08
WRRC0036	4	9	5	1.07
WRRC0036	53	54	1	1.00
WRRC0037	4	5	1	0.98
WRRC0037	47	51	4	1.13
WRRC0037	55	56	1	3.46
WRRC0037	59	60	1	0.54
WRRC0038	93	94	1	0.61
WRRC0041	17	18	1	0.97
WRRC0041	37	38	1	0.69
WRRC0041	45	46	1	0.64
WRRC0042	41	42	1	0.71
WRRC0042	75	76	1	0.52
WRRC0051	0	4	4	1.19
WRRC0051	136	140	4	1.47
WRRC0051	247	252	5	2.49
WRRC0051	254	255	1	1.00
WRRC0051	271	275	4	1.63
WRRC0052	114	120	6	2.78
WRRC0053	152	156	4	1.18
WRRC0053	160	164	4	1.12
WRRC0053	201	202	1	0.99
WRRC0053	264	269	5	0.90
WRRC0053	275	276	1	2.67

WRRC0054	0	4	4	1.74
WRRC0054	81	82	1	0.51
WRRC0054	93	96	3	2.52
WRRC0054	140	141	1	2.22
WRRC0059	115	118	3	2.38
WRRC0065	45	46	1	0.54
WRRC0066	171	173	2	0.97
WRRC0066	178	181	3	2.55
WRRC0066	188	189	1	0.75
WRRC0067	264	272	8	1.04
WRRC0067	279	280	1	1.04
WRRC0070	3	4	1	1.57
WRRC0072	8	9	1	0.59
WRRC0072	45	46	1	1.20
WRRC0073	6	10	4	2.39
WRRC0074	0	2	2	0.62
WRRC0074	5	7	2	0.74
WRRC0074	8	12	4	0.57
WRRC0075	10	11	1	0.51
WRRC0075	48	49	1	0.50
WRRC0075	52	53	1	12.99
WRRC0075	54	58	4	0.82
WRRC0075	67	69	2	6.95
WRRC0075	78	79	1	0.62
WRRC0077	88	89	1	6.47
WRRC0077	103	104	1	0.67
WRRC0079	118	119	1	1.38
WRRC0079	130	132	2	2.04
WRRC0079	156	157	1	3.62
WRRC0080	112	116	4	0.75
WRRC0080	165	166	1	0.96
WRRC0080	201	203	2	6.13
WRRC0080	209	210	1	1.67
WRRC0080	217	218	1	1.19
WRRC0081	69	71	2	1.34
WRRC0081	77	79	2	0.75
WRRC0081	99	103	4	0.70
WRRC0081	110	119	9	1.82

WRRC0081	121	123	2	5.39
WRRC0081	127	128	1	2.79
WRRC0081	131	136	5	5.02
WRRC0082	3	5	2	0.68
WRRC0082	74	77	3	8.59
WRRC0082	120	121	1	0.59
WRRC0082	129	130	1	2.97
WRRC0082	131	136	5	1.09
WRRC0083	53	54	1	3.44
WRRC0083	125	127	2	0.67
WRRC0087	36	40	4	0.50
WRRC0090	26	27	1	14.72
WRRC0091	103	104	1	1.32
WRRC0092	112	113	1	1.24
WRRC0094	8	9	1	0.59
WRRC0094	82	86	4	1.40
WRRC0094	99	100	1	4.78
WRRC0095	48	49	1	0.93
WRRC0095	52	58	6	4.17
WRRC0097	29	30	1	0.66
WRRC0098	39	42	3	0.53
WRRC0102	43	45	2	1.88
WRRC0102	54	55	1	0.71
WRRC0102	59	62	3	0.84
WRRC0103	113	115	2	0.91
WRRC0104	151	153	2	0.77
WRRC0104	156	158	2	1.14
WRRC0106	48	52	4	1.73
WRRC0106	63	64	1	0.51
WRRC0106	104	108	4	32.08
WRRC0107	108	109	1	0.93
WRRC0108	169	172	3	1.18
WRRC0109	55	56	1	2.48
WRRC0114	5	6	1	0.58
WRRC0114	112	113	1	0.99
WRRC0115	86	88	2	2.73
WRRC0115	122	123	1	1.02

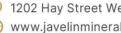
WRRC0116	66	69	3	1.25
WRRC0116	72	74	2	3.46
WRRC0117	82	83	1	0.55
WRRC0117	85	86	1	0.54
WRRC0121	32	33	1	0.86
WRRC0121	38	43	5	13.88
WRRC0121	87	88	1	0.79
WRRC0122	67	68	1	1.54
WRRC0122	73	75	2	2.68
WRRC0122	92	94	2	1.14
WRRC0122	97	102	5	1.01
WRRC0122	128	129	1	0.58
WRRC0122	133	134	1	43.10
WRRC0123	132	133	1	0.79
WRRC0123	141	142	1	0.74
WRRC0123	143	150	7	0.87
WRRC0124	64	65	1	0.96
WRRC0127	72	77	5	1.45
WRRC0127	80	81	1	0.92
WRRC0127	108	109	1	5.97
WRRC0129	66	68	2	0.68
WRRC0129	109	112	3	0.93
WRRC0130	98	105	7	0.66
WRRC0130	106	107	1	0.79
WRRC0130	112	114	2	0.83
WRRC0131	128	130	2	1.30
WRRC0133	102	103	1	0.73
WRRC0135	129	132	3	48.75
WRRC0136	85	86	1	0.74
WRRC0136	126	127	1	0.84
WRRC0136	162	163	1	0.57
DEK04	112.8	119.5	6.7	8.57
DEK04	120.5	128.3	7.8	1.10
DEK04	131.3	132.5	1.2	5.50
DEK04	133.5	135.1	1.6	1.73
19ERC12	33	38	5	25.62
19ERC01	0	7	7	6.17
19ERC01	13	14	1	0.64

