

ASX RELEASE: 23 April 2025

Kookynie Gold Project, WA - Exploration Update

ACCELERATED EXPLORATION PROGRAM UNDERWAY AT KOOKYNIE AS REVIEW IDENTIFIES NEW TARGETS

Independent detailed review identifies numerous unexplored priority targets, adding to known areas of high-grade mineralisation

KEY HIGHLIGHTS

- An **independent technical review** of the Kookynie Gold Project, which has seen minimal modern exploration, has highlighted the significant potential upside at the Project, including:
 - Known high-grade prospects such as McTavish, Leipold and Champion all of which remain open in all directions and under-explored;
 - Numerous promising structural settings and anomalous soil assays identified from a review of historical exploration data and interpretation of higher resolution magnetics and geochemistry – all of which remain largely under-explored; and
 - Confirmation that the historical Cosmopolitan and Altona mines, which produced 331,000 ounces at 15g/t Au¹ up to 1922 and 74,000 ounces at 30g/t² Au up to 1965 respectively³ have had little or no modern exploration and remain high-priority targets.
- Soil and auger sampling programs have just been completed across three of the highest priority targets – and the three largest Kookynie tenements – identified from the review, being the Ithaca, Wandin and Mulga Plum prospects:
 - Ithaca located ~1km directly along strike from Genesis Minerals' Orient Well Project, part of its Ulysses Operations (7.9Mt @ 3.4g/t Au⁴) multiple historic workings and potential for Orient Well-style mineralization.
 - **Wandin** several gold anomalies of up to 230ppb Au identified from 2024 auger sampling, with in-fill auger sampling currently underway.
 - Mulga Plum located at the western end of the historical Niagara and Kookynie Goldfields within the Malcolm greenstone belt soil sampling underway targeting structural features and around historical drilling results from Ardea Resources Limited, which previously returned 2m @ 8.84 g/t Au from 14m (AJAR0009)⁵.
- Initial assays from the above soil and auger programs are anticipated in the coming weeks with drilling expected to follow at high priority targets.
- Drilling at the Yundamindra Gold Project expected to re-commence shortly.

¹ Refer to Arika ASX Announcement "Extremely High-Grade Gold from Historical Underground Sampling at The Cosmopolitan Fold Mine" dated 9 June 2020

² Refer to Arika ASX Announcement "Further Impressive Drill Results at Altona, Kookynie Gold Project" dated 18 March 2021

 $^{^{\}rm 3}$ Refer Cautionary Statement on page 12

⁴ Refer to Genesis Minerals Resources & Reserves Statement March 2024, ASX: GMD

⁵ Refer to Arika ASX Announcement "Continued Consolidation of Area Around Kookynie Gold Project" dated 23 November 2020

Arika Resources Limited (ASX: ARI) ("Arika" or "Company") is pleased to report encouraging initial outcomes from the first phase of an independent technical review of its 80% owned **Kookynie Gold Project** (20% Nex Metals (ASX: NME)), located 180km north of Kalgoorlie in the world-class Eastern Goldfields mining district of Western Australia.

Following several years of reduced activity and with its recent focus on the Yundamindra Gold Project, the Company commissioned an independent review of the Kookynie Gold Project by an experienced technical consultant. The focus of the review was to independently evaluate the prospectivity of the Kookynie Project, identify the highest priority targets and plan the next phases of exploration.

Like Yundamindra, the Kookynie Gold Project has significant gold endowment but has seen minimal modern exploration over the ~110km² of tenure.

Initial exploration by Arika from 2019 to 2021 largely focused on the known mineralisation at the McTavish, Leipold and Champion deposits, all located on granted Mining Leases, with over 30,000m of completed drilling at the time which produced some outstanding results, including ⁶:

- **10m @ 7.44 g/t Au** from 108m (LPRC0049)
- 9m @ 7.91 g/t Au from 34m (LPRC0001)
- 8m @ 9.33 g/t Au from 97m (LPRC0051)
- 6m @ 9.4 g/t Au from 26m (LPRC0003)
- 5m @ 17.9 g/t Au from 48m (McTRC0005)
- 4m @ 26.91 g/t Au from 65m (LPRC0077)
- 4m @ 16.3 g/t Au from 42m (LPRC0012)

Feedback from the independent review has been very encouraging, with the Kookynie Project viewed either as substantially unexplored or under-explored, with strong potential for new discoveries undercover – such as the recent nearby Swiftsure discovery by Carnavale Resources Limited⁷ – and for resource growth at the existing prospects, including Leipold, McTavish and Champion.

The pipeline of exploration opportunities is significant, including the greenfield opportunities set out above and below, together with the historical Cosmopolitan and Altona mines – which produced 331,000 ounces at 15g/t Au¹ up to 1922 and 74,000 ounces at 30g/t² Au up to 1965 respectively but have also have seen little or no modern exploration and which Arika will seek to rectify over the coming period.

Arika's Managing Director, Justin Barton, said:

"The Kookynie Gold Project has become somewhat of a forgotten project in our portfolio given our recent focus at Yundamindra – which continues to emerge as a large-scale discovery and growth opportunity. Despite this, Kookynie shares many similarities with Yundaminda in that it was a significant historical producer in the early 1900's, has seen virtually no modern exploration, and remains highly prospective for a new generation of discoveries.

"Previous drilling by Arika returned numerous high-grade results – with most of this early drilling focused on the known mineralisation at the McTavish, Leipold and Champion prospects, which remain open along strike and at depth. Given the success of the early drilling, no greenfield exploration was undertaken across a large portion of the undercover tenure.

