

Building the pre-eminent vertically integrated Lithium business in Ontario, Canada

SUBSTANTIAL RESOURCE INCREASE AT ROOT BOLSTERS GT1'S GLOBAL INVENTORY TO 30MT

HIGHLIGHTS

- At GT1's largest lithium project, the Root Lithium Project Resource, has been increased 38% based on recent drilling, reaching a combined MRE of 20.1Mt at 1.24% Li₂0
- Added to existing Mineral Resources at GT1's Seymour Project, the Root upgrade lifts the Company's total Lithium Mineral Resource inventory in Ontario to 30.4Mt @ 1.17% Li₂0
- The Root Lithium Project serves as the cornerstone of GT1's Ontario strategy, providing long-term feed for the proposed lithium conversion facility in Thunder Bay
- Root is still open downdip and along strike, providing potential for further increases in Mineral Resources when drilling continues
- The Company will utilise these updated figures to develop a standalone PEA for the Root project, expected to be released in the coming weeks

Green Technology Metals Limited ("**GT1**" or "**the Company**"), a Canadian-focused multi-asset lithium business, is pleased to announce an updated Mineral Resource Estimate (**MRE**) for its 100% owned Root Project, located 200km west of the Seymour Project in Ontario, Canada.

"We are impressed with the significant increase in the Mineral Resource Estimate (MRE) at the Root Bay deposit from 10.3 to 15.6Mt, and particularly with the higher confidence Indicated category and increase in grade. As our largest project by tonnage, Root is positioned to provide long-term feed for the Company's lithium concentrator and underpins further years of feed for our planned hydroxide conversion facility in Thunder Bay. The resource growth reinforces our confidence of the area for future additions and highlights the successful interpretation by our Geology team and drilling campaigns.

While our Geological field teams continue to explore additional targets for resource expansion, our immediate priority remains bringing Seymour through the final stages of permitting and being set for FID.

Root, meanwhile, will be the nearby foundation of our long-term feed strategy. Work at Root will shift to advancing the permitting and consultation process, alongside the planned standalone PEA, to keep the Root project on track for targeted production in 2030."

GT1 Managing Director, Cameron Henry

Project	Tonnes (Mt)	Li ₂ 0(%)
Root Project		
Root Bay Open pit		
Indicated	5.8	1.28
Inferred	0.1	0.73
Root Bay Underground		
Indicated	4.2	1.37
Inferred	5.5	1.24
McCombe		
Inferred	4.5	1.01
Root Total	20.1	1.24
Seymour Project ¹		
North Aubry		
Indicated	6.1	1.25
Inferred	2.1	0.8
South Aubry		
Inferred	2.0	0.6
Seymour Total	10.3	1.07
Combined Total	30.4	1.17

ROOT RESOURCE ESTIMATE SUMMARY

The updated Mineral Resource Estimate (MRE) for GT1's Root Bay Lithium project now stands at 15.6 million tonnes at a grade of 1.29% Li₂O, consisting of 10.0Mt at 1.32% Li₂O in the Indicated category and 5.6Mt at 1.23% Li₂O in the Inferred category.

This update increases the total resource for the Root project, located within GT1's Western Hub, to 20.1 million tonnes at 1.24% Li₂0, including 4.5 million tonnes at 1.01% Li₂0 from the McCombe deposit.

The updated MRE from the Root Bay deposit includes additional results from 14 deep diamond holes drilled below the current open pit design. The deeps drilling commenced on 7 September 2024, comprising 14 holes for 9,130m and added to the existing Root Bay database that includes 174 holes for 41,373m, of which, 167 holes were used to inform the mineral resource estimate, and an additional two geotechnical holes. The drilling confirmed the continuity of the major pegmatites, Pegmatite 006 and 007, below the current pit designs and extends the previous block model a further 400 vertical metres below the previous MRE.

No further drilling was performed at the McCombe deposit that forms part of the overall Root project MRE, it remains as per the Preliminary Economic Assessment released in 2023.

20 stacked LCT pegmatites have now been identified and modelled at Root Bay along a 1,300m corridor. The pegmatites are hosted within an Archean package of meta-basalts. The meta-basalts are themselves sandwiched in a 300m wide corridor flanked in the south by meta-sediments and in the north by more meta-sediments hosting Banded Iron Formation and Black Shale units. The contacts between the meta-basalts and the meta-sedimentary units are thought to be steeply dipping, to sub-vertical orientations.

Most of the pegmatites strike north-northeast in the southern extents of the deposit and form an arcuate structure trending to the northeast along strike to the north. The deeper pegmatites, Pegmatites 006 and 007 reach an inflection point approximately 400m below surface where pegmatite 006 steepens from 30 degrees to 65 degrees, whilst Pegmatite 007 shallows from 55 degrees to 40 degrees. The pegmatites display significant downhole thicknesses up to 17.6m and grading 1.44% Li₂0. Both pegmatites narrow and display lower grade along strike to the north, but both are still open at depth downdip to the south. Providing further thick, high grade LCT pegmatite exploration upside in the future.

¹For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 21 November 2023, Seymour Resource Confidence Increased - Amended.

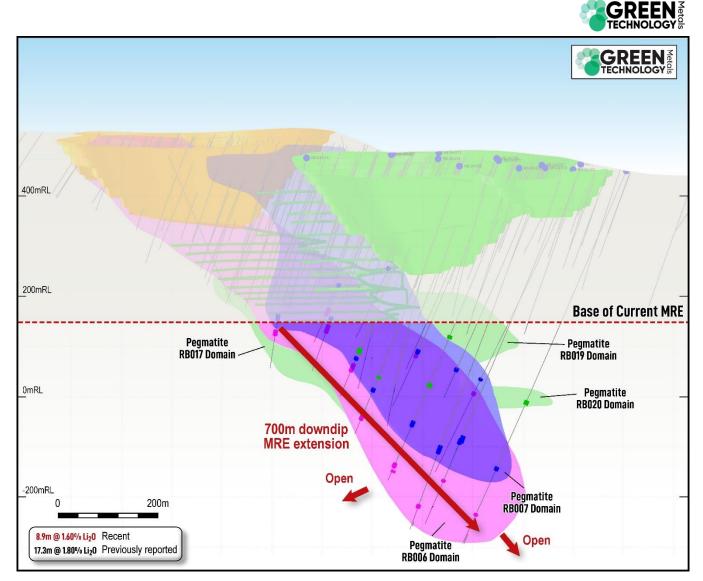


Figure 1. Oblique View looking North Westerly showing concept underground development prior to the Deeps drilling program and open pit designs with pegmatites RB006 and RB007 pink and blue respectively. Other significant pegmatites are coloured green. Only pegmatites and intercepts with underground mining potential are displayed for clarity.

For open pit-able mineralisation, the resources for the lithium pegmatites are wireframed above 0.2% Li_20 grade cutoff and within a US\$4000 pit shell at McCombe and a US\$2500 pit shell at Root Bay. For potential underground mineralisation at Root Bay, stopes were modelled with an average grade above 0.5% Li_20 cut-off.

Drilling at Root Bay focussed on extending and confirming the potential for additional mineralisation below the previous MRE, which assumed all material would be mined using conventional drill and blast, load and haul open pit mining techniques. The additional mineral resources identified were classified as inferred and assumed that this material would be mined using conventional underground mining techniques, steep long hole stopping and flat long hole room and pillar.

The price of spodumene concentrate has fluctuated significantly since the release of the previous MRE (11-Oct-2023). This has resulted in more conservative spodumene concentrate price assumptions being used compared to the previous MRE. As a result, the overall open pit component of the MRE has decreased despite limited drilling into this portion of the MRE but has been more than compensated for by the new underground component of the MRE defined by the additional deep drilling. Mining studies to support necessary modifying factors, waste characterisation, metallurgical recoveries, and geotechnical assessments will progress closer to the anticipated project start date.

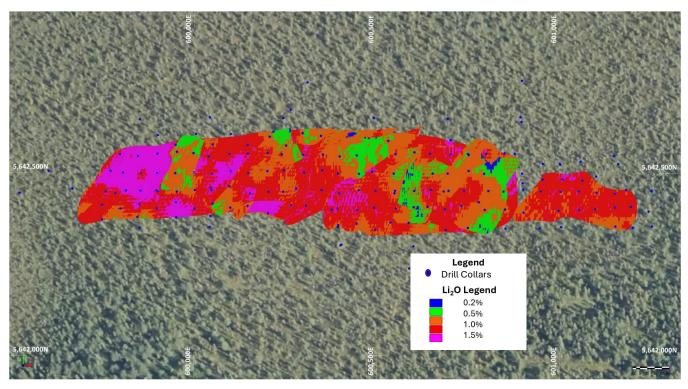


Figure 2: Root Bay plan view showing block model (multi colour), and collar locations (blue).

Further Resource Growth Potential

Diamond drilling by GT1 at the project has increased the MRE tonnes and lithium metal content at the Root Bay Deposit by 55% and extended the known mineralisation a further 400 vertical metres below the previous MRE limits. The most significant pegmatite, RB006 and RB007 make up most of the underground mineral resource and are still open to the south where the pegmatite is thickest and with the highest grade. Future drilling will target this area to potentially grow the MRE further, whilst infill drilling will aim to further improve the confidence of the already identified underground mineral resources from Inferred to Indicated category as the project develops. GT1 has completed an initial drill program at Root Bay East, comprising 18 holes totalling 4,527 metres. The program confirmed high-grade intercepts up to 23m thick and identified seven new pegmatites along an 800 metre east-west trend. The results indicate the potential for a repeat of the Root Bay Deposit with the company further encouraged as the pegmatite intercepts exhibit similar characteristics with the deposit, including their location on the same Aero-Magnetic Geophysical trend, presence of Meta-basalt host rocks, and identical coarse-grained spodumene-bearing pegmatites.

A limited follow-up program has been completed, with only one pegmatite demonstrating economic potential in terms of thickness and lithium grade. However, further exploration at Root Bay East will be revisited at a later date.

Indigenous Partners Acknowledgement

We would like to say Gchi Miigwech to our Indigenous partners. GT1 appreciates the opportunity to work in their Traditional Territory and is committed to the recognition and respect of those who have lived, travelled, and gathered on the lands since time immemorial. Green Technology Metals is committed to stewarding Indigenous heritage and remains committed to building, fostering, and encouraging a respectful relationship with Indigenous Peoples based upon principles of mutual trust, respect, reciprocity, and collaboration in the spirit of reconciliation.

Root Mineral Resource Estimate Detail

Regional and Local Geology

The Root Lithium Project is located the boundary between the Uchi Domain and the English River sub province is defined by the Sydney Lake – Lake St. Joseph Fault, a steeply dipping brittle ductile fault zone over 450km along strike and 1 – 3km wide. It is estimated that the fault had accommodated 30km dextral, transcurrent displacement and 2.5km of south side up normal movement.

The English River Terrane is an east-west trending sub province composed of highly metamorphosed sedimentary rock, including turbiditic sediments and oxide iron formations, abundant granitoid batholiths, mafic to ultramafic plutons and rare felsic to intermediate metavolcanic rock.

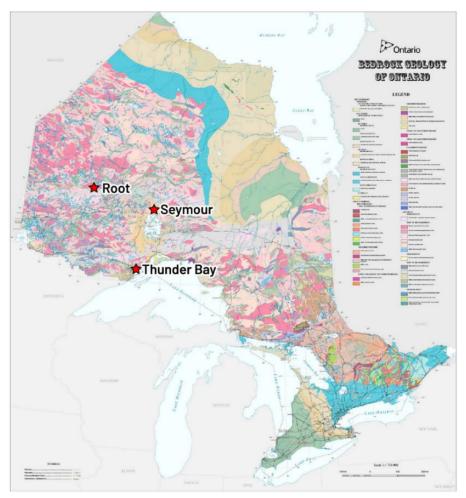


Figure 3: Root and Seymour Property Locations and Geology

Bedrock Geology

McCombe, Morrison and Root Bay project areas bedrock consist primarily of metavolcanic rocks of the Lake St. Joseph greenstone belt within the Uchi Domain, while the Root pegmatite is within metasedimentary rocks of the English River Terrane.

Property Geology

The Root Lithium Project is covered in a veneer of patchy glacial deposits comprising shallow gravelly soils, boulder till and in places thick moraines. In low-lying areas the bedrock is also obscured by lakes and swamps with the Roadhouse River transecting the southern portion of the McCombe deposit and western Morrison pegmatites.

The local bedrock consists primarily of Archean metavolcanics and intercalated sediments with later cross-cutting felsic intrusions to the east of the McCombe pegmatites. East-west or northeast, steep or moderately dipping lithium bearing pegmatites crosscut the meta-volcanics and sediments. The Root Bay deposit lies along an east-west trending ridge of meta-basalts hosting moderately north-northeasterly dipping pegmatites and sandwiched between meta-sediments to the south and north. The northern sediments host steeply dipping magnetite rich horizons.

Pegmatites

Four spodumene bearing pegmatite groups are found on GT1's Root land holdings, McCombe, Morrison and Root Bay and Root Lake.