19ERC01	40	41	1	0.76
19ERC02	19	20	1	0.57
19ERC02	25	26	1	1.75
19ERC04	3	4	1	0.55
19ERC04	18	19	1	0.6
19ERC04	27	29	2	3.82
19ERC04	36	37	1	0.59
19ERC04	39	49	10	22.46
19ERC04	52	53	1	0.61
19ERC05	24	25	1	0.67
19ERC05	27	30	3	1.86
19ERC06	3	7	4	2.07
19ERC08	9	10	1	2.16
19ERC08	19	25	6	15.13
19ERC08	27	28	1	0.52
19ERC09	2	3	1	1.82
19ERC09	16	21	5	10.31
19ERC10	7	8	1	0.96
19ERC11	7	8	1	1.07
19ERC11	17	18	1	1.02
19ERC12	33	38	5	128.1
19ERC13	0	2	2	2.87
19ERC14	36	44	8	19.05
19ERC15	0	1	1	0.56
19ERC16	2	3	1	2.73
19ERC16	7	10	3	6.69
19ERC16	11	14	3	2.35
19ERC16	15	19	4	3.12
19ERC17	20	24	4	8.64
19ERC17	26	32	6	22.44
19ERC18	0	1	1	0.76
19ERC18	2	7	5	3.3
19ERC18	23	28	5	18.72
19ERC19	0	3	3	2.89
19ERC19	6	7	1	2.5
19ERC19	11	18	7	6.7
19ERC19	21	26	5	11.61
19ERC20	12	21	9	22.18

19ERC22 5 7 2 1.1 19ERC22 36 39 3 4. 19ERC23 21 22 1 0. 19ERC23 39 42 3 3. 19ERC23 46 48 2 3.	77 23 19 64 41
19ERC22 36 39 3 4. 19ERC23 21 22 1 0. 19ERC23 39 42 3 3. 19ERC23 46 48 2 3.	19 64 41
19ERC23 21 22 1 0. 19ERC23 39 42 3 3. 19ERC23 46 48 2 3.	64 41
19ERC23 39 42 3 3. 19ERC23 46 48 2 3.	41
19ERC23 46 48 2 3.	
19ERC24 4 5 1 0.	52
	63
19ERC24 39 40 1 3.	05
19ERC25 1 2 1 0.	73
19ERC25 6 7 1 0.	59
19ERC26 28 29 1 0.4	82
19ERC26 36 47 11 21.	.72
19ERC27 0 1 1 0.	57
19ERC30 1 2 1 1.	18
19ERC30 14 15 1 2.4	88
DEK01 82 86 4 6	.7
DEK01 138 139 1.27 10.	32
DEK02 80 89 8.3 77	.38
DEK02 91 93 2 6.	01
DEK04 113 120 6.7 57	.46
DEK04 121 128 7.8 8.	58
DEK04 131 133 1.2 6	.6
DEK04 134 135 1.6 2.	77
DEK05 80 84 4 3.	11
DEK05 88 99 11 20	.13
DEK05 101 103 2 1.5	57
DEK06 111 118 7.45 18.	.97
DEK06 130 131 1 1.1	78
DEK07 91 92 1 1.2	23
DEK07 109 110 1 0.	52
DEK09 75 76 1 2.4	63
	.3
DEK1 82 86 4 6	.7
DEK1 138 139 1.27 10.	32
DERI 136 139 1.27 10.	
DEK1 146 147 1 0.4	68
DEK1 146 147 1 0.4	68 25
DEK1 146 147 1 0.1 DEK1 149 155 5.7 4.1	

DEK11	88	89	1	4.43
DEK11	93	95	2	14.45
DEK12	118	121	3	43.72
DEK13b	99	106	6.7	43.1
DEK13b	112	115	2.15	2.11
DEK14	112	121	9	24.88
DEK14	122	123	1	1.55
DEK15	72	73	0.4	0.44
DEK15	80	85	5	26.99
DEK15	86	96	10.45	63.28
DEK16	123	129	5.15	7.21
DEK16	131	136	4.7	3.39
DEK17	84	85	1	1.56
DEK17	105	106	1	1
DEK17	109	115	5.85	11.85
DEK17	116	117	1	0.54
DEK18	121	122	1	0.64
DEK18	124	125	0.78	1.05
DEK19	99	104	5	6.63
DEK19	105	106	1	1.32
DEK19	112	113	1	4.04
DEK19	114	121	6.8	30.06
DEK19	124	125	1	18.2
DEK2	80	89	8.3	77.38
DEK2	91	93	2	6.01
DEK20	88	92	4	7.65
DEK21	210	216	6	8.82
DEK22	127	129	2	1.52
DEK23	232	239	6.55	5.38
DEK24	219	220	1	0.52
DEK25	86	87	1	0.98
DEK25	90	103	13.3	152.14
DEK25	106	108	2	22.69
DEK25	111	117	6	8.09
DEK25	121	124	3.4	31.98
DEK26	115	116	1	1.83