"Following the independent review, a number of new priority targets have been identified such as the Ithaca prospect, which sits just ~1km along strike from Genesis Minerals' Orient Well Project. This has prompted us to accelerate exploration activities, with detailed soil and auger programs underway over three of the highest priority areas. We look forward to receiving the results of this program and refining our target pipeline for upcoming drill testing, in parallel with ongoing work at Yundamindra."

⁷ Refer to Carnavale ASX Announcement "Robust Maiden Resource and Positive Scoping Study Kookynie" dated 13 June 2024 (ASX: CAV)

-

⁶ Refer to Arika ASX Announcements "Kookynie Gold Drill Hole Intercepts" dated 21 January 2020, "Spectacular High Grade Results from First Assays at Kookynie" dated 25 June 2020, "Kookynie Leipold Continues to Deliver Outstanding Results" dated 25 August 2020 and "Assays up to 118 g/t Au from Leipold. Kookynie Gold Project" dated 3 May 2021.

Kookynie Gold Project Review

The Kookynie Gold Project is located approximately 180km north of the town of Kalgoorlie and represents an opportunity to discover high-grade gold deposits by leveraging off historical and recent exploration within the area undertaken by Arika and past explorers.

The Kookynie Project hosts some of Arika's key gold assets, which include the historical mining centres of Diamantina-Cosmopolitan-Cumberland (known as the "DCC trend"), as well as the McTavish, Leipold, Champion and Altona prospects (Figure 1). These key prospects all have shallow mineralisation, are all located on granted Mining Leases and are all situated in close proximity to a number of gold processing mills easily accessible by road, providing a unique opportunity for the Company to unlock significant value.

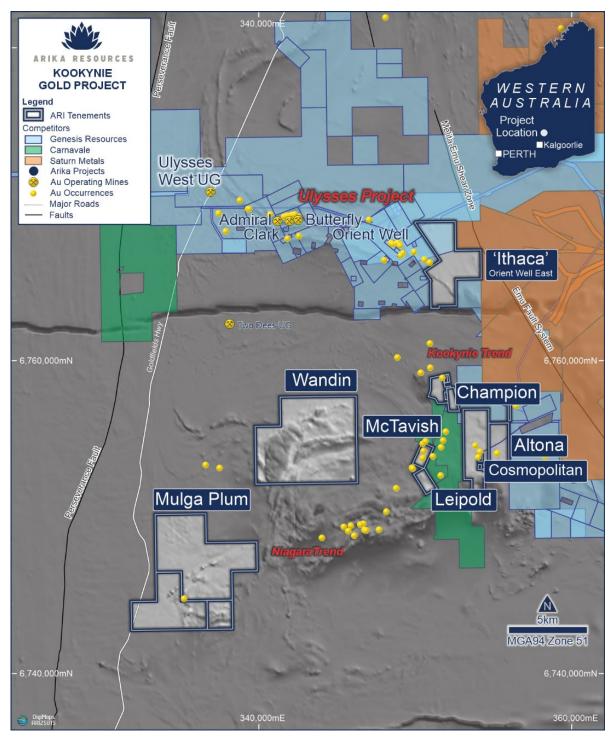


Figure 1: Kookynie Gold Project Location Map

As part of the Company's strategy to advance the Kookynie Gold Project in conjunction with the Yundamindra Gold Project, the Company commissioned an independent technical review of the Kookynie Project in December 2024. The initial feedback from the review of the Kookynie Gold Project, has identified and highlighted several opportunities for the Company, including:

- **Known Mineralisation:** Known high-grade prospects, including McTavish, Leipold and Champion all remain open in all directions and under-explored;
- New discoveries undercover: A review of historical exploration data and interpretation of higher
 resolution magnetics and geochemistry has identified a multitude of promising structural settings
 and anomalous soil assays that remain largely untested by systematic shallow drilling; and
- **Historical Mines:** The Cosmopolitan and Altona mines, which produced 331,000 ounces at 15g/t Au¹ up to 1922 and 74,000 ounces at 30g/t² Au up to 1965 respectively, have had little or no systematic drilling at depth or along strike.

The first phase of the review has focused on reviewing all historical data and interpreting magnetics and geochemistry to identify structural settings and anomalous soil assays on the under-explored and unexplored areas of the project.

This has identified several high-priority targets, with three key areas being the Ithaca prospect, the Wandin prospect and the Mulga Plum prospect.

These are discussed in further detail below.

The Ithaca Prospect

The Ithaca prospect is located at the northern end of the Kookynie Project (Figure 1), ~1km along strike from Genesis Minerals' Orient Well Project, part of its Ulysses Operations.

Arika has not previously conducted any exploration on this tenement, however the review indicated that numerous gold targets remain untested. The tenement has exposed residual saprolite and areas of shallow alluvium cover. Several historical small mines, prospecting shafts, pits and costeans are still exposed.

Most modern exploration on this prospect was cursory or first-pass, site specific gold exploration in the 1980's.

Ithaca has the potential to host both Orient Well and Orient Well NW style gold mineralisation. The host lithologies of Orient Well and Orient Well NW as well as the host structures have been interpreted to persist into the Ithaca prospect. All these styles of gold mineralisation are associated with quartz veining plus silica - sericite and pyrite alteration of the generally felsic host rocks.

Importantly, all of these styles are known to host substantial remaining mineable gold resources e.g. the Orient Well deposit (5.44Mt @ 1.1g/t Au for 189koz) and the newly discovered Orient Well NW deposit (0.6Mt @ 1.2g/t Au for 23,000 oz) – both using a 0.5 g/t Au cut-off (Genesis March 2021)⁸. Both of these deposits are open and have not been closed off in recent drilling by Genesis.