The **McCombe** pegmatites is a combination of several spodumene-bearing granitic pegmatites located on the northwest side of the property. The dykes are exposed over 200m along strike length and vary from east-west to northeast orientations. Dips are the south and southeast and vary from 30-40 degrees to 60-70 degrees. Pegmatite width vary from 2-15m wide.

The **Morrison** Lake pegmatite is located on the northwest side of the property, 1.7km southeast from the McCombe pegmatite. The pegmatite trends east-west, dips moderately-steeply to the south, is exposed along strike over 195m and is 6.5m wide.

The **Root Bay** pegmatite is located on the south-eastern side of the property. It is exposed approximately 60m along strike, is 10m wide (Smyk et al., 2008; Magyarosi, 2016) and follows the presumed trace of the Lake St. Joseph Fault (Smyk et al., 2008). The pegmatites are hosted in foliated, locally pillowed mafic metavolcanic rock that contain metasomatic holmquistite near the contact of the pegmatite (Magyarosi, 2016).

The **Root Lake** pegmatite is located on the southwestern side of the property, south of the McCombe and Morrison pegmatites. The pegmatite is based on an occurrence from a single drill hole. The 168.55m drill hole intersected 7 spodumene-bearing and spodumene-absent granite pegmatite intervals between 0.15-1.22m thick within quartz biotite schists and metagreywackes.

Mineral Resource Estimates

Sampling and sub-sampling techniques

Green Technology Metals Ltd have drilled 360 holes within the Root project area with 116 holes drilled at McCombe, a further 34 holes into the neighbouring Morrison prospect and 160 holes in Root Bay with a further 21 holes drilled into Root Bay East and 15 holes drilled into Root Bay West for a total of 75,420m as of 14 December 2024.

The bulk of the core is NQ diameter core with some BQTK that a previous owner drilled at McCombe. All recent drilling by GT1 is NQ diameter core. Each ½ core sample was dried, crushed to entirety to 90% -10mm mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. A proportion of the mineralised pulps were re-tested by an independent laboratory, ACTLABS, Thunder Bay. The sample preparation process is considered representative of the whole core sample.

Drilling Techniques

HQ drilling was undertaken through the thin overburden prior to NQ diamond drilling through the primary rock with HW casing retained in the overburden. The holes were drilled using a standard barrel configuration and the core was orientated using a Reflex ACTIII tool located on the rear of the downhole barrel.

Database Integrity

Data was imported into the database directly from source geology logs and laboratory csv files. The data was then passed through a series of validation checks before final acceptance of the data for downstream use.

Site Visits

A site visit was undertaken by the Competent Person (John Winterbottom) between 14 to 15 March 2023 and 9th to 11th August 2023. General site layout, drilling sites, logging practices, and diamond drilling operations were viewed. GT1 store diamond core in a dedicated facility at Thunder Bay. The storage facility was visited on 13 March and 16 August and several holes reviewed and compared to logging.

Geological interpretation

Interpretation was made directly from pegmatites noted in geological logs with confirmation through core photographs and structural orientation data recorded directly from orientated core. The overburden lower contact and pegmatite

units, as logged in the drilling, were digitised using Leapfrog[®] software and cut to the Lidar surface to create individual pegmatite and geological solids.

No high-grade envelopes were warranted at Root Bay due to the consistent high-grade nature of the main pegmatites. Pegmatite wireframes were seamlessly utilised in Seequent Leapfrog Edge© software for use in building the subblocked block models. Alternative geological interpretations would have a minimal effect on the resource estimate. Root Bay has two main types of pegmatites, thin low-grade pegmatites and thicker higher-grade pegmatites. The thinner lowgrade units were interpreted and estimated in the MRE but were not considered as Mineral Resource inventory due to the likely low recovery and low-grade nature of these pegmatites.

Dimensions

The Root Bay deposit has a total strike extent of approximately 200m and has been drilled to a down dip extent of over 1,200m (700m below ground level). The pegmatites all dip to the south-southeast to southeast at approximately 25-35 degrees with pegmatite RB006 steepening to over 60 degrees dip and rotating in dip direction to the southeast below 0m elevation (400m below ground). The pegmatites are stacked and occur along a 1,500m east-west corridor.

Estimation and modelling techniques

An Ordinary Kriging (OK) grade estimation methodology has been used for Li_2O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential biproduct or deleterious elements (Ta_2O_5 , Fe, K, S). Elements other than Li_2O have not been included in the Mineral Resource figures as they have no economic value. All estimates were made to parent blocks. Leapfrog Edge version 2023.2.3 software was used for estimation, statistical and geostatistical data analysis at Root Bay.

Estimation Methodology

The Root Bay block model used 5mE x 10mN x 5mRL unrotated blocks and sub blocked to ensure they faithfully captured the pegmatite volumes. Variable Orientation searches were used for each pegmatite. Three passes were used to ensure blocks are filled in areas with sparser drilling 75m x75m x 20m 100m x 100m x 25m and a third at 150m search radii.

Moisture

All tonnages are reported on a dry basis.

Cut-off parameters

The Root Bay Mineral Resource is reported using open-pit and underground mining constraints.

A regularised model, with block dimensions 2.5mE x 5mN x 2.5mRL, was generated from the sub-blocked model to assess mining potential economics. A stope optimiser was used to assess underground economics and to constrain the potentially economic areas of the mineral resource.

The open-pit Mineral Resource is constrained within a US\$2,500 / t SC6 optimised shell and reported above a 0.2% Li₂O cut-off grade and underground stopes were reported above 0.5% Li₂O cut-off belowthe open pit. The optimised open pit shell used the following modifying factors:

- US\$3.61/t mining cost
- US\$22.25/t processing cost
- US\$1.47/t General and Administrator costs
- Mining loss of 5% with 5% mining dilution
- 55-degree pit slope angles
- 75% Product Recovery Modifying Factors

Underground stopes outside of the open pit shell were optimised with the following conditions:

• Stope panels 10m x 10m x pegmatite thickness with a minimum thickness of 4m

- (Panel below 4.0 m thickness are included if when diluted are still above 0.5% Li20)
- Mining Cost US\$68.18/t
- Processing Cost US\$20.78/t
- G&A and Grade Control US\$0.77/t
- Plant Recovery 75%

Bulk density

McCombe - 1,530 bulk density measurements were used by GT1 on $\frac{1}{2}$ NQ core 20cm billets using water immersion (Archimedes) techniques. 217 of the measurements were directly on pegmatite core. 2 pegmatite measurements were rejected as being anomalously low, 1.3 and 1.96.

Root Bay – 9,345 bulk densities were tested on Root Bay ½ NQ drill core billets with 1,589 measurements made directly on pegmatite core. Results were similar to those measured at McCombe.

Rock Type	Cumulative Length (m)	Root Bay Bulk Density
Pegmatite	282.78	2.72
BIF	6.43	3.00
Black Shale	3.13	2.82
Sediment	89.66	2.79
Basalt	961.21	3.05
_Overburden*	NIL	2.2

* Estimated

Root Bay pegmatite bulk density measurements averaged 2.72. No bulk density data is available for the largely glacial cover over the deposit due to the difficulty in recovering this material in the drilling process. This material is volumetrically negligible ranging in depths from 0 to 19m and averaging around 6m at Root Bay. An assumed bulk density of 2.2 was used for overburden. There is a weak correlation between bulk density and Li₂O grade (Correlation Coefficient 27%) and so an assumed average pegmatite bulk density was used.

KEY CONTACTS

This announcement was authorised for release by the Board of Directors

For further information please visit www.greentm.com.au or contact

Investors

Cameron Henry Managing Director

ir@greentm.com.au +61 8 6557 6825 Media Jacinta Martino Investor Relations Manager

info@greentm.com.au +61865576825

The Company's main 100% owned Ontario lithium projects comprise high-grade, hard rock spodumene assets (Seymour, Root, Junior and Wisa) and lithium exploration claims (Allison, Falcon, Gathering, Pennock and Superb) located on highly prospective Archean Greenstone tenure in north-west Ontario, Canada. All sites are proximate to excellent existing infrastructure (including clean hydro power generation and transmission facilities), readily accessible by road, and with nearby rail delivering transport optionality. Targeted exploration across all three projects delivers outstanding potential to grow resources rapidly and substantially.

¹ For full details of the Seymour Mineral Resource estimate, see GT1 ASX release dated 21 November 2023, *Seymour Resource Confidence Increased - Amended*. The Company confirms that it is not aware of any new information or data that materially affects the information in that release and that the material assumptions and technical parameters underpinning this estimate continue to apply and have not materially changed.

APPENDIX A: IMPORTANT NOTICES

Competent Person's Statements

Information in this report relating to Mineral Resource Estimation is based on information reviewed by Mr John Winterbottom (Member AIG). Mr Winterbottom has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Winterbottom consents to the inclusion of the data in the form and context in which it appears in this release. Mr Winterbottom is the General Manager of Technical Service for the Company and holds securities in the Company.

No new information

Except where explicitly stated, this announcement contains references to prior exploration results, all of which have been cross-referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements.

The information in this report relating to the Mineral Resource estimate for the Seymour Project is extracted from the Company's ASX announcement dated 21 November 2023. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

The information in this report relating to the Mineral Resource estimate for the Mccombe Project is extracted from the Company's ASX announcements dated 19 April 2023. GT1 confirms that it is not aware of any new information or data that materially affects the information included in the original announcement and that all material assumptions and technical parameters underpinning the Mineral Resource estimate continue to apply.

Forward Looking Statements

Certain information in this document refers to the intentions of Green Technology Metals Limited (ASX: GT1), however these are not intended to be forecasts, forward looking statements or statements about the future matters for the purposes of the Corporations Act or any other applicable law. Statements regarding plans with respect to GT1's projects are forward looking statements and can generally be identified by the use of words such as 'project', 'foresee', 'plan', 'expect', 'aim', 'intend', 'anticipate', 'believe', 'estimate', 'may', 'should', 'will' or similar expressions. There can be no assurance that the GTI's plans for its projects will proceed as expected and there can be no assurance of future events which are subject to risk, uncertainties and other actions that may cause GTI's actual results, performance or achievements to differ from those referred to in this document. While the information contained in this document has been prepared in good faith, there can be given no assurance or guarantee that the occurrence of these events referred to in the document will occur as contemplated. Accordingly, to the maximum extent permitted by law, GT1 and any of its affiliates and their directors, officers, employees, agents and advisors disclaim any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and do not make any representation or warranty, express or implied, as to the accuracy, reliability or completeness of the information in this document, or likelihood of fulfilment of any forward-looking statement or any event or results expressed or implied in any forward-looking statement; and disclaim all responsibility and liability for these forward-looking statements (including, without limitation, liability for negligence.

1. Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was used to obtain nominally 1m downhole samples of core. NQ core samples were cut in half, along the length of the core, using a diamond saw with ½ the core placed in numbered sample bags for assaying and the other half retained in sequence in the core tray. ½ core samples were approximately 3.0kg in weight with a minimum weight of 500grams. Core was cut down the apex of the core and the same downhole side of the core selected for assaying to reduce potential sampling bias.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	HW drilling was undertaken through the thin overburden prior to NQ diamond drilling through the primary rock using a standard tube configuration which provided adequate core recovery.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No core was recovered through the overburden HW section of the hole (approximately the top 5m of the hole) Core recovery through the primary rock and mineralised pegmatite zones and country rock was 98% or better. No correlation between grade and recovery was observed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Each sample was logged for lithology, minerals, grainsize and texture as well as alteration, sulphide content, and any structures. Additional data was collected during the logging process to determine physical properties of the lithologies drilled, including Specific Gravity and Magnetic Susceptibility. The nature of this sampling was selective. Logging is qualitative in nature. Samples are representative of an interval or length. Sampling was taken for the entire cross strike length of the intersected pegmatite unit at nominal 1m intervals with breaks at geological contacts. Sampling extended into the country mafic rock.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Each ½ core sample, 1m trench or grab sample was dried, crushed to entirety to 90% -10 mesh, riffle split (up to 5 kg) and then pulverized with hardened steel (250 g sample to 95% -150 mesh) (includes cleaner sand). Blanks and Certified Reference samples were inserted in each batch submitted to the laboratory at a rate of approximately 1:20. The sample preparation process is considered representative of the whole core sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to AGAT Laboratories in Thunder Bay. AGAT inserted their own internal standards, blanks and pulp duplicates within each sample batch as part of their own internal monitoring of quality control. GT1 inserted certified lithium standards and blanks into each batch submitted to AGAT to monitor precision and bias performance at a rate of 1:20. The major element oxides and trace elements including Rb, Cs, Nb, Ta and Be were analysed by FUS-ICP and FUS-MS (4Litho-Pegmatite Special) analytical codes which uses a lithium metaborate tetraborate fusion with analysis by ICP and ICPMS.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Pegmatite intersections are verified by the logging geologists and further reviewed by the VP Exploration by comparing intercepts with core photographs and assay returns along with regular visits to core storage facilities for further verification if required. The laboratory assay results have been sourced directly from the laboratory and the laboratory file directly imported directly into GTI's SQL database. All north seeking gyroscope surveys are uploaded directly from the survey tool output file and visually validated. Geological logs and supporting data are uploaded directly to the database using custom built importers to ensure no chance of typographical errors. No adjustment to laboratory assay data was made other than conversion of Li ppm to Li₂O using a factor of 2.153
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A GPS reading was taken for each drillhole location using UTM NAD83 Zone15 (for Root), followed by dGPS during post-hole inspection. The dGPS coordinates were used in the GT1 database GT1 undertook a Lidar survey of the Root area in 2022 (+/- 0.15m) which underpins the local topographic surface. All drill collar elevation coordinates are adjusted to the Lidar elevation. GT1 has used continuous measurement north seeking gyroscope tools with readings retained every 5m downhole or better.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This drilling separation is at a sufficient stage to extend the geological continuity appropriate for a Mineral Resource Estimate. Drilling spacing of 50mE x 50mN down to a depth of approximately 300m below surface. Below this depth the drilling is spaced more broadly on average at 80-100m. Drill holes are sampled on a nominal 1m downhole length to geological contacts.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The mineralised pegmatites are the key structures being targeted through the various drilling programs and therefore are compatible with the drilling orientation used to define the MRE.
Sample security	The measures taken to ensure sample security.	• All core and samples were supervised and secured in a locked vehicle, warehouse, or container until delivered to AGAT in Thunder Bay for cutting, preparation and analysis.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• NA

2. Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	 The Root Lithium Asset consists of 249 boundary Cell mining claims (Exploration Licences), 33 mining license of occupation claims (282 total claims) with a total claim area of 5,377, all 100% owned by GTI. Generally surface rights to the Root Property remain with the Crown, except for 9 Patent Claims (PAT-51965. PAT-51966. PAT-51967. PAT-51968. PAT-51970. PAT-51974. PAT-51975. PAT-51976. Total PAT-51977). All Cell Claims are in good standing. There is a 1.5% Gross Revenue Royalty over the Root Project.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 Regional exploration for lithium deposits commenced in the 1950's. In 1955-1956 Capital Lithium Mines Ltd. geologically mapped and sampled dikes near the McCombe Deposit with the highest recorded channel sample of 1.52m at 3.05%;Ltj. 0.7 Millionest (1.042, 2010). Mulligan (1965), Capital Lithium Mines Ltd. reported to Mulligan that they drilled at least 55 holes totalling 10468.85m in 1956. They delineated 4 pegnatit zones and announced a non-complaint Ni 41-101 reserve calculation of 2.237 million tons at 1.3%;Lio. However, none of that information is available on the government database. In 1956. Consolidated Morrison Explorations Ltd drilled 16 holes (1890m total) at the Morrison prospect recording 3.56m at 2.63%;Li₂O. In 1957. Geo-Technical Development Company Limited on behalf of Nortinental Mining Exploration conducted a magnetometer survey and an electromagnetic check survey on the eastern claims of the Roort Lithium Project to locate pyrhotite mineralization. In 1977. Northwest Beophysics Limited on behalf of Norande Exploration Company, Ltd. conducted a magnetometer survey or sulphide conductors on a small package of claims east of the Morrison Prospect. Noranda also conducted a magnetometer survey for sulphide conductors on asmall package of claims east of the Morrison Prospect. Noranda also conducted a magnetometer survey or sulphide conductors on asmall package of claims east of the Morrison Prospect. Noranda also conducted a magning program over the same area, mapped and Neator Ross orthogen and trennet 40 to threnks or no, gold and baser edital. A with properties, Lijo. In 2000. Landor Resources Canada lnc. created a reconnaissence survey, mapping and sampling program over the same area. Mapped and Neator Ross stripped and thenched 40 to rospect. Highest grant and magnetometer survey for rospect assaying up to 5.91%. Lijo. In 2002 stripped and Boated 2 more spodumene-bearing pegmatites near the Morrison Prospect. Norad
Geology	 Deposit type, geological setting and style of 	Regional Geology : The Root Lithium Asset is located within the Uchi Domain, predominately metavolcanic units interwoven with granitoid batholiths and English River Terrane, a highly metamorphosed to migmatized, clastic and chemical metasedimentary rock with abundant granitoid batholiths. They are part of the

Criteria	JORC Code explanation	Commentary
	mineralisation.	Superior craton, interpreted to be the amalgamation of Archean aged microcontinents and accretionary events. The boundary between the Uchi Domain and the English River Terrane is defined by the Sydney Lake – Lake St. Joseph fault, an east west trending, steeply dipping brittle ductile shear zone over 450km along strike and 1 – 3m wide. Several S-Type, peraluminous granitic plutons host rare-element mineralization near the Uchi Domain and English River subprovince boundary. These pegmatites include the Root Lake Pegmatite Group, Jubilee Lake Pegmatite Group, Sandy Creek Pegmatite and East Pashkokogan Lake Lithium Pegmatite.
		Local Geology: The Root Lithium Asset contains most of the pegmatites within the Root Lake Pegmatite Group including the McCombe Pegmatite, Morrison Prospect, Root Lake Prospect and Root Bay Prospect. The McCombe Pegmatite and Morrison Prospect are hosted in predominately mafic metavolcanic rock of the Uchi Domain. The Root Lake and Root Bay Prospects are hosted in predominately metasedimentary rocks of the English River Terrane. On the eastern end of the Root Lithium Asset there is a gold showing (Root Bay Gold Prospect) hosted in or proximal to silicate, carbonate, sulphide, and oxide iron formations of the English River Terrane.
		Ore Geology:The Root Pegmatites are internally zoned. These zones are classified by the tourmaline discontinuous zone along the pegmatite contact, white feldspar- rich wall zone, tourmaline-bearing, equigranular to porphyritic potassium feldspar sodic apalite zone, tourmaline-bearing, porphyritic potassium feldspar spodumene pegmatite zone and lepidolite-rich pods and seams (Breaks et al., 2003). The GT1 drilling at Root Bay has shown that the dominant lithium bearing mineral species is fine - coarse crystals of white and/or green spodumene. Both the McCombe and Morrison have been classified as complex- type, spodumene-subtype (Černý 1991a classification) based on the abundance of spodumene, highly evolved potassium feldspar chemistry and presence of petalite, microlites, lepidolite and lithium-calcium liddicoatite (Breaks et al., 2003), Root Bay pegmatite appear to exhibit similar characteristics.The Root Bay pegmatites are hosted in foliated, locally pillowed mafic metavolcanic rock that contain metasomatic holmquistite near the contact of the pegmatite (Magyarosi, 2016).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of 	 Recent Collar coordinates are in North American Datum 1983 (NAD83) Zone 15
	the following information for all	Prospect HOLEID Easting Northing RL Dip Azi
	Material drill holes: o easting and	Root Bay RB-23-003 600493 5642405 439 - 61 274
	northing of the drill hole collar	Root Bay RB-23-005 600601 5642407 438 - 60 266
	 elevation or RL (Reduced Level – elevation above 	Root Bay RB-23-007 600686 5642401 435 - 60 272
	sea level in metres) of the drill	Root Bay RB-23-009 600795 5642399 430 - 61 274
	hole collar o dip and azimuth of	Root Bay RB-23-011 600901 5642392 432 - 60 283
	the hole o down hole length	Root Bay RB-23-013 600997 5642397 443 - 60 272
	and interception depth	Root Bay RB-23-014 600397 5642445 434 - 60 272
	 hole length. If the exclusion of this 	Root Bay RB-23-016 600496 5642451 437 - 61 274 Dot Bay DD 07 000 DD 07 000 DD 07 000 DD 07 000 D0 000
	information is justified on the basis that the information is not	Root Bay RB-23-029 600496 5642345 428 - 60 274 Doot Bay DB 23 040 600303 E642408 433 61 274
	information is not Material and this exclusion does not	Root Bay RB-23-040 600393 5642498 432 - 61 274 Root Bay RB-23-042 600487 5642504 431 - 61 275
	detract from the understanding of the	

Criteria	JORC Code explanation	Commentary							
	report, the Competent Person should clearly		Root Bay	RB-23-044	600597	5642495	435	- 61	275
explain why this is the case.		Root Bay	RB-23-046	600693	5642499	438	- 61		
	cuse.		Root Bay	RB-23-048	600793	5642498	435	- 60	
			Root Bay	RB-23-050	600897	5642499	434	- 61	
			Root Bay	RB-23-081	600243	5642448	435	- 60	
			Root Bay	RB-23-083	600153	5642444	433	- 60	
			Root Bay	RB-23-085	600045	5642458	428	- 45	
			Root Bay	RB-23-088	599897	5642452	429	- 45	
			Root Bay	RB-23-091	599785	5642444	425	- 45	
			Root Bay	RB-23-098	600042	5642352	422	- 60	
			Root Bay	RB-23-1004	599748	5642372	421	- 61	
			Root Bay	RB-23-1005	599757	5642448	424	- 52	272
			Root Bay	RB-23-1007	599798	5642402	422	- 61	272
			Root Bay	RB-23-1008	599813	5642451	425	- 59	272
			Root Bay	RB-23-1009	599805	5642501	425	- 61	273
			Root Bay	RB-23-1010	599797	5642550	422	- 58	275
			Root Bay	RB-23-1012	599845	5642379	419	- 61	272
			Root Bay	RB-23-1013	599853	5642451	427	- 60	273
			Root Bay	RB-23-1014	599854	5642499	428	- 60	274
			Root Bay	RB-23-1018	599898	5642402	424	- 61	273
			Root Bay	RB-23-1019	599900	5642449	429	- 61	274
			Root Bay	RB-23-102	599851	5642349	420	- 59	272
			Root Bay	RB-23-1020	599899	5642499	426	- 61	273
			Root Bay	RB-23-1021	599899	5642552	424	- 60	274
			Root Bay	RB-23-1022	599900	5642602	427	- 61	271
			Root Bay	RB-23-1024	599951	5642378	418	- 61	272
			Root Bay	RB-23-1025	599953	5642448	430	- 60	273
			Root Bay	RB-23-1026	599948	5642499	429	- 61	271
			Root Bay	RB-23-1027	599953	5642557	422	- 61	273
			Root Bay	RB-23-1028	599949	5642576	424	- 61	273
			Root Bay	RB-23-1030	600001	5642402	422	- 61	272

Criteria	JORC Code explanation	Commentary							
			Root Bay	RB-23-1031	600002	5642453	429	- 60	275
			Root Bay	RB-23-1032	600000	5642501	428	- 60	272
			Root Bay	RB-23-1033	599998	5642554	427	- 61	273
			Root Bay	RB-23-1034	600005	5642606	426	- 60	273
			Root Bay	RB-23-1036	600045	5642382	422	- 60	273
			Root Bay	RB-23-1037	600048	5642453	428	- 61	273
			Root Bay	RB-23-1038	600048	5642497	428	- 60	271
			Root Bay	RB-23-1040	600051	5642577	426	- 62	276
			Root Bay	RB-23-1043	600099	5642405	424	- 61	273
			Root Bay	RB-23-1045	600100	5642505	429	- 61	273
			Root Bay	RB-23-1046	600097	5642552	428	- 61	272
			Root Bay	RB-23-1047	600100	5642606	429	- 60	274
			Root Bay	RB-23-1052	600148	5642500	431	- 61	274
			Root Bay	RB-23-1053	600147	5642552	430	- 61	271
			Root Bay	RB-23-1054	600146	5642576	427	- 60	269
			Root Bay	RB-23-1057	600202	5642389	425	- 61	275
			Root Bay	RB-23-1059	600200	5642505	432	- 61	275
			Root Bay	RB-23-1060	600201	5642554	430	- 60	273
			Root Bay	RB-23-1061	600207	5642599	430	- 61	271
			Root Bay	RB-23-1066	600246	5642507	434	- 61	272
			Root Bay	RB-23-1068	600251	5642575	432	- 61	274
			Root Bay	RB-23-1071	600306	5642410	432	- 61	275
			Root Bay	RB-23-1072	600279	5642457	401	- 61	274
			Root Bay	RB-23-1073	600301	5642501	433	- 61	271
			Root Bay	RB-23-1074	600299	5642550	412	- 60	274
			Root Bay	RB-23-1075	600297	5642609	431	- 60	274
			Root Bay	RB-23-1078	600349	5642453	437	- 61	277
			Root Bay	RB-23-1080	600352	5642550	431	- 61	273
			Root Bay	RB-23-1081	600347	5642601	432	- 61	270
			Root Bay	RB-23-1086	600398	5642545	396	- 61	275
			Root Bay	RB-23-1090	600450	5642453	435	- 61	275