DEK26 132 139 7 5 DEK26 141 145 4.05 2 DEK27 180 181 1.3 1 DEK28 196 198 2 1 DEK28 204 208 4 2 DEK29 87 93 6 2 DEK29 101 102 1 1 DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 1	36.9 9.72 2.85 1.35 1.9 4.66 5.54 5.54 5.26 6.4 6.4 6.89 7.08 6.4 5.88
DEK26 141 145 4.05 2 DEK27 180 181 1.3 1 DEK28 196 198 2 1 DEK28 204 208 4 2 DEK29 87 93 6 2 DEK29 101 102 1 1 DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 7	2.85 1.35 1.9 4.66 5.54 6.26 6.4 6.32 6.89 7.08 6.4
DEK27 180 181 1.3 1 DEK28 196 198 2 1 DEK28 204 208 4 2 DEK29 87 93 6 2 DEK29 94 98 4 6 DEK29 101 102 1 6 DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 7	1.35 1.9 4.66 5.54 6.26 6.4 6.32 6.89 7.08 6.4
DEK28 196 198 2 DEK28 204 208 4 2 DEK29 87 93 6 2 DEK29 94 98 4 6 DEK29 101 102 1 6 DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 7	1.9 4.66 5.54 6.26 6.4 6.32 6.89 7.08 6.4
DEK28 204 208 4 2 DEK29 87 93 6 2 DEK29 94 98 4 6 DEK29 101 102 1 6 DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 7	4.66 5.54 5.26 6.4 5.32 6.89 7.08 6.4
DEK29 87 93 6 2 DEK29 94 98 4 6 DEK29 101 102 1 6 DEK29 101 102 1 6 DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 7	5.54 5.26 6.4 5.32 6.89 7.08 6.4
DEK29 94 98 4 6 DEK29 101 102 1 6 DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 7	 6.26 6.4 6.32 6.89 7.08 6.4
DEK29 101 102 1 DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 1	6.4 5.32 6.89 7.08 6.4
DEK29 171 176 4.4 6 DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 7	5.32 6.89 7.08 6.4
DEK29 187 189 2 1 DEK29 191 198 7 7 DEK29 201 202 1 7	6.89 7.08 6.4
DEK29 191 198 7 7 DEK29 201 202 1 7	7.08 6.4
DEK29 201 202 1	6.4
DEK3 89 92 3 5	5.88
DEK3 94 106 12 5	2.36
DEK3 107 109 2 1	1.74
DEK3 114 115 1 C	0.56
DEK30 137 143 6 1.	4.86
DEK30 148 151 2.7 1	1.35
DEK30 153 154 1 0	0.77
DEK30 154 160 6 1	7.14
DEK31 202 204 2 3	3.29
DEK32 196 198 2 3	3.02
DEK32 201 212 10.5 1	19.9
DEK33 152 157 4.75 5	53.9
DEK33 158 167 9 2	5.48
DEK34 178 178 0.35 1	1.06
DEK34 188 189 0.55 4	4.42
DEK35 99 100 1 5	5.78
DEK35 108 109 1 3	3.26
DEK35 113 116 3 1:	5.89
DEK35 120 121 1.5 (0.91
DEK36b 107 109 2	2.1
DEK36b 119 121 2	4.8
DEK37 102 105 3	3.2
DEK37 109 118 8.55 S	98.4
DEK37 121 123 1.8 5	5.42
DEK40 122 126 4 7	7.69

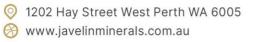


DEK40	128	134	6	6.59
DEK40	136	137	1	1.12
DEK40	142	142	0.4	1.24
DEK41	147	152	5	16.83
DEK41	153	156	3.25	2.23
DEK41	157	158	1	3.14
DEK42	160	165	4.55	39.99
DEK42	170	172	2.05	9.4
DEK43	141	146	4.7	15.62
DEK43	150	153	2.8	4.27
DEK43	154	157	3	2.98
DEK45	104	108	3.8	5.59

DEK45	109	111	2.1	5.57
DEK45	125	128	3	6.26
DEK45	137	139	2	3.62
DEK5	80	84	4	3.11
DEK5	88	99	11	20.13
DEK5	101	103	2	1.57
DEK6	111	118	7.45	18.97
DEK6	130	131	1	1.78
DEK7	91	92	1	1.23
DEK7	109	110	1	0.52
DEK9	75	76	1	2.63
DEK9	80	82	2	3.3

Drilling Collar Table

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi	ERC26	332455	6643640	365	78	-90	0
ERC01	332573	6643784	400.3	150	-77	270	ERC27	332556	6643596	343.2	120	-90	0
ERC02	332600	6643773	397.2	148	-72	280.5	ERC28	332539	6643568	344.1	120	-90	0
ERC04	332557	6643769	388.7	132	-65	264	ERC29	332572	6643495	428.2	174	-65	273.5
ERC05	332596	6643746	392.5	166	-50	266	ERC30	332570	6643495	428.4	151	-50	273.5
ERC06	332534	6643695	329.6	100	-87	270	ERC31	332564	6643484	428.5	162	-50	267.5
ERC07	332562	6643626	344.8	97	-60	285	ERC32	332563	6643484	428.6	168	-65	267.5
ERC08	332598	6643746	392.5	192	-75	266	ERC33	332555	6643475	428.7	150	-50	270
ERC10	332553	6643604	343.3	82	-70	268	ERC34	332556	6643475	428.7	156	-65	270
ERC11	332551	6643596	344.6	79	-73	270	ERC35	332526	6643558	351.5	102	-90	0
ERC12	332550	6643587	346	70	-68	270	ERC36	332571	6643788	400.4	156	-60	271
ERC15	332507	6643551	353.1	60	-67	255	ERC37	332553	6643801	403	103	-75	293
ERC16	332523	6643547	369.25	70	-67	270	ERC38	332506	6643922	433.63	115	-60	269
ERC17	332562	6643624	345.2	94	-55	277	ERC39	332385	6644449	429.91	97	-60	270
ERC18	332534	6643717	330.3	80	-90	0	ERC39a	332406	6644448	429.62	76	-60	270
ERC19	332580	6643926	433.1	150	-60	271	ERC40	332425	6644447	430.09	109	-60	270
ERC20	332592	6643875	432.98	174	-60	272	ERC41	332360	6644360	429.16	78	-60	270
ERC21	332628	6643824	431.12	186	-60	274	ERC42	332380	6644359	429.71	101	-60	270
ERC22	332520	6643480	429.2	174	-90	0	ERC43	332401	6644359	429.69	139	-60	270
ERC23	332467	6643581	360.5	78	-90	0	ERC44	332443	6643983	430.2	115	-60	235
ERC24	332457	6643621	364.4	78	-90	0	ERC45	332421	6644002	429.61	79	-60	235
ERC25	332457	6643630	363.8	78	-90	0	ERC46	332375	6644450	429.57	54	-60	270