More recent explorers acquired higher resolution magnetics over part of the tenement, however, no followup was initiated. This high-resolution magnetic data has now helped to identify new untested targets.

Commencing in late March 2025, a total of 996 x -2mm soil were collected and dispatched to LabWest for Ultrafine analysis (Au and 52 multi-elements) (Figure 2). It is expected that these results will be available by late April or early May and may show zones of coherent gold and possibly pathfinder anomalism that will guide potential follow-up air-core or RC drilling later in 2025.

⁸ Refer Geneses Minerals Limited (GMD) ASX Announcement "Ulysses Mineral Resource Increase to 1.6 Million Ounces" dated 29 March 2021

-

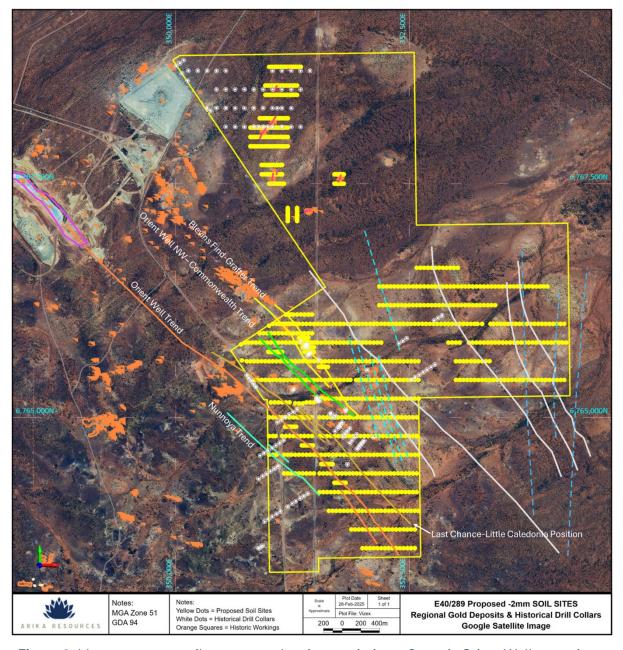


Figure 2: Ithaca prospect soils program, showing proximity to Genesis Orient Well operations.

The Wandin Prospect

The surface of E40/390 (the Wandin prospect) has no exposed bedrock and is covered by residual and thin transported soils. There are no obvious gold workings at Wandin however the local area, particularly east of the tenement, has many historical gold workings due to less or minimal soil cover.

The historical workings in the Kookynie area are structurally controlled against variable lithologies or within the same host rock. Many structures are interpreted from the airborne magnetics but are essentially untested.

In the last 30 years, the area covered by E40/390 has had variable surface sampling, minor reconnaissance RC drilling and minor selective RAB drilling and higher resolution airborne magnetics.

In 2024, Arika conducted systematic 200m x 200m spaced +2 – 6mm Auger sampling with Au and multielement 4 acid digest ICP analysis (Au: FA with 5ppb DL), which essentially covered the tenement (Figure 3).

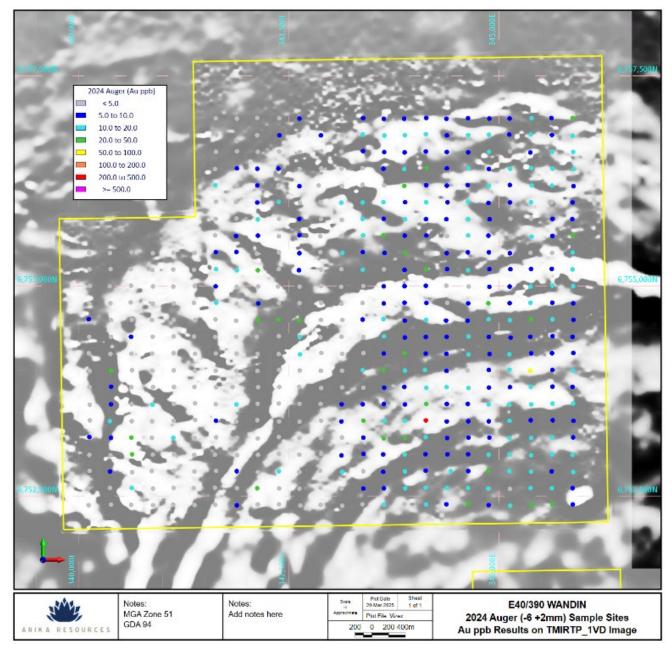


Figure 3: Arika 2024 Soils Program, with anomalous gold sample locations, with best result of 230ppb Au.

Several gold anomalies were highlighted even in areas that were previously soil or lag sampled, with a best result of 230ppb Au returned.

A summary of soil locations and results for all holes are presented in Appendix 1, Table 1.

A review of the results in conjunction with consultant geochemist Steve Sugden, including on-site ground truthing, indicated that the Auger technique and assay methodology accurately reflected the interpreted bedrock geology from the magnetics data.

A 1055 auger sample program has commenced (Figure 4) to tighten-up sample spacing based upon the orientation of the existing geochemical anomalism in sympathy with interpretation of the airborne magnetics features.

It is anticipated that results will be returned in the coming weeks, with the results to guide potential follow-up air-core or RC drill testing.