Criteria	JORC Code	Commentary							
	explanation								
			Root Bay	RB-23-1091	600451	5642497	435	- 61	276
			Root Bay	RB-23-1097	600546	5642498	434	- 60	272
			Root Bay	RB-23-1099	600445	5642548	432	- 60	275
			Root Bay	RB-23-1101	600552	5642403	437	- 62	274
			Root Bay	RB-23-1102	600549	5642451	438	- 61	274
			Root Bay	RB-23-1104	600550	5642551	431	- 61	273
			Root Bay	RB-23-1109	600602	5642451	439	- 61	277
			Root Bay	RB-23-1111	600603	5642557	431	- 61	276
			Root Bay	RB-23-1116	600648	5642454	438	- 61	273
			Root Bay	RB-23-1118	600645	5642553	432	- 61	272
			Root Bay	RB-23-1121	600689	5642344	426	- 61	274
			Root Bay	RB-23-1123	600696	5642451	437	- 62	271
			Root Bay	RB-23-1125	600702	5642551	432	- 61	273
			Root Bay	RB-23-1128	600749	5642350	423	- 61	271
			Root Bay	RB-23-1130	600738	5642451	437	- 62	275
			Root Bay	RB-23-1132	600751	5642549	433	- 62	274
			Root Bay	RB-23-1137	600805	5642451	433	- 61	274
			Root Bay	RB-23-1139	600799	5642552	432	- 61	272
			Root Bay	RB-23-1142	600852	5642348	425	- 61	273
			Root Bay	RB-23-1143	600850	5642401	430	- 60	272
			Root Bay	RB-23-1144	600846	5642449	433	- 62	274
			Root Bay	RB-23-1146	600849	5642554	433	- 61	271
			Root Bay	RB-23-1151	600900	5642455	433	- 61	273
			Root Bay	RB-23-1156	600944	5642349	433	- 61	275
			Root Bay	RB-23-1158	600948	5642450	437	- 61	272
			Root Bay	RB-23-1163	601004	5642353	435	- 61	275
			Root Bay	RB-23-1165	601003	5642449	401	- 61	273
			Root Bay	RB-23-1171	601053	5642400	447	- 61	274
			Root Bay	RB-23-1172	601052	5642450	444	- 61	274
			Root Bay	RB-23-1177	599748	5642412	419	- 60	272
			Root Bay	RB-23-1178	601097	5642402	446	- 61	273

Criteria	JORC Code	Commentary							
	explanation								
			Root Bay	RB-23-1179	599951	5642419	425	- 60	271
			Root Bay	RB-23-1183	601152	5642354	434	- 61	273
			Root Bay	RB-23-1184	601151	5642407	449	- 61	274
			Root Bay	RB-23-1185	601151	5642444	447	- 62	271
			Root Bay	RB-23-1186	601200	5642351	432	- 60	273
			Root Bay	RB-23-1187	601195	5642408	446	- 61	274
			Root Bay	RB-23-1188	601181	5642455	458	- 61	275
			Root Bay	RB-23-1189	601253	5642355	434	- 60	273
			Root Bay	RB-23-1190	601251	5642451	448	- 60	273
			Root Bay	RB-23-1191	600954	5642525	432	- 60	272
			Root Bay	RB-23-1192	601001	5642523	434	- 61	272
			Root Bay	RB-23-1193	601057	5642532	435	- 61	277
			Root Bay	RB-23-1200	600392	5642403	433	- 60	272
			Root Bay	RB-23-1201	600265	5642412	433	- 61	267
			Root Bay	RB-23-1202	600350	5642507	431	- 61	274
			Root Bay	RB-23-1206	600051	5642416	425	- 61	274
			Root Bay	RB-23-1207	600097	5642463	429	- 61	272
			Root Bay	RB-23-1208	600146	5642409	430	- 62	274
			Root Bay	RB-23-1209	601149	5642547	439	- 61	272
			Root Bay	RB-23-1210	601101	5642447	449	- 62	272
			Root Bay	RB-23-1211	600953	5642482	435	- 61	272
			Root Bay	RB-23-1212	601008	5642483	439	- 61	275
			Root Bay	RB-23-1213	601062	5642480	442	- 61	273
			Root Bay	RB-23-1214	601100	5642491	441	- 61	274
			Root Bay	RB-23-1215	599772	5642505	422	- 61	273
			Root Bay	RB-23-1216	599851	5642414	424	- 61	274
			Root Bay	RB-23-1217	600203	5642448	435	- 62	275
			Root Bay	RB-23-1220	600446	5642399	437	- 61	274
			Root Bay	RB-23-1221	600394	5642357	427	- 61	274
			Root Bay	RB-23-1222	600537	5642365	428	- 62	275
			Root Bay	RB-23-1223	600587	5642364	429	- 62	272

Root Bay RB-23-1224 600639 5642408 4.36 - 61 273 Root Bay RB-23-1225 500730 5642410 434 - 61 277 Root Bay RB-23-1227 600652 5642499 437 - 61 276 Root Bay RB-23-1227 600751 5642506 435 - 61 272 Root Bay RB-23-1228 600751 5642506 433 - 60 272 Root Bay RB-23-128 600403 5642504 431 - 61 289 Root Bay RB-23-152 600040 5642550 431 - 61 289 Root Bay RB-23-165 598866 5642564 432 - 60 272 Root Bay RB-23-165 600893 5642646 434 - 60 272 Root Bay RB-23-166 600893 5642646 433 - 60 271 <
Rot Bay Re-23-1225 600730 664240 4.35 - 6.1 277 Rot Bay Re-23-1227 600652 664249 4.35 - 6.1 278 Rot Bay Re-23-1228 600751 5642505 4.38 - 6.1 272 Rot Bay Re-23-122 600445 564250 4.38 - 6.1 272 Rot Bay Re-23-132 600405 564250 4.33 - 6.1 272 Rot Bay Re-23-132 600405 564250 4.33 - 6.1 272 Rot Bay Re-23-180 600405 564250 4.33 - 6.1 272 Rot Bay Re-23-181 600405 564256 4.33 - 6.0 272 Rot Bay Re-23-181 600492 564268 4.33 - 6.0 272 Rot Bay Re-23-185 600803 564268 4.33 - 6.0 272 Rot Bay Re-23-185 600804 564268 4.33 - 6.0 272
Root Bay R8-23-1227 600652 5642499 4.37 - 61 276 Root Bay R8-23-1228 600751 5642505 4.35 - 61 272 Root Bay R8-23-1228 600445 5642361 4.28 - 61 272 Root Bay R8-23-132 600403 5642364 301 - 60 272 Root Bay R8-23-152 600400 5642565 4.33 - 61 289 Root Bay R8-23-152 600400 5642564 4.35 - 60 271 Root Bay R8-23-161 600492 5642564 4.22 - 60 272 Root Bay R8-23-165 600693 5642646 4.34 - 60 272 Root Bay R8-23-169 600892 5642646 4.34 - 60 272 Root Bay R8-23-174 80043 5642666 4.33 - 60 271 Root Bay R8-23-185 600892 5642666 4.33 - 60
Root Bay RB-23-1228 600751 5642506 435 - 61 272 Root Bay RB-23-1229 600445 5642364 428 - 61 272 Root Bay RB-23-132 600403 5642304 331 - 61 272 Root Bay RB-23-142 600403 5642504 433 - 61 289 Root Bay RB-23-152 60040 5642544 435 - 60 271 Root Bay RB-23-165 59946 5642545 422 - 60 271 Root Bay RB-23-165 60043 5642645 432 - 60 272 Root Bay RB-23-165 600633 5642650 433 - 60 272 Root Bay RB-23-174 600244 5642650 433 - 60 272 Root Bay RB-23-178 600433 5642650 433 - 60 272 Root Bay RB-23-178 600433 5642650 433 - 60 270
Root BayRB-23-1226004455642361428-61272Root BayRB-23-1326004035642304331-60272Root BayRB-23-1486002405642550431-61259Root BayRB-23-1526004015642544435-60271Root BayRB-23-1565998465642545422-60271Root BayRB-23-1616004925642650432-60271Root BayRB-23-1656009335642648434-60272Root BayRB-23-1656009355642645432-61273Root BayRB-23-1746002445642650433-60271Root BayRB-23-1786000435642652432-60271Root BayRB-23-1825998515642646427-60270Root BayRB-23-1956008955642753431-60272Root BayRB-23-1956008955642764435-60272Root Bay DeepsRB-24-001600475564260433-60272Root Bay DeepsRB-24-003600795564240435-60272Root Bay DeepsRB-24-004600882564264435-60272Root Bay DeepsRB-24-004600882564260433-60
Root Bay RB-23-132 600403 5642304 391 - 60 272 Root Bay RB-23-148 600240 5642550 431 - 61 269 Root Bay RB-23-152 600040 5642544 435 - 60 271 Root Bay RB-23-152 500040 5642545 422 - 60 272 Root Bay RB-23-155 600042 5642648 433 - 60 272 Root Bay RB-23-165 600693 5642648 434 - 60 272 Root Bay RB-23-178 600043 5642648 433 - 60 272 Root Bay RB-23-178 600043 5642653 433 - 60 273 Root Bay RB-23-178 600043 5642664 427 - 60 270 Root Bay RB-23-182 599661 5642646 427 - 60 270 Root Bay RB-23-178 600043 5642646 427 - 60 272
Root Bay RB-23-148 600240 5642550 4.31 - 61 289 Root Bay RB-23-152 600040 5642544 4.35 - 60 271 Root Bay RB-23-165 599846 5642545 4.22 - 60 271 Root Bay RB-23-161 600402 5642545 4.22 - 60 272 Root Bay RB-23-165 600693 5642648 4.34 - 60 272 Root Bay RB-23-164 600402 5642653 4.32 - 60 272 Root Bay RB-23-169 600803 5642645 4.33 - 60 272 Root Bay RB-23-174 600244 5642654 4.33 - 60 271 Root Bay RB-23-174 60043 5642645 4.33 - 60 271 Root Bay RB-23-182 59861 5642646 4.27 - 60 270 Root Bay RB-23-182 59861 5642646 4.27 - 60 <td< td=""></td<>
Root Bay RB-23-152 600040 5642544 435 - 60 271 Root Bay RB-23-156 599846 5642545 422 - 60 271 Root Bay RB-23-161 600492 5642650 432 - 60 272 Root Bay RB-23-165 600693 5642648 434 - 60 272 Root Bay RB-23-169 600892 5642650 433 - 60 273 Root Bay RB-23-174 600244 5642650 433 - 60 271 Root Bay RB-23-178 600043 5642650 433 - 60 271 Root Bay RB-23-178 600043 5642652 432 - 60 271 Root Bay RB-23-182 599851 5642664 427 - 60 270 Root Bay RB-23-182 599851 5642646 427 - 60 270 Root Bay RB-23-195 600430 5642753 431 - 60 272
Root BayRB-23-1565998/65642545422-60271Root BayRB-23-1616004925642650432-60272Root BayRB-23-16560069356426484434-60272Root BayRB-23-1696008925642653432-61273Root BayRB-23-1746002445642650433-60271Root BayRB-23-1786000435642652433-60270Root BayRB-23-1825998515642664427-60270Root BayRB-23-1956008965642753433-60270Root BayRB-23-1956008955642646427-60270Root BayRB-23-1956008965642753433-60270Root BayRB-23-1956002435642640423-60271Root BayRB-23-1956008955642747434-60270Root Bay DeepsRB-24-0016004875642604433-60270Root Bay DeepsRB-24-0026007795642420433-60270Root Bay DeepsRB-24-0036008855642640432-60275Root Bay DeepsRB-24-0046006825642640432-60275Root Bay DeepsRB-24-0046008855642640433-
Root Bay RB-23-161 800492 5642650 432 - 60 272 Root Bay RB-23-165 600693 5642648 434 - 60 272 Root Bay RB-23-165 600892 5642653 432 - 61 273 Root Bay RB-23-174 600244 5642650 433 - 60 271 Root Bay RB-23-178 600043 5642652 432 - 60 273 Root Bay RB-23-178 600043 5642646 427 - 60 271 Root Bay RB-23-182 599851 5642646 427 - 60 270 Root Bay RB-23-195 600896 5642753 431 - 60 270 Root Bay RB-23-195 600896 5642763 448 - 60 271 Root Bay RB-23-203 601243 5642395 448 - 60 271 Root Bay Deeps RB-24-001 600487 5642504 435 - 60 2
Root Bay RB-23-165 600693 5642648 433 - 60 272 Root Bay RB-23-169 600892 5642653 432 - 61 273 Root Bay RB-23-174 600244 5642650 433 - 60 273 Root Bay RB-23-178 600433 5642652 432 - 60 273 Root Bay RB-23-178 600433 5642652 432 - 60 273 Root Bay RB-23-182 599851 5642664 427 - 60 270 Root Bay RB-23-195 600896 5642753 433 - 60 272 Root Bay RB-23-195 600896 5642764 433 - 60 273 Root Bay RB-23-195 600896 5642763 433 - 60 272 Root Bay RB-23-195 600497 5642504 434 - 60 273 Root Bay Deeps RB-23-101 601473 5642403 435 - 60 2
Root Bay RB-23-169 600892 5642653 432 - 61 273 Root Bay RB-23-174 600244 5642650 433 - 60 271 Root Bay RB-23-178 600043 5642652 432 - 60 273 Root Bay RB-23-178 600043 5642652 432 - 60 273 Root Bay RB-23-182 599851 5642646 427 - 60 270 Root Bay RB-23-195 600896 5642763 431 - 60 276 Root Bay RB-23-200 600310 5642747 434 - 60 272 Root Bay RB-23-213 601243 5642395 448 - 60 270 Root Bay Deeps RB-24-001 600487 5642504 435 - 60 270 Root Bay Deeps RB-24-002 600779 5642400 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642450 433 - 60
Root Bay RB-23-174 600244 5642650 433 - 60 271 Root Bay RB-23-178 600043 5642652 432 - 60 273 Root Bay RB-23-182 599851 5642666 427 - 60 270 Root Bay RB-23-195 600896 5642753 431 - 60 276 Root Bay RB-23-200 600310 5642747 434 - 60 272 Root Bay RB-23-213 601243 5642395 448 - 60 273 Root Bay RB-23-213 601243 5642395 448 - 60 273 Root Bay Deeps RB-24-001 600487 5642504 435 - 60 275 Root Bay Deeps RB-24-002 60079 5642420 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642450 433 - 60 275 Root Bay Deeps RB-24-004 600682 5642450 433 - 60
Root Bay RB-23-178 600043 5642652 432 - 60 273 Root Bay RB-23-182 599851 5642646 427 - 60 270 Root Bay RB-23-182 599851 5642646 427 - 60 270 Root Bay RB-23-195 600896 5642753 431 - 60 272 Root Bay RB-23-200 600310 5642747 434 - 60 273 Root Bay RB-23-213 601243 5642395 448 - 60 273 Root Bay Deeps RB-24-001 600487 5642504 435 - 60 270 Root Bay Deeps RB-24-002 600779 5642420 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642640 432 - 61 265 Root Bay Deeps RB-24-004 600682 5642450 439 - 60 271 Root Bay Deeps RB-24-005 600898 5642450 433 -
Root Bay RB-23-182 599851 5642646 427 - 60 270 Root Bay RB-23-195 600896 5642753 431 - 60 276 Root Bay RB-23-200 600310 5642747 434 - 60 272 Root Bay RB-23-200 600310 5642747 434 - 60 273 Root Bay RB-23-213 601243 5642395 448 - 60 273 Root Bay Deeps RB-24-001 600487 5642504 435 - 60 275 Root Bay Deeps RB-24-002 600779 5642420 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642640 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642640 432 - 60 271 Root Bay Deeps RB-24-004 600682 5642450 433 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 -
Root Bay RB-23-195 600896 5642753 431 - 60 276 Root Bay RB-23-200 600310 5642747 434 - 60 272 Root Bay RB-23-213 601243 5642395 448 - 60 273 Root Bay RB-23-213 600487 5642504 435 - 60 270 Root Bay Deeps RB-24-001 600487 5642504 435 - 60 270 Root Bay Deeps RB-24-002 600799 5642420 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642450 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642450 432 - 60 271 Root Bay Deeps RB-24-004 600682 5642450 439 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435
Root Bay RB-23-200 600310 5642747 434 - 60 272 Root Bay RB-23-213 601243 5642395 448 - 60 273 Root Bay Deeps RB-24-001 600487 5642504 435 - 60 270 Root Bay Deeps RB-24-002 600799 5642420 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642640 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642640 432 - 60 275 Root Bay Deeps RB-24-004 600895 5642640 432 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271
Root Bay RB-23-213 601243 5642395 448 - 60 273 Root Bay Deeps RB-24-001 600487 5642504 435 - 60 270 Root Bay Deeps RB-24-002 600779 5642420 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642640 432 - 61 265 Root Bay Deeps RB-24-004 600682 5642450 439 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271
Root Bay Deeps RB-24-001 600487 5642504 435 - 60 270 Root Bay Deeps RB-24-002 600779 5642420 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642640 432 - 61 265 Root Bay Deeps RB-24-004 600682 5642450 439 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271
Root Bay Deeps RB-24-002 600779 5642420 432 - 60 275 Root Bay Deeps RB-24-003 600895 5642640 432 - 61 265 Root Bay Deeps RB-24-004 600682 5642450 439 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271
Root Bay Deeps RB-24-003 600895 5642640 432 - 61 265 Root Bay Deeps RB-24-004 600682 5642450 439 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271
Root Bay Deeps RB-24-003 600895 5642640 432 - 61 265 Root Bay Deeps RB-24-004 600682 5642450 439 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271
Root Bay Deeps RB-24-004 600682 5642450 439 - 60 271 Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271
Root Bay Deeps RB-24-005 600898 5642473 435 - 60 271
Root Bay Deeps RB-24-007 600877 5642552 436 - 60 272
Root Bay Deeps RB-24-008 660548 5642445 439 - 61 271
Root Bay Deeps RB-24-009 601000 5642526 435 - 60 269
Root Bay Deeps RB-24-000 GO1200 GO1200 <thgo1200< th=""> <</thgo1200<>
Root Bay Deeps RB-24-010 S002301 S042307 443 53 271 Root Bay Deeps RB-24-011 600749 5642552 434 - 60 271
Root Bay Deeps RB-24-011 000743 5042552 454 - 00 271 Root Bay Deeps RB-24-012 601160 5642525 441 - 58 271
Root Bay Deeps RB-24-012 Bolt Bod S042323 441 - 56 2/1 Root Bay Deeps RB-24-013 601002 5642449 443 - 62 269