ERC47	332394	6644449	429.83	66	-60	270	WRRC0005	332496	6643428	429.28	120	-55	276
ERC48	332386	6644439	429.41	60	-60	270	WRRC0006	332442	6643398	425.45	80	-55	272
ERC49	332384	6644459	430.58	60	-60	270	WRRC0007	332480	6643399	428.48	100	-55	272
ERC50	332346	6644358	429.22	90	-60	270	WRRC0008	332700	6643806	426.43	340	-63	257
ERC51	332376	6644479	429.96	90	-60	270	WRRC0009	332531	6643884	430.58	120	-60	273
ERC52	332374	6644529	430.44	52	-60	270	WRRC0010	332657	6643859	427.86	230	-61	271
ERC53	332330	6644451	428.89	114	-60	90	WRRC0011	332684	6643695	429.32	330	-56	250
ERC54	332385	6644444	429.52	66	-60	270	WRRC0013	332554	6643348	444.29	272	-60	272
ERC55	332380	6644450	430.46	66	-60	270	WRRC0014	332867	6642690	421.39	200	-57	274
ERC56	332390	6644449	429.64	66	-60	270	WRRC0015	332848	6642604	419.31	200	-57	272
ERC57	332385	6644455	430.45	66	-60	270	WRRC0017	332376	6644448	426.09	75	-60	268
ERC58	332392	6644528	430.09	65	-60	270	WRRC0018	332391	6644470	426.48	90	-57	273
ERC59	332412	6644528	431.09	83	-60	270	WRRC0019	332412	6644473	426.65	120	-57	272
ERC60	332376	6644631	431.49	51	-60	270	WRRC0021	332337	6644400	425.2	120	-57	272
ERC61	332535	6643695	327	96	-75	233	WRRC0022	332373	6644399	425.44	120	-57	266
ERC62	332541	6643683	329.6	102	-75	230	WRRC0023	332399	6644399	425.94	150	-57	269
ERC63	332540	6643684	329.2	93	-72	212	WRRC0024	332400	6644436	426.16	141	-51	275
ERC65	332602	6643561	400	140	-60	270	WRRC0025	332411	6643849	431.78	30	-60	270
ERC66	332569	6643786	400	130	-60	270	WRRC0026	332431	6643844	435.06	55	-60	270
ERC67	332566	6643787	400	130	-50	286	WRRC0026	332431	6643844	435.06	55	-60	270
ERC68	332569	6643786	400	130	-50	250	WRRC0027	332454	6643850	434.44	65	-60	270
ERC69	332569	6643786	401	130	-50	292	WRRC0028	332477	6643851	433.32	80	-60	270
ERC70	332569	6643779	384	40	-70	270	WRRC0029	332495	6643847	432.28	90	-60	270
ERC71	332529	6643778	385	50	-60	275	WRRC0030	332518	6643846	431.23	90	-60	245
ERC72	332539	6643777	386	80	-60	275	WRRC0031	332427	6643862	434.1	30	-60	272
ERC73	332553	6643769	388	100	-60	275	WRRC0031	332427	6643862	434.1	30	-60	272
ERC74	332552	6643769	388	130	-65	270	WRRC0032	332444	6643861	435.14	55	-60	270
ERC75	332570	6643788	400	55	-75	251	WRRC0033	332466	6643860	434.18	65	-60	270
ERC76	332344	6644340	429.58	100	-60	270	WRRC0034	332487	6643859	433.09	90	-60	270
ERC77	332360	6644340	429.27	100	-60	270	WRRC0035	332509	6643861	431.96	100	-60	273
ERC78	332380	6644337	429.85	100	-60	270	WRRC0036	332530	6643859	430.82	110	-60	270
ERC79	332403	6644341	430.14	100	-60	270	WRRC0037	332550	6643857	429.94	120	-61	271
WRRC0001	332521	6643448	429.45	151	-60	277	WRRC0038	332600	6643853	429.17	160	-61	273
WRRC0002	332478	6643455	428.51	100	-55	273	WRRC0039	332341	6644329	425.95	80	-57	270
WRRC0003	332530	6643452	429.91	160	-75	275	WRRC0040	332368	6644328	426.14	100	-57	273
WRRC0004	332461	6643430	428.22	100	-55	275	WRRC0041	332341	6644378	425.13	90	-60	270