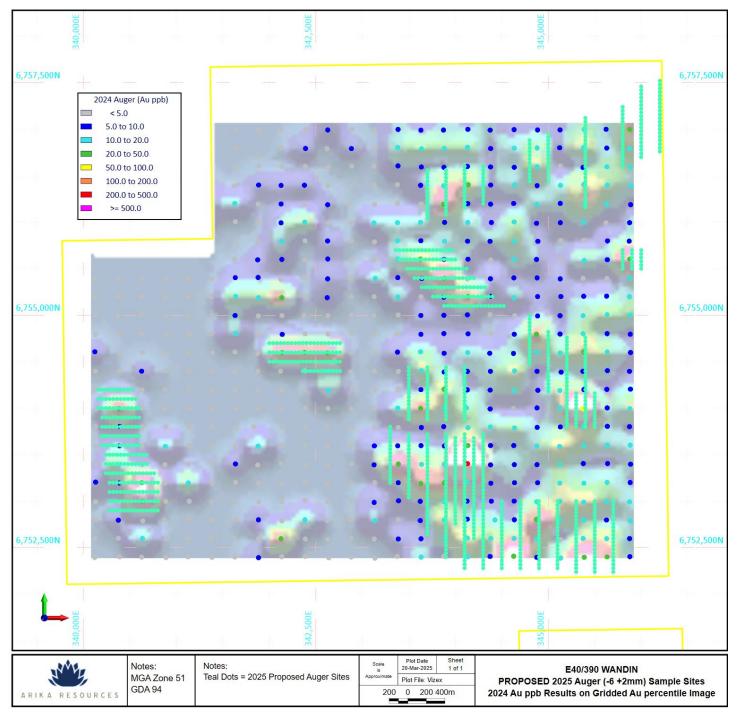


Figure 4: Auger program recently completed at Wandin prospect.

The Mulga Plum Prospect

The Mulga Plum prospect area is located at the western end of the Niagara and Kookynie Goldfields within the Malcolm greenstone belt. This prospect remains unexplored by Arika, however shallow 1,500m RC drilling targeting gold mineralisation was conducted around the historical Mulga Plum gold workings by Ardea Resources in 2019. Significant intercepts returned by Ardea included⁹:

- 2m @ 8.84 g/t Au from 14m (AJAR0009)
- 6m @ 1.22 g/t Au from 10m (AJAR 0011)
- 2m @ 2.96 g/t Au from 42m (AJAR0003) and
- 2m @ 1.25 g/t Au from 38m (AJAR007)

⁹ Refer to Arika ASX Announcement "Continued Consolidation of Area Around Kookynie Gold Project" dated 23 November 2020

7

Interpretation of the regional aeromagnetics indicates numerous structural features, some of these are in same orientations as observed further east in the Niagara line of gold workings or elsewhere in the Kookynie district and almost all of these are untested.

A total of 782 sites were planned for -2mm sieved fraction sampling on variable spaced traverses and sample spacing to test various interpreted features on the magnetics data (Figure 5). The samples have now been collected and dispatched to laboratories for testing, with results anticipate in the coming weeks

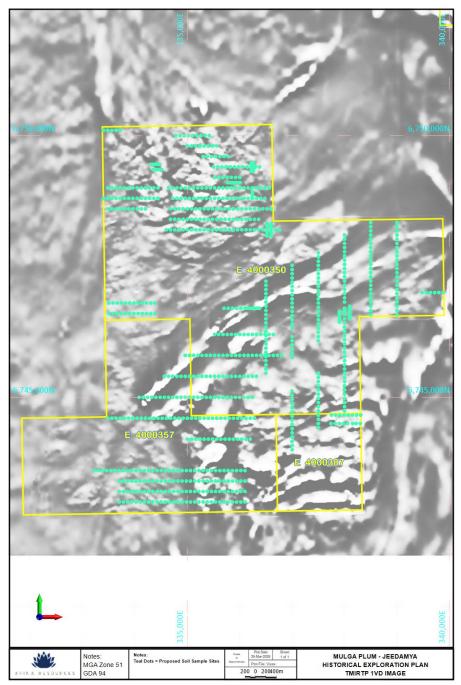


Figure 5: Mulga Plum Soil Sampling locations

Kookynie Gold Project

The Kookynie Gold Project is located in the highly endowed Leonora Laverton area (Figure 6) and presents an opportunity to develop a high-grade gold resource based off historical and recent exploration within the area undertaken by Arika and past explorers.

The Kookynie Project hosts some of Arika's key gold assets, which include the historical mining centres of Diamantina-Cosmopolitan-Cumberland (known as the "DCC trend"), as well as the McTavish, Leipold, Champion and Altona prospects.

These key prospects all have shallow mineralisation, are all located on mining leases and are all situated in close proximity to a number of gold processing mills easily accessible by road, providing a unique opportunity for the Company to unlock significant value.

The Kookynie Gold Project has significant historical and current gold endowment, with the Cosmopolitan Gold Mine producing more than 331,000 ounces between 1895 and 1922 at an average grade of 15g/t Au. The Altona Gold Mine produced 88,700 ounces between 1900 and 1965 at an average head grade of 30g/t Au.