Criteria	JORC Code explanation	Commentary
		Root Bay Deeps RB-24-014 600393 5642353 427 - 69 281
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut- off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be 	 Length weighted percent spodumene averages are used across the downhole length of intersected pegmatites A minimum downhole width of Zm has been applied to reported pegmatite intervals. Grade cut-offs have not been incorporated. No metal equivalent values are quoted.
Relationship between mineralisation widths and	clearly stated. These relationships are particularly important in the	 Drill bias was limited by varying the drillhole azimuth orientations to intersect the pegmatite mineralisation as tangential as possible. This was achieved with varying degrees of success with some drilling intersecting the pegmatites greater than 30 degrees to the tangential of the pegmatite trends. Most of the drilling is within 20-30 degrees of tangential with the pegmatite trends reducing potential for bias.

www.greentm.com.au

0.11		
Criteria	JORC Code	Commentary
	explanation	
intercept	reporting of	
lengths	Exploration	
	Results.	
	 If the geometry of 	
	the	
	mineralisation	
	with respect to	
	the drill hole	
	angle is known,	
	its nature should	
	be reported.	
	 If it is not known 	
	and only the	
	down hole	
	lengths are	
	reported, there	
	should be a clear	
	statement to this	
	effect (eg 'down	
	hole length, true	
	width not	
	known').	
Diagrams	 Appropriate 	
-	maps and	
	sections (with	
	scales) and	
	tabulations of	
	intercepts should	
	be included for	
	any significant	
	discovery being	
	reported These	
	should include,	
	but not be limited	
	to a plan view of	
	drill hole collar	
	locations and	
	appropriate	
	sectional views.	

Criteria	JORC Code explanation	Commentary								
		592,000 E		596,000 E		600,000 E			604,000 E	608.000 E
		5,644,000 N					***			5,644,000 N
		5,640,000 N						Constant of the second se		5,640,000 N Legend McCombe Morrison Root Bay Root Bay Deeps Root Bay Deeps Root Bay East Root Bay West
		5,6 <mark>36,000 N</mark> 2000		596,000 E		600,000 E			604,000 E	ш 000 <u>5 536 000</u> N 100 иба 2000
		McCombe, Morrison an	-	-						
Balanced reporting	 Where comprehensive 	 Pegmatite intercepts a The downhole interval 							have been reported.	
	reporting of all Exploration		Propsect	HoleId	From	То	Interval	Li20 %	Including	
	Results is not		Root Bay	RB-23-003	67.4	79.5	12.1	1.30		
	practicable, representative		Root Bay	RB-23-005	45.4	49.0	3.6	0.06		
	reporting of both		Root Bay	RB-23-005	129.2	135.8	6.6	1.47		
	low and high		Root Bay	RB-23-005	140.5	145.0	4.5	1.34		
	grades and/or widths should be		Root Bay	RB-23-005	149.0	151.1	2.1	1.09		
	practiced to		Root Bay	RB-23-007	147.3	156.6	9.3	0.72	3m @ 1.61% from 147.3m	
	avoid misleading reporting of		Root Bay	RB-23-007	170.9	177.4	6.6	1.57		
	Exploration Results.		Root Bay	RB-23-007	187.4	190.4	3.0	1.52		

Criteria	JORC Code	Commentary								
	explanation									
			Root Bay	RB-23-007	199.5	202.1	2.5	1.18		
			Root Bay	RB-23-009	124.6	127.2	2.6	1.01		
			Root Bay	RB-23-009	195.5	198.9	3.4	1.61		
			Root Bay	RB-23-009	222.9	228.1	5.2	1.44		
			Root Bay	RB-23-009	250.6	258.5	7.9	1.01		
			Root Bay	RB-23-011	12.8	17.0	4.2	0.81		
			Root Bay	RB-23-011	176.7	179.3	2.6	0.64		
			Root Bay	RB-23-011	274.1	278.1	4.1	1.64		
			Root Bay	RB-23-011	310.0	314.1	4.1	1.26		
			Root Bay	RB-23-013	50.1	56.2	6.1	1.37		
			Root Bay	RB-23-013	324.5	329.7	5.1	0.47		
			Root Bay	RB-23-013	374.9	377.1	2.2	1.49		
			Root Bay	RB-23-014	8.5	21.8	13.3	1.40		
			Root Bay	RB-23-014	227.8	236.1	8.3	1.43		
			Root Bay	RB-23-014	343.7	359.2	15.5	1.80		
			Root Bay	RB-23-016	57.8	69.0	11.3	1.52		
			Root Bay	RB-23-016	75.6	78.8	3.2	0.98		
			Root Bay	RB-23-016	131.4	138.3	6.8	0.21		
			Root Bay	RB-23-040	216.9	224.7	7.8	1.61		
			Root Bay	RB-23-040	326.3	343.4	17.1	1.81		
			Root Bay	RB-23-042	5.6	11.5	5.9	1.59		
			Root Bay	RB-23-044	18.4	23.5	5.1	0.22		
			Root Bay	RB-23-044	73.4	81.2	7.8	0.07		
			Root Bay	RB-23-044	341.0	349.4	8.4	0.63	5.9m @ 0.84% from 341m	
			Root Bay	RB-23-044	427.7	436.1	8.4	1.47		
			Root Bay	RB-23-044	440.6	451.7	11.1	1.18		
			Root Bay	RB-23-044	457.5	465.5	8.0	1.06		
			Root Bay	RB-23-046	9.1	11.3	2.2	1.30		
			Root Bay	RB-23-046	128.0	132.6	4.7	0.64	3m @ 0.89% from 128m	
			Root Bay	RB-23-048	165.4	170.9	5.5	0.37	2m @ 0.82% from 166m	
			Root Bay	RB-23-048	197.9	204.9	7.1	1.05		

Criteria	JORC Code	Commentary							
	explanation								
			Root Bay	RB-23-050	168.3	170.5	2.2	0.03	
			Root Bay	RB-23-050	213.4	218.5	5.1	0.03	
			Root Bay	RB-23-050	222.1	224.2	2.1	0.21	
			Root Bay	RB-23-050	255.4	261.7	6.2	1.09	
			Root Bay	RB-23-050	288.6	294.2	5.6	0.60	
			Root Bay	RB-23-081	112.8	117.3	4.6	0.81	2.2m @ 1.39% from 115.1m
			Root Bay	RB-23-081	119.7	123.8	4.1	1.38	
			Root Bay	RB-23-081	176.8	181.7	4.9	0.55	3.2m @ 0.69% from 176.8m
			Root Bay	RB-23-081	298.5	315.0	16.5	1.52	
			Root Bay	RB-23-083	54.8	61.4	6.5	1.55	
			Root Bay	RB-23-083	179.0	181.4	2.4	0.24	
			Root Bay	RB-23-083	254.6	271.2	16.5	1.55	
			Root Bay	RB-23-085	181.4	197.4	16.0	1.58	
			Root Bay	RB-23-088	99.4	117.2	17.8	1.73	
			Root Bay	RB-23-091	33.1	47.4	14.3	1.52	
			Root Bay	RB-23-1004	65.4	70.1	4.7	1.76	3m @ 1.76% from 66.3m
			Root Bay	RB-23-1005	16.2	29.4	13.3	1.27	
			Root Bay	RB-23-1007	73.7	76.0	2.3	1.12	
			Root Bay	RB-23-1007	81.9	93.5	11.6	1.40	
			Root Bay	RB-23-1008	46.7	64.4	17.6	1.36	
			Root Bay	RB-23-1009	26.9	46.6	19.6	1.50	
			Root Bay	RB-23-1010	11.3	20.7	9.4	0.89	6.8m @ 1.13% from 11.3m
			Root Bay	RB-23-1013	71.0	88.2	17.1	1.77	
			Root Bay	RB-23-1014	57.2	74.4	17.2	1.74	
			Root Bay	RB-23-1018	132.3	144.8	12.4	1.45	
			Root Bay	RB-23-1019	100.7	117.7	17.0	1.64	
			Root Bay	RB-23-1020	82.5	99.3	16.8	1.69	
			Root Bay	RB-23-1021	72.9	90.8	17.9	1.48	
			Root Bay	RB-23-1024	183.1	185.8	2.6	0.06	
			Root Bay	RB-23-1025	131.4	147.7	16.3	1.62	
			Root Bay	RB-23-1026	110.8	128.1	17.4	1.60	