WRRC0042	332374	6644375	425.61	120	-60	273	WRRC0083	332559	6643576	350.97	140	-55	200
WRRC0043	332266	6644550	425.61	100	-57	273	WRRC0085	332481	6643226	422.89	154	-55	270
WRRC0044	332317	6644550	426.23	100	-60	270	WRRC0086	332672	6643002	421.53	200	-55	270
WRRC0045	332341	6644520	426.34	100	-57	270	WRRC0087	332361	6644638	427.68	46	-55	271
WRRC0046	332395	6644501	426.87	100	-60	270	WRRC0088	332469	6643891	433.52	75	-60	266
WRRC0047	332446	6644508	427.58	150	-57	270	WRRC0089	332507	6643894	431.36	85	-60	269
WRRC0048	332486	6643923	431.25	75	-55	270	WRRC0090	332515	6643926	429.94	80	-60	269
WRRC0049	332444	6643984	427.03	80	-60	270	WRRC0091	332573	6643930	429.63	120	-60	270
WRRC0051	332673	6643739	429.26	295	-67	274	WRRC0092	332555	6643399	439.85	180	-60	274
WRRC0051	332673	6643739	429.26	295	-67	274	WRRC0093	332518	6643396	435.59	140	-61	273
WRRC0052	332599	6643953	429.88	200	-61	269	WRRC0094	332551	6643429	436.69	170	-59	266
WRRC0053	332685	6643695	429.31	330	-66	251	WRRC0095	332427	6644481	427.02	100	-61	272
WRRC0054	332552	6643476	428.02	200	-60	290	WRRC0096	332416	6644573	428.18	100	-56	270
WRRC0055	332528	6644499	428.3	150	-60	210	WRRC0097	332423	6644527	427.59	100	-55	273
WRRC0056	332518	6644418	427.21	150	-60	210	WRRC0098	332428	6644501	427.28	100	-61	267
WRRC0057	332278	6644531	425.53	150	-60	200	WRRC0099	332507	6643960	427.94	78	-61	276
WRRC0058	332283	6644588	426.11	150	-60	200	WRRC0100	332556	6643951	428.32	120	-59	271
WRRC0059	332647	6644120	431.08	130	-60	268	WRRC0101	332508	6643999	427.2	60	-59	273
WRRC0061	332993	6642500	417.57	150	-60	270	WRRC0102	332556	6644000	428.51	102	-61	271
WRRC0062	333244	6642543	417.25	178	-60	270	WRRC0103	332607	6644000	430.47	150	-62	270
WRRC0064	332551	6644302	429.64	250	-61	270	WRRC0104	332655	6644000	430.28	192	-60	270
WRRC0065	332426	6644135	427.89	150	-57	267	WRRC0105	332530	6644056	427.41	60	-60	270
WRRC0066	332620	6643431	445.49	214	-57	270	WRRC0106	332576	6644058	428.69	120	-58	271
WRRC0067	332682	6643485	446.41	290	-62	289	WRRC0107	332624	6644058	430.43	150	-60	275
WRRC0070	332437	6643875	434.44	30	-60	269	WRRC0108	332675	6644060	430.99	180	-60	275
WRRC0071	332454	6643877	434.59	30	-60	270	WRRC0109	332596	6644126	429.91	108	-60	275
WRRC0072	332469	6643876	433.76	80	-60	271	WRRC0110	332596	6644194	432.69	102	-60	272
WRRC0073	332494	6643872	432.6	80	-60	270	WRRC0111	332655	6644197	432.42	150	-60	273
WRRC0074	332507	6643872	431.94	90	-60	270	WRRC0112	332325	6644422	425.22	120	-55	273
WRRC0075	332550	6643878	430.02	110	-60	273	WRRC0113	332362	6644421	425.66	120	-55	271
WRRC0077	332350	6644265	427.06	150	-55	272	WRRC0114	332401	6644421	425.83	150	-55	272
WRRC0078	332419	6644265	429.29	150	-55	270	WRRC0115	332466	6644479	427.34	150	-53	272
WRRC0079	332637	6643803	427.95	192	-55	279	WRRC0116	332467	6644501	427.73	156	-55	271
WRRC0080	332660	6643804	427.2	250	-68	275	WRRC0117	332482	6644529	428.4	115	-54	271
WRRC0081	332520	6643476	429.35	190	-60	329	WRRC0118	332524	6644593	430.51	120	-54	272
WRRC0082	332550	6643475	428.27	170	-52	285	WRRC0119	332474	6644557	428.86	150	-53	270

WRRC0120	332455	6644430	426.68	150	-56	272	DEK2	332535	6643609	425.80	125.0	-60	0
WRRC0121	332512	6643469	429.01	120	-54	272	DEK20	332552	6643528	425.30	96.7	-60	0
WRRC0122	332548	6643471	428.27	150	-60	270	DEK20	332680	6643603	430.00	239.7	-60	0
WRRC0123	332554	6643471	428.08	174	-75	271	DEK21	332610	6643776	427.00	150.0	-60	0
WRRC0124	332164	6644624	424.51	102	-55	270	DEK22 DEK23				246.7	-60	0
WRRC0125	332075	6644471	423.22	60	-55	271		332639	6643685	430.00	229.0	-60	0
WRRC0126	332115	6644471	423.6	60	-56	268	DEK24	332675	6643581	430.00		-60	0
WRRC0127	332584	6644028	429.35	148	52	268	DEK25 DEK26	332552 332583	6643719 6643727	428.00 427.00	129.8 150.0	-60	0
WRRC0128	332620	6644058	430.22	190	-56	271	DEK20	332628	6643725	427.00	233.3	-60	0
WRRC0129	332587	6644079	429.07	130	-56	274	DEK27	332664	6643774	431.20	220.4	-60	0
WRRC0130	332485	6644487	427.79	160	-55	270	DEK20	332674	6643803	429.90	209.1	-60	0
WRRC0131	332527	6644501	428.33	196	-51	271	DEK23	332551	6643609	425.70	117.8	-60	0
WRRC0132	332517	6644529	428.84	178	-54	272	DEK30	332598	6643597	430.00	165.2	-60	0
WRRC0133	332500	6644558	429.43	148	-56	272	DEK31	332654	6643594	430.00	210.1	-60	0
WRRC0134	332442	6644466	426.94	118	-55	270	DEK32	332631	6643696	430.00	216.8	-60	0
WRRC0135	332473	6644441	426.92	148	-57	268	DEK33	332643	6643785	431.05	175.0	-60	0
WRRC0136	332500	6644464	427.58	178	-57	268	DEK34	332667	6643824	430.40	193.7	-60	0
DEK01	332592	6643527	426.00	169.5	-60	0	DEK35	332571	6643738	429.00	153.0	-60	0
DEK02	332535	6643609	425.80	125.0	-60	0	DEK36	332611	6643736	430.00	90.0	-60	0
DEK03	332551	6643609	425.70	117.8	-60	0	DEK36b	332609	6643806	431.29	209.0	-60	0
DEK04	332578	6643607	425.50	136.1	-60	0	DEK37	332559	6643698	427.00	128.0	-60	0
DEK05	332541	6643629	425.93	105.0	-60	0	DEK38	332531	6643740	430.00	129.0	-60	0
DEK06	332576	6643628	425.68	132.7	-60	0	DEK39	332590	6643597	430.00	126.0	-60	0
DEK07	332553	6643649	426.10	110.0	-60	0	DEK4	332578	6643607	425.50	136.1	-60	0
DEK08	332580	6643647	425.85	130.1	-60	0	DEK40	332585	6643597	430.00	173.2	-60	0
DEK09	332537	6643669	426.45	85.0	-60	0	DEK41	332611	6643746	428.50	203.7	-60	0
DEK1	332592	6643527	426.00	169.5	-60	0	DEK42	332594	6643697	430.00	175.0	-60	0
DEK10	332598	6643667	425.93	134.0	-60	0	DEK43	332589	6643707	428.00	169.0	-60	0
DEK11	332535	6643689	426.90	102.8	-60	0	DEK44	332637	6643600	426.00	200.0	-60	0
DEK12	332555	6643688	426.80	133.2	-60	0	DEK45	332567	6643658	426.00	138.5	-60	0
DEK13b	332549	6643589	425.00	115.7	-60	0	DEK5	332541	6643629	425.93	105.0	-60	0
DEK14	332569	6643588	425.00	130.5	-60	0	DEK6	332576	6643628	425.68	132.7	-60	0
DEK15	332524	6643710	428.00	97.3	-60	0	DEK7	332553	6643649	426.10	110.0	-60	0
DEK16	332576	6643708	428.00	136.1	-60	0	DEK8	332580	6643647	425.85	130.1	-60	0
DEK17	332549	6643577	425.50	122.6	-60	0	DEK9	332537	6643669	426.45	85.0	-60	0
DEK18	332567	6643577	425.35	131.3	-60	0	19ERC12	332528	6643651	333.86	38	-60	270
DEK19	332552	6643548	425.40	126.8	-60	0							