Arika has drilled 380 holes for over 34,000 metres across several deposits, prospects and exploration targets within the Kookynie Gold project since early 2020. This volume of drilling has yielded significant intercepts, with some truly spectacular gold results including, but not limited to:

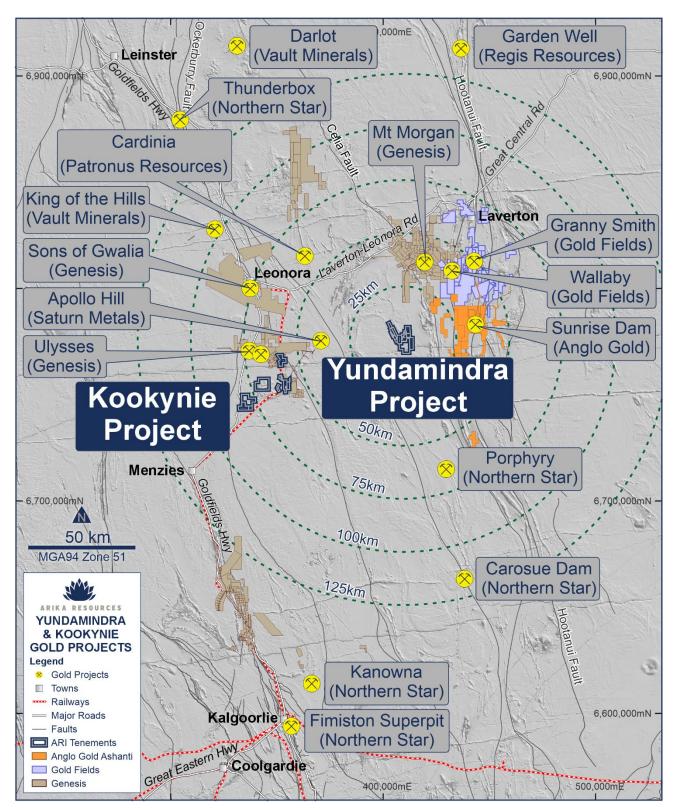
Arika's exploration activities to date have proved that the Kookynie Gold Project has substantial value and the Kookynie area retains significant mineral endowment.

In April 2022, Arika released a maiden JORC 2012 Mineral Resource Estimate for the Leipold, McTavish and Champion Deposits totalling 83,000 ounces of contained gold.

Please refer to Table 2 for the Total Mineral Resource Estimate Breakdown (ref):

Kookynie Gold Project March 2022 Mineral Resource Estimate (0.5g/t Au Cut-off)

	li li	ndicate	d		Inferred			Total		
Deposit	Tonnage	Au	Au	Tonnage	Au	Au	Tonnage	Au	Au	
	kt	g/t	Ounces	kt	g/t	Ounces	kt	g/t	Ounces	
Leipold	450	1.3	19,000	630	1.7	34,000	1,080	1.5	53,000	
Champion				380	1.7	20,000	380	1.7	20,000	
McTavish				120	2.0	8,000	120	2.0	8,000	
Total	450	1.3	19,000	1,130	1.7	62,000	1,580	1.6	81,000	


Table 2 – Kookynie Mineral Resource Estimate Tables. 10

Significant resource upside potential remains at the Kookynie Project, with all prospects open along strike and at depth, and the McTavish South, Cosmopolitan and Altona prospects still to be drilled.

¹⁰ Complete details of the Kookynie Mineral Resources (McTavish, Champion and Leipold deposits) (1.58Mt @ 1.6 g/t Au for 81,000 oz Au) and the associated Competent Persons Statement were published in the ASX Announcement "Kookynie Maiden JORC 2012 Mineral Resource Estimate" by ARI (previously MCT) dated 1st April 2022. Arika Resources Limited reports that it is not aware of any new information or data that materially affects the information included in that Mineral Resource announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and there have been no adverse material changes.

Much of the bedrock geology of interest within the Company's tenure at Kookynie is obscured beneath thin transported and/or residual soil cover and has received little previous exploration. The McTavish East Gold Deposit, a completely 'blind' deposit discovered by Carnavale Resources (ASX: CAV) ~1km south-east of Arika's McTavish Prospect, provides compelling evidence that significant gold mineralisation is still to be found at Kookynie.

Figure 6: Regional Location Plan showing proximity of Yundamindra to Major Deposits, Mines and Processing Facilities.

Next Steps

Kookynie

- Await assay results from Ithaca area, Mulga Plum area soil sampling and Wandin area auger sampling in the coming weeks.
- Interpretation of these results will guide and prioritise targets for drill testing during Q2/3 CY2025.
- Continue detailed review of the Kookynie Project, including Leipold, McTavish, Champion, Cosmopolitan and Altona for targeting of extensional RC drilling.

This announcement is approved by the Board of Arika Resources Limited.

ENQUIRIES

Investors

Justin Barton
Managing Director
+61 8 6500 0202
enquiries@arika.com.au

Media

Nicholas Read Read Corporate +61 8 9388 1474

info@readcorporate.com.au

Competent Person Statement

The information that relates to Exploration Results is based upon information compiled by Mr Steve Vallance, who is a consultant to Arika Resources Ltd. Mr Vallance is a Member of The Australian Institute of Geoscientists (AIG). Mr Vallance has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code 2012). Mr Vallance consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward-looking statements:

- a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies.
- b) involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such risks include, without limitation, resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which the Company operates or supplies or sells product to, and governmental regulation and judicial outcomes; and
- c) may include, among other things, statements regarding estimates and assumptions in respect of prices, costs, results and capital expenditure, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

All forward-looking statements contained in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward-looking statements are not guarantees of future performance and accordingly recipients are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The Company disclaims any intent or obligation to publicly update any forward-looking statements, whether as a result of new information, future events or results or otherwise.

No New Information

To the extent that this announcement contains references to prior exploration results which have been cross referenced to previous market announcements made by the Company, unless explicitly stated, no new information is contained. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

Cautionary Statement

The Production details for the Altona and Cosmopolitan are referenced from publicly available data sources. The source and date of the production data reported has been referenced in the body of this announcement where production data has been reported. The historical production data have not been reported in accordance with the JORC Code 2012. A Competent Person has not done sufficient work to disclose the historical production data in accordance with the JORC Code 2012. It is possible that following further evaluation and/or exploration work that the confidence in the prior reported production data may be reduced when reported under the JORC Code 2012. Nothing has come to the attention of the Company that causes it to question the accuracy or reliability of the historical production data, and an assessment of the additional exploration or evaluation work that is required to report the data in accordance with JORC Code 2012 will be undertaken as part of the Company's development plan.