Criteria	JORC Code explanation	Commentary								
				1						
			Root Bay	RB-23-1027	100.9	117.0	16.0	1.71		
			Root Bay	RB-23-1028	36.1	38.8	2.7	0.02		
			Root Bay	RB-23-1030	181.7	195.2	13.5	1.65		
			Root Bay	RB-23-1031	158.0	172.7	14.7	0.84		
			Root Bay	RB-23-1032	139.6	156.4	16.8	1.61		
			Root Bay	RB-23-1033	69.2	72.8	3.7	0.49		
			Root Bay	RB-23-1033	129.0	146.7	17.7	1.63		
			Root Bay	RB-23-1037	101.4	105.2	3.8	0.14		
			Root Bay	RB-23-1037	184.8	194.4	9.6	0.56	6.8m @ 0.75% from 187m	
			Root Bay	RB-23-1038	167.1	183.1	16.0	1.78		
			Root Bay	RB-23-1040	157.4	164.1	6.7	1.03		
			Root Bay	RB-23-1043	46.6	48.7	2.2	0.02		
			Root Bay	RB-23-1043	223.6	238.3	14.6	1.76		
			Root Bay	RB-23-1045	109.7	116.1	6.4	0.53		
			Root Bay	RB-23-1045	195.5	213.1	17.6	1.77		
			Root Bay	RB-23-1046	182.4	194.8	12.4	1.70		
			Root Bay	RB-23-1052	28.6	34.3	5.7	1.46		
			Root Bay	RB-23-1052	149.4	152.4	3.0	0.61		
			Root Bay	RB-23-1052	220.0	241.0	21.0	1.32		
			Root Bay	RB-23-1053	132.2	134.3	2.2	0.40		
			Root Bay	RB-23-1053	214.8	224.1	9.3	1.55		
			Root Bay	RB-23-1054	198.8	216.0	17.3	0.75	12.9m @ 0.88% from 203.1m	
			Root Bay	RB-23-1057	145.2	148.1	2.9	1.05		
			Root Bay	RB-23-1057	284.4	286.4	2.0	0.53		
			Root Bay	RB-23-1059	69.0	74.3	5.3	0.35		
			Root Bay	RB-23-1059	247.9	264.9	17.0	1.62		
			Root Bay	RB-23-1060	30.1	34.7	4.7	1.60		
			Root Bay	RB-23-1060	197.7	201.6	3.9	0.55		
			Root Bay	RB-23-1060	224.7	227.9	3.2	1.33		
			Root Bay	RB-23-1060	232.0	238.9	6.9	1.29		
			Root Bay	RB-23-1060	243.4	251.3	7.9	0.97		

Criteria	JORC Code	Commentary							
	explanation								
			Root Bay	RB-23-1066	50.9	53.6	2.7	0.50	
			Root Bay	RB-23-1066	105.6	110.8	5.2	0.95	
			Root Bay	RB-23-1066	257.1	261.6	4.6	2.03	
			Root Bay	RB-23-1066	287.3	298.5	11.2	1.46	
			Root Bay	RB-23-1068	65.1	69.7	4.6	0.43	2.4m @ 0.56% from 66m
			Root Bay	RB-23-1068	184.1	186.4	2.3	0.48	
			Root Bay	RB-23-1068	223.3	225.9	2.6	0.01	
			Root Bay	RB-23-1068	242.5	245.5	2.9	1.27	
			Root Bay	RB-23-1068	252.1	258.7	6.6	1.41	
			Root Bay	RB-23-1071	225.1	227.8	2.7	0.03	
			Root Bay	RB-23-1071	317.5	330.4	12.9	1.62	
			Root Bay	RB-23-1072	129.1	137.7	8.7	1.07	
			Root Bay	RB-23-1072	310.6	328.7	18.1	1.50	
			Root Bay	RB-23-1073	151.2	156.3	5.1	1.32	
			Root Bay	RB-23-1073	296.0	313.0	17.0	1.55	
			Root Bay	RB-23-1074	57.1	59.4	2.3	0.53	
			Root Bay	RB-23-1074	105.6	108.1	2.5	0.84	
			Root Bay	RB-23-1074	114.5	118.1	3.6	0.43	
			Root Bay	RB-23-1074	268.4	272.4	4.0	1.38	
			Root Bay	RB-23-1074	279.2	286.3	7.0	1.48	
			Root Bay	RB-23-1074	290.0	292.1	2.0	1.69	
			Root Bay	RB-23-1078	179.0	187.2	8.2	1.51	
			Root Bay	RB-23-1078	326.1	344.2	18.1	1.67	
			Root Bay	RB-23-1080	120.0	122.1	2.1	0.03	
			Root Bay	RB-23-1080	155.7	161.3	5.6	1.31	
			Root Bay	RB-23-1080	297.6	313.6	16.0	1.52	
			Root Bay	RB-23-1081	250.9	254.5	3.6	0.03	
			Root Bay	RB-23-1086	188.8	194.8	6.0	1.62	
			Root Bay	RB-23-1086	316.8	331.5	14.7	1.81	
			Root Bay	RB-23-1086	357.6	359.9	2.3	0.54	
			Root Bay	RB-23-1090	34.6	44.9	10.3	1.60	

Criteria	JORC Code	Commentary							
	explanation								
			Root Bay	RB-23-1090	48.0	51.0	2.9	1.01	
			, Root Bay	RB-23-1090	280.4	289.7	9.3	1.57	
		-	Root Bay	RB-23-1091	275.1	283.8	8.7	1.37	
			Root Bay	RB-23-1097	34.0	47.7	13.6	1.12	
			Root Bay	RB-23-1099	222.1	227.2	5.1	1.33	
		_	Root Bay	RB-23-1099	336.1	354.3	18.2	1.43	
			Root Bay	RB-23-1101	101.6	110.6	9.0	1.66	
		_	Root Bay	RB-23-1101	118.8	125.0	6.2	0.88	
			Root Bay	RB-23-1102	73.7	75.7	2.0	0.82	
			Root Bay	RB-23-1102	85.6	96.6	11.0	1.18	
			Root Bay	RB-23-1102	109.1	112.2	3.1	1.35	
			Root Bay	RB-23-1104	4.5	10.8	6.3	0.87	
		-	Root Bay	RB-23-1109	31.2	37.2	6.0	0.68	4.5m @ 0.85% from 32m
		-	Root Bay	RB-23-1109	110.2	112.3	2.1	0.67	
		-	Root Bay	RB-23-1109	125.3	130.3	5.0	1.07	
		-	Root Bay	RB-23-1109	141.8	145.1	3.3	0.55	
			Root Bay	RB-23-1109	153.5	156.8	3.3	0.40	
			Root Bay	RB-23-1111	20.1	34.9	14.8	0.91	
			Root Bay	RB-23-1116	91.8	97.7	6.0	0.71	
		-	Root Bay	RB-23-1116	130.6	134.5	3.9	1.57	
		 	Root Bay	RB-23-1116	149.3	155.6	6.3	1.60	
			Root Bay	RB-23-1116	171.2	176.2	5.0	0.21	
		 	Root Bay	RB-23-1118	41.8	47.9	6.1	1.18	
		-	Root Bay	RB-23-1118	51.7	63.5	11.7	0.61	3.8m @ 1.28% from 51.7m
			Root Bay	RB-23-1123	20.7	22.7	2.0	0.65	
		-	Root Bay	RB-23-1123	148.3	152.0	3.7	1.53	
		-	Root Bay	RB-23-1123	163.7	169.3	5.6	0.66	3m @ 1.03% from 165.5m
		 	Root Bay	RB-23-1123	174.2	180.0	5.8	1.46	
			Root Bay	RB-23-1123	201.4	207.3	5.9	1.16	
			Root Bay	RB-23-1125	76.2	82.0	5.8	1.34	
			Root Bay	RB-23-1125	87.7	91.6	3.9	1.66	

Criteria	JORC Code explanation	Commentary								
								[
			Root Bay	RB-23-1125	97.2	102.9	5.7	1.46		
			Root Bay	RB-23-1130	61.4	63.6	2.2	1.08		
			Root Bay	RB-23-1130	172.3	178.2	5.9	1.43		
			Root Bay	RB-23-1130	196.3	200.2	3.9	1.24		
			Root Bay	RB-23-1130	223.9	235.0	11.1	1.13		
			Root Bay	RB-23-1130	351.0	357.5	6.6	0.30	2m @ 0.82% from 352m	
			Root Bay	RB-23-1130	503.5	509.5	6.0	1.30		
			Root Bay	RB-23-1130	528.9	536.1	7.2	1.28		
			Root Bay	RB-23-1130	560.6	563.1	2.5	0.78		
			Root Bay	RB-23-1130	580.1	598.5	18.4	1.51		
			Root Bay	RB-23-1132	13.3	19.4	6.0	0.27		
			Root Bay	RB-23-1132	103.8	109.7	6.0	1.59		
			Root Bay	RB-23-1132	119.8	122.4	2.5	1.14		
			Root Bay	RB-23-1132	127.7	134.4	6.7	1.42		
			Root Bay	RB-23-1137	122.9	126.3	3.4	1.56		
			Root Bay	RB-23-1137	206.1	210.1	4.0	1.62		
			Root Bay	RB-23-1137	223.3	229.1	5.8	0.87		
			Root Bay	RB-23-1137	259.0	263.7	4.7	0.48	2m @ 0.89% from 260m	
			Root Bay	RB-23-1139	82.1	87.6	5.6	0.94		
			Root Bay	RB-23-1139	129.9	136.0	6.0	1.61		
			Root Bay	RB-23-1139	151.7	154.8	3.1	1.51		
			Root Bay	RB-23-1139	161.8	167.3	5.4	1.66		ł
			Root Bay	RB-23-1142	214.7	218.0	3.3	1.30		ł
			Root Bay	RB-23-1142	261.3	264.3	2.9	2.05		ł
			Root Bay	RB-23-1142	267.9	270.1	2.2	1.61		ł
			Root Bay	RB-23-1142	152.5	155.4	2.9	0.94		ł
			Root Bay	RB-23-1143	221.8	224.4	2.5	1.48		ł
			Root Bay	RB-23-1143	250.2	254.9	4.7	1.48		ł
										ł
			Root Bay	RB-23-1143	266.5	271.5	5.0	0.52		
			Root Bay	RB-23-1143	284.0	288.3	4.3	1.61		ł
			Root Bay	RB-23-1144	144.4	147.5	3.1	1.29		1

Criteria	JORC Code	Commentary							
	explanation								
			Root Bay	RB-23-1144	227.4	230.4	3.0	1.25	
			Root Bay	RB-23-1144	243.2	247.5	4.2	1.00	
			Root Bay	RB-23-1144	280.6	286.0	5.3	1.42	
			Root Bay	RB-23-1146	149.3	162.5	13.1	0.70	6.6m @ 1.29% from 155.4m
			Root Bay	RB-23-1146	194.1	199.6	5.4	0.53	
			Root Bay	RB-23-1158	10.1	15.9	5.7	1.10	
			Root Bay	RB-23-1165	45.0	50.3	5.3	1.62	
			Root Bay	RB-23-1171	78.5	84.1	5.6	0.87	3.5m @ 1.29% from 80m
			Root Bay	RB-23-1172	76.6	80.5	3.8	0.88	
			Root Bay	RB-23-1177	46.8	58.7	11.9	1.21	
			Root Bay	RB-23-1178	100.1	106.0	5.9	1.46	
			Root Bay	RB-23-1179	158.3	171.2	12.8	1.70	
			Root Bay	RB-23-1184	131.2	134.4	3.1	1.34	
			Root Bay	RB-23-1185	121.3	125.1	3.7	0.80	2m @ 1.23% from 122m
			Root Bay	RB-23-1187	141.4	146.2	4.8	1.42	
			Root Bay	RB-23-1188	143.4	146.7	3.3	1.43	2.1m @ 2.01% from 143.4m
			Root Bay	RB-23-1189	117.5	119.5	2.0	0.01	
			Root Bay	RB-23-1189	173.9	177.3	3.4	1.04	
			Root Bay	RB-23-1190	164.7	167.4	2.8	2.08	
			Root Bay	RB-23-1200	11.3	25.2	13.9	1.52	
			Root Bay	RB-23-1201	306.3	320.8	14.5	1.72	
			Root Bay	RB-23-1202	165.5	168.5	2.9	0.49	
			Root Bay	RB-23-1202	187.0	189.6	2.6	0.05	
			Root Bay	RB-23-1202	310.8	329.3	18.5	1.69	
			Root Bay	RB-23-1206	203.6	217.5	13.9	1.61	
			Root Bay	RB-23-1207	145.2	147.4	2.2	1.41	
			Root Bay	RB-23-1207	212.0	222.4	10.4	0.38	3.9m @ 0.94% from 218.5m
			Root Bay	RB-23-1208	82.1	84.9	2.8	0.85	
			Root Bay	RB-23-1208	247.3	262.8	15.5	1.60	
			Root Bay	RB-23-1209	34.0	37.0	3.1	1.80	
			Root Bay	RB-23-1210	97.5	102.0	4.4	1.41	