JORC CODE, 2012 EDITION - TABLE 1 REPORT

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	Historic drilling by various companies included reverse circulation (RC) drill samples which were collected and split in even metre intervals when sample was dry. Wet samples were speared or on occasion scoop sampled. RC drill chips from each metre were examined visually and logged by the geologist. Duplicate samples were collected at 1 m intervals by scoop sampling reject bags. Based on the historical drilling reviewed from Javelin through WAMEX files, drilling commenced from 1982, which included Vacuum, Augur, open hole percussion/ RAB, RC and diamond core drilling (mostly NQ, also PQ and HQ). Sampling methods included chip samples collected and split in even 1 metre or 4 metre composite intervals for dry samples. Wet samples were speared or on occasion scoop sampled. Diamond core was half core sampled at selected intervals where the geologist recorded Samples are collected from rig mounted cyclone cone splitter at 1 m intervals. Duplicate samples are collected from reject bags every 10m (by spear sampling). Calico samples are weighed to ensure minimum size of 2.5kg are collected. Current QAQC protocols include the analysis of field duplicates and the insertion of appropriate commercial standards (I, e., certified reference material (CRM). Sample protocols where they are described from historical reports sourced from WAMEX followed by historic operators are in line with industry standards at the time. RC drilling was used to obtain 1 m samples from which a 1 m samples (mineralisation zones) or 2m and 4m composite samples (waste zones) of approximately 2.5 to 5kg was also collected.
Drilling techniques	Drill type (e.g., core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	For the 2020-2021 drilling the RC rig specs are as follows: Schramm T450 RC rig - 5 ½ inch diameter face sampling hammer LC36 KWL700 RC rig (for deep holes) – 5 inch face sampling hammer X350 RC rig - 4 ½ inch diameter face sampling hammer; drilling since May 2021) Historically, the project has been drilled using rotary air blast (RAB), percussion (Perc), reverse circulation (RC) and diamond core drilling (DD) over numerous campaigns by several companies. The majority of holes are on a grid either infilling within or surrounding historical pit and underground (UG) workings or extending along strike into geochemical or geophysical (areo-mag) anomalies. The recent programs drilled in 2020 and 2021 have all been RC drilling. The majority of drill holes 270° MGA grid.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	RC sample recovery is visually assessed and recorded in drill logs. RC drilling programs showed good recoveries. From WAMEX records, descriptions noted that the majority of DD drilling had good recoveries >90%, although several holes recorded recoveries of ~50% or lower within highly fractured quartz vein intervals, and also where there was intersection of historical UG workings. RC samples were visually checked for recovery, moisture, and contamination. A cyclone and splitter were used to provide a uniform sample and these were routinely cleaned. Wet samples and logged barren zone, 4 m composites were speared to obtain the most representative sample possible. Sample recoveries are mostly high with only a very small number of wet samples recorded by geologists. No significant sample loss has been recorded with a corresponding increase in Au present. No