About Arika Resources Limited

We are focused on delivering value to shareholders through the discovery and development of high-quality gold assets, including its 80% owned Kookynie and Yundamindra Gold Projects (20% owned by Nex Metals (ASX: NME)), in Western Australia.

Arika Resources Limited is continuing to build on the potential large-scale gold footprints at the Yundamindra and Kookynie Gold Projects by expanding on known mineralisation and targeting new discoveries through a pipeline of high priority brownfield and greenfield targets.

Appendix One – JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Results reported in this announcement relate to 528 samples recovered from Auger Drilling on E40/390 Wandin prospect area conducted in June 2024.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 All Auger drilling was conducted by Gyro Australia Pty Ltd, Kalgoorlie, WA. Auger holes were drilled generally to refusal, which averaged 0.5m in the area.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the 	 All sample material was collected at Refusal Depth. No further measures to maximise sample recovery are applicable.

	samples. • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 N/A as sufficient material is collected by sub-sampling to a designated size fraction, see below.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	A brief note (sample depth & colour of material) for each site was also recorded.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples of sieved fraction -6mm +2mm of approximately 300g were collected from refusal depth. These were placed in packets labelled with Sample ID. The Sample ID were cross-referenced with GPS sample location MGA Zone 51 GDA 94 coordinates recorded in the field. This information was subsequently exported to company's database and matched with sample results from the laboratory. No field duplicate samples were prepared. No standards were inserted.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, 	 Geochemical analysis was undertaken by Intertek Genalysis in Perth. The samples underwent routine pulverisation/milling to 80% <75 microns then routine multielement analysis by FA50/OE04 and 4A/MS48 This near-full digest is considered sufficient for this stage of exploration and the weathered nature of the samples. Gold analysis was undertaken with 50-gram Fire Assay with OES finish. The detection limit for gold via this method is 5ppb (0.005ppm). Laboratory QA/QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the inhouse procedures.

	blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	QC results (blanks, duplicates, standards) were in line with commercial procedures, reproducibility and accuracy. • Multi-Element analyses were carried out combining a four-acid digestion with ICP-MS instrumentation. A four-acid digest is performed on 0.25g of sample to quantitatively dissolve most geological materials. Analytical analysis performed with a combination of ICP-OES & ICP-MS. Element analyses include: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, and Zr. • The analytical method employed is appropriate for the styles of mineralisation and target commodity present. • No geophysical tools, spectrometers, handheld XRF instruments were used. • QAQC analysis shows that the lab performed within the specifications of the QAQC protocols. • No external laboratory checks have been completed.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No umpire analysis has been performed. No twinned auger holes were drilled Field data is captured digitally. Field data is delivered electronically to the Company's Database Manager, ERM Technical Mining Services (formerly CSA Global), Perth and stored digitally.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations were based upon dual GPS control. Grid system datum is GDA94 MGA Zone 51 grid Sample location points are of sufficient accuracy given the reconnaissance nature of the exploration being undertaken.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Auger samples were collected on an areascale 200m x 200m grid pattern. Auger sampling will not be used in resource estimation. The sampling was aimed to identify geochemical anomalism.

Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The sampling pattern and sample collection methodology is unbiased to interpreted underlying geological strata or structures. The primary aim is to define any zones of geochemical anomalism and to validate that the sampling technique is grossly reflective of interpreted basement geology.
Sample security	The measures taken to ensure sample security.	Samples were collected by Gyro Australia field personnel with specified -6mm+2mm sieved portion placed in packets with Sample ID's directly labelled. These were delivered directly to Intertek Laboratory in Kalgoorlie in polyweave sacks secured by plastic cable ties.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sugden Geoscience has reviewed the results of the data and concluded that the multi-element data are reflective of basement geology and sampling technique and multi-element assays techniques are appropriate.
		Sugden recommended that a lower detection Au technique should be applied in the future, but for this survey indicated that the Detection Limit was sufficient in highlighting gold anomalous zones. The gold anomalies are worthy of further follow up.
		QA/QC data has been explicitly reviewed by Arika's Database Manager ERM Technical Mining Service's and by ARI in-house technical staff, and results provide a high- level of confidence in the assay data.

Appendix Two – Soil Samples Identification, Location and Results Table

Table: Soil Sample Identification, Location and Results referenced in this announcement.