Criteria	JORC Code	Commentary								
	explanation									
			Root Bay	RB-23-1212	30.2	33.8	3.6	1.47		
			Root Bay	RB-23-1214	78.2	81.1	2.9	1.79		
			Root Bay	RB-23-1215	5.5	24.1	18.6	1.58		
			Root Bay	RB-23-1216	105.3	121.6	16.3	0.93		
			Root Bay	RB-23-1217	87.5	92.8	5.3	1.64		
			Root Bay	RB-23-1217	283.5	298.7	15.2	1.49		
			Root Bay	RB-23-1220	42.6	56.1	13.5	1.61		
			Root Bay	RB-23-1221	17.0	24.3	7.3	0.72		
			Root Bay	RB-23-1222	89.6	96.5	7.0	1.20		
			Root Bay	RB-23-1222	100.1	106.4	6.2	1.22		
			Root Bay	RB-23-1223	120.1	122.8	2.7	0.81		
			Root Bay	RB-23-1224	93.2	97.0	3.8	0.57	2m @ 0.95% from 94m	
			Root Bay	RB-23-1224	128.4	130.6	2.2	0.85		
			Root Bay	RB-23-1224	147.8	155.6	7.8	1.34		
			Root Bay	RB-23-1224	164.8	168.7	3.9	1.82		
			Root Bay	RB-23-1225	74.7	77.3	2.6	0.56		
			Root Bay	RB-23-1225	168.5	172.4	3.9	1.53		
			Root Bay	RB-23-1225	192.2	199.9	7.7	0.84		
			Root Bay	RB-23-1225	212.4	214.6	2.1	1.47		
			Root Bay	RB-23-1225	223.0	230.7	7.7	1.06		
			Root Bay	RB-23-1227	84.8	90.2	5.5	0.14		
			Root Bay	RB-23-1227	100.1	107.5	7.3	1.18		
			Root Bay	RB-23-1227	113.2	115.4	2.2	0.68		
			Root Bay	RB-23-1228	140.5	142.5	2.0	0.15		
			Root Bay	RB-23-1228	154.4	161.4	7.0	0.95	4.7m @ 1.36% from 156m	
			Root Bay	RB-23-1229	46.0	51.8	5.7	1.08		
			Root Bay	RB-23-148	62.8	69.7	6.9	1.18		
			Root Bay	RB-23-148	221.7	227.2	5.5	0.43		
			Root Bay	RB-23-148	238.4	242.8	4.4	0.32		
			Root Bay	RB-23-148	251.3	253.5	2.2	1.09		
			Root Bay	RB-23-148	257.7	263.7	5.9	1.46		

Criteria	JORC Code explanation	Commentary								
	explanation				1 1					
		R	Root Bay	RB-23-148	354.4	356.5	2.2	1.42		-
		R	Root Bay	RB-23-152	152.4	169.2	16.8	1.57		-
		R	Root Bay	RB-23-156	37.1	52.5	15.4	1.65		
		R	Root Bay	RB-23-169	322.5	326.4	3.9	0.02		_
		R	Root Bay	RB-23-174	198.2	201.0	2.8	0.05		_
		R	Root Bay	RB-23-213	168.2	173.2	5.1	1.13		-
		R	Root Bay Deeps	RB-24-001	3.5	11.6	8.1	1.56		_
		R	Root Bay Deeps	RB-24-001	288.4	293.0	4.5	1.17		_
		R	Root Bay Deeps	RB-24-001	317.3	324.3	7.1	1.35		_
		R	Root Bay Deeps	RB-24-001	378.3	394.6	16.3	1.27		_
		R	Root Bay Deeps	RB-24-001	428.9	431.6	2.7	1.53		
		R	Root Bay Deeps	RB-24-001	438.4	441.2	2.8	1.47		
		R	Root Bay Deeps	RB-24-002	106.5	108.6	2.1	1.03		
		R	Root Bay Deeps	RB-24-002	192.5	199.1	6.6	0.40		
		R	Root Bay Deeps	RB-24-002	215.4	219.6	4.2	1.39		
		R	Root Bay Deeps	RB-24-002	247.9	254.0	6.1	1.13		
		R	Root Bay Deeps	RB-24-002	293.3	297.1	3.8	0.45	2.5m @ 0.65% from 294.3m	
		R	Root Bay Deeps	RB-24-002	399.5	406.5	7.1	0.03		
		R	Root Bay Deeps	RB-24-002	512.4	516.9	4.5	1.30		
		я	Root Bay Deeps	RB-24-002	549.5	556.1	6.6	1.49		
		R	Root Bay Deeps	RB-24-002	564.5	570.5	6.0	0.41	2m @ 1.11% from 564.5m	
		R	Root Bay Deeps	RB-24-002	611.9	629.2	17.3	1.80		
		я	Root Bay Deeps	RB-24-003	369.6	371.8	2.2	0.12		
		R	Root Bay Deeps	RB-24-003	523.6	527.1	3.5	0.92		
		я	Root Bay Deeps	RB-24-003	558.3	564.6	6.3	0.23		
		R	Root Bay Deeps	RB-24-003	753.3	756.3	3.0	0.02		
		R	Root Bay Deeps	RB-24-004	136.4	145.6	9.3	1.10		
		R	Root Bay Deeps	RB-24-004	167.4	173.7	6.3	1.58		
		R	Root Bay Deeps	RB-24-004	196.6	202.4	5.8	0.70		
		R	Root Bay Deeps	RB-24-004	336.6	342.8	6.3	0.62		
		R	Root Bay Deeps	RB-24-004	476.4	485.5	9.1	1.57		

Criteria	JORC Code explanation	Commentary								
		Roo	t Bay Deeps	RB-24-004	491.9	497.1	5.2	1.18		
		Roo	t Bay Deeps	RB-24-004	509.7	527.3	17.6	1.44		
		Roo	t Bay Deeps	RB-24-004	533.4	535.5	2.0	1.69		
		Roo	t Bay Deeps	RB-24-004	539.0	542.1	3.2	1.12		
		Roo	t Bay Deeps	RB-24-004	560.1	562.2	2.1	1.48		
		Roo	t Bay Deeps	RB-24-005	161.8	163.9	2.2	0.64		
		Roo	t Bay Deeps	RB-24-005	258.0	260.9	2.9	1.18		
		Roo	t Bay Deeps	RB-24-005	268.5	272.2	3.7	0.99		
		Roo	t Bay Deeps	RB-24-005	311.2	315.4	4.2	1.00		
		Roo	t Bay Deeps	RB-24-005	416.4	421.7	5.3	1.20		
		Roo	t Bay Deeps	RB-24-005	536.3	542.4	6.1	0.94	4m @ 1.31% from 537.8m	
		Roo	t Bay Deeps	RB-24-005	623.2	634.9	11.7	1.32		
		Roo	t Bay Deeps	RB-24-005	728.4	737.4	8.9	1.60		
		Roo	t Bay Deeps	RB-24-005	745.7	750.9	5.2	1.76		
		Roo	t Bay Deeps	RB-24-006	68.8	73.6	4.8	1.12		
		Roo	t Bay Deeps	RB-24-006	78.6	85.6	7.0	0.77	3.5m @ 1.36% from 81.6m	
		Roo	t Bay Deeps	RB-24-006	322.8	329.1	6.3	0.18		
		Roo	t Bay Deeps	RB-24-006	334.4	338.0	3.6	0.50		
		Roo	t Bay Deeps	RB-24-006	499.0	502.8	3.8	0.08		
		Roo	t Bay Deeps	RB-24-007	171.8	178.7	6.9	1.63		
		Roo	t Bay Deeps	RB-24-007	195.3	203.0	7.6	0.54	2.7m @ 0.66% from 195.4m	
		Roo	t Bay Deeps	RB-24-007	213.5	218.3	4.9	1.62		
		Roo	t Bay Deeps	RB-24-007	375.9	380.5	4.6	1.40		
		Roo	t Bay Deeps	RB-24-007	512.5	518.2	5.7	1.17		
		Roo	t Bay Deeps	RB-24-008	85.2	97.5	12.3	0.71		
		Roo	t Bay Deeps	RB-24-008	109.4	112.2	2.8	0.67		
		Roo	t Bay Deeps	RB-24-008	316.3	321.8	5.5	0.76		
		Roo	t Bay Deeps	RB-24-008	390.6	396.9	6.3	1.30	4.1m @ 1.53% from 390.6m	
		Roo	t Bay Deeps	RB-24-008	410.7	428.0	17.3	1.43	2.8m @ 1.55% from 410.7m	
		Roo	t Bay Deeps	RB-24-008	410.7	428.0	17.3	1.43		
		Roo	t Bay Deeps	RB-24-008	463.3	465.4	2.2	0.41		

Criteria	JORC Code	Commentary								
	explanation		1						I	
		Root B	Bay Deeps	RB-24-008	475.5	478.7	3.2	1.44		-
		Root B	Bay Deeps	RB-24-008	493.6	497.8	4.2	0.38		-
		Root B	Bay Deeps	RB-24-009	234.3	236.9	2.5	1.27		
		Root B	Bay Deeps	RB-24-009	248.6	253.2	4.6	0.83	2.6m @ 1.35% from 250.6m	-
		Root B	Bay Deeps	RB-24-009	289.7	293.3	3.6	1.99		-
		Root B	Bay Deeps	RB-24-009	363.2	368.6	5.3	0.70		-
		Root B	Bay Deeps	RB-24-009	415.0	420.2	5.2	1.12		-
		Root B	Bay Deeps	RB-24-009	529.9	533.3	3.4	0.56	2m @ 0.77% from 530.9m	-
		Root B	Bay Deeps	RB-24-009	540.3	544.9	4.6	0.64		-
		Root B	Bay Deeps	RB-24-009	557.0	559.1	2.1	0.03		-
		Root B	Bay Deeps	RB-24-009	663.3	674.5	11.3	1.22		-
		Root B	Bay Deeps	RB-24-009	764.5	768.2	3.7	1.78		-
		Root B	Bay Deeps	RB-24-009	773.6	779.6	6.0	0.82	3.3m @ 1.37% from 773.6m	-
		Root B	Bay Deeps	RB-24-009	806.0	808.4	2.4	1.50		-
		Root B	Bay Deeps	RB-24-010	277.5	281.0	3.5	0.09		-
		Root B	Bay Deeps	RB-24-010	288.9	295.1	6.3	0.43	3.6m @ 0.71% from 288.9m	-
		Root B	Bay Deeps	RB-24-010	448.5	451.3	2.8	0.07		-
		Root B	Bay Deeps	RB-24-011	14.8	21.5	6.7	0.67	5m @ 0.89% from 16m	-
		Root B	Bay Deeps	RB-24-011	102.8	108.9	6.1	1.72		-
		Root B	Bay Deeps	RB-24-011	118.8	121.2	2.4	1.42		-
		Root B	Bay Deeps	RB-24-011	125.6	132.6	7.0	1.29		-
		Root B	Bay Deeps	RB-24-011	334.6	338.2	3.5	1.32		-
		Root B	Bay Deeps	RB-24-011	474.0	482.0	8.0	0.82		-
		Root B	Bay Deeps	RB-24-011	487.5	491.7	4.3	1.61		-
		Root B	Bay Deeps	RB-24-011	512.1	514.7	2.5	1.61		-
		Root B	Bay Deeps	RB-24-011	553.8	558.9	5.1	0.90		-
		Root B	Bay Deeps	RB-24-011	582.8	586.2	3.4	0.21		-
		Root B	Bay Deeps	RB-24-011	589.9	592.0	2.1	0.07		-
		Root B	Bay Deeps	RB-24-012	43.3	47.5	4.2	0.82	2.5m @ 1.34% from 45m	-
		Root B	Bay Deeps	RB-24-012	325.4	327.7	2.3	1.30		-
		Root B	Bay Deeps	RB-24-012	342.8	346.8	4.0	1.24		<u>]</u>