Criteria	JORC Code explanation	Commentary
		sample bias is anticipated, and no preferential loss/gain of grade material has been noted
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	RC chips are geologically logged at 1 metre intervals. RC chip trays have been stored for future reference. Detailed logging exists for more recent drilled prior to WRD holes (18EKDD, and 19ERC prefix holes, but most of the historical RC and DD holes drilled do not have the logging digitally recorded in WRD database files provided, although the WAMEX files do contain PDF copies of RC and DD geology logs WRD RC chip logging included the recording of colour, lithology, regolith, oxidation state, colour, alteration, mineralisation, and veining/quartz content. The entire length of each hole was logged. Previous RC and DD drilling completed by previous owners contained similar detailed geological descriptions in PDF logs. Remaining core was examined from the 18EKDD drilling program at the Eureka project field office. The core remaining is in good condition but has been poorly labelled, with intervals and hole identification often indistinguishable as no aluminium tags or more permanent markers were used on core blocks or to label the core trays. Percentage of drilling logged that was used in the 2021 MRE are record as follows: 2020-21 RC drilling–WRRCholes=96% logged, abandoned holes not
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	logged records in WRD DB 19ERC prefix–RC drilling 93% logged records in WRD DB 18EKDD – RC/DD drilling 88% logged records in WRD DB ERC holes – RC drilling – 4% logged records in WRD DB DEK, WEK – RC/DD drilling – 8% logged records in WRD DB Previous companies have conducted diamond drilling; WAMEX records have noted that ½ core sampling was mostly conducted, generally in highly selective intervals based RC chips were collected from rig mounted cyclone cone splitter as 1m samples. 2 and 4m composites using a sample scoop were taken from the 1m RC plastic sample bags. Samples were generally dry. 1m RC samples are also speared.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	At the commercial laboratory, RC samples are dried at minimum 60° C. If the sample weight is greater than 3 kg, the sample is riffle split. It is then pulverised to a grind size where 85% of the sample passes 75 micron. Field QAQC procedures included the insertion of CRMs and field duplicates for RC drilling after every 10 samples. CRMs represented approximately 5% of total samples. Field duplicates were collected during the RC drilling programs in 2020-21. Duplicate samples are submitted at a rate of one duplicate submitted for every 10 samples. Duplicates samples represent approximately 5% of total samples. Based on statistical analysis of the field duplicate results, there is no evidence to suggest the samples are not representative. A sample size of between 2.5 and 5 kg was collected. This size is considered appropriate, and representative of the material being sampled given the width and continuity of the intersections, and the grain size of the material being collected.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	Both single 1 metre samples and 2 m or 4 m composite samples have been analysed using a 30g fire assay technique with an AAS finish. No geophysical tools etc. have been used at Eureka. Field QAQC procedures include the insertion of both field duplicates and CRMs. No blanks were inserted by TIN. Assay results to date have been satisfactory and demonstrate an acceptable level of accuracy and precision. Laboratory QAQC involves the use of internal certified reference standards, blanks, splits, and replicates. Analysis of these results to date show an acceptable level of precision and accuracy.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	All significant intersections were assessed by Javelin Minerals through current access and historical databases. Version 2024 Micoomine has been used to delineate gold grades above 0.5 g/t Au level from the Javelin geologist as part of the over verification of assay results comparing to the historically significant intersections previously reported. No specific twinned holes have been drilled to date. Recent drilling from 2018 to the current programs have some infill holes in close proximity to historical drilling, and mostly confirm the presence of Au mineralisation, and also intersect significant mineralisation where historical hole intervals that were not sampled. Field data and logging is collected and entered using Toughbook field computers. The data is sent via a SharePoint site, to a contract database administrator for validation and compilation into an MS Access database. No adjustments have been made to assay data apart from values below the detection limit which are assigned a value of negative the detection limit for the 2021 MRE work.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	All recently drilled hole collars have been surveyed by hand- held GPS (Garmin 64 GPS) to an accuracy of about 3m. The drill holes are then picked up using a DGPS by Cardno Spectrum Survey, Kalgoorlie at the completion of each drill program. Downhole surveying is conducted by the drilling contractor, using EZ-Shot single shot downhole camera at 30 m intervals at the completion of each hole The grid system is MGA_GDA94 Zone 51. Topographic datum is AHD71(Australian Height Datum 1971). The topographic surfaces include a very high resolution DTM surface (LiDAR survey) was initially used for hole collar location verification.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Historical exploration and drilling at Eureka targeted discrete areas based on surface geochemical and geophysical anomalies, historical workings that identified the location of host mineralisation. Consequently, current drilling is not grid based, but across the historical open pit and UG workings the drill spacing is nominally 10m N x 10m E. Extensions to the north and south have been nominally drilled at 20m N x 20m/10m spaced drilling. The mineralised domains have sufficient continuity in both, and classification applied under the 2012 JORC Code

Criteria	JORC Code explanation	Commentary
		Four metre composite samples were collected from RC drill holes within the logged barren intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drill hole collars are set-out on the MGA grid and drill lines were generally at E- W direction Drilling sections are orientated perpendicular to the strike of the overall shear orientation and mineralised host rocks. Several shallow dipping vein structures are noted in the southern pit wall, but overall, the mineralised vein structures appear parallel to sub-parallel with the shear orientation from north to south.
Sample security	The measures taken to ensure sample security.	All samples are selected, cut, and bagged in tied numbered calico bags, grouped in larger tied plastic bags, and placed in large sample cages with a sample submission sheet to
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data is validated by the contract database administrator whilst loading into the Javelin MS Access database.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and Land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Project acquisition comprises 4 mining licences M24/0584, M24/0585, M24/0586 and M24/0189 and 3 prospecting licence P24/5116, P24/5549 and P24/5548. The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Discovery and initial UG workings commenced 1897. UG mining up to 1941 produced 797 oz Au from 809 tonnes at 27g/t Au. More recently, the tenement area has been previously explored by numerous companies including: CSR (1982-83) – included 4.4km of RC drilling West Coast Holdings (WCH) (1984-87) – Surface geochemistry (including Augur drilling), aero-mag surveys, vacuum drilling, Percussion, DC and DD drilling; surface mapping and gridding; evaluation and mining of oxide resources Open Pit) and evaluation of UG resources – open pit mining produced 45,865 tonnes at 4.64g/t Au, for 6,842 oz Au (WCH, 1986).

Criteria	JORC Code explanation	Commentary
		Glengarry Mining NL (1994) – Aeromag Interpretation, RAB Drilling
		Jasper Mining NL (+ JV partners) (1996-2004) – UG mine refurbishment & trial mining from November 1998 to June 1999 – approx. 400t @ 6g/t Au from 80m Level (JMM, 2000); Project management plan (1998-99)
		Sherlock Bay Nickel Corp (SBNC) (2004-2006) – Ground Mag survey; gridding; surface mapping; RC drilling (ERC)
		International Gold P/L (2007-2010) – Mag-radiometric survey, Augur drilling; UG design study (41,000 t @ 10.1 g/t, 13.3k Oz Au)
		Central Iron Ore Ltd (2011-14) – Resource evaluation (451,000y @ 4.4g/t, 64,200 oz Au); Geophysical data review.
Geology	Deposit type, geological setting, and style of mineralisation.	The Eureka gold deposit occurs on the eastern limb of the major south-east plunging Goongarrie-Mt. Pleasant Anticline. The eastern limb consists predominantly of north- north-west trending mafic and ultramafic lithologies, with minor thin mainly interflow sediments, bounded to the west by pre-to syntectonic granitoid forming the core of the regional anticline.
		To the east, the Bardoc-Broad Arrow Synform occurring between the major Goongarrie- Mt. Pleasant and Scotia-Kanowma Anticlines is subject to significant disruption by the broad Bardoc Tectonic Zone.
		This zone consists of multiple shear zones occurring within intercalated felsic, mafic and ultramafic lithologies in the vicinity of the synformal axis. The Bardoc Tectonic Zone is host to the Paddington and Bardoc gold deposits.
		Local Geology and Mineralisation
		The Eureka deposit is located within a sequence of mafic and ultramafic rocks forming part of the Kalgoorlie – Menzies greenstone belt. The layered sequence is approximatley 6 km wide with a northerly trend. The sequence is intruded by east-west trending Proterozoic mafic dykes and is bunded to the east and west by complex granitic plutons.
		In the vicinity of the Eureka Mine the sequence has a generally easterly dip of 65° to 70°, parallel by the regional foliation. Regional metamorphism of the sequence is lower greenschist facies.
		Two distinct shale units are present, the western or footwall unit being the Copper Mine Shale which marks the top of the sill and the hanging wall unit, an interflow unit amongst the basalt.
		Weathering profile is extensive with the deepest weathering along the main shear zones and contacts causing a weathering trough of highly oxidised rock that extends down the main shear to the bottom of the pit exposures. Both the north end and south end exposures of the pit show massive and blocky clay altered rock masses bounded by narrow, highly sheared zones, commonly containing limonitic quartz veining. The quartz vein hosted shears run parallel or sub-parallel to the main N-S shear trend, and less commonly cross cutting, shallow dipping quartz veins.