MGA Zone 51 GDA94		51 GDA94			MGA Zone 51 GDA94				MGA Zone 51 GDA94		
SampleID	East	North	Au_ppb	SampleID	East	North	Au_ppb	SampleID	East	North	Au_ppb
KK0100S	345876	6756998	20	KK0152S	345382	6752796	11	KK0204S	344885	6753199	6
KK0101S	345874	6756789	14	KK0153S	345382	6752989	18	KK0205S	344879	6753393	8
KK0102S	345882	6756595	11	KK0154S	345383	6753194	10	KK0206S	344876	6753593	11
KK0103S	345888	6756393	11	KK0155S	345377	6753405	7	KK0207S	344881	6753794	8
KK0104S	345886	6756189	6	KK0156S	345384	6753594	13	KK0208S	344879	6754003	7
KK0105S	345875	6755995	9	KK0157S	345378	6753801	17	KK0209S	344888	6754193	6
KK0106S	345871	6755797	9	KK0158S	345371	6753994	77	KK0210S	344879	6754397	5
KK0107S	345875	6755603	43	KK0159S	345383	6754201	8	KK0211S	344877	6754606	12
KK0108S	345877	6755400	11	KK0160S	345372	6754397	8	KK0212S	344873	6754796	24
KK0109S	345874	6755199	11	KK0161S	345380	6754605	20	KK0213S	344885	6754992	8
KK0110S	345881	6755000	13	KK0162S	345374	6754802	15	KK0214S	344885	6755201	6
KK0111S	345882	6754796	6	KK0163S	345374	6754995	11	KK0215S	344880	6755402	5
KK0112S	345885	6754599	8	KK0164S	345381	6755204	8	KK0216S	344874	6755600	9
KK0113S	345874	6754397	5	KK0165S	345374	6755396	<5	KK0217S	344888	6755795	7
KK0114S	345884	6754205	9	KK0166S	345387	6755588	16	KK02178	344874	6755989	5
KK01143 KK0115S	345878	6753996	18	KK01603	345382	6755806	<5	KK0219S	344879	6756192	12
KK0116S	345874	6753802	6	KK01675	345380	6755997	10	KK02193	344880	6756393	8
KK0117S	345881	6753603	10	KK0169S	345388	6756196	18	KK0221S	344881	6756596	19
KK0118S	345885	6753398		KK0170S	345382	6756404	19	KK0222S	344880	6756799	13
KK0119S	345881	6753201	7	KK0171S	345373	6756589	8	KK0223S	344885	6756992	7
KK0120S	345874	6752993	10	KK0172S	345379	6756802	19	KK0224S	344632	6756996	6
KK0121S	345882	6752789	10	KK0173S	345387	6756998	12	KK0226S	344634	6756796	11
KK0122S	345875	6752598	9	KK0174S	345127	6756993	6	KK0227S	344634	6756591	8
KK0123S	345877	6752404	7	KK0176S	345122	6756801	7	KK0228S	344636	6756401	11
KK0124S	345622	6756999	8	KK0177S	345130	6756603	<5	KK0229S	344628	6756202	5
KK0126S	345629	6756797	9	KK0178S	345131	6756396	10	KK0230S	344633	6756003	15
KK0127S	345630	6756597	12	KK0179S	345129	6756203	9	KK0231S	344633	6755796	14
KK0128S	345636	6756397	14	KK0180S	345130	6755995	6	KK0232S	344633	6755602	10
KK0129S	345630	6756196	11	KK0181S	345136	6755801	<5	KK0233S	344630	6755402	7
KK0130S	345621	6755994	<5	KK0182S	345132	6755597	<5	KK0234S	344632	6755189	10
KK0131S	345637	6755799	8	KK0183S	345129	6755391	8	KK0235S	344639	6754996	<5
KK0132S	345635	6755597	8	KK0184S	345136	6755201	8	KK0236S	344634	6754795	9
KK0133S	345631	6755395	<5	KK0185S	345127	6754995	6	KK0237S	344626	6754589	9
KK0134S	345628	6755205	8	KK0186S	345127	6754798	5	KK0238S	344637	6754401	17
KK0135S	345633	6755006	16	KK0187S	345129	6754594	13	KK0239S	344637	6754188	11
KK0136S	345633	6754802	8	KK0188S	345138	6754388	8	KK0240S	344626	6753998	<5
KK0137S	345635	6754604	15	KK0189S	345124	6754189	16	KK0241S	344636	6753788	15
KK0138S	345636	6754404	9	KK0190S	345125	6754006	11	KK0242S	344629	6753599	8
KK0139S	345630	6754203	7	KK0191S	345130	6753799	8	KK0243S	344635	6753393	9
KK0140S	345634	6754003	8	KK0192S	345122	6753589	19	KK0244S	344637	6753199	9
KK0141S	345636	6753805	9	KK0193S	345126	6753398	12	KK0245S	344633	6753001	6
KK0142S	345637	6753603	11	KK0194S	345125	6753194	15	KK0246S	344635	6752801	6
KK01428	345638	6753405	6	KK0195S	345125	6752999	16	KK0247S	344632	6752600	12
KK0144S	345633	6753202	13	KK0196S	345122	6752800	14	KK0248S	344628	6752408	47
KK01445	345630	6752999	13	KK0197S	345130	6752589	<5	KK0249S	344374	6752406	6
KK01455	345626	6752798	7	KK01975	345133	6752389	15	KK0251S	344381	6752600	14
KK01403 KK0147S	345628	6752597	17	KK01985	344877	6752396	8	KK02513	344427	6752799	10
KK01475 KK0148S	345633	6752401	20	KK0201S	344873	6752594	18	KK0252S KK0253S	344388	6753000	6
KK0149S	345387	6752397	41	KK0202S	344872	6752804	32	KK0254S	344382	6753193	7
KK0151S	345375	6752599	13	KK0203S	344876	6752994	10	KK0255S	344379	6753391	9