Criteria	JORC Code	Commentary							
ontena	explanation	Commentary							
	•		1				[
			Root Bay Deeps	RB-24-012	393.6	396.7	3.1	1.83	
			Root Bay Deeps	RB-24-012	469.5	473.4	3.9	1.76	
			Root Bay Deeps	RB-24-012	578.0	588.6	10.5	0.94	6.2m @ 1.46% from 582.4m
			Root Bay Deeps	RB-24-012	735.4	738.7	3.3	1.10	
			Root Bay Deeps	RB-24-012	746.0	752.2	6.2	0.39	2m @ 0.89% from 747m
			Root Bay Deeps	RB-24-012	856.1	861.6	5.5	0.43	
			Root Bay Deeps	RB-24-012	865.9	869.3	3.4	1.03	
			Root Bay Deeps	RB-24-012	902.0	907.0	5.0	0.14	
			Root Bay Deeps	RB-24-013	46.3	51.7	5.4	1.46	
			Root Bay Deeps	RB-24-013	322.2	327.2	5.0	1.68	
			Root Bay Deeps	RB-24-013	371.9	376.8	4.9	1.10	
			Root Bay Deeps	RB-24-013	436.8	441.0	4.2	0.23	
			Root Bay Deeps	RB-24-013	564.6	572.1	7.5	0.72	2m @ 1.27% from 564.6m
			Root Bay Deeps	RB-24-013	671.0	688.3	17.3	1.18	
			Root Bay Deeps	RB-24-013	815.6	822.1	6.5	1.25	
			Root Bay Deeps	RB-24-013	844.1	852.0	7.9	1.15	
			Root Bay Deeps	RB-24-014	15.7	22.8	7.2	0.48	4.2m @ 0.71% from 17.7m
			Root Bay Deeps	RB-24-014	346.5	358.0	11.6	0.99	7.5m @ 1.41% from 346.8m
			Root Bay Deeps	RB-24-014	380.8	391.7	10.9	1.39	7.511 @ 1.41% 11011 340.811
					397.8	401.7	4.0	1.39	
			Root Bay Deeps	RB-24-014					
			Root Bay Deeps	RB-24-014	439.5	441.5	2.0	0.10	
Other	 Other exploration 	 GT1 completed a high re 	solution Helibori	ne Magnetic o	geophysica	survey ove	er the prop	erty in Ju	ly 2022. The survey was und
substantive	data, if	using their Robinson R-	44 and EC120B h	elicopters.					
exploration	meaningful and	 Survey details, 1,201 line 	-km, 50m line sp	oacing, direct	tion 179 deg	rees to cro	sscut pegr	natite str	ike, 50m altitude. Control li
ata	material, should	perpendicular to these l	ines at 500m spa	acing.					
	be reported	 Images have been receit 	ved Total Magne	tics.					
	including (but not								
	limited to):								
	geological								
	observations;								
	geophysical								
	survey results;								
	,								
	geochemical								

Criteria	JORC Code explanation	Commentary
	survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Interpretation was completed by Southern Geoscience Several pegmatite targets were identified based on structural interpretation of the magnetic response of basement formations. Lithium vector analysis from existing drill data and surface samples was undertaken by Dr Nigel Brand, a geochemist from Portable Spectral Services in Perth Western Australia. Dr Brand formulated an index for identifying potential LCT hosted pegmatites both in greenstone and pegmatite host rocks.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further geological field mapping of anomalies and associated pegmatites at Root and regional claims Sampling country rock to assist in LCT pegmatite vector analysis and target generation. Continuation of detailed mining studies Further exploration and extension of the Root Bay pegmatites discovered to date.

Section 3 Estimation and Reporting of Mineral Resources – (McCombe and Root deposit)

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Data was imported into the database directly from source geology logs and laboratory csv files. Was then passed through a series of validation checks before final acceptance of the data for downstream use.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 A site visit to the Root area was undertaken by the Competent Person (John Winterbottom) between 14th and 15th March 2023 and again between the 22nd to 24th August 2023; general site layout, drilling sites, diamond drilling operations were viewed, plus diamond core in the storage facility Thunder Bay.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation The factors affecting continuity both of grade and geology. 	 There is sufficient confidence in the geological interpretation of the McCombe and Root Bay deposits supported by diamond drilling; Areas of uncertainty or low levels of potential economic extraction have been assigned a low level of confidence within the block model or have not been classified and are not included as part of the MRE. Interpretation was made directly from pegmatites noted in geological logs and confirmation through core photographs. Wireframes boundaries were snapped to geological intercepts along the drill trace. Pegmatite intrusions were used to constrain the mineral resource estimation. Alternative geological interpretation would have a minimal effect on the resource estimate.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 McCombe The deposit consists of 6 LCT pegmatite units of varying thicknesses and attitudes. The McCombe deposit has a total strike extent of approximately 1,500m and has been drilled to a down dip depth of over 250m. McCombe's pegmatites varying in strike direction from east-west to southwest-northeast and all dip towards the south or southeast at varying degrees of inclination ranging from 40 to 70 degrees. Root Bay The deposit consists of 20 LCT pegmatite units of varying thicknesses and attitudes. The Root Bay deposit has a total strike extent of approximately 300m along a 1300m trend and has been drilled to a down dip depth of nearly 1,200m (700m from surface) The pegmatites all dip to the south-southeast to southeast at approximately 25-35 degrees with pegmatite RB006 steepening to over 60 degrees dip and rotating in dip direction to the southeast below 0m elevation (400m below
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include description of computer software and 	 ground). The pegmatites are stacked and occur along a 1,500m east-west corridor. An Ordinary Kriging (OK) grade estimation methodology has been used for Li₂O in the Mineral Resource Estimate which is considered appropriate for the style of mineralisation under review. OK was also applied to important potential biproduct or deleterious elements, Ta₂O₅, K, Fe, Ca, Mg, and S at Root Bay and Ta₂O₅, K, Fe and S at McCombe. Geological units were interpreted in Leapfrog software version 2022.1.1 at McCombe and later 2023.2.3 at Root Bay from geological logs and core photography references. Each pegmatite was assigned its own domain and drill intercepts flagged with the corresponding domain name. Wireframes were also generated for the enclosing country rock including, the glacial overburden, felsic intrusives

www.greentm.com.au

Criteria	JORC Code explanation	Commentary
	 parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	Commentary pegmatite units. L120 showed poor correlation with the other elements of interest. Hard boundaries were used for the estimation of each domain Data statistics were evaluated for each element within each domain including mean, coefficient of variation and grade distribution. McCombe • Most domains showed a log normal distribution. John Pegmatite, the thickest unit, showed a bimodal distribution of LLO. A high-grade sub-domain was generated to better confine the two populations. • A 0.5% LLO envelope was created within the John Pegmatite using Leapfrog numerical modelling to better sub-domain the higher-grade zones within the pogmatite. Root Bay • • Most pegmatites within the Root Bay deposit showed low lithium variability and did not require further sub-domaining. Sample data was composited to Im down-hole composites, while honouring geological contacts at both deposits. Residual lengths added to the last interval. Variography was carried out to identify extreme outliers, using a combination of plots, and histograms and coefficient of variation. A combination of top-cuts and search arage clamping restrictions have been applied to some of the estimated elements to limit the impact of outlier values within each domain. . Usriography • Variograms models were constructed for each element estimated for each pegmatite orientated to each pegmatite orientation. . Domains that

Criteria	JORC Code explanation	Commentary
		 No reconciliation data is available.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	Tonnages are estimated on a dry basis
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The cut-off was derived from mining and processing costs and recoveries derived from works carried out at GTI's Seymour project or industry experience from other similar projects advised by Primero, a 100% owned NRW Holdings subsidiary.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Open-pit optimisation was performed on a regularised to 2.5mE x 5mN x 2.5mRL model assuming a 5% dilution as well as 5% ore loss was applied to the model. The dilution considered the highly visual contrast of the mineralisation to waste and its impact on ore/waste segregation capabilities at the grade control phase of mining and overall slope angles of 55 degrees. Open pit mineralisation is assumed to be mined using conventional drill and blast load with 3 x 250t Class and 1 x 120t class excavators and 140t trucks. Underground stope optimisation was considered outside the US\$2500 open pit optimisation shell and used 10mE x 10mN x 4mRL panels. Classified blocks within panels with an average grade above 0.5% Li20 were included in the mineral resource inventory. Panels assumed a dilution factor of 0.5m on both the footwall and hanging wall surfaces and an ore recovery of 80%. Underground assumes stable ground conditions and uses spans up to a hydraulic radius of 7m (20m x 45m). Underground is assumed to be mined using long hole open stoping and paste fill used to improve mine recovery.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 To date, limited metallurgical testwork and investigations have been conducted. In 2023, preliminary testwork was conducted at SGS Mineral Services Lakefield (SGS) and reported in the Company's 2023 PEA. The testwork included sample preparation, grindability tests, ore characterization, heavy liquid separation (HLS) and whole of ore flotation tests. Two composites were prepared from a total of 238kg of footwall shoulder (waste) material and pegmatite from Root bay , with each composite blended to contain approximately 30% and 10% waste rock dilution respectively. Sample characterisation of the pegmatite, waste and (two) composite materials demonstrated Li2O content around 1.16% for the pegmatite sample, and 1.05% and 0.95% in Composite 1 and Composite 2 respectively. <u>HLS</u>: The composites were subjected to HLS test program and all materials were evaluated using SGS' industry-standard process conditions, including crushing to size, screening at +3.3mm, -3.3mm and -0.85mm particle sizes, running HLS tests at various SG target set points (2.60 - 2.95 in 0.05 increments), collecting sub samples and subjecting remainder of samples to dry magnetic separation to evaluate parameters and extent of iron (Fe203) removal. HLS results for both composites, targeting a 5.5% spodumene concentrate grade, demonstrated recoveries below typical industry benchmarks for DMS performance, indicating either a hybrid or whole ore flotation may be a more suitable flowsheet.
		<u>Flotation:</u> Three bench-scale whole ore flotation tests were then carried out on the 10% dilution composite, using test parameters based on SGS Lakefield's industry-standard mica and spodumene flotation reagent scheme. The sample was ground to a P ₁₀₀ of 300 μm and underwent magnetic separation and desliming prior to flotation.

Criteria	JORC Code explanation	Commentary
		For the three tests, concentrate grades of 4.9%,5.4% and in excess of 5.5% were achieved with recoveries of 64%,68% and 53% respectively.
		The results of these preliminary tests demonstrated that neither HLS /DMS nor whole of ore flotation technique may be suitable on a standalone basis for the prepared composites, acknowledging that the tests were preliminary and limited in nature, and composite samples not representative of eventual mine plans.
		Consequently, a hybrid DMS and flotation flowsheet has been proposed for the project and the basis for the metallurgical recovery. The flowsheet may maximise spodumene production and recovery by employing both techniques, with a precedent for flowsheet and recovery being considered or employed for several lithium projects globally.
		Future testwork programs will focus on selection of composites to be more representative of mine plans for the initial years of operation, and with associated representation of mine dilution. Testwork will reevaluate both HLS/DMS and flotation methods both on a standalone and hybrid flowsheet basis.
		Further, future consideration of additional flowsheet technologies such as ore sorting and multiple magnetic separation steps may assist to mitigate the impact of higher iron grades on both final concentrate grade and spodumene recovery that are known challenges within the lithium processing industry.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	Waste rock characterization work has not begun at the Root project to date.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process 	 At McCombe 1,530 bulk density measurements were made by GT1 on ½ NQ core 20cm billets using water immersion (Archimedes) techniques. 217 of the measurements were directly on pegmatite core. 2 pegmatite measurements were rejected as being anomalously low, 1.3 and 1.96. GT1 also tested 9,345 bulk densities on Root Bay ½ NQ drill core with 1,589 measurements made directly on pegmatite core with 40 outlier results ignored due to extreme high and lows or testing errors. McCombe pegmatites bulk density measurements averaged 2.70 whilst Root Bay pegmatites averaged 2.72. No bulk density data is available for the largely glacial cover over the deposit due to the difficulty in recovering this material in the drilling process. This material is volumetrically negligible ranging in depths from 0 to24m and averaging around 5m. An assumed bulk density of 2.2 was used for overburden. There is a weak to moderate correlation between bulk density and Li₂O grade (Correlation Coefficient 53%) and so an assumed average pegmatite bulk density was used.

Criteria	JORC Code explanation	Commentary
	of the different materials.	
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The McCombe Mineral Resources have been classified Inferred based on drill spacing and geological continuity confidence levels. Root Bay has been drilled on an approximate grid of 50mE x 50mN above the100mRL level, the bulk of which has been classified as Indicated if the grade and pegmatite width were sufficient to support open-pit or underground mining constraints. Root Bay below the 100mRL has largely been classified as Inferred due to the broader spaced drilling ranging from 100mE x 50mN to 150mE x 50mN. The Resource models use a classification scheme based upon drill hole spacing plus block estimation parameters, including kriging variance, number of composites in search ellipsoid informing the block cell and average distance of data to block centroid. The results of the Mineral Resource Estimation reflect the views of the Competent Person.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 No audits or reviews have been undertaken by GT1
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence due to the procedures used. 	 The relative accuracy of the Mineral Resource is reflected in the reporting of the Mineral Resource as being in line with the guidelines of the 2012 JORC Code. The statement relates to local estimates of tonnes and grade, with reference made to resources above a certain cut-off that are intended to assist mining studies. The deposits are still undergoing project development assessment phases, hence no production data is available to confirm the accuracy of the MRE's.