Criteria	JORC Code explanation	Commentary
		High grade gold mineralisation at Eureka is associated with veining within the altered lower mafics. The vein system typically consists of quartz, carbonate and sulphide and has a variable thickness of up to 20m. The mineralisation exploited in the open pit consists of a number of lens shaped shoots up to 10m wide within an intensely sheared zone some 30m wide.
Drill hole	A summary of all information	All relevant drill hole details were presented in ASX release in Appendix 1
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported assays have been length weighted if appropriate. No top cuts have been applied. A nominal 0.5g/t Au lower cut off has been applied, with only intersections >0.5g/t considered significant. High grade Au intervals lying within broader zones of Au mineralisation are reported as included intervals. In calculating the zones of mineralisation, a maximum of 2 metres of internal dilution is allowed. Metal equivalent values have not been used. Only gold grade is reported.

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	The mineralised zones vary in strike between the Main and North prospects. Gold mineralisation is steeply dipping in the Main zone but more shallow drilling in the North prospect. Drill hole orientation reflects the change in strike of the rocks. Reported down hole intersections are believed to approximate true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figure 3 and Table 1 have been presented within the announcement outlining locations of priority untested exploraiontargets.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The results have been sourced from the historical reports and have been substantially documented.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock	Available open file company airborne geophysical surveys was conducted using the Western Australia Department of Mines, Industry, Regulation and Safety (DMIRS) online systems which provides records of previous geophysical surveys and exploration activities. The search revealed that the project area has been subject to a number of high resolution airborne geophysical surveys. An initial data search over the project area revealed that high resolution "multi- client" aeromagnetic data was available for purchase. This was purchased from Geoimage and delivered directly to CORE. The data was originally flown for Goldfields Exploration in 1995 by Kevron Geophysics. The survey lines were flown at 075-255° with 40m line spacings and a 40m flying height. The data acquired included magnetics, radiometrics and digital terrain

Criteria	JORC Code explanation	Commentary
	characteristics; potential deleterious or contaminating substances.	(DTM). A listing of the survey specifications are delivered with this memo along with the data purchased from Geoimage.Magnetic and Radiometric and DTM Data The aeromagnetic data was processing was to highlight and better define controlling structures, lithological variations and subtle magnetic responses. All magnetic data was reduced to the pole (with the exception of the analytic signal) and are explained further below;
		<u>1VD</u> The first vertical derivative (1VD) is theoretically the rate of change of the magnetic field with increasing height. In practice it has two desirable effects. Firstly, it tends to sharpen and separate magnetic anomalies. Secondly it makes the mean background level of the data equal to zero. The horizontal derivatives were also calculated for the principal orthogonal directions (X+Y). These look at the major signal components in the X (East-West) and Y (North-South) directions and may assist in the better definition of lithological units and structures oriented in these directions.
		<u>2VD</u> The second vertical derivative (2VD) essentially applies the first vertical derivative on the data twice and is the rate of change of the rate of change of the magnetic field with increasing height. It sharpens and separates anomalies even further and is also symmetric about zero.
		AGC Automatic gain control (AGC) was performed on the vertical derivatives in order to enhance magnetic features within the dataset. It is s a process whereby all magnetic anomalies or features within a dataset are reduced/increased to similar amplitudes. This is very useful for extracting fine detail from datasets that are otherwise dominated by one or two high amplitude features, as is sometimes the case where magnetite bodies are present.
		<u>AS</u> Analytic Signal (AS) is the square root of the sum of the square of the derivatives in the three principal component directions i.e. X, Y, Z. The filter essentially converts all magnetic responses to positive features and places the magnetic anomaly directly above the source. This can also be an effective filter where there is remanent magnetisation and it also enhances near surface responses. The downside of this filter is that dip information cannot be readily interpreted from the data.
		TDR Tilt Derivative (TDR) normalises data ranges, enhances subtle features and is the result of the difference between the total horizontal derivatives (X,Y) and the vertical derivative (Z). It is a good edge detection filter, but features may not be positioned directly above the source.
		RTP Reduction to the Pole (RTP) takes into account the magnetisation due to the earth's field and corrects for this. The result is that the magnetic anomaly is shifted so that it is over the source giving rise to the response. However, the RTP correction is mathematically unstable at low latitudes and results in a smearing or lengthening of north south trending magnetic anomalies.
		Significant processing of the magnetic data has yielded three sets of products. The first set of grids is commonly used in geophysics to enhance structures and features. The second

Criteria	JORC Code explanation	Commentary
		set of grids are advanced combinations of the first set. The third set combines the standard and advanced products using advanced raster image display techniques All products are derived from the Total Magnetic Intensity (TMI) grid.
		Standard 1 st Set (grids maps and images):
		1VD = First Vertical Derivative
		2VD = Second Vertical Derivative
		1XD = First Derivative in the X (90 degrees, +X) direction
		1YD = First Derivative in the Y (0 degrees, +Y) direction
		RTP = Reduction To the Pole (inclination: -64.2, declination 1.1)
		TDR = Tilt Derivative
		AS = Analytic Signal
		AGC = Analytic Gain Control
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).Diagrams clearly highlighting the areas of possible extensions, including the 	Planned further work includes additional drilling to test magnetic anomalies and geochemical trends at depth.