MGA Zone 51 GDAS		51 GDA94			MGA Zone	51 GDA94			MGA Zone 51 GDA94			
SampleID	East	North	Au_ppb	SampleID	East	North	Au_ppb	SampleID	East	North	Au p	dao
KK0256S	344379	6753599	7	KK0308S	343882	6753998	12	KK0360S	343386	6755002	<5	
KK0257S	344377	6753799	11	KK0309S	343878	6754204	20	KK0361S	343376	6754800	<5	
KK0258S	344375	6753992	7	KK0310S	343880	6754389	8	KK0362S	343378	6754603		7
KK0259S	344375	6754195	9	KK0311S	343880	6754591	7	KK0363S	343387	6754396	<5	
KK0260S	344378	6754397	9	KK0312S	343877	6754803	5	KK0364S	343388	6754204	<5	
KK0261S	344370	6754591	9	KK0313S	343877	6754999	5	KK0365S	343380	6754001	.0	11
KK0262S	344385	6754801	<5	KK0314S	343877	6755193	7	KK0366S	343386	6753793	<5	
KK0263S	344373	6755005	<5	KK0315S	343883	6755398	37	KK0367S	343380	6753596		6
KK0264S	344382	6755202	6	KK0316S	343879	6755600	8	KK0368S	343387	6753400		39
KK0265S	344378	6755392	9	KK03103	343884	6755796	10	KK0369S	343386	6753199		8
KK0266S	344381	6755593	<5	KK03173	343885	6755998	7	KK0370S	343389	6753005		6
KK0267S	344374	6755795	9	KK03183	343875	6756192	34	KK03703	343386	6752799	<5	0
KK02673	344388	6755997	6	KK03193	343874	6756392	18	KK03713	343387	6752594	\5	6
	344379		6				6	KK03725 KK0373S			. F	0
KK0269S		6756195	7	KK0321S	343878	6756590			343375	6752406	<5	
KK0270S	344380	6756400		KK0322S	343881	6756794	13	KK0374S	343136	6752388	<5	
KK0271S	344379	6756594	8	KK0323S	343873	6756991	9	KK0376S	343128	6752593	<5	
KK0272S	344380	6756792	7	KK0324S	343630	6756990	5	KK0377S	343134	6752790		10
KK0273S	344375	6756990	9	KK0326S	343632	6752399	11	KK0378S	343127	6752987	_	7
KK0274S	344135	6756999	7	KK0327S	343631	6752596	6	KK0379S	343133	6753200	<5	
KK0276S	344131	6756806	15	KK0328S	343623	6752792	5	KK0380S	343126	6753391		7
KK0277S	344130	6756600	9	KK0329S	343623	6752999	8	KK0381S	343129	6753595		9
KK0278S	344139	6756403	22	KK0330S	343630	6753190	29	KK0382S	343135	6753796	<5	
KK0279S	344134	6756200	5	KK0331S	343637	6753396	13	KK0383S	343134	6753994	<5	
KK0280S	344134	6755997	13	KK0332S	343631	6753598	8	KK0384S	343135	6754195	<5	
KK0281S	344132	6755796	8	KK0333S	343635	6753792	5	KK0385S	343128	6754398	<5	
KK0282S	344136	6755602	9	KK0334S	343627	6754000	25	KK0386S	343138	6754596	<5	
KK0283S	344131	6755392	<5	KK0335S	343630	6754200	5	KK0387S	343127	6754789	<5	
KK0284S	344136	6755202	26	KK0336S	343633	6754403	18	KK0388S	343123	6754993	<5	
KK0285S	344130	6755004	6	KK0337S	343626	6754607	12	KK0389S	343127	6755201	<5	
KK0286S	344137	6754800	5	KK0338S	343630	6754795	5	KK0390S	343138	6755396		12
KK0287S	344133	6754598	10	KK0339S	343629	6754997	6	KK0391S	343126	6755593	<5	
KK0288S	344130	6754396	8	KK0340S	343632	6755199	<5	KK0392S	343130	6755788	<5	
KK0289S	344129	6754197	6	KK0341S	343639	6755395	7	KK0393S	343125	6755992		11
KK0290S	344120	6754003	15	KK0342S	343627	6755604	20	KK0394S	343132	6756190	<5	
KK0291S	344136	6753791	14	KK0343S	343629	6755801	6	KK0395S	343128	6756397	<5	
KK0292S	344135	6753599	20	KK0344S	343626	6755998	11	KK0396S	343125	6756600	<5	
KK0293S	344131	6753403	230	KK0345S	343634	6756197	<5	KK0397S	343134	6756796	<5	
KK0294S	344128	6753204	13	KK0346S	343626	6756397	8	KK0398S	343132	6756982	<5	
KK0295S	344126	6753001	9	KK0347S	343635	6756594	7	KK0399S	342889	6756999	<5	
KK0296S	344129	6752807	8	KK0348S	343637	6756790	16	KK0401S	342882	6756792		6
KK0297S	344130	6752604	19	KK0349S	343384	6756998	9	KK0402S	342886	6756603	<5	
KK0298S	344133	6752403	16	KK0351S	343380	6756804	11	KK0403S	342886	6756400	<5	
KK0299S	343876	6752407	<5	KK0352S	343383	6756606	9	KK0404S	342857	6756196	<5	
KK0301S	343885	6752596	12	KK0353S	343378	6756405	<5	KK0405S	342881	6755998	<5	
KK0302S	343881	6752798	19	KK0354S	343378	6756205	<5	KK0406S	342884	6755797	<5	
KK0303S	343878	6752998	12	KK0355S	343378	6755995	10	KK0407S	342876	6755592	<5	
KK0304S	343882	6753195	22	KK0356S	343377	6755799	10	KK0408S	342877	6755403	<5	
KK0305S	343881	6753398	12	KK0357S	343384	6755603	11	KK0409S	342883	6755197	<5	
KK0306S	343883	6753593	7	KK0358S	343381	6755405	6	KK0410S	342886	6755001	<5	
KK0307S	343875	6753802	8	KK0359S	343381	6755196	11	KK04105	342886	6754801	<5	
11103073	343073	0/33002	0	KKUJJJJ	242201	0/33130	11	1/1/04113	342000	0/34001	\ 0	